- M. Tech. (Computer Science) Dissertation Series

Finding The Approximate Generator Polynomial And
Corresponding Initial Sequence Of A Given Binary
String Using Simulated Annealing

A dissertation submitted m partial fulfillment of the requirement for the
M. Tech. (Computer Science) degree of the Indian Statistical Institute

By
Deepak Kumar Dalai

Under the supervision of

Dr. Subhamoy Maitra

T ot T s s i ] '

INITY 1N DIVERSITY]
INDIAN STATISTICAL INSTITUTE

203, Barrackpore Trunk Road
Kolkata-700108

2003



CERTIFICATE OF APPROVAL

This is to certify the thesis entitled ‘Finding The Approximate Generator
Polynomial And Corresponding Initial Sequence Of A Given Binary
String Using Simulated Annealing’ submitted by Deepak Kumar Dalai
towards partial fulfillment of requirements for the degree of M.Tech. in
Computer Science at Indian Statistical Institute, Kolkata embodies the work
done under my supervision.

Dated: The 10" of July, 2003.

Signed:

(Dr. Subhamoy Maitra)

. /&gaﬁ ?CIW&MW Supewigor

Countersigned:

External Examiner
Lecfz,uw._, RiTs f?;*/CRM ..



ACKNOWLEDGEMENT

| take this opportunity to express my deep sense of gratitude and debtedness
to my guide Dr. Subhamoy Maitra of Applied Statistical Unit of Indian
Statistical Institute, Kolkata for this generous and whole hearted support to

me tn completing this project.

I wish to place on record my sincere thanks to all members of crypto group
of Indian Statistical Institute, Kolkata for their huge help and cooperation for

my project.

Lastly. I would like to express my profound gratitude to all other teachers of
Indian Statistical Institute, Kolkata and sincere thanks to all of my
classmates who were the source of inspiration during the M.Tech (Comp.

Sc.) programme.

Deepak Kumar Dalai



Contents

. Introduction

2. Comparison between the binary strings
generated by two primitive polynomials

3. Implementation of Simulated Annealing

4. Finding the nitial sequence using a fast
technique

3. Experimental results

References

Appendix

A. The basics of simulated Annealing

B. Berlekamp-massey Algorithm

13

15



Finding the approximate generator polynomial
and the corresponding initial sequence of given
binary string using sitnulated annealing

Deepak Kumar Dalai
e-mail: dk_dalar@rediffmail. com

Abstract

In LFSR based cryptosystem binary sequence generated by a generator poly-
nomial. Since our real channel is not noise free, at the receiver end the receiver
gets corrupted data i.e. some bits altered due to noise. <o, to decode the mes-
sage we need the actual polynomial and the initial sequence. From which we will
get back the generated sequence. Here, we try to obtain the original generator
polynomial and the initial sequence using simulated annealing.



1 Introduction

When information is sent through channel, it is sent by encoding the information
into binary strings. For security and correctness point of view the encoder uses
LFSR(Linear Feedback Shift Register), in which the primitive polynomials are
being used for generating linear codes and large non repeating binary string. But,
in real life, we do not have noiseless channel. so, some data are being corrupted
l.e. some bits are reversed(0 changes to 1 and vice versa). Since the primitive
polynominls are heing used to encode the data, there must be some informntion
in corrupted data. The probability of alteration of a bit is less than or equal -12—
(if greater than 7 then we alter all bits then it will be < 1). Also, the channel
is not much noisy. So, the probability of alteration of a bit ic low. So, some bits
will be altered in the sequence of bits generated by primitive polynomial. So, the
hamming distance of corrupted data and actual sequence will be low. Whatever,
to get the original massage, we must have to get back the binary strings used to
encryption, generated by the LFSR. Hence, to get original binary string we have
to find out the primitive polynomial used in LFSR and the initial sequence(length
of initial sequence is the degree of polynomial) used to generate the sequence
of binary bits. Since, we expect the noise introduced is very low, the primitive
polynomial which will give the sequence of binary bits which is minimum distance
from the received binary string will be the required polynomial. The: natural and
convenient way to achieve it is to search on every primitive polynominl of that
degree running on every nonzero initial scquence. This process is casy to feel,
but is it feasible in our present system ? Since the length initial sequence is n for
the polynomial of degree n, to get the minimum initial seqence we have to run
on every nonzero sequence of length n which are 2® — 1 numbers. And there are
- 2"1—1 nos. nonzero polynomials and qﬁ(z};ﬂ) nos. of primitive polynomials. So,
the complexity of such process will be around O(n x 27"}, Which is not feasible
for the present system. | |



In case correlation attack, the cryptanalysis use some fnst correlation nlgo-
rithm [1] to got back the inttial sequence of known generntor polynomtal, But, tn
this case we do not have any knowledge about the generator polynomial. So, we
have to use some technique to get the generator polynomial which will generate
the string which is minimum distance from the received string. We can use simu-
lated annealing [2] for optimization purpose. By which, the generator polynomial
and the initial sequence can be approximated in polynomial time complexity. So,
we should have the algorithm to get the generate polynomial of a given binary
sequence. For that we can use the technique for solving of a system of equations.
But, we have a beautiful algorithin, Berlekaimnp-Massey algorithm [3], which gives
the minimum degree polynomial.

In scction 2 somé experiment before using the simmulated annealing is de-
scribed. Implementation of simulated annealing on finding both generator poly-
nomial and the initial sequence to the generator polynomial is discussed in section
3. To find the initial sequence, a fast technique is discussed in section 4. The
experimental results obtained by computer simulation are presented in section
9. Reader unfamiliar with simulated annealing and Berlekamp-Massey algorithim
can find a brief introduction in Appendix A and appendix B respectively.

2 The comparison between the binary strings
generated by two primitive polynomials

Before going to implement the simulated annealing, it could be tested how the
sequence generated by primitive polynomials differ to each other. So, in this
section, the experimental results on comparison of the soquences generated by
primitive polynomials and the initial sequence gives the minimumn distance is
discussed. At first, we can test for comparing the primitive polynomials of same
degree then comparing a smaller one with a larger. So, we test the primitive
polynomials of degree 5, 6 and 7. There are d)(z-g'—‘) = 6 primitive polynomials
of degree 5. And these are

i, x° 4 “a}izg

. :nﬁ-l;‘_:&?:rz—l—:c{l = ()

il 2® g 422z + 1 =0

iv. 28+ 27+ 1 =0

v. 2+t 3+ 2 422+ 1 =0
Evi.z®+2'+ 2+ +1=0




Whete the polynomials (i), (ii), (iit) are reciprocals of (iv), (v), (vi) respec-
tively and vice versa. Pair of reciprocal polynominls give the snme Requen e
but in reverse order of same initial sequence. So, it is required to test first 3
polynomials. The minimum distance between sequences generated by any two
polynomials from first three polynomials gives 12. Also, notice that the distance
between any two sequences generated by two polynomials (except the reciprocal
pairs)is always divisible by 4.

Similarly,there are @(zﬂﬁ' *) = 6 primitive polynomials of degree 6. And these
are

.+ 4+1=0

i 284+l 4+ 23+ 24+1=0

il 2+ 22 4+ 224241 =0

iv. 28+ +1 =0

v. 2942 b2t 2?11 =0
vi 28+ 2832t 4241 =0

Where the polynomials (i), (ii), (iii) are reciprocals of (iv), (v), (vi) respec-
tively and vice versa. So, we need to find the miniinumn distance between se-
quences generated by any pair of first 3 polynomials. Here, pair of polynomials
(1), (it) and (i), (iii) give minimum distance 24 each and the pair (ii) | (iii) gives
minimum distance 20.

Here, also notice that the distance between any two sequences zenerated by any
two polynormials (except the reciprocal pairs) is multiple of 4.

It is sure that it must be multiple of 2, because of all sequence generated by
them have equal number of Os and 1s. But, why is it multiple of 4 ?

Sotne results testing on some primitive polynomial of degree 7 are helow. The
pair ' +z + 1 and 27 + 23 + | gives minimum distance 56.

Thepairz”" + 24 land 27+ 23 + 22 4 2 + 1 gives minimum distance 56.

The pair 2" + 2° + z° + z + 1 and 27 + 2% + 25 + 22 4 1 gives minimum distance
52.



So, from these experiment on small polynomial we got that there is big dif-
ference between the sequences generated by two primitive polynomianla of snme
degree. It will be higher for primitive polynomials of bigger degree. So, if some
noise is introduced on a binary string generated by a primitive polynomial and to
get the original polynomial we have find out the primitive polynomial which gen-
erate the closest binary string, because from above experiment we expect that no
two primitive polynomial generate closer sequence. But, it could be possible the
sequence generated by a large primitive polynomial will be near to the sequence
generated by a small polynomial. So, it could be tested by a smaller primitive
polynomial against the larger one i.e. a part of lager sequence is compared with
smaller sequence. So, here we can take the large primitive polynomial(degree 20).
Taking consecutive 25 1, 2° — 1 or 27 — 1 bits of binary sequence randomly from
the sequence generated by the large polynomial and test to find the minimum
distance from the sequence generated by a primitive polynomial of degree 5 .6 or
7 respectively.

Here, some primitive polynomial of degree 20 and these are

i :I:20+:I:15+:n13+ﬂ:124 et 2104 294 o St 2241 =0
0+ 21T 42 B 12 4 210 L 2%y £ 2B +1“0
ii. a:2°+:r‘5+a:13+:1:1”+::: +2?4+1=0
Eiv. 20 4+ 29 4215 4 g 4213 4 210 4 27 4 26 41 = 0

Generating the sequence from a polynomial of above and taking a consecutive
2° — 1 bits, the minimum distance from the sequences generated by a primitive
polynomial of degree 5 give the maximum time the minimum distance is 8 or 10.

Similarly, taking consecutive 2® — 1 bits and finding minimum distance from the
sequences generated by a primitive polynomial of degree 6,0bserved minimum
distance 22, 23, 24 in maximum time.

Similarly, taking consecutive 27 — 1 bits and finding minimum distance from the
sequences generated by a primitive polynomial of degree 7, observed minimun
distance 46, 48, 50 in maximum time. So, it is observed that the smaller one also
does not give fairly closer sequence to bigger one. But, it is better than the first
experiment of same degree. Sometimes the smaller one gives very close sequence.
So, we can use smaller polynomial for our purpose.



3 Implementation of Simulated Annealing

To find the approximate polynomial and the initial sequence in a polynomial time
we can use a discrete optimization technique such as simulated annealing 12][4]
with an appropriate optimization heuristic.In this section we outline a simple
approach for applying simulated annealing to find the optimal polynomial and
the optimal initial sequence.This approach is intended to enhance the basic ex-
haustive search as outlined in Section 1. Readers unfamiliar with the simulated
annealing algorithm should study the Appendix A for a brief description.

First, a cost function (fitness measure or optimization heuristic) is required.
Of course, the simple and ideal cost function would measure the Hamming dis-
tance from the received sequence to the proposed solution. We can use some
other cost function like error rate, number of unsatisficd parity check bits (4],
But, here we use the simple cost function as hamming distance.

Since we have to find out both the optimum polynomial and the correspond-
ing initial sequence to this optimization, we can implement simulated annealing
twice. First simulation annealing is implemented on polynomials to find approx-
imate polynomial. But to find approximate polynomial we must have to find out
the appropriate initial sequence which will give the smallest hamming distance.
S0, to find the appropriate initial sequence we can use situlated annealing again
to find the initial sequence. That is, using first simulated annealing we get a
polynomial in each step, then finding the minimal initinl sequence, the simulated
annealing can be implemented again on initial sequence.

To use simulated annealing, it is necessary to initiate the configuration.
Then implement the simulated annealing to get another configuration and repeat
it on the present configuration till to get satisfied configuration or no. of loops.
So, in this case we have to give initial configuration for both case. Then we have
to implement simulated annealing on both.

At first, we consider how to initiate the configuration and itmplement the
simulated annealing to find the initial sequence for a given polynomial of degree
n. we require n bits for initial sequence. The hamming distance of first n bits
in received string from the original initial sequence is less. We take first n bits
of received sequence to initial configuration for the initial sequence. Now we
consider about implementation of simulated anncaling. Let P be the polynomial
and Cj, cost; be configuration for initial sequence for polynomial P and cost for
this configuration C; after i*h iteration respectively, where cost is the hamming
distance of generated sequence using the initial sequence from received sequence.
In 7 4+ 1% iteration choose a bit in C; randomly. Then alter that bit (i.e. if it is 0
make it 1 or if it is 1 make it 0) and assign to the configuration ;. Use this



configurgtion Ciy; to generate the sequence of the same length of received se-
quence, ‘Find out the costyy for configuration Cyy. I this costyy; is lesser
than the previous cost cost; then go for next iteration. If cost,,, is greater than
previous cost cost; then we will accept it randomly using some condition. This
possibility of satisfaction of this condition should be very low, because the noise
is very less and the exact configuration must be in the small neighbour of initial
configuration. If this condition satisfied then go for next iteration else reassign to
Cit1 as Cyie. Ciyy <= C;. Repeat this till a polynomial time loop and take the
confignration C'y which gives the minimum cost among the configurations during
this process.

Then we consider how to initiate the configuration and implement the
simulated annealing ‘to find the polynomial. Since we require the polynomia
of degree n or less than n, we implement the Berlekamp-Massey algorithm {3
on reccived sequence till get higher polynomial of degree n. To get polynomial
of degree of n, we need at most 2n bits as a property of Berlekamp-Massey
algorithin and the time complexity is O(n?). If there is no error in first 2n
bits then we will get the original polynomial. So, we take this polynomial as the
initial configuration. Here, we get initial configuration Iy, now we consider about
implementation of simulated annealing to find the next configuration. Let P be
the " configuration after i iteration. And cost after i'" iteration be the cost;
is the cost returned implementing simulation annealing to get initial sequence
for F; as described above. Choose a number from {0, 1, ..., n} let it be k then
alter the coefficient of z* in configuration P (i.e. if coefficient is 0 make it |
or if coefficient is 1 make it 0) and assign it to P,;. Then find out the cost

cost;,, for it implementing simulation annealing for finding initial sequence. If
costi,, < cost; then go for next iteration.If cost],, is greater than previous cost
cost; then we will accept it randomly using some condition. This possibility of
satisfaction of this condition should be very low. If this condition satisfied then
go for next iteration else reassign to Py as P i.e. I,y <= P;. Repeat this till
a polynomial time loap and take the configuration % which gives the minimun
cost among the configurations during this process.

Hence, the required polynomial which gives minimum cost and the corre-
sponding initial sequence will be the initial sequence.But, this process does give

good result. The returned minimum cost is not low every time.




Algorl]l::)tm :

ata: A binary sequence of length N.
Target: The polynomial of degree n and corresponding initial sequence.

Procedure(to find polynomial and initial sequence):
step 1: Initialize configuration for polynomial using Berlekamp-Massey
algorithin to get a polynomial of degree n.
step 2: Implement simulated annealing to find the minimal initial

sequence {
step 2.1: Initialize configuration for initial sequence taking first
n bits.

step 2.2: Choose a random position in between 1 and n then

alter the bit at that position.
step 2.3: 1f that new configuration gives the lesser cost(hamming

distance from received sequence) than previous cost go to step
2.2 with new configuration.
else generate a random number in between 0 and 1 if it is very
low (< 0.1 x g~{distancediff/cost)) then go to step 2.2 with new
configuration else go to step 2.2 with previous configuration .
step 2.4: Repeat it till a polynomial time loop or satisfy a cost.
}
step 3: Find a position randomly in between 1 and n say t and alter
the coeflicient of z° of polynomial.
step 4: If that new configuration gives the lesser cost(hamming
distance from received sequence) than previous cost go to step 2 with
new configuration. |
else generate a random number in between 0 and 1 if it is very low
(< 0.2 x e~ (dinstancediff/cost)y then go to step 2 with new configuration
else go to step 2 with previous configuration .
step 5: Repeat it till a polynomial time loop or satisfy a cost.




4 Finding initial sequence using a fast tech-
nique

Implemanting the above technique(simulated annealing on both polynomial and
initial sequence) it is observed that it does not give good result(in section 5). Be-
cause the error occurs twice, since simulated annealing implemented twice. The
error occurred in finding initial sequence is believed as errorless for cost caletilsa-
tion for finding polynomial. So, more error ocenrs. If we will able to feed netunl
initial sequence( i.e. the initial sequence which gives the minimum distance) then
implementing the simulated annealing only for finding the polynomial, it must be
better. So, here*we purpose to implement simulating annealing to find polyno-
mial only. The inifial sequence for the polynomial at any iteration we will use
fast technique, which is used for fast correlation attack [1]. How to get the initial
sequence of a given polynomial from a erroneous sequence is described below.

Let P be the polynomial of degree | and the received sequence be zy, 24, ..., 2n
of length N. Now to find out the initial sequence 7y, 74, ., 27 which will give the
minimun distance for P from the z;, 24, ..., 2n.

Here an LFSR output sequence having some fixed length N can be regarded
as a binary linear [N,l}-code, where 1 is the degree of the feedback polynhomial of
the target LFSR.The number of codewords equals the nnmber of initial states of
LFSR, that is 2! . Thus,this problem can be reformulated as a decoding problem
of this particular code in the presence of noise. The problem is how to decode
this linear [N,I}-code with as low decoding complexity as possible.

Associate with the target LFSR another binary linear [n12,k]-code with
k < l. The k information symbols of this code may coincide with the 1" k
symbols of the initial state of the LFSR we want to recover. In the decoding
step, the symbols of the observed sequence are combined according to the parity
checks, and the probability of each codeword in the code is calculated, 1.e., ML-
decoding (Maximum Likelihood decoding). Since the new code has dimension k
the decoding complexity decreases from O(I x 2!} to Ok x 25).

Let the target LFSR have length 1 and let the set of possible LESR se-
quences be denoted by £. Clearly, |£] = 2" and for a fixed length N the truncated
sequences from £ form alinear [N 1] block code referred to as €. Furthermore, the
observed keystream sequence 2 = 2, z, ... zn is regarded as the received channel
output and the LFSR sequence x = 21,15, ..., 7y is regarded as a codeword from
an [N,]] linear block code. we can describe each z; as the output of the binnry
symmetric channel, BSC, when z; was transmittecl.

2



Let us briery recall some results from coding theory. Since each By mbol
z¢ is a linear combination of the | initial values we see that the set of words
(z1, %2, ..., zn) forms the linear code C and we call these words codewords. The
word (zy,Zo,...,x;) is called the irformation word and the syinbols zy,z,, ... 1
-are called information symbols. We have that

coTy + 122+ ... +ryyy =0
Colz T C1T3 T ... + CpFjp9 = ()

, (1)
Con_1 + ClIN—f41 + ... +Czy = ()

where ¢; are coefficients of the generator polynomial (D) = g+ ey D+ .
aDi{co = ¢ = 1). We define the (N — 1) x N matrix

Co Oy Co ... } 0O ... 0
I - 0 ¢ ¢ ... ¢ ¢ ... 0
0 0 . o g1 ... 7 g

Thus, our code consists of all codewords such that H(ry,za,..,28)" = 0. The ma-
trix H is called the parity check matrix of the LFSR code. It follows from (1) that

— hLi 2 1 ..
— hl 2 |
Tiva = Moy + hf o2 + ... + hi,ox
oF :ht-l.’cl +- h?l‘g+“.+hi}l‘; ( )

Iy = }ILI; +- h%,:rg 4+ .+ h,}g:r; = {)

It we denote (D) = hf + hiD + ... + hED*! then clearly
hi(D) = D' 1mod g(D) fori =1, 2,.... N.
Therefore the code C has the (I x N)-generator matrix

1 41 !
h% h% th
ht hi .. h
G = b2 N (3)
Y. r
hy hy o WYy
The observed output sequence, which we call the received word and denote
z = (21,2,...,2n), is regarded as a noisy version of the unknown codeword

(1,%2,...,zn). Now, we have to find out the initial sequence (xy, 2, ..., ;) from
which we will able to get (T1,%2,...,2n). we use MI.-decoding( Maximum Likeli-
hood decoding) for decoding.

1)



Let C:= {x} be an (n,k)-code and let ¥ be the transmitted codeword and let
z be the received word. Now let 75 be the code such that

dist(xy, 2) = mingecdist{z, z).

Here dist(x,y) denotes the Hamming distance between x and y, i.e.., the number of
ones in the binary vector x + y. This x4 is the decoded code using ML-decoding.
Now we describe the fast technique to get initial sequence (xy, 74, ..., 7). Let k |
| be fixed, We shall describe a procedure that recovers the symbols y, xq, ..., 1%
when observing 21, z3,...,zy. In the system (2) we look for pairs of equations
such that,

hitl — hit1 hf*'? — pit2

iH=h =01 <i A <N, (4)

J 1 ] [ ] 1 t

We find all such pairs of equations. Let the number of such distinct pairs be
ng. Denote the indices of all such pairs as {7y, 71}, {i2,J2}, - -, {Znas Jng }-

If i and j satisfies (4), then the sum z; + z; is a linear combination of
information symbols ), x,, ..., zx only, and is independent of the remaining in-
formation symbols x4 ¢, Zxyo,..., 11,

zitxy = (hi+h))z +(hi+hd)za+ 4 (h§+h3)zs.

——
e ¥
u

This means that the sequence
(lem X?r U 1"’YHI) — ('TI'l + Ij] ' :rl': +- :I‘j]‘l' T Ty Ilinj + Ijn;)

forms an (ng, k)-code, referred to as Cy , whose information symbols are (1, x9,..., 74),
l.e., 1t has dimension k. The generator matrix of the (n,, k)-code C5 is

] 1 1 1 | 1
h;l + h{;‘ h;? + h,j2 ca h.\{ﬂ-2 + h_%":
2 2
Gy = hi‘ + hj' hi’ t hj? o h"'ﬂ: t hj": , (6)
ko ok koo k oL ook
h—” _"_ h}l }Llﬂ _! IL}: et }-’-i“: '+' hﬂjﬂ-’
We denote
2y = 2y h 25, Ly = 242y, Dpy = 24, 2, (7)

11




Since we observe the output symbols (2, 2y,, 2, Zjar "y Ziga s 24,0 ) We can caleu-
late also (7,,7Z,,-- .. iy ), that ik, a word neting ns noreceived word for (o, I
(€1 02, en) I8 the noise sequence of the code C, (e; == xy -+ y;), then clearly the
noise sequence (Fy, F,, - - - B, ) for C s

Eﬁl = O, + €y Eg = €y -+ Cigy v, Eﬂj = E!i": - f_?j“ﬂ.

Since our model is the BSC, all the e;’s are independent random binary
random variables with error probability p. It is then clear that Em=e + €
for 7,, # 4, are also independent binary random variables for all 1 < m < n,
with error probability

Py = Pri{e, + e, = 1) = 2p(1 — p) > p.

Thus, we have created a new code C2 with smaller dimension but the BSC over
which the codeword is transmitted has a stronger noise p, , i.e., py > p. To
restore the symbols ry, 1, ..., z, we have to decode the {n,, k|-code Cy in the BSC
with the stronger noise p,. However, as long as the length of the new code C,
guarantees unique decoding, this new code will he decoded significantly faster
than the LFSR code C. As before, we apply a simple ML-decoding procedure
when decoding C,.

Algorithm .

Data: the length 1 of target LFSR, and the generator polynomial g(D).
Precomputation.

Fix a computational complexity level by choosing a &k < { (for example k

=1/2). Construct the generator matrix (see (3)). Using a sorting algorithm,
sort the columns of G with respect to

(R R Ry =12, N
IFind all pairs {7, §} that satisfy (5). For each pair, store the indices i; § together

with the value of (h) + h}, he v h? .. hE 4 h;).llmn:ﬂ, we have constructed the
code Cp with generator matrix G, (see (6)).



Decoding.

Input: The received (observed) vector (21, 29, V2N ).

Step 1. Compute (Z,, 2, - - » Zny) (see (7)).

Step 2. Decode the code C, with the generator matrix (6) using exhaustive
search through all the 2% codewords of C; , and select the information word
(z1, 29, -+, 2;) with highest probability.

After having restored (1,22, ..., 7x) we need to restore the remaining part
of the initial state, (Thi1, Tryq, -, ;). An obvious way would be to repeat the
proposed procedure for some other information bits, SaY (Thky1, Thag, - -, Tor). We
can use the same parity checks, since the code is cyclic.

However, with knowledge of the first k information symbols, the remain-
ing problem is much simplified compared to the original problem. Hence we can
discard the complexity and the error probability of this step. (E.g. if we restore
the 20 first information bits of a length 80 LFSR, we use the obtained values of

these 20 first information bits and get a new decoding problem but now only for
a length 60 LFSR.)

9 Experimental results

In this section we discuss some implementations simulated annealing discussed
in section (3). At first we generate sequence of some length feeding an initial
Sequence to a primitive polynomial. Then wo introduce some noise randomly on
some bits i.e. choosing some places randomly and alter the bits. Then we get
corrupted sequence. Now we have to implement the simulated annealing to find
out the approximate polynomial and corresponding initial sequence.

We tested for some polynomials of primitive polynomials degree 20 and
the results are written below.
Experiment 1.
Here, we took the primitive polynomial

then we generate a sequence of length 100 giving initial sequence ( 100111000011
(1100010 ). Randomly we change 12 bits in the sequence. Then we try to find a
polynomial of degree 20. we got a polynomial 2204 2194 15 4 g13 4 211 64 4
¥+ 1 and initial sequence { 11011100001101 110000 ) which is 28 distanee npnrt
ftom recelved sequence. I'hen | try to approximate by a polynomial of degree
[logy 1007 = 7. we got a polynomial 27 -+ 2% 2 2% 4 22 1 1 and initial
sequence (0000110) which gives cost 31

13



Experiment 2.
Here, we took the primitive polynominl

;r2“+:r‘9+:z:17+:r:15+m'3+z‘9+z1”+m9+mﬂ+m5+1:

then we generate a sequence of length 100 giving initial sequence (11001101000010
111010). Randomly we change 9 bits in the sequence. Then we try to find a poly-
nomial of degree 20. we got a polynomial £20 4. 215 4 .14 b 4T 5
22 4 1 and initial RC(UONCE (llU(}lI(JIU{JU{II{JHUU{}) which is 29 distance apart
from received sequence. Then I try to approximate by a polynomial of degree
[log, 100] = 7. we got a polynomial z7 4 z¢ 4 23 4 .2 + 1 and initial sequence
(0110100) which gives cost 33.

Experiment 3.

Here, we took the primitive polynomial

:1:2”+:r154-$’3+:r‘”+:rﬁ+1:?+1:U

then we generate a sequence of length 100 giving initial sequence (001110110000111
00100). Randomly we change 14 bits in the sequence. Then we try to find a poly-

nomial of degree 20. we got a polynomial 220 4 £18 4 ;17 | 116 | 14 +xl? 4 g%y

+2"+2%4 24 2 +1 and initia] sequence (00100010000101101000) whick is 29

distance apart from received sequence. Then I try to approximate by a polyno-

mial of degree [log, 100] = 7. we got & polynomial 27 4 28 4 25 4 21 1 2 +x+ 1

and initial sequence (1010001) which gives cost 34,

Experiment 4.

Now we test for bigger polynomial of degree 25. Here, we took the primitive
polynomial |

x25+m22+x19+r15+x“+x”+:r‘“+:r"+:r:ﬁ+:r +1=0

then we generate s sequence of length 200 giving initial sequence (11100100110000
10111011011). Randomly we change 32 bits in the sequence. Then we try to
find a polynomial of degree 25. we got a polynomial which is 69 distance apart
from received sequence. Then [ try to approximate by a polynomial of degree
[log, 2007 = 8. we got a polynomial z8 + 3 4+ 1 and initial sequence (11001000)
which gives cost 77.

So, we are not, getting good approximate implementing simulated annealing.

14



References

'] Viadimor V.*Uhupyzlmv, Thomas Johansson, Ben Smeets A Simple Algo-

rithm for Fast Correlation Attacks on Stream Ciphers”, Electronic Edition
(Springer LINK)-181-195.

2] Van Laarhoven P.J. M., Aarts E.H.L., ”Simulated Annealing: Theory and Ap-

plications”, D. Reidel Publishing Company, 1987. A text bock for Simulated
Annealing.

3] Guang Gong, ”Sequence Analysis”, Lecture Notes for CO739X, Winter 1999

4] Jovan Dj. Golic, Mahmoud Salmasizadeh, Andrew Clark, Abdollah Khodkar
and Ed Dawson, " Discrete Optimization and Fast Correlation Attacks”.



XVl

Appendix

A. The Basics of Simulated Annealing

number of variables in such a problem can be huge, making determination of
an optimal solution impossible. Simulated annealing scans a small arca of the
solution space in the search for the global minimum.

The Metropolis Algorithm

Simulated Annealing utilizes a process known as the Metropolis Algorithm which
is based on the equations governing the movement of particles in a gas or liquid
between different energy states. Equation (2) describes the probability of a par-
ticle moving between two energy levels, K1 and E2, AFE = E2 — E1l,

—4aF

P(E) = e7*1 (1)

where AE = E9 _ | I, k is Boltzmann’s constant and T is the temperature.
Equation (2) is used to make a decision as to whether or not g transition between
different states should be accepted. The Metropolis Algorithm is based on

1 i AE >0
P(EJ_{e:ﬁ'E if AE <0 (2)

By allowing a configuration to move to a higher energy level (or higher cost ),
the search for the global minimum of the cost function is aided, since it is POs-
sible to move out of the regions of local minima. This is not the case for the
so-called "iterative improvement” techniqnes which will only update the solution
if a better (more optimal)} one is found, or, in other words, if AE > (.

T'he Simulated Annealing Algorithm
1. Geierate an initial solution to the problem (usually random),
2. Caleulato the cost of the initinl rolution,
J. Set the inftin] temperature == 4O

4. For temperature, T | do many times:



* Generate a new solution - this involves modifying the current solution
11l some manner.

e Calculate the cost of the modified solution.

proposed solution.

* Consult the Metropolis Algorithm to decide if the proposed solution
should be accepted.

* If the proposed solution s accepted, the required changes are made to
the current solution.

9. If the stopping criterion is satisfied the algorithin ceases with the current
solution, otherwise the temperature is decreased and the algorithm returns
to step 4.

B. Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm is an algorithm for determining the linear com-
plexity of a finite sequence and the feedback polynomial of a lir.car feedback shift
register (LFSR) of minimal length which generates this sequence. This algorithm
s due to Massey [Mas69], who showed that the iterative algorithm proposed in
1967 by Berlekamp (Ber67] for decoding BCH codes can be used for finding the
shortest LFSR that generates a given sequence.

For a given sequence s™ of length n, the BerlekampMassey performs n itera-
tions. The t** iteration determines an LFSR of minima] length which generates
the first t digits of s® . The algorithm can be described as follows.

Input. s" = 3081 " Sp_1, & sequence of n elements of F,.

Output. A, the linear complexity of s™ and P | the feedback polynomial of
an LFSR of length A which generates s,

Initialization.
P(X) « LP(X)e— 1A Ome1d 1

Fort from0Oton- 1 do
b= s+ 30 pisees.
Ifd# 0 then
T(X) « P(X).
P(X) « P(X) - d(d’) 'P'(X)xtm



if 2A <t then

Ae—t41—-A
e — 1.
P(X) — T(X).
d + d.

Return A and P.

In the particular case of a binary sequence, the quantity d’ does not need

to be stored since it is always equal to 1. Moreover, the feedback polynomial is
simply updated by P(X) — P(X) + PX)xetm

The number of operations performed for computing the linear complexity of a
sequence of length n is O(n?).

It is worth noticing that the LFSR of minimal length that generates a se-
quence s" of length n is unique if and only if n > 2A(s"), where A(s") is the
linear complexity of s" .

Example: The following table describes the successive steps of the Berlekamp-

Massey algorithm applied to the binary sequence of length 7, s - - - sg = 0111010.
The

[t ] s d | ATP(X) [ m ] P(X)]

[ ToT1 [-17]1
olofolo |1 11
1T T112 (1% *1J1
211 T1 2 1+ X+ X711 1
31112 1F+X 1 |1
|10 [2]1+X 1 [1

0 1[4 [1+X+X"|5 1+ X
6]0 104 [1+X+X7]5 [1+X

values of A and P obtained at the end of step t correspond to the linear com-
plexity of the sequence sy -5, and to the feedback polynomial of an LFSR of
minimal length that generates it.

The linear complexity A(s) of a linear recurring sequence 8 = (s¢);>q is equal
to the linear complexity of the finite sequence composed of the first n terms of s
for any n > A(s). Thus, the Berlekamp-Massey algorithm determines the shortest

LFSR that generates an infinite linear recurring sequence 8 from the knowledge
of any 2A(s) consecutive digits of s.

Hi



