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Chapter 1

Introduction

An interdisciplinary area of Computer Science and Molecular Biology that has developed m
the recent years is called Bioinformatics [2]. This was necessitated by the ever-increasing amount
of raw data generated and routinely collected by molecular biologists. This 1s as a result of Human
Genome Project and similar efforts, along with dramatic evolution of technology for information
storage and retrieval. In response 1o this problem a number of researchers have developed
techniques to interpret the data and discover concepts in the DNA, RNA and protein databases. An
important problem in the domam of Bioinformatics is the classification of protem sequences.
Proteins are chains of amino acids and form the basic building blocks of a lving orgamsm.
Classification of a protein sequence allows one (o infer the structure and function of proteins.
Perhaps, the most mmportant practical application of such knowledge is in drug discovery. A
primary challenge in classifying protein sequences lies m the proper extraction of a feature vector.
Evidently a good input representation (extraction of feature) is crucial for proper classification of
the proteins. In this dissertation we propose new feature extraction methods for classifying protems
from amino acid sequences. This chapter is organized as follows. In Section 1.1 we give the basic
concepts of Molecular Biology. This section deals with the basic structure and function of proteins
and nucleic acids, the mechanism of molecular genetics and other related terminologies that we
come across in the research works related to Bioinformatics. Section 1.2 gives an overview of the
existing biological sequence databases. In Section 1.3 we detail out what Bioinformatics is and the

role of a computer scientist in the field of molecular biology. Finally Section 1.4 deals with
conclusions and the organization of the thesis.

1.1 Basic Concepts of Molecular Biology

All living things are made up of tiny living parts called the Cells. Similar cells join to form
Tissues. Similar tissues organize themselves to form Organs. Similar organs arrange themselves to
form an Organism. Thus in the molecular level both complex and simple organisms have a similar
chemistry. The main actors in the chemustry of life are molecules called proteins and nucleic acids.
Roughly speaking, proteins are responsible for what a living bemg is and what it does. The
distinguished scientist Russell Doolittle once wrote, "we are our proteins". Nucleic acids on the
other hand, encode the information necessary to produce proteins and are responsible for passing
along this "recipe” to subsequent generations. Molecular biology [1, 23, 24) research is basically
devoted to the understanding of structure and function of proteins and nucleic acids. In the
following section we provide a preliminary discussion on the structure and function of proteins.



1.1.1 Proteins

HQO CH;
N/
CH; CH
H,N Ce—COOH H,N Co —COOH
H H

Figure 1.1 Examples of amino acids: alanine (left) and threonine (right).

Protems [25] are basically the tissue building blocks of a Living being. Proteins are large
orgamic molecules and are among the most important components in the cells of an organism. They
are more diverse in structure and function than any other kind of molecule. Structural proteins act
as tissue building blocks, whereas there are other proteins known as enzymes which act as catalyst
of chemical reactions occurring inside any living organism. Other than these, antibodies, hormones,
transport molecules, hair, skin, muscle tendons, cartilage, claws, nails, horns, hooves, and feathers
are all made of protems.

A protem 1s a chain of simpler molecules called amino acids. Examplesof amino acids can
be seen m Figurel.l. In nature there are 20 different amino acids, which are listed in Table 1.1.

Every amino acid has one central carbon atom, which is known as alpha carbon, or Cy To the Cy
are attached a hydrogen atom, an amino group NH;, a carboxyl group (COOH), and a side chain. It
is this side chain that distinguishes one amino acid from another. Side chains can be as simple as
one hydrogen atom (the case of amino acid glycine) or as complicated as two carbon rings (the case
of tryptophan). The combination of two amino acids is known as a peptide linkage. Figurel.2
shows how a sequential condensation produces a cham of bonded amino acids known as
polypeptide chain. The linear sequence of amino acids in polypeptide cham is known as the
primary structure of a protein. The enormous diversity of proteins is due to the many ways in which
amino acids can combine in these chains. A set of n amino acids can form 20" polypeptides; so
20" combinations are possible for a protem of /00 amino acids. This number is larger than the

total number of known atoms in the universe. Typical proteins contain about 300 residues, but there
are proteins with as few as /00 or with as many as 5,000 residues.

Within long polypeptide chains, certain section twist into coils and fold into sheets. These
shapes are known as the secondary structure of proteins. Secondary structures are formed by
hydrogen bonds between the carboxylic acid group and the amino group of the amino acids, which
are not adjacent to the polypeptide chain. If the two amino acids are part of a single chain, a
twisted-helix shape is formed. When a protein is built from multiple chains of polypeptides,
multiple bonds can form across such chains. This creates pleated sheets. Proteins actually fold in
three dimensions, presenting secondary, tertiarv, and quaternary structures.

2
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Table 1.2: The twenty amino acids commonly found in proteins
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Figure 1.2 Condensation Reaction producing polypeptide chain
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But how do we get proteins? Proteins are produced in a cell structure called ribosome. In a
ribosome the component amino acids of a protein are assembled one by one. To explain how this
happens we need to explain what nucleic acids are.

1.1.2 Nucleic Acids

Nucleic acids [26] are the second most important topic of interest in Molecular Biology.
Though nuclerc acids too are as mmportant as proteins in molecular biology researches but it is not a
concern 1 the present work. So only the salient points related to nucleic acid structure and
functions are discussed here. Nucleic Acids basically encode the necessary information to form
protemns and are responsible for passing along this recipe to successive generations. Living
orgamisms contamn two kinds of nucleic acids: ribonucleic acids, abbreviated RNA, and
deoxvribonucleic acid, or DNA. The basic unit of both these is a sugar molecule. We describe
DNA first. Figurel.3 (a) shows a basic DNA molecule. The bases here are nitrogenous compounds,
which distinguishes one molecule from the other. Nitrogenous compounds are of four types:

Adenine (A),
Guamne (G),
Cytosine(C),
Thymine (T).

YV WV

Thus a DNA molecule may have millions of nucleotides (sugar + phosphate + base) and
can be represented as strings of alphabets A, G,C, T in any combination and of any length. The unit
of DNA molecule is bp (base pair) and it represents the number of A, G, C, T pairs present in DNA
molecules.

. The other forms of nucleic acids are the RNAs. Figurel.3 (b) shows basic unit of RNA.
The basic differences between a DNA and RNA are as follows:

e,

» DNA 15 double strand (chain) of simpler molecules tied in helical structure. RNA is a single
strand. |

» The hase that replaces T of DNA is Uracil (U). The sugar molecule as seen m RNA is

Ribose instead of 2°- deoxyRibose (found m DNA). Thus we have RNA as strings of A, G,

and C, U mn any combination and of any length.

1.1.3 Promoters, Genes and the Genetic Codes

Now we discuss some more important terms in molecular biology: promoter, genes and the
genetic code. A gene is a contmnuous stretch (~10,/000 bp) of DNA that contains the necessary
information to build a protein or RNA molecule. The portion of DNA, which marks the beginning
of a gene, is called a promoter. The genetic code on the other hand gives the correspondence
between each possible triplet of nucleotides (called CODON) and each amino acid i a tabular
form. By this way of representation we can actually have 64(4°) triplets representing 2() amino

4



acuds. Thus some nf these do not code tor «ny amino acid. They are the STOP codnm These
mciude UAG, UGA, and UAA. While some uther codons may code for the same m aﬂ!
(signifying redundancy in the coding). For example, both AAG and AAA code for lysine. Also the
codon AUG signifies the start of a gene. In other words, once a promoter site is identified in DNA,
the first appearance of AUG m the sequence thereafter mdicates the start of a gene.

H H
| |

OH—5-—H O\base OH—5— H Q\ba.rc
| l |
4’ : 1’ 4"
H

| H I H
H | | H I l
3y _ 2 —— 2
; | | |
HO H HO OH
2’-deoxyribose ribose
Figure 1.3(a) Figure 1.3(b)

Sugars present in nucleic acids, Symbols 1’ to 5’ represent carbon atoms.

1.1.4 Protein Synthesis

Replication Transcription Translation

“ DNA - DNA Proteins

Reverse Transcription

Figure 1.4 Genetic information flow in a cell

As mentioned in the last subsection we can recognize the start of a gene. Having recognized
the beginning of gene or gene cluster, a copy of the gene is made on an RNA molecule. This
resulting RNA is the messenger RNA, or mRNA for short. This process is called transcription. The
mRNA will then be used in cellular structures called ribosome to manufacture a protein. In ﬂ]:lS_

process two kinds of RNA molecules play very important roles. Rlbosomc is madc up of protmns'_ o
and a form of RNA called ribosomal RNA. The ribosome functions Kke an assembly line in'a ..
factory using as "inputs” an mRNA molecule and another kind of RNA molecule ca]led transfcr .

RNA or tIRNA.

Transfer RNAs are the molecules that actually implement the genetic code in a process
called translation. They make the connection between a codon and the specific amino acid this
codon codes for. Each tRNA molecule has, on one side, 2 conformatton that has high affinity for

G.','
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specific codon and. on the other side. u conformation that binds easily to the corresponding amino
acid. As the messenger RNA passes thrcugh the mternior of the ribosome, a fRNA martching the
current codon- the codon in the mRNA currently inside the ribosome - binds to it, bringing along
the corresponding amino acid {u generous supply of amino acids is always "floating around" ir the
cell). The three-dimensional position of all these molecules in this moment is such that, as the
tRNA binds to 1ts codon, its attached amino acids falls m place just next to the previous amino acid
in the protem chain being formed. A suitable enzyme then catalyzes the addition of this current
amino acid to the protein chamn, releasing it from the tRNA. A protem is constructed residue by
residue in this fashion. When STOP codon appears, no tRNA associates with it, and the synthesis
ends. The messenger RNA 1s released and degraded by cell mechanisms into nbonucleotides,
which will be then recycled to make other RNA. The process is explained in Figurel 4.

1.2 Sequence Databases

As already mentioned, protems and DNAs are represented i form of sequences of
alphabets. To work with these or to have basic understanding of the protein and DNA sequences
that presently exist, one can easily refer to the large numbers of DNA, RNA, and protein databases
that are available. The Intermet is a useful tool to access theses databases and to harbor the
biological sequences as well as the wealth of associated mformation. Some of the representative
sequence databases of mentionable importance are: *

PIR (http://pir.georgetown.edw/)
GenBank (http://www.ncbi.nlm.nih. gov/)
EMBL (http://www.embl-heidelberg.de/)
PDB (http://www.pdb.bnl.gov)

V VWV V

‘Throughout this project a large number of protein sequences obtained from the Protein
Information Resource (PIR) Database [47] are used. This is a database maintained and distributed
by three institutions: the National Biomedical Research Foundation (in the USA), the Martinstried
Institute of Protein Sequences (in Europe), and the Japan International Protemn Information
Database. The data used in the experiments were obtamned from the International Protein Sequence
Database, release 75, in the Protem Information Resource (PIR) maintained by the National
Biomedical Research Foundation (NBREF-PIR) at the Georgetown University Medical Center. The
database currently has 172,684 sequences.

Three datasets are considered; they are the Globin, the Ras transforming proteins, and the
Trypsin homology superfamilies. They form the positive datasets. They respectively contain 896,

530 and 521 sequences in the database at present. We have taken 500 sequences from each of these
superfamilies.



1.3 What is Bioinformatics

The recent flood of data from genome sequencing and funct.onal genomic has given rise to
new field, Bioinformatics [2], which combmes elements of biology and computer science. Ever
since the structure of DNA was unraveled in 1953, molecular biology has witnessed tremendous
advances. With the increase in our abihity to manipulate biomolecular sequences, a huge amount of
data has been and is being generated. There i1s need to process the information that is pouring from
laboratonies all over the world, so that it can be of use for further scientific advances. This has
created enurely new problems that are interdisciphnary in nature. Scientists from biological
sciences are the creators and ultimate users of this data. However, due to sheer size and complexity,
of these data the help of many other disciplines is required mn biological sciences nowadays. These
disciplines particularly include mathematics and computer science.

Bioinformatics is conceptualizing biology in terms of macromolecules (in the sense of
physical-chemistry) and then applying "informatics™ techmques (derived from disciplmes such as
applied mathematics, computer science, and statistics) to understand and orgamze the information
associated with these molecules, on a large-scale.

Bioinformatics is a practical discipline. It employs a wide range of computational topics
including sequence and structural alignment, database design and data mming, macromolecular
geometry, phylogenetic tree construction, prediction of protein structure and function, gene finding,
and expression data clustering. The emphasis is on approaches that mtegrate a vanety of
computational techniques and heterogeneous data sources.

1.3.1 Aims of Bioinformatics

In general, the aims of Bioinformatics are three-fold.

> Firet at its simplest, Bioinformatics organizes data m a way that allows researchers to
access existing information and to submit new entries as they are produced, e.g., the Protem
Data Bank for 3D macromolecular structures. While data-creation i1s an essential task, the
information stored in these databases is essentially useless until analyzed. Thus the purpose
of Biomformatics extends much further.

Y/

The second aim is to develop tools and resources that aid m the analysis of data. For
example, having sequenced a particular protein, it i1s of interest to compare it with
previously characterized sequences. Sequence alignment [27] is one of the common
approaches for matching or comparing. Typical examples of sequence alignment programs
are FASTA [31, 32] and BLAST [19]. Another popular approach in this regard, is to extract
appropriately defined features from protein sequences and then using some pattern
recognition techniques for classifying them. Some attempts i this regard may be found m
[2.5.16.18]. The present work primarily belongs to this category.



# 'The third aim is to use these tools to analyze the data and imterpret the results in a
biologically meamngful manner. Traditionally, biological studies examined individual
systems in detail, and frequently compared them with a few that are related. In
Bioinformatics, we can now conduct global analyses of all the available data with the aim of

uncovering common principles that apply across many systems and highlight novel features.

1.3.2 Computer Science and Biology

Biological data are bemng produced at a phenomenal rate. For example presently, the
GenBank repository of nucleic acid sequences contained 11,546,000 entries. On average, these
databases are doubling i size every 15 months. In addition, since the publication of the H.influenza
genome, complete sequences for nearly 300 organisms have been released, ranging from 450 genes
to over 100,000. Add to this, the data from the myriads of related projects that study gene
expression, determine the protein structures encoded by the genes, and detail how these products
mteract with one another. We can imagine the enormous quantity and variety of information that is
being produced. As a result of this surge m data, computers have become indispensable to

biological researches. Such an approach is ideal because of the ease with which computers can
handle large quantiues of data and probe the complex dynamics observed in nature.

The distinct subject areas we have mentioned require different types of informatics
techmiques. Briefly, for data orgamzation, the first biological databases were simple flat files.
However with the increasing amount of information, relational database methods with Web-page
nterfaces have become increasingly popular. In sequence analysis, techniques include string
comparison methods such as text search and one-dimensional alignment algorithms. Motif and
pattern identification for multiple sequences depend on machine learning, clustering and data-
mining techmques. An example of this is the present work itself. 3D structural analysis techniques
include Euchdean geometry calculations combined with basic application of physical chemistry,
graphical representations of surfaces and volumes, and structural comparison and 3D matching
methods. For molecular simulations, Newtonian mechanics, quantum mechanics, molecular
mechanics and electrostatic calculations are applied. In many of these areas, the computational

mcincds must be combined with good statistical analysis in order to provide an objective measure
for the significance of the results.

1.3.3 Practical Applications of Bioinformatics

Here, we describe some of the major uses of Bioinformatics.

» Finding Homologues:

As described earlier, one of the driving forces behind Bioinformatics is the search for
sunilarities between different biomolecules. Apart from enabling systematic organization of data,
identification of protein homologies has some direct practical uses. The most obvious is
transterring information between related proteins. For example, given a poorly characterized
protein, 1t i1s possible to search for homologies that are better understood and with caution, apply

%



some of the knowledge of the latter to the former. Specifically with structural data, theoretical

models of proteins are ustally based on expenmentally solved structures of close homologies. Qur
work addresses this application.

» Rational Drug Design
One of the earliest medical applications of Bioinformatics has been in aiding rational drug
design. Gtven the nucleotide sequence of a gene as a drug target, the probable amino acid sequence
of the encoded protein can be determined using translation software. Sequence search techniques
can then be used to find homologies in model organisms, and based on sequence similarity; it is
possible to model the structure of the protein on experimentally characterized structures. Finally,

algorithms could be used to design molecules that could bind to the model structure, providing a
way for biochemical assays to test thetr biological activity on the actual protein.

1.4 Conclusions and Scope of the Thesis

With the current deluge of data, computational methods have become indispensable . to
biological investigations. Onginally developed for the analysis of biological sequences,
Bioinformatics now encompasses a wide range of subject areas including structural biology,
genomic and gene expression studies. As a result, Bioinformatics has not only provided greater
depth to biological investigations, but added the dimension of breadth as well. In this way, we are
able to examne individual systems in detail and also compare them with those that are related in

order to uncover common principles that apply across many systems and highlight unusual features
that are umque to some.

The present work can be thought of as a step towards the enormous journey in the world of
understanding and organizing the information associated with biomolecules. There have been a lot

of existing attempts in the same field. An overview of some of the existing works in this field has
been provided in the next chapter.

The scope of the thesis 1s now bnefly mentioned. In Chapter 2, we give an overview of the
protein sequence classification problem in a biologically meaningful manner. Here we also briefly
descnibe an existing scheme of feature selection as suggested by Wang et al. In Chapter 3 and
Chapter 4 we describe the vanous methods of encoding that have been chosen in the protein
classification problem in this work. In these chapters the problem has been approached in two
ways. In the Chapter 3, the protein sequences are represented as signals and have been compared in
the frequency domain. This way of looking at the sequences as signals has also been adopted in
[28,29,50,51]. In the next chapter a new method for feature extraction from protein sequences in a
completely different paradigm has been suggested. This method is based on the positional
significance of the amino acids 1n the protein structures of a particular superfamily. It is a simple
but effective method for finding out the relevance of all the possible amino acids in a protein
sequence. The performances of the methods have been studied on various superfamilies in both
these chapters. In Chapter 5 we have extended our classification technique to a multi-class
classification problem. Throughout chapters 3, 4 and 5 we have used both ANN [33.52] and the
MLP [17,30] as the underlying classifiers. Chapter 6 deals with conclusions and scopes for future
work in the field of protein sequence ¢lassification.

0



Chapter 2

Protein Classification

It has been already discussed m the previous chapter that there has been a constant need for
the development of an algorithm, which can extract useful information from biological databases.
In response to this problem, a number of researchers have developed techniques to interpret the
data and discover concepts in the DNA, RNA and protein databases. This field of biological
datamining is very important in Biowinformatics. Classification of protein sequences into
superfamilies [43] is one of the important areas of research m this field. In general, a superfamily is
a group of proteins that share similarity in structure and function. This chapter deals with this
particular problem m detail. In Section 2.1 a basic introduction to the problem of protein sequence
classification is provided. Subsequently m Section 2.2, we present a study of the basic research
works that are being undertaken in this area of protein sequence analysis all over the world. Finally
in Section 2.3 the details of one of the recent important works of protein sequence classification
problem has been provided. All these will provide us with an overview on how far scientific
research has already been done 1n this field. Section 2.4 concludes the chapter.

2.1 Protein Classification Problem

-The problem of protein classification can be formally stated as follows: Given an unlabeled
protein sequence S and a known superfamilty F, we are to determine whether the protein S belongs
to the superfamily F or not.

In this section, a brief introduction of the related issues 1 the problem of protein sequence
classification is given. To start with, it can be recalled that thic pivicn sigiufies a string of alphabets
from the set of 20 amino acids. The set (A) of amino acid can be represented by:

A={A,C,D,E.F,GH LK, LLM,N,P,Q,R,§, T, V, W, Y}

The sequence can be of any length and the amino acids can combine in any order. This
gives us an idea of the huge number of possible protein structures. First let us define what a
superfamily [43] is. As observed, groups of proteins have similarity in functions and structures and
we refer to a group of proteins that share such similarity as a superfamily. Thus we have divided all
the presently available proteins into a number of superfamilies. An important issue in studying the
protein sequences with the aid of several computer science or mathematical techniques in protein
sequence classification is how to encode the protein sequences, ie., how best to represent the
protein sequences capable of mathematical manipulation.  Suppose we have a protein classifier
based on neural network. Note that, this type of classiher has been extensivelv used mn the present
dissertation. We¢ know that good mput representations make it easier for the network to recognize
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the underlymng regularities of the protems. Proteins in form of normal alphabetic sequences are not
a good way of mput representation for any kind of classification problem. Thus a good mput

representation is crucial to the success of neural network learning. Similar is the requirement of a
200d input representation for other classifiers aiso.

The next question associated with protem sequence classification is how useful it is to
biological researches. Protem family classification has several advantages. If we have an unknown
protemn at hand, the first thing we can do 1s to classify the protemn into a known superfamily. This
will help us to make some idea about the structure and function of the newly discovered protem.
Perhaps, the ‘most important practical apphcation of such knowledge is in drug discovery. Suppose
we have obtamed sequence S from some disease D) and by our classification method we infer that S
belongs to F. In order to design a drug for the disease D we may try a combination of existing
drugs for F. Other than its use mn drug discovery, classification of proteins provides valuable clues

to structure, activity, and metabolic role of the protein in question. Some of the other important
uses of protein classificatton are bisted below.

» It improves the identification of proteins that are difficult to characterize based on
pair wise alignments;

» It assists database maintenance by promoting famﬂy-ba.sed propagation of
annotation and making annotation errors apparent;

» It provides an effective means to retrieve relevant biological information from vast
amounts of data;

» It reflects the underlying gene families, the analysis of which is essential for
comparative genomic and phylogenetic; and

» Family and superfamily classification frequently provide identification or probable
function assignment for uncharacterized (hypotheiical) sequences.

Now we discuss the different classification systems have been developed to orgamze
proteins in recent years. (E.g., in one system the classification into various superfamilies 1s done
based on sequence similarities). Based on the type of classification, different databases have
evolved (e.g., PIR Database). Scientists recognize the value of these independent approaches.
While each of these databases is useful for a particular need, no classification scheme 1s by uself
adequate for addressing all problems of biological needs.

Among the variety of classification schemes are:

» Hierarchical families of protems such as the super-fanuhes/famﬁes in the PIR-
PSD {47], and protein groups in ProtoMap [48]

Families of protein domains, such as those in Pfam [42] and ProDom [44].
Sequence motifs or conserved regions, such as in PROSITE and PRINTS {39]
Structural classes, such as in SCOP and CATH; as well as

vV VYV
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» Integrations of various family classifications, such as 1ProClass [46] and InterPro
[38]. |

The PIR superfamily/family [43. 47] concept, the ongmal such classification based on
sequence similarity, is unique in providing comprehensive and non-overlapping clustering of
protein sequences mto a hierarchical order to reflect thewr evolutionary relationships. Proteins are
assigned to the same superfamily/ family only if they share end-to-end sequence smmilarity,
including common domatn architecture (Le. the same number, order, and types of domains), and do
not differ excessively in overail length (unless they are fragments or result from alternate splicing
or initiators). Other major family databases are organized based on similarities of domamn or motif
regions alone, as in Pfam and PRINTS. There are also databases that consist of mixtures of domain
families and families of whole proteins, such as SCOP and TIGRFAMs [45]. However. in all of
these, the protein-to-family relationship is not necessarily one-to-one, as in PIR superfamily, but
can also be one-to-many. Thus except for PIR superfamily concept classification, the

belongingness of protein to a class can be expressed as a fuzzy membership value in that particular
class. -

Automatic classtfication of protems into homogenous superfamilies, by looking at their
amino acid sequences has long been a goal for scientists and researchers in the domamn of
Proteomics. In this aspect one important concept 1s how to extract high-level features from protemn
sequences. The best high-level features should be "relevant”. By relevant we mean that there should
be high mutual information between the features and the output of the classifier, where the mutual
information measures the average reduction i uncertamnty about the output of the classiber given
the values of the features.

Following the completion of the human genome project, which has mapped out the location
of every gene in the DNA sequence as well as discovering the function of each gene and how each
gene effects our population, the last few years have witnessed consistent improvements in
mformation retrieval, classification and analysis of the proteins and DNA sequences. Most of the
advanced research arecas of Bioinformatics rely on computational solutions for homologies
modeling via sequence or structural similarities. Many statistical, sequence-base approaches have
heen developed for protein classification and homologies detection. Those methods are very time-
consuming and complicated and so far they have only had partial success. They can give a clue to
the protein's superfamily but not a definite answer. These include methods based on pair-wise
similarity of sequences BLAST. [19], profiles for protein families, consensus patterns usmg motifs
and Hidden Markov Models (HMM){9,10,11]. Most of these methods attempt to recogmize proteins
at the super-families level, as they are not yet able to disunguish satisfactory characterisuc
differences between two sequences within the same super-family.

2.2 Approaches to Protein Classification

Sequence databases are databases comprising one dimensional data structures such as text,
digital signals, proteins and DNA. Such objects are often represented as sequences in the databases.
For example, a protein 1s represented as a sequence made trom 20 amino acids, each represented as
1 letter. A digital ‘signal 1s represented by series of Os or Is digits. A DNA 1s represenied as a
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sequence of four nucleotides: A, T, C and G as has been explained earlier. With the -:gnificant
growth of sequence database sizes m recent years, it becomes increasingly important to develop
new techriques for data orgamization and query processing in the seguence databases. Pattern
Discovery and Pattern Maichmg are fundamental operations in the sequence databases. They
attempt to discover useful patterns, which can help scientists to find new properties of the databases
or predict the function of a new entity and to discover already similar patterns that exist in the
database. These often help to classify the newly discovered entity to an appropriate pattern class.

*  Block based approach [18, 34,35].:

In any basic algorithms for discovering blocks or characteristic patterns for a family of
proteins the main strategy is as follows.

» The most highly conserved regions of a family of proteins can be represented as "blocks" of
locally aligned sequence segments. Each block is considered as a special type of pattern for
the protein family.

> If the query sequence belongs to a family with multiple blocks then at least a subset of these
blocks should score highly when matching the query with the blocks.

An approach to query processing is a two-phase process:

» Find candidate segments among a small sample A of sequences.

» Combine the segments to form candidate patterns and evaluate the activity of the patterns
in all sequences of D to determme which patterns are solutions of the query. |

* Sequence alignment based appraaéh [19,31,32]:

GA_CGGATTAG
GATCGGAATAG

Figure 2.1(a) Sequence alignment of 2 sequences.

MOQPILLL
MLR_LL,
MK_ILLL
MPPVLIL

Figure 2.1(b) Multiple alignment of 4 amino acid sequences

In string matching we are given a sequence X and a string Y and we want to find all
occurrences of Y m X. Many techniques have been pubhished in the hterature to solve the problem
of pattern matching. A commonly used one 1s based on multiple sequence alignment, which is a
natural generalization of the two-sequence case. We define an alignment between two sequences as
the insertion of spaces in arbitrary locations along the sequences so that they end up with the same
size. Having the same size the augmented sequences can be placed one over the other; creating a
correspondence between characters or spaces in the first sequence and characters or spaces in the
second sequence. If we consider Figure 2.1(a) we cannot help but notice that the two sequences

il |
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here actually look very much alike. In multiple sequence alignment let X3, X2, .... Xi be the set of
sequences over the same set of alphabets. A multiple sequence alignment involving Xy, Xo. .... Xk
1s obtamned by inserting spaces in the sequencesin such a wuay as to make all of them of the same
size. Figure 2.1(b) shows such an ahgnment bemg done on four sequences. From the figure it is
clear that the scheme gives us some idea about the similarity among these sequences. The basic aim
in this is to design an efficient algorithm that takes two sequences and determine the best alignment
between them to find out which of the sequences m the database are similar to a query sequence.

Dynamic Programming, Tree Alignment and Star Alignment are various ways of creating multiple
sequence alignment.

A natural question 1n all cases of Pattern Matching is whether there are related sequences
that share the same pattern. The most widely used tools for sequence similarity search allow
matching between arbitrary regions of the query and database sequences. In contrast, many morif-
based search methods seek database sequences that match a pre-specified pattern. If this pattern is
too weak, or not specified with sufficient precision, the number of matches may be very large, most
being of no biological relevance. On the other hand, an overly specific pattern may exclude many
sequences of interest. Protein families often are characterized by conserved sequence patterns or
motifs. A researcher frequently wishes to evaluate the significance of a specific pattern within a
protein, or to exploit knowledge of known motifs to aid the recogmtion of greatly diverged but
homologous family members. To assist in these efforts, until recent days, BLAST and FASTA
programs have been the major tools to help analyze the protein sequence data and interpret the
results in biologically meaningful manner. BLLAST returns a list of high-scoring segment pairs

between the query sequence and the sequences m the databases. This is done after performing an
alighment among them.

Faster and more sensitive homology searches based on BLAST [16, 37] have also been
devised. One of them is the pattern-hit initiated BLAST (PHI-BLAST). In many instances, the
program is able to detect statistically sigmficant similarity between homologous proteins that are
not recognized using traditional single-pass database search methods.

A method for using a multiple alignment is to identify an average structural "core,” a subset
of atoms with low structural variation [22]. In can be shown how the means and variances of core-
atom positions summarize the commonalities and differences within a family. Thus, because of
both the great numbers of structures and of famihes, it has become desirable (even necessary) to
summarize the common features within a family, whilst separating out the variable ones. One of the
most basic commonalities shared by each member of a family is a set of atoms, which occupy the
same relative positions i space. The focus here is m identifying this set of atoms, and then m
characterizing it statistically. How to construct an average core structure for a protein family m
such a way that the average is unbiased and the resulting structure has acceptable stereochemistry 1s
an important issue. This core structure can then be used to characterize the structural varability
within a family, to define the average relative orientation of domains m multi-domain complexes,
and to develop new measures of sinilarity between members of the same structural family. A core
based purely on structural considerations is not the same as on¢ based on sequence considerations,
s0, clearly, these definitions of "core” do not always coincide. Once a core for a family of structures

has been calculated, it is possible to use it to assess the similarity of two structures in the family 1n
a better way.
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» Suffix Tree based approach [20,36]:

A

| i TCTAGGS

CTAGGS

Figure 2.2 Suffix tree for the string GTATCTAGG. A dollar sign marks the end of the string.

This method of finding homologies groups all identical sub strings into a single path of the
tree. Formally a suffix tree for string S= s;, §3, ....., 83 is a rooted tree T with n+1 leaves with the
following properties:

» Each edge of T are directed away from the root, and each edge is labeled by a
substring from S

» All edges coming out of a given vertex have different labels, and all such labels have
different prefixes.

» To each leaf there corresponds a suffix from S, and this suffix is obtained by
concatenating all labels on all edges on the path from the root to the leaf.

The disadvantage of using a suffix tree is that it is expensive to store in a straightforward
implementation. An example of a suffix tree 1s shown 1n Figure 2.2.

In another work the space of all protein sequences have been investigated. The standard
measures of similarity (SW, Fasta, Blast), to associate with each sequence an exhaustive hsi of

|
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neighbormg sequences has been combined. These lists induce a :weighted directed) graph [21]
whose vertices are the sequences. The weight of an edge connecting two sequences represents their
degree of similarity. This graph encodes much of the fundamental properties of the sequence space.
We look for clusters of related proteins in the graph. These clusters correspond to strongly
connected sets of vertices. Edges between the vertices are weighted with weights that reflect the
distance or the dissmilarity between the corresponding sequences, i.c., high smmilarity translates to
a small weight (or distance). To compute the weight of the directed edge from A to B, one
compares A against all sequences in the database, and obtains a distribution of scores. The graph is
constructed using all currently known measures of similarity between protein sequences.

" Position Specific matrices based approach

Also we have Position-specific scoring matrices that have been used extensively to
recognize highly conserved protein regions. A position-specific scoring matrix (PSSM) S
represents a gapless local alignment of a sequence family. The alignment consists of several
contiguous positions, each position represented by a column in the scoring matrix. Positzon-specific
scormg matrices have been used extensively to recognize highly conserved protein regions.
Inturtively, a higher segmental score indicates a greater likelihood that the sequence matches the
given scoring matrix. The mtuition behind scoring matrices is as follows. Amino acids that are
abundant in a position in the ahgnment get high scores, and those that are rare get low scores.

The main novelty of this technique is the method of constructing feature vectors using
Hidden Markov Model {8,9,10,11] and the combination of this representation with a classifier
capable of learning in very sparse high-dimensional spaces. The system utilizes Support Vector
Machines (SVM) classifiers to learn the boundaries between structural protein classes. First the
protein sequences of interest are converted to high dimensional feature vectors by extracting them
through HMM. Once this transformation has taken place, we then learn SVM discriminators to
separate each protein family from the rest. The feature extraction method proposed in this
dissertation, has to some extent, been motivated by the HMM based scheme described in [8,9,10].

Even with the best alignment of two sequences in hand the basic question remains. Do they
share the same biological function or not. It is in general claimed that two sequences with over 30
percent identity are very likely to have the same fold by Sander Sneider 1991. Proteins of the same
fold usually have similar biological functions. Nevertheless, one encounters many cases of high

smulanity i fold, despite a low sequence similarity. Such instances are unfortunately, missed by
simple search over the database.

Other than the methods we have talked of briefly in this section, other methods based on

HMM, neural network, multiple sequence alignment techniques are also in vogue. In one of the
most recent works of flavor similar to what we work on, Wang et al [3,4] have tried to capture the
global and local similarities of protein sequences as inputs to a Bayesian Neural Network (BNN)
classifier. 2-gram encoding scheme, which extracts and counts the occurrences of two consecutive
amino acids in a protein sequence, is used. They have also compared the technique with BLAST,
SAM and other iterative techniques to prove the superiority of the proposed method. In this report
we have compared the performance of our feature extraction techniques to the 2-gram schems
described in [3,4]. Therefore we described the method of Wang et al [3,4] in detail below.

16



2.3 Method of Wang et al

In this section the feature extraction techmque as given by Wang et al [3,4] is described.
The features extracted by the method proposed by them are given as inputs to a Bayesian Neural
Network, which serves as the protein sequence classifier in [3,4].

They capture both the global similarity and the local similarity of protem sequences. The
global similarity refers to the overall siomlarity among multiple sequences whereas the local
similarity refers to the motifs (or frequently occurring sub strings) in the sequences.

2.3.1 Global Similarity of Protein Sequences

To calculate the global smﬂanty of protems sequences they adopted the 2-gram, also
known as the 2-tuple method. The 2-gram encoding method extracts various patterns of two
consecutive amino acid residues in a protein sequence and counts the number of occurrences of the
extracted residue pairs. For instance, suppose we have a protein sequence § as PVKTNVK, the 2-
eram amino acid encoding method gives the followmg result: / for PV (indicatmg PV occurs once),
2 for VK (indicating VK occurs twice), I for KT, I for TN and / for NV.

They have also adopted 6-letter exchange groups (el, e2, e3, e4, e5, e6}, where ele {H, R,
K}, e2e (D, E, N, Q) e3e{C),ede (ST, P A G),eS5e{M, I L V}, e6e(F, Y, V). These
exchange groups are effectively equivalence classes of the amino acids. For example, the above
protein sequence PVKTNVK can be represented as ededeledeledel. The 2-gram exchange group
encoding of this sequence is 1 for e4e5, 2 for edel, 1 for eled, 1 for ede2 and 1 for e2e).

For each protein sequence, Wang et al [3,4] have applied both the 2-gram ammo acid
encoding and the 2-gram exchange group encoding of the sequence. Thus there are 20 X 20 + 6 X
6 = 436 possible 2-gram patterns in total. If all the 436 2-grams are chosen as the neural network
input features, it would require many weight parameters and training data. This makes it difficult to
train the neural network- a phenomenon called “curse of dimensionality”. Different methods have
been proposed to solve the problem by careful feature selection and by scaling of the input
dimensionality. They propose here to seclect relevant features (ie., 2-grams) by employing a
distance measure to calculate the relevance of each feature.

Let X be a feature and let x be its value. Let P (x| Class = 1) and P (x| Class = 0) denote the
class conditional density functions for the feature X, where Class_I represents the target class and

Class_0 is the non-target class. Let D (X) denote the distance function between P (x| Class = 1)
and P (x| Class = 0), defined as: -

D (X) =] |P (x| Class = 1) —P (x! Class = O}l dx (2.1)



The distance measure prefers feature X to feature Y if D (X) > D {¥). Intuitively, this means
it 1s easier to distinguish more between Class I and Class_0 by observing feature X than feature Y.
That 1s, X appears often in Cluss_I and seldom in Class_0 or vice versa. In their work, each feature
X is a 2-gram. Let ¢ denote the occurrence number of the feature X in a sequence §. Let / denote the

total number of 2-grams in § and let len(S) represent the length of S. Defme the feature value x for
the 2-gram X with respect to the sequence § as:

x = the occurrence number of feature X in sequence S /( len(S} —1)

For example, suppose the feature 1s VK. The feature value of feature VK with respect to S
would be 2A7-1) = 0.33.

Because a protein sequence may be short, random pairings can have a large effect on the
result. D (X) in equation (2.1) is approximated by

D (X)= (my-mo )’/ (d"+d5") o (22)

where, m; and d; (mp and dp respectively) are the mean value and the standard deviation of the
feature X in the positive (negative, respectively) training dataset. Intuitively, in equation 2.2 the
larger the numerator is (or the smaller the denominator 1s), the larger is the interclass distance, and
therefore the easier it is to separate Class_I from Class_0 (and vice versa).

Let X1, Xz ..., Xne Ng<< 436, be the top Ng features with the largest D(X) values. Note
that these Ng features occur more frequently m the positive training dataset and less frequently in
the negative training dataset. For each protem sequence S (whether it is unlabelled test sequence),

they examine Ng feature values for the sequence S. These are mput feature values to the Bayesian
neural network classifier they have considered.

To compensate for the loss of information due to ignoring the other 2-gram patterns, a
linear correlation coefficient (LCC) between the values of the 436 2-gram patterns with respect to
the protein sequence § and the mean value of the 436 2-gram patterns in the positive training
dataset is calculatcd and used as another input feature value for S. A last input is taken based on
the local similarity of protein sequences, which refers to frequently occurring moufs i the target
protein sequences.

2.3.2 Classification Methodologies

The set of features extracted using the above method basically represent a particular
sequence. The next step in this process is to design a classifier that can appropriately classity the
protein sequence into a particular superfamily using the extracted feature. In the present work two
classifiers have been considered viz., the k nearest neighbors (ANN) classifier and the Multilayer
Perceptron (MLP). They are now described in brief.

» The kNN Classifier {33. 52].
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Nearest neighbor classification ruie can be defined as a rule, which assigns a pattern X of
unknown class to the class of its nearest neighbor. Let us consider a set of sample patterns {P;, P,
...P.} where 1t is assumed that each pattern belongs to one of the m existing classes. It is said that P;
e {P,, P, ...P,} is a nearest neighbor to X if

D (P, X) =min {D (P, X}}, [=1,2 ..t

where, D 1s any distance measure defined over the pattern space. We may call this scheme
the one nearest neighbor (1-NN) rule. Therefore it employs only the classification of the nearest

neighbor to X. The k nearest neighbor (KNN) rule consists of determining the & nearest neighbors to

X and using the majority of equal class in this group as the class of X. In general, the choice of k 1S
an 1important consideration in ANN classifier.

» The MLP Classifier [30]:

The multilayer perceptron consists of multiple layers of simple, two state, sigmoid
processing elements (nodes) or neurons that interact using weighted connections. After a lowermost
input layer there are usually any number of intermediate, or hidden, layers followed by an output
layer at the top. There exist no interconnections within a layer while all neurons in a layer are fully
connected to neurons in the adjacent layers. Weights measure the degree of correlation between the

activity levels of the neurons that they connect. The total input, x; ! received by the neuron j In
layer A+ 1s defined as:

R+[ _ h _h
Xj =2y Wy

where, " is the state of the i neuron in the precedmg K" layer, w" ;i 1s the weight of the
connection from the i™ neuron in the layer h to the ;™ neuron in layer 4+1. The output of a neuron in

any layer other than the mput layer (2 > 0) 1s a monotonic nonlinear function of its total input and
IS given as:

YV =1/(1+exp(-x4)).
For nodes 1n the input layer,

0__ 0
Yi =X

An external input vector is supplied to the network by clamping it at the nodes of the input
layer. For conventional classification problems, during training, the appropriate output node is
clamped to state 1 while the others are clamped to state 0. This is the desired output supplied by the

classifier. Here the leaming procedure has to determine the internal parameters of the hidden units
based on its knowledge of the 1nputs and the desired outputs.

In the present work the number of hidden nodes and the architecture of the neural net as
well as the value of k 1n ANN were varied in the experimental phase. In using the MLP as the
underlying classifier only a single hidden layer is sufficient for the purpose of protein sequence
classification. This is because in this case the number of output nodes is always 2 indicating that
only a single decision boundary is required to distinguish the target and the nontarget class. The
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mternal parameters of the MILP that mclude the learning rate and momentum factor were self-
adjusted by the network for the best efficiency. The maximum permissible error was 0.01.

2.3.3 Experimental Results

A series of experiments to evaluate the performance of the proposed MLP and iNN
classifiers were carried out on a Pentium Il PC runming the Linux operating system. Table 2.1 and
2.2 show the percentage classification obtained using MLP and ANN classifiers respectively. The
number of sequences used for training and testing are specified in the tables. As in [3], the traming
as well as the test set contains 50% positive and 50% negative instances (where the negative
instances consist of sequences from various other superfamilies). The MLP has 62 and 2 nodes in
the mput and output layers respectively, while the number of nodes in the hidden layer is varied.
The number of rterations required for classification with MLLP was 200 for all the superfamihes. For
the kNN classifier, the value of k is taken to be /, 3 and. Vn, where n is the size of the training data
set. It is known that as number of training patterns n goes to infinity, if the values of k¥ and k/n can
be made to approach infinity and O respectively, then the NN classifier approaches the optimal
Bayes classifier [52). One such value of & for which the limiting conditions are satisfied is va.

Table 2.1: The resuits by 2-gram encoding (using MLP).
[Here the MLP has 3 layers with 62, 30 and 2 nodes in the three layers respectively.]

o tuamingm) o ftestng o Jk=1 fEk=B JieAn
Globm 500 500 86.4 . :
5 ey Tere Tés
b Y
250 250 732 | 672 | 664
Trypsin 500 500 88.4 80.8 {764
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Table 2.3: The results by 2-gram encoding (using MLP). [Here the MLP has 3 layers with 62
and 2 nodes in the first and the last layers respectively. The number of nodes in the middle
layer is varied]

Superfamily # of patterns # of nodes in the
used in training hidden layer
and testing

Globin | 500
B B VS T—
—m

“

Trypsin

In all above cases a total of 62 features are taken as inputs to the classifier, of which the 2-
gram patterns constitute 60 features. The other 2 inputs to the neural network or the ANN classifier
include the LCC factor and the one based on local similarities. In Table 2.1 and 2.2 it is noticed that
efficiency of this method tends to reduce significantly if the number of patterns used in training set
i1s reduced. This is specifically seen in case of classification by the multilayer perceptron as well as
for larger values of k in case of the ANN classifier. The ANN is seen to perform better than the MLP
especially when k£ = 1. However as the value of & increases the performance of the NN classifier is
seen to degrade. This indicates that a proper choice of & is required for the classification with the
kNN classifier. If the members of the superfamily are not very similar (as in the case of Ras) the
classification 1s comparatively poorer. On comparing Table 2.1 and 2.3 it can be clearly seen that
when the MLP classifier 1s used with 30 nodes the performance 1s better. From Tables 2.1 and 2.3,
it 1s also evident that although the training scores are remarkably high, this is not the case during
testing. This indicates a situation of overfitting of the data, a serious problem in MLP. This is the
reason why the choice of a proper MLP architecture is of crucial importance.

After studying the method in [3,4], a number of reasons for lower efficiency in
classification that may arise in some cases have been noted. They are listed as follows:

» This scheme 1gnores the spatial information of the occurrence of amino acid residues.

>  Also the number of possible 2-gram patterns is 436, which is a large number. Qut of a total
of 436 we consider only 60 as inputs to the neural network or the ANN classifier. Going by
the high reduction 1n dimensionality of the feature space it is not difficult to notice that
there i1s obviously some amount of loss in information contained in the sequences.

» Training a classifier with so many inputs requires a large number of training samples,
which may not be available for any superfamily that may be considered at random. It can
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be checked out that in protein databases there are superfamilies, which consist of very few
sequences only. In suck: cases this method might fail.

v

It can also be magined that it 1s a very ume consuming method as the number of inputs
mcluded are many, the process of feature extraction is cumbersome and the number of

sequences in the tramng set 1s also large. All these counts for the excessive time required
for this method to work properly.

» Also it can be seen in Table 2.3 that MLP based classification using this scheme often gives
very poor results. In this regard the superfamily Ras is particularly noticeable. One reason
may be the crucial adjustment i weights and architecture required for the complex
classification considered. Manual optimization of architecture is very difficult here. Thus
one should go for optumization techmiques like Genetic Algorithm or Simulated Annealing
etc. It can also be noticed that overfitting is a serious drawback of this method when MLP
is used as- the underlymng classifier. In Table 2.1 and 2.3 it can be seen than the training
efficiency is very high as compared to the testing efficiency.

L4

In Table 2.3 the effect of changing the architecture of the network in the protem
classification problem considered 1s shown. Comparing the results with those obtained m
Table 2.1 it 1s evident that for better classification the number of nodes in the hidden layer
should be very close to 30. |

2.4 Conclusions

In this chapter the problem of protein sequence classification has been defined. Then an
overview of some of the existing methods m this field is given. Lastly, the solition proposed by
Wang et al [3,4] to the problem of protein sequence classification has been described in detail
Experimental results to study the method proposed by them have been provided. In the chapters to
follow methods, which would overcome the problems that are mentioned in the previous section,
have been proposed. The solution to this problem has been tried out in two different paradigms.
Firstly in Chapter 3 the analysis of the sequences in the frequency domain has been considered.
Secondly in Chapter 4, a scheme 1s proposed, which take into consideration the probabilities of
occurrences of the amino acids residues in the sequences of a given superfamily in different
locations; thereby incorporating some position specific information.

I
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Chapter 3

Protein Classification in Frequency Domain

In this chapter concepts from signal analysis techniques {6] in transformed domain have
been used to analyze the protein sequences. Examples of signals we encounter frequently are
speech, music, picture and video signals. A signal i a function of independent variables such as
time, distance, position, temperature and pressure. For example, speech and music signals represent
pressure as a function of time at a point m space. In -many cases these signals of mterest are
naturally discrete functions of independent variables. Often such signals are of finite durations.
This type of finite extent signals, usually called time series, occurs in business, economics, social
sciences, engineering and medicine. Generally biological sequences and protein sequences m
particular maintain a periodicity in their structure [40, 41]. So the protein sequences can be
represented as signals and studied with the help of existing methods of signal analysis i a
transformed domain. In drawing an analogy of protein sequences with such existing concepts of
time series signals the first and the foremost thing that comes to our mind is how to represent
protein sequences as signals. This has been dealt with in the first section of this chapter. The next
two sections deal with two transformations on such protein signals. They are the Discrete Fourier
Transformation (DFT) and the Discrete Wavelet Transformation (DWT). These transformations
convert the protem signals from original position domain to frequency domain and aids in better
manipulation and analysis of protein sequences [49].

3.1 Signal Representation of Proteins

The first step that is required to study any sequence in the frequency domain is the proper
representation of the sequence in form of a signal. The method that has been followed here for
representing a protein sequence has been explained below.

» A 2- dimensional coordinate system is taken. The horizontal axis represents the
positions of the amino acids in the protein sequence. The 0 of the horizontal axis
represents the first position of the amino acid sequence and so on. The vertical axis

~is calibrated from I to 20 units. These represent 20 possible amino acids. Thus, Zis
allocated for A, 2 for C and so on, the numbers increasing in an alphabetic order.

Any other way of ordering wil also be a valid representation. Note that the
amplitude of this signal varies from / to 20.

[
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» By this method if AACT is a protein sequence, it can be represented by pomts (1,1),
(2,1), (3,2) and (4.17) m the 2-dimensional coordinate system.

» Now the points that are plotted in the above step are joined by means of a curve to
get the ongmal protem sequence in the form of a signal. The duration of the
sequence 1s obviously the length of the sequence. Figure 3.1 gives the sigmal
representation of a protem sequence following the method just described.

Amino Aclds

1 2 3 4 5 6 7 8 9 10 11 12 13
Position ot Amino Acids

Figure 3.1 Signal representation of the protein sequence AEGIMGLFFKD by the pts [(1,1),
(2,4), (3,6), (4,8), (5,11), (6,6), (7,10}, (8,5), (9,5), (10,9), (11,3).]

After the signal representation of the protemn sequence is complete analysis of the protem
signal in the transformed domain [35,6] can be attempted. One such transformation is the
Orthonormal Transformation. Orthonormal transforms form two classes:

(1) The data dependent ones like Karhunen-Loeve (K-L) transform, which need all the data
signals to determine the transformation matrix and

(2)  The data-independent ones hke the DFT, Discrete Cosine Transform (DCT), Haar, or
wavelet transform, where the transformation matrix i1s determined apriori.

The data dependent transforms can be fine-tuned to the specific data set, and therefore they
can achieve better performance, concentrating the energy into fewer features in the feature vector.
Their drawback 1s that, if the data set changes, a recomputation of the transformation matrix may be
required to avoid performance degradation, requiring expensive data reorganization. Thus in the
case of protemn sequence classification, for different superfamilies different orthonormal
transformations would be needed. Therefore, data-independent transforms are favored. For this two
types of methods are used. In Section 3.2 DFT [5,28,29] has been used. To improve on this in the
next section Wavelet transformation [7,50,51] is done. As a starting point the Haar Wavelets has
been used in this thesis. The choice of other wavelets with improved transformation may be
mmvestigated in future.



3.2 Use of DFT for Feature Extraction

An amino acid scries (or protein sequence) is a sequence of real numbers, eack number
representing a value at a position point. The method that has been adopted to get such an amino
acid series is described in Section 3.1. The representation is similar to time series representation
where the horizontal axis represents the tume domain and the vertical axis maps a sequence of real
numbers. Given two such time series x = {x;, .. x,J and y = {y;... y»} , a standard approach to
compare the sequences is to compute the Euclidean distance D (x,y) between the sequences, where

D (x.y) =(3) x;— yd*)*”?

If we say that the Euclidian distance is the deciding criteria of the dissimilarity between
sequences of the target and the nontarget class, we would like a transform that preserves this
distance, is easy to compute and concentrate the energy of the signal in few coefficients.

The distance preservation requirement is met by any orthonormal transform, DFT [28,29]
being one of them. Among the existing orthonormal transformations, the DFT is chosen because n
is the most well known, its code is readily available and it does a good job of concentrating the
energy in the first few coefficients, in addition. The DFT has attractive properties among which the
crucial ones can be listed as follows:

e

» For most sequences of our practical interest only the first few frequencies are strong in the
frequency domain.

» According to the Parseval's theorem [5, 6], it is specified that the Fourier transform preserves
the Euclidian distance in the time or frequency domam.

» The amplitude of the Fourier coefficients is invanable under shafts.

However, performance depends on a large number of false hits. By DFT sequences can be
mapped to a lower dimensionality space. The most important thing to keep in mind here is that, the

performance gain of this method in any time series data over other methods increases with increase
in the number of sequences and the length of sequences.

From previous chapter it can be recalled that similarity queries related to protemn sequence
classification can be classified into two categornes:

» Whole matching: All the sequences that are to be compared have the same length.

> Subsequence Matching: The query sequence is smaller; we look for a subsequence i the
large sequence that best matches the query sequence.

In using the DFT, in the problem of protein sequence classification, we concentrate on
whole matching of a sequence with the existing members of a class to classify an unknown protein.
A given protein sequence is firstly translated to the frequency domain. Then only the first few
frequencies arc taken, dropping all other frequencies. This approach addresses two problems of
feature extraction as follows:
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» Compieteness of feature extraction: Parseval's theorem, guarantees that the distance
between two sequences in the frequency domain is the same as the distance between them
in the time domain.

» Dimensionality Curse: A large family of interesting sequences exhibits strong amplitudes
for the first few frequencies. Using the first few frequencies then avoids the dimensionality
problem, while still introducing few false huts.

3.2.1 Discrete Fourier Transform

Here a brief overview of Discrete Fourter Transform (DFT) {3,6] i1s given. Note that the
original signal in taken in the time domain for the sake of understanding the basic concepts of DFT.
In the case of a protein signal (sequence) the time 1s analogous to positions of the amino acids of a
protein. The importance of the DFT is the existence of a fast algorithm, the Fast Fourier Transform
(FFT), which can calculate the DFT coefficients in O (n logn) time.

The n point Discrete Fourier transform of a signal x ={x;/, t=0,......,n-I is detined to be a
sequence X of n complex X3, =0, I......... n, given by

X, = 1/Vn X x exp (<j21Tft/n) f=0,1,...n-1.
where, j is the imaginary unit j= v-1.
The signal x can be recovered by the inverse transform:
;= 1/VNnk X, exp (j211ft/n) t=0,1,...n-1 or the various points of time.

X;is a complex number (with the exception of X, which is real, if the signal x is real).

A fundamental observation for this way of representing signals is Parseval's theorem [5,6],
which ¢can be siaied as (onows:

Parseval’s Theorem: Let X be the Discrete Fournler Transform of the sequence x. Then we have
Z‘l x;lz = ZI Xf |2

That is the energy in the ime domain 1s the same as the energy in the frequency domain.
The Discrete Fourier Transform inberits the following properties from the continuous Fourier

transform. Let ‘¢’ indicate Fourier pairs, 1.€., [X; ¢ [Xf ] means that [Xf | is the Discrete Fourier
Transform of [Xx;; . The Discrete Fourier Transform is a linear transformation. If

[x ] [Xe ] (i ] [Yr]
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[hen, [.xr-q.y[]'ﬁ:;"[Xj + y}j {’lﬂdlrflx; ]@[ﬂXf}

Also, the shift in the time domain changes oniy the phase of the Fourier coefficients, but
not the amphtude.

Given the above, Parseval's theorem gives
Il x-y 12 = 11 X-Y1i

This implies that Euclidean distance between the two signals x and y in the time domain is
the same as their Euclidian distance in the frequency domain. It is believed that for a large number
of time sequences of practical mterest, there will be few frequencies with high amplitudes. Thus. if
a sequence is characterized on the first few frequencies, there will be a few false hits.

The importance of Parseval's theorem is that it allows translating a query on a proteimn
sequence from spatial domain to the frequency domain. Coupled with the conjecture that a few
Fourier coefficients are enough, it allows us to build an effective feature space with low
dimensionality.

When applying DFT to protein sequence classification the following resume of the
procedure can be suggested: |

» Obtain the coefficients of the Discrete Founer Transform of every sequence in the target
and the nontarget class that are considered in a protein sequence classification problem.
After doing this some homogeneity in the coefficient values that characterize the sequences
of the target class can be noticed.

» Represent each sequence as a pomt in the 2f.-dimensional space (recall that Founer
coefficients are complex numbers). Here fc can be < 5 to characterize the sequence fully.
This is a well-established theory of DFT [3].

» These points are used as the features that are made inputs to the neural network or the INN
classifier for training.

» For a range of query, obtain the first fc Fourier coefficients of the query sequence. Use
them to retrieve the matching sequences or the superfamily members that are at mintmum
distance away from the query sequence.

3.2.2 Experimental Results

In thus section, MLP and kNN classifiers have been used to analyze the DFT based feature
extraction strategy that has been discussed. The implementation parameters and the hardware
environment is exactly alike to that used in Section 2.3.3 with a small difference in the MLP
architecture only. Here 6 nodes are taken in the first layer corresponding to the first 3 complex
conjugate Fourier coethicients (1.e., fc = 3). The middle Luyer consists of 3 nodes. The number of
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iterations required for the classificaion o1 Globin and Ras superfamilies are 2000, and 1600
respectively. The classificaticn results obtained by MLP and kNN classifiers using the DFT based
features are shown in Table 3.1 and Table 3.2 respectively. Note that the results corresporcling to
Trypsin are not included sincs no meaningtul result was obtained in this case. Even for Glohin and
Ras, the results, as evident from Tables 2.1 and 2.2 and Table 3.1 and 3.2, are significantly poorer.
This indicates that limiting attention to only the frequency component, while totally ignoring the
positional information is insufficient to properly model the protein sequences. In order to overcome

the hmitations we next invesugate the use of wavelets, which takesinto consideration the positional
sigmficance of the signal also in the frequency domain.

Table 3.1: The results by DFT encoding (using MLP).
[Here MLLP has 3 layers with 6, 3 and 2 nodes in the three layers respectively.]

—

3.3 Use of Wavelets for Feature Extraction

Though Discrete Fourier Transform (DFT) has been one of the most commonly used
techniques, one problem with DFT is that it misses the important feature of p{)sn:mn localization.
Piecewise Fourier Transform has been proposed to mitigate this problem, but the size of the pieces
becomes another critical issue. While large pieces reduce the power of multi-resolution, small
pieces are unable to model low frequencies. In this section the use another type of orthonormal
transformation viz., Discrete Wavelet Transformation, DWT [50,51], have been investigated in the
problem of protein sequence classification. The advantage of using Discrete Wavelet
Transformation (DWT) [7] is multi-resolution representauon of 51gna]s It has the time-frequency
localization property. Thus, DWT is able to give localizations in both time and frequency.
Therefore, wavelet representations of signals bear more information than that of DFT, in which
only frequencies are considered. While DFT extracts the lower harmonics, which represent the

general shape of a time sequence, DWT encodes a coarser resolution of the original time sequence
with its preceding coefficients.
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Wavelets are basis functions used in representing data c¢r other functions. Wavelet
algorithms process data at different scales or resolutions in contrast with DFT where only
frequency components are considered. The origim of wavelets can pe traced to the work of Karl
Weilerstrass in 1873, Followimng a trend in the disciplines of signal and image processing, in this
work the use of the Haar wavelets in the problem of feature extraction for protem sequence
classification has been advocated. We know the following:

7 Euclidean distance is preserved in Haar transformation domain and no false dismissal will
occur.

» Haar transform can outperform DFT. Thus has been confirmed through expermments.

Next a description of the Haar Wavelets is provided and it has been demonstrated how they
can be used for the purpose of protem sequence classification.

3.3.1 Haar Wavelets

[t can be mentioned that the Haar wavelet is chosen for the following reasons:

» It allows good approximation with a subset of coefficients

» It can be computed quickly and easily, requiring linear time in the length of the sequence
and simple coding, and

..

» It preserves the Euchidean distance.

All these criteria have been confirmed mn studies of tumes series signal analysis with Haar
Wavelet Transformation.

A formal definition of Haar wavelets 1s given as:

Yix) = Y(¥x -i) i=0, ., 21
where
1 0<t< 03
(i) = -1 0.5 <t< ]
4, otherwise

together with a scaling function

[ / 0 <t< |
‘(1)
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It is necessary to explam how to obtain the Haar transform of time series signal. In defining
signals at the beginning of this chapter it has been w.entioned that signals are nothing but functions
of independent variables such as time. Say such a function is represented as f (x). Haar transform
can be seen as a series of averaging and differencing operations on a discrete time function. We
compute the average and difference between every two adjacent values of f (x). The procedure to
find the Haar transform of a discrete function f (x) =(9 7 3 5} is shown below.

Resolution Averages Coefficients
4 (9735}

2 (8 4) (1-1)
f (6) (2)

Resolution 4 is the full resolution of the discrete function £ (x). In resolution 2, {8 4) are
obtained by taking the average of (9 7) and (3 5) at resoluuon 4 respectively. (I -1) are the
differences of (9 7) and (3 3) divided by two respectively. This process is continued until a
resolution of 1 is reached. The Haar transform H (f (x)) =(cd) dy d;') = (62 1-1)is obtained
which is composed of the last average value 6 and the coefficients found on the right most column,
2. I and -1. It should be pointed out that ¢ is the overall average value of the whole time sequence,
which 1s equal to (9+ 7 + 3+5)/4 =6. Different resolutions can be obtained by adding difference
values back to or subtract differences from averages. For mstance, (8 4) = (6+2 6-2) where 6 and 2

are the first and second coefficient respectively. This process can be done recursively until the full
resolution is reached.

Haar transform can be realized by a series of matrix multipltcations as illustrated below:

7 ( ] I 0 0 ) " xp )
d,! i -] 0 0 X
r - % .rY L
,?CII 0 0 1 1 I_? !
' Lo o 1 1) Ux

Envisioning the example input signal x is a column vector with length n= 4 and an
intermediate transform vector is another column vector and Haar transform matrix H. The factor
1/2 associated with the Haar transform matrix can be varied according to different normalization
conditions. After the first muluplication of x and H, half of the Haar transform coefficients can be
found which are d,’ and 4, in w interleaving with some intermediate coefficients x o’ and x;’.
Actually dy’ and d,' are the last two coefficients of Haar transform. x o and x;! are then extracted
from w and put into a new column vector x* =/x'px’; 0 0 ]. ¥’ is treated as the new input vector for
transformation. This process is done recursively until one element is left in x’. In this particular
case, ¢ and d;’ can be found in the second iteration. The complexity of Haar transform can be
evaluated by considering the number of operations involved in the recursion process.



By transforming the protein sequence into signal the protein sequence can be represented as
a discrete function. This has been seen m the Section 3.1. Thus the Haar transformation coefficients

of these functions are obtsined using the method that has been just described. The following is a
resume of the procedure:

» Obtain the coefficients of the Haar Wavelet Transform of every sequence in the target and
the nontarget class that are considered m a protein sequence classification problem at the
lowest resolution. After domng there should be some homogeneity in the coefficient values
that characterize the sequences of the targetclass.

» Use these coefficient values as feature set of the MLP or the &NN classifier for training.

1%

For a range of query, obtam the Haar wavelet coefficients of the query sequence. Use them
to retrieve the matching sequences or the superfamily members that are at minimum
distance away from the query sequence.

3.3.2 DFT versus Haar Transform

Other than reasons that have been already discussed at the start of this section the
motivation of using Haar transform to replace DFT is also based on several evidences and
observations in areas of image and signal processing. Some of these are listed below.

» The first reason is on the pruning power. The nature of the Euclidean distance preserved by
Haar transform and DFT are different. In DFT, comparison of two time sequences is based
on thewr low frequency components, where most energy is presumed to be concentrated. On
-the other hand, the comparison of Haar coefficients is matching a gradually refined
resolution of the two time sequences. From intuition, Euclidean distance can be highly
related to low resolution of signal rather than lIow frequency components. This property can
give rise to more effective pruning, i.e., fewer false alarms will appear.

>  Another reason is the complexity consideration. The complexity of Haar transform is O(n)
whilst O(nlogn) computation 1s required for Fast Fourier Transformation (FFT). Both
impose restriction on the length of time sequences, which must be an integral power of 2.
Note that, m the present case sequences are padded with Os at the end to make their lengths
equal to the nearest mtegral multple of 2. Although these computations are all involved in

pre-processing stage, the complexity of the transformation can be a concern especially when
the database is large.

3.3.3 Experimental Results

Similar to Section 2.3.3 the MLP and ANN under the same conditions are used as the

underlying classification methodologies in classification of protein sequences based on features
extracted using the Haar Wavelet Transformation. Table 3.3 and 3.4 shows the results.
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The wavelets seem to outperform the DFT coefficients i almost all cases of protein
sequence classitication. In the case of kNN the classification efficiency increases with the increase
in the value of k. The best classification is obtained by taking & =500 (=23), where 500 is the
number of sequences which has been used as the training data set. In this particular case, the
percentage classification is greater than both the DFT as well as the method adopted in [3.4]. In
using the MLP the number of nodes in the 3 layers are taken as 2, 2, 2 respectively. The number of
iterations required to train the network were 1000, 8500 and 1000 respectively for Globin. Ras and

Irypsin. It can be seen from Tables 2.1 and 3.3 that in case of Globin and Trypsin MLP based
classitication with this method is better than the scheme discussed in [3,4].

Table 3.3: The resuits by Wavelet encoding (using MLP).
[Here the MLP has 3 layers with 2, 2 and 2 nodes in the three layers respectively.]

—

3.4 Conclusions

In this chapter DFT has been used as a feature selection process for the protein sequence
classification problem. The results obtained by using this transformation, shows limited amount of
validity n few cases only. However, generally DFT transformation cannot be thought of as a good

measure of feature selection for the case of protein classification [28,29]. The results obtained in
many cases are confusing and totally irrelevant.

A better representation of sequences in the frequency domain by Wavelet transformation is
thus tried out. As a starting step to feature extraction of protein sequences using wavelets the Haar
Wavelet transformation has been used. This is the simplest form of wavelet that exists at present. It
can be seen that the results clearly indicaie that the feature extraction using wavelet transformation
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has good capability in modeling the class characteristics of some superfamilies. This suggests that

in future if instead of the simple Haar transtorm other wavelets transforms like the Daubechies and
Coiflet [53] wavelets are used then the classification could be better.

In the chapter to follow a completely different paradigm in the field of feature extraction for
the problem of protem sequence classification has been suggested. This chapter would discuss a
method that does not involve any transformation to a different domain for the analysis of the

protein sequences. Instead feature extraction for this method is done directly from the sequence in
its original positional representation.
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Chapter 4

An Improved Method of Protein Feature
Extraction

In this chapter a method has been proposed, which suggests an improvement over all
methods of feature selection that have been discussed till now. The supenionity of this algorithm of
feature extraction has been demonstrated by vanous expermmental results. This is a hybnid method
that combines the statistical as well as machine learmning issues to denve the utilities or benefits of
both these fields. The proposed technique [54] 1s explained in detail in the first section of this

chapter followed by experimental results and discussions on some salient properties of this
technique.

4.1 The Proposed Technique

LSALSDLHAHKILRVDPVN
LLALSDLHHHKLRVIMVN
LSALSALHHAKLRPIMVN
ASALSDAIAHMIRVDMVI

Figure 4.1 Primary structures of four related proteins

In this encoding scheme an attempt to take into account the evolutionary profile [15]
information from multiple sequences belonging to a particular superfamily [45] has been made. A
hybrid of statistical model and neural nets [17] or other pattern recognition techniques is explored
to capture the same. Evolutionary similarity among proteins can be explained as follows. Figure 4.1
shows the primary structure of 4 related proteins. A small piece of each protein is shown. By taking
a closer look at the structures, the history of evolution in this protein family can be perceived.
Possibly, the ancestor of the 4 proteins in Figure 4.1 looked like the protein in Figure 4.2.

In general, proteins have evolved over time such that although a set of sequences share the
same ancestor, structure differences become evident among them because of the evolutionary
process. The differences arise due to some biological changes 1n form of insertions, deletions and
substitutions. To understand why, consider what happens to a protein inside a cell when the cell
reproduces. Through a process called mirosis, the cell makes a copy of it and then splits into two
daughter cells. Most of the time a protein of the parent cell i1s exactly duplicated in the daughter
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ccll. However, over long periods of time, errors occur m this copying process. When this happens,
a protein in the daughter cell becomes slightly different from the parent. It also happens that these
proteins sutfer similar degradation m their structure and thus a generality of structure is still
maintained. As a result of these errors, proteins, which share a common ancestor, are not exactly
alike. However, they inherit many similarities in primary structure from their ancestor. This is
known as conservation of primary structure in a protemn family. These structural similariies make
one possible to create a statistical model of a protemn fammly.

LSALSDLHIHKLRVDMVN

Figure 4.2 A possible common ancestor

4.1.1 Statistical Profile

Several statistical profiles already exist for the purpose of protein sequence analysis [9. 10,
11]. In the proposed method, in order to construct a statistical profile of a set of sequences, a 20 X
Imax probability matrix is computed where Imax=maximum length of a sequence belonging to a
particular superfamily. Here the value at position { i, j) indicates the probability of occurrence of
the i amino acid in position j of the sequence. To explain this method better, the following
example 1s given.
Sequence ] LAATR
Sequence? LAHDYV
Sequence3 ALADR
Sequence# L AATR
Sequence5 LLADD

Figure 4.3(a) Five related proteins

Positions | ! 2 3 4 5.
prob (L) el 6 .0 0 0
prob (A) 2 4 .8 .0 0
prob (H) 0 0 2 .0 0
prob (D) 0 0 .0 0 2
prob (T) .0 0 .0 4 0
prob (R) 0 0 .0 .0 6
prob (V) .0 0 .0 .0 2

Figure 4.3(b) A statistical model of the five related proteins that are shown in Figure 4.3(a)

The mode] shown in Figure 4.3 is a simplified statistical profile, a model that shows the
amino acid probability distribution for each position in the family. According to this profile, the
probability of L in position / 1s 0.8; the probability of A 1n position 2 is 0.4, and so forth. The
probabilities are calculated from the observed frequencies of amino acids in the family of protem
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sequences. For example, the value of the (0,0) ” position of the matrix is .8 because in first posItion
L. occurs in 4 out of a total of 5 sequences.

4.1.2 Network Feature Extraction

Given a profile, the position-specific weight of any amino acid in a given sequence can be
obtamned by adding the occurrences of the amimno acid at a particular place and the respective
probability of the occurrence of that ammo acid in that place for the entire family.

For example, using this method given a sequence LAADT and the probability matrix that
has been developed m Figure 4. 3(b), the weights of the individual amino acids are:

Weight (L) =1 X038 =0.8.
Weight (A) = 1 X0.4+1 X0.8 =12
Weight (D) =1 X 0.6 = 0.6

The weights of all other seventeen amino acids are zero. This is because either they appear

in irrelevant positions with respect to the already known superfamily members, which form the
traaming data set, or they do not appear at all. _

For the classifier (kNN or MLP) the weights of all the 20 amino acids are taken as inputs.
So for the sequence LAADT the feature vectoris [1.2 006 0000000800000 00 00 0]

representing the weights of features [A, C,D,E,F,G,H,, KX, L, M,N,P,Q,R.S, T, V. W, Y].

As 1s evident, the number of features for any sequence will always be equal to 20. In
contrast to the method of Wang et al, which has been described in Chapter 2, where only 60 out of
436 features are selected, here the loss of information as a result of neglecting some possible input
features 1s munimized. Also position specific information is incorporated in the scheme. Moreover
the number of features, as compared to the scheme in that method [3,4] is reduced to 20 only.

4.2 Experimental Results

As in Section 2.3.3 we have tested the above-described method by using both MLP and
kNN as the classifying methodologies. The results obtained are shown in the Tables 4.1 and 4.2. In
this classification scheme we have used 3 layers for the MLP with 20, 12 and 2 layer in the 3 layers
respectively. The number of iterations required while training the network with Globin, Ras and
Trypsin superfamilies were 3000, 1000 and 1000 respectively when the number of members in the
training data set was 500 in each.

The results here have shown a constant increase in the accuracy of classification as
compared to all other methods that have been discussed till now. It can be concluded that the
features extracted by this method are more relevant than any other method as far as protein
sequence classification is concerned. This emphasizes the effectiveness of the proposed technique.
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It can be noticed that the time required for traming by this method s less as compared to the 2-
gram encoding scheme. The main observations in general are as follows:

» Firstly, as expected, as the number of sequences in the dataset is increased, both the
methods, i.e., the method of Wang et al and the suggested method in this chapter, show
improved performance. Comparing Table 2.1 and 2.2 and Tables 4.1 and 4.2 verifies
this. However it was observed that if the number of sequences in training phase was less
than 200 the method proposed by Wang et al using MLP gives poor performance. This
is because the MLP architecture becomes huge due to the large number of input

features, mvolving a lot of adjustments in weights. This is true even for the kNN
classifier.

» Secondly, 1t can be seen that if the nontarget class belongs to a particular superfamily
(as in Tables 4.4(a) and 4.4(b) using the MLP and kNN classifier respectively), then the
classification percentage i1s higher as compared to the case when the non-target class
consists of a number of superfamilies (Tables 4.1 and 4.2 using the MLP and ANN
classifier respectively). This 1s because in this case the sequences belonging to the non-
target class become similar mn the traming and the testing phases of classification
resulting i mmproved performance. This 1s noticed more prominently im the results
shown in Chapter 5 in case of multi-class classification problem.

» Thirdly, different architectures may be required for classifiers classifying the different

superfamilies to give the opumum results. This is because the feature spaces

~ corresponding to the different superfamihes have different complexities. Therefore the

difficulty 1in modeling the target class of the different superfamilies is different,

necessitating different architectures. Even the number of iterations required in case of
different target classes is different depending upon the complexity of the class.

Table 4.1: The results by the proposed method of encoding (using MLP)
[Here the MLP has 3 layers with 20, 12 and 2 nodes in the three layers respectively.]
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Table 4.2: The results by the proposed method of encoding (using kNN classifier).

erfamily . | #of patternsin
i tralmng o |

—

Table 4.3(a): The results by the proposed method of encoding (using MLP).
[Here the MLP has 3 layers with 20, 12 and 2 nodes in the three layers respectively. The
training set consists of mostly similar sequences]

Table 4.3(b): The results by the proposed method of encoding (using kNN classifier).
[The training set consists of mostly similar sequences]

- trammg(ﬂ)

—
Topsin _ [500  Js00  ]91.0]90.6]884



Table 4.4(a): The resuits by the proposed method of enceding (using MLP).
[Here the MLP has 3 layers with 20, 12 and 2 nodes in the three layers respectively. The
nontarget class members belong to a single supertfamily only].

Tabie 4.4(b): The results by the proposed method of encoding (using ANN).
[Here, the nontarget class members belong to a particular superfamily only].

Supe ‘of patternsin -
(Targetand | training(n) =
Nontarget} R o

——
Ras and 89.2 | 85.4
Trvpsin

Table 4.5: The results by our method of encoding (using MLP).
[Here the MLP has 3 layers with 20/ and 2 nodes in the first and the last layers respectively.
The number of nodes in the middle layer is varied]

When MLP was used as the underlying classifier, one of the goals of this work has been to
design networks that avoid over-fitting [13, 14, 15] as far as possible. By avoiding over-fitting, the
learning and generalization errors stay almost identical, and therefore training can be continued
untd it reaches mimmum training error. Since the noise i the training and the testing sets are
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uncorrelated, the generalization ability on the testing set deteriorates at some point during training.
The point at which this generalization ability deteriorates is highly dependent on the initial weights
and the dynamics of the learming rule. Hence, 1t 1s almost impossible to determine at which point
the training should be stopped 1n order to get an optimal solution. Early stopping is used, where the
training is stopped after some fixed number of 1terations or we can use a validation set to monitor
the generalization ability of the network during training. When the performance on the validation
set begins to deteriorate the training is stopped. However sacrificing data for the validation set can
be crucial for the performance of the proposed model, since the available amount of data is limited
in this case. Another method is to choose the network achieving best performance on the test set by
always saving that network during training. The best approach of course is to deal with the root of
the problem, namely, finding the proper complexity of the network.
~ In all the networks that have been used in the proposed scheme less number of adjustable
weights than those used by Wang et al’s method have been used. Thus over-fitting is
avolded to some extent. In Table 2.1 1t can be seen that overfitting 1s a serious problem. In
the case of the proposed method whenever it was found that an overfitting actually took

place, early stopping was used, which means that training was stopped after the training
error reached below some threshoid.

"v’

When using neural networks for protein sequence classification the choice of protein
database is complicated by potential homology between proteins in the training and testing
set. Homologous proteins in the training set can give misleading results since neural
networks in some cases can memorize the training set. Tables 4.3(a) and 4.3(b) show such
a result where the training set contains similar sequences, indicating poor representation of
the data. Here the testing accuracy degrades. The change 1s more noticeable in cases of
certain superfamilies like Globin. Table 4.6(a) and (b) show the confusion matrices that are

. generated using nonhomologous and homologous members in the traimng dataset
respectively. On comparing these figures 1t can be clearly seen that when homologous
members form a training dataset the number of wrongly classified target class members
increases, thus reducing the overall performance or classification accuracy. Also in this
case, the number of nontarget class members that are correctly classified increases.

\ T4

Furthermore, the size of the training and testing sets can have a considerabie influence on
the results as can be verified in Table 4.1. However much better classification power of this
scheme can be seen as compared to Wang et al when the number of sequences in the
training and the test set 1s only 250,

v

In Table 4.5 the effect of changing the architecture of the network in the protein
classification problem considered i1s shown. Comparing these results with those obtained in
Table 4.1 it is evident that for better classification the number of nodes in the hidden layer
should be very close to 12.



Table 4.6(a) The confusion matrix during testing (using MLP) corresponding to Globin
family classification using nonhomologous members in training. Overall accuracy is 83.8%

Not Glob_'g_

Table 4.6(b) The confusion matrix during testing (using MLP) corresponding to Globin
family classification using homologous members in training. Overall accuracy is 66.6%

 Actual Class | Globin |
| Globin
Not Globin _

4.3 Conclusions

This chapter exhaustively deals with a new feature extraction method to classify protemns
from amino acid sequences in the origmal positional domaimn, which 1s seen to outperform one of
the most successful existing schemes of protein sequence classification. This method, which has
been suggested in this chapter, shows good classification results in all the cases. Intuitively, the
success of this method hes in the way thus method finds out the positional significance of the amino
acids m protein sequence data. Also m this method there 1s a minimum loss of information of the
entire sequence as compared to the other methods. Dimensionality of the feature space extracted by
this method is quite manageable. A lot of vanation in the classification of the protein sequences

using this method can be considered. In this regard the following ways of classification can be
thought of: |

» Hybnd of this scheme along with other statistical or mathematical methods can be tried
out.

» The incorporation of fuzziness might result in further improvement in classification

» The same method can be used to classify sequences when the sequence may belong to
any of the m classes, m being greater than one.

The third view leads us to another aspect of the problem of protein sequence classification.
This new arena 1s the problem of classifying a protein sequence to the proper class when more than

one class are present. The multi-class classification problem has been dealt in detail in the next
chapter,



Chapter 5

Multiclass Classification of Proteins

Whatever work has been done 1n the field of protein sequence classification has been mostly
restricted to a target and nontarget class classification problem. It is basically a binary classification
to decide whether a given sequence belongs to a particular superfamily or not. The same idea can
be extended and collaborated with other techniques to tackle multi-class protem sequence
classification. This chapter deals with one solution to the problem of multi-class classification
problem. In Section 5.1 the problem is first defined and a possible solution to this problem is dealt
in detail. Section 5.2 provides some experimental results using the multi-class classification method
that has been suggested in the present chapter of the thesis. Section 5.3 concludes the chapter.

OUTPUT: Class_1/ Class_2/ Class_3

COMBINER

iOutpurE Class_1/ Dot Class_1 Outnut: Cldss2/ Not (Class2 Output: Clz Not Class_3
l Classifier 1 Classifier 2 Classifier 3

| D ENCODER 3 \
ENCODERl_l‘\[ ENCODER 2
S

Figure 5,1: Multiclass Classification using a combination of networks assuming only 3 classes.




5.1 The Classification Method

In multi-class classification the problem can be defined as follows. Given an unlabeled
protem sequence S and known superfamilies F;, F,...F, we are to determine to which of these
superfamilies the protein S belongs to. Since, in this case, the target class is not fixed we are unable
to model the characteristic features of a particular target class as have been done in the
classification schemes considered in the preceding chapters. Here the characteristics of the m
different target classes have to be modeled. Also, for each unknown sequence § we have to
compare the sequence with each of these target class sequences and find out which superfamily
sequences S most closely resembles. To do this an ensemble of classifiers have been used. The
method that has been adopted is discussed in this section in detail.

In this thesis, a two-layered classifier [12] has been applied to solve this m class
classification problem. They are as follows.

» In the first layer, individual classifiers are designed for the prediction of m classes. Note
that classifier; is trained to distinguish between sequences that belong to class F; and
sequences that do not belong to class Fi. The initial goal has been to get as good
accuracy of these single class predictions as possible. The method followed for this
classification is same as the method of classification that has been described in the last
chapter.

» MAXNET [30] has been used in the second layer for enhancement of the initial
dominant response of the p™ classifier in the previous layer.

. Ensembles of single structure networks are thereby combined to obtain an m class
prediction. Figure 5.1 pictorially depicts the entire procedure.

5.1.1 Single Class Classification Networks

Suppose there are m superfamilies: F;, F,,.... Fy.  Then in the first layer m different
classifiers for the m different classes are needed. However, the sequences used to train all the m
classifiers are the same. The i classifier of this layer predicts whether a sequence belongs to the i®
class or not. While training the classifier; all sequences belonging to F; are labeled as the target

class and all sequences not belonging to F; form the nontarget class. Similar labeling 1s followed for
all the m-7 other classifiers of the first layer.

To note, for each sequence of protein in the dataset m predictions are obtained from the m
separate classifiers of the first layer. It is a common assumption that any adaptive method of
classification with some built in knowledge about the problem, performs better than the more
general classifiers. The same model could have been used for the prediction of all classes.
However, since the m superfamilies are different from each other it is possible that the performance
can be enhanced if a separate classifier is specifically designed for each of the superfamilies.



As shown m Figure 5.1 the .ngie structure classifiers have only one output. For the

classifier; if the output is larger than some decision threshold for some sequence S it says that the

sequence S belongs to the i superfamilv: 21se S does not belong to it. For an input/ output mterval
of {0:1] a decision threshold of 0.5 is optimal.

5.1.2 Combining the Single Class Predictions

Usually the classifiers of the first layer output m values, one for each of the m classes. This
type of classification does not necessarnily choose one of the m structures. For instance. it can (and
sometimes does) classify one mput patitern as a member of all the m classes Le.. it gives large
outputs on all m output units in the first layer. In practice, the input is classified as the structure
giving the largest output.

We use the same concept to combine the output of the m classes. Shown in Figure 5.1 s a
combiner. The combiner is nothing but a MAXNET, which takes the output from the m classifiers
of the first layer for each of the sequences. It ultimately classifies the sequence to belong to that
class for which the output of the classifier is the highest.

5.2 Experimental Results

The above-described method has been tested in a three-class (superfamilies) classification
problem by using both MLP and ANN as the classifying methodologies. Note that 1t can be casily
generalized for classification of protem sequences into more than three classes. The method of
feature selection used in this scheme m 1ts first layer i1s similar to the one described in Chapter 4.
The classifying methodology as well as the environment that have bee used is similar to the ones
that have been used in Section 4.2. The results are as tabulated in Table 5.1 and 5.2 below.

The first thing that 1s noticeable by just looking at the results in the above tables is that the
multi-class classification scheme is more or less a success in cases where three separate
superfamilies are treated as the three target classes. However in the third case we have taken the
third target class as a mixture of members belonging to a number of classes other than Globin and
Ras. It can be seen that in the third case the accuracy in classification is poorer. The utility of using
some other function like (the Sigmoid) instead of taking the simple maximum (as done in
MAXNET) m the output layer of the combmed classifier for overcoming the limitation may be
mnvestigated in future.



Table 5.1: The results of multiclass classification {using MLP in first layer).

Superfamilies. #of patternsin | #ofpatterns in | % Accwacyin | % Ac
- }raining . Jtesting raining - |testd

Globin + Ras + 750 750 R7.467

Acetate

Globin + Ras + 750 750 38.88 81.33

Trypsin

Globin + Ras + 750 750 . 8¥.93 70.67

Other Classes

Table 5.2: The results of multiclass classification (using ANN classifier with k=1 in first layer).

SR Cozao R testing o oo R testing i
Globin + Ras +
Acetate

Globin + Ras
+Trypsin

Globin + Ras +
Other Classes

5.3 - Conclusions

The multi-class classification that has been described in this chapter is a new way of
looking into the protein sequence classification problem. In this thesis the matter has been dealt m
its infancy and thus only the intuitive ways of extending a single class classification problem mto a
multi-class situation have been tried out. Though this way of approach gives good resuiis ibere may
exist better methods to tackle the same problem. Multi-class classification of proteins may be a
promising field of study in the near future. With this hope, we move on to the concluding chapter of
this dissertation. The following -chapter would serve as an outline of whatever work has been done
in the entire dissertation. It deals with a brief discussion on the scopes of future work m the same

field as well as a recapitulation of the contributions of this work in the field of biological
datamining.



Chapter 6

Conclusions and Scope of Future Work

This chapter deals with conclusions and a review on the further scopes that this work has in
the tield of Computational Molecular Biology. Section 6.1 deals with the main contritbutions of this
thesis in the field of Biomformaucs. This s followed by a brief discussion on the scopes of future
works in the same field.

6.1 Conclusions

The focus of this dissertation is protem sequence classification, which is an important area
of research in the field of Biological Datamining. The main contributions of this thesis include the
development of a method for extracting the position-specific similarity of sequences that are used
as mput features of the MLP and ANN classifiex.In the experimental studies we have compared the
performance of the proposed classification scheme with another similar classifier, which has been
described in [3,4]. It has been shown that the proposed way of classifying proteins is simple and at
the same tme leads to sufhcient generality in classification. Thus the aim to classify protem
sequences that are similar to but not identical to the patterns in the training set is satisfied. Finally,
in the proposed scheme the number of wramning sequences required for the network to learn is not
many. .Thus even if the superfamily based on which the classification is done is not large the
classification does not suffer much. This has been a drawback of many other classification methods
in the field of protein sequence classification. Further, the biological realiies have motivated
modern researches into new kinds of classification methods of protein sequences. Hybrids of
several statistical models and neural nets are recently being explored. Our present work suggests
the beginning of such a method for classification.

A mentionable study of proteins in the transtormed domain has also been done in this
dissertation. Lastly, we have proposed a solution to the multi-class classification problem of
protems. This is an important problem area m the field of protein sequence classification and can
attract a lot of attention of future scientists.

6.2 Sc0pes of Future Works

This project has explored many exciting ways of feature extraction from protein sequences.
In a part of the investigation we have represented and analyzed a protein sequences in the
frequency domamn. Though the experimenta! results that were obtammed are not completely
satistactory but they open new scopes of phenomenal research areas. Future work could examine
the tollowing 1ssues m this regard.
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Exammation of other orthonormal transformation in addition to DFT and DWT.
~» Betterment in the approach of Wavelet transformation by using more improvecd and

stronger wavelets in the same fashion. For example, Daubechies and Coiflei }33]
wavelets can be used instead of Haar.

Y

In Chapter 4 a new method of modeling a superfamily has been suggested which gives
better performance than one of the most successful recent methods in the area of protem sequence

classification. However there are still lots of ways of improving on the suggested model. Some of
them are as follows.

» One of the biggest limitations of such a modeling strategy is that thus model is a Imear
one and is unable to capture higher order correlations among amino acids in a protem
molecule. These correlations include hydrogen bonds between non-adjacent amino acids
in a polypeptide chain, hydrogen bonds created between amino acids in multiple chains,
and disulphide bridges, chemical bonds between C (cysteine) ammo acids which are
distant from each other within the molecule. In reality ammo acids which are far apart in
the linear chain may be physically close to each other when a protemn folds. Chemical
interaction between them cannot be predicted with a linear model Thus with a proper
understanding of the biological implications a betterment of this method is expected.

N4

Also biologically there are strong dependencies between the probabilities of occurrences
of the various amino acids at the various positions. This has not been taken mto
consideration in the modeling strategies that have been discussed m this thesis.
Incorporation of a suitable factor, which would take into consideration the transitional
possibility of the amino acids at various positions, 1s expected to give better results.
Thus biological researches can augment research in the field of protem sequence
classification by leading to the development of improved statistical models.

» Hybrids of neural nets and various other methods, improvements by dynamic Bayesian

nets, several graph matching algorithm in combination with this generalized classifiers
caii ve tnied out mn future,

Y%

Also improvement of the model with a multiple sequence ahignment of the sequences
prior to encoding could be a good choice.

> A very likely improvement can be achieved by optimizing the architecture of the
network classifier by methods like genetic algorithm or simulated annealing etc.

> The length of the chain is an important point of consideration for the classificatzon
problem, which has been considered. Ways to incorporate that in some way or the other
must be thought of. It may be noted that the scheme that has been discussed will be
applicable if the difference m lengths of different sequences of the same superfamily are
in the range of 25 to 50 residues. However, its effectiveness for cases where this
differencg is greater than that may be himited in view of the fact that positional
information loses its significance if the sequences are widely varying in lengths. But
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again, sequences belongmg to the same superfamiuly are, in general. of similar
charzcteristics, and hence we feel that this will not pose a serious problem.

Thus, compared with other methods, this system has several advamtages mcluding easy
implementation, lesser time consumption in training and relative simplictty. The entire process does
not require any knowledge about species ongins, biological relations between sequencss and so on.

However non-involvement of biological mformation in the entire classification scheme is a major
drawback of the suggested method

Although crisp (hard) classification has been used in this dissertation imnccrporation of
fuzziness will result in further improvement of classification performance. This 15 50 since the
protein sequence in many existing protein databases, as we have discussed in Chapter Z. is likely to
have belongingness to several classes with varied degrees of memberships. Thus incorporation of
the principles of fuzzy set theory by using neuro-fuzzy classifier is another direction of further

research. Last but not the least, use of more improved classification methodology m multi-class
classification scheme is indeed a challengmg task for future.
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