A study on
Cubic Sieve Congrucnce

A dissertation sabmitted in partial fullibnent.
of the I‘('I‘(lll'll'{‘lll{‘lli.H of M. Tech (Computer Science)
degree of the Indian Statistical Institute, Kolkata

by

Subba Rao Y. V.

under the supervision of

Subhaimoy Maitra
Applied Statistical Unit

Indian Statistical Institute
Kolkata-700 108.

L0 July 2003



Indian Statistical Institute

203, Barrackpore Trunk Road,
Kolkata-700 108.

Certificate of Approval

Flistis to cortify that this thesis titled “A study on
v Subba Rao Y. V. towards parttal fulhlhinent of

Comprter Seience at Indinn Statisticn] fnstitate,
SHPOrVISion.

Cubic Sieve Congruence®” submnitted
requirements for the degree of M Teeh. in
[Nollat cimbodies Tthe work done nhder Ny

igolsGargopodhigey

! 0/7—/03

oxternal Export,

. hhhnmny Nt ra

Applied Statistical Unii B1TS 7 | conn
e . [ ecTa9gn 1 16

[udian Statistical Institate

INollita-700 108



Acknowledgments

| take pleasure in thanking Dr. Subhamoy Maitra for his frie

ndly guidance thronghout the
dissertation poriod. [is pleasant and e

neouraging words have always kept. iy spivits up,

| take the opportunity to thank Prof. R Tandon,
thank my friends A, Rajani Kanth, M. Raja Sckhar,

cnconragement to finish this work.

University of Hyderabad, India. T also
my classmates and my family for thetr

Subba Rao Y. V.

i



Abstract

In this dissertation wo first explained the importance of cubie sjove congruence problem in the
context of Cryptology. We justified an Ireuristic estimate of cardinality of S,,, set of solutions
for cubie sieve congruenee problem with », 4 and = of order P, using some statistioal methods.
Fhen we presented an algorithm to solve the problem in time bhetter than ((p). Then we gave n
method, which ean solve the problem in log time, but ouly for few primes. Finally, we sngpestod
lirther possible improvements to our proposed algorithm.
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Chapter 1

Introduction

1.1 Discrete logarithm problem.

et Fy, be a prime field with cardinality p. Let g be a generator of the cyclic multiplicative
group >, Given an element a € F, there exists a unigue integer < @ < p— 2 such that
a = ¢" in F,. Such an integer x is called as discrete logarithm or index of a in F,, with respect
to ¢ and is denoted by ind,(e). Determination of @ from known p, g and a is the discrete
logarithm problem (DLP).

The known difliculty in computation of DLI? with easily computable inverse, discrete expo-
nentiation makes DLP, a problem of high intrest in Cryptology. As a simple example of this,
we can look an instance of ElGamal Crypto System -(p, v, ), where «v is a generator of F3 and
7 = o, for some secret a € {0,1,2,...,p - 2}.
in this, mufntling function

o . 41* 41* :1-1
Ck.fpﬁ*}[pxil,
is defined as, for x € FJ we define

Ci(r) = (1, y2)

where 4 = of (k is again sceret value known only to sender) and gy == 8% 1 is decoded by
siinple function defined as

Dilyn.y2) = y2(yn)™°

As noted above, hardness of DL makes this Cryptosystem relaible.

1.2 Some known algorithms for DLP.

It can be easily seen that DLP can be solved using linear search in (Xp) time and (1} space
or by precomputing g7 for all o, it can be solved in Q1) time and ()(ii) space,

A good trade-off of time and space can he obtained in - Shank’s algorithm . This can be
inplemented in O@Gn) time and O0n) space, where i - |{p - I]”:r. Pohlig - Hellman



algorithm requires factoring p— 1 into its prime factors, which is again a known hard problem.
Index caleutus method appears Lo be more applicable in solving DLP. In [1], chapter 3, three
vartants of this mothod are discussed. These variants are Basic method, Linear Sieve moethod
tid The Cubic Sieve method. Tn this last methoe, i.o., enbie sieve method, we need a ‘known'’
solution of the Diophantiene equation
3

' =y z(mod p) (1.1)

such that o £ y2= with 2,y 2 of the order p" for some 1/3 < v < 1/2.

1.3 Cubic Sieve Congruence problem

Fhe remainiug part of this dissertation foctisoes on understanding the above Diophanticne equa-
tion and its solutions. From now we refer (o this problem as Cubice Sjeve Congruence problein
and is denoted as CSC. In Chapter 2 we make an attempt to show that for sufliciently large
CSC has non empty solution set. In Chapter 3, we describe an algorithm to solve CSC that
tiakes lesser than O(p) time for almost all primes. In Chapter 4, we suggest some possible lines
of thonght to extend this work. |



Chapter 2

Existence of solution to CSC.

2.1 An Heuristic Estimate.

We begin this section by defining few notations. Let

S = {{z,y,2)]2* = y’z(mod p), 1 < 4,2 < p) (2.1)
S= = {(x,y, 2)|(x, 3, z) € S and 1} = yz) (2.2)
Sy = { (e y. ) ey, 2) €5 and »? # ez} | (2.3)
SN:H%yJ)ESHSqwnzSﬁW (2.4)

hr (1. Chapter 5 it is shown that |
#S5 = (p—1)° = O(p?) - (2.5)

3 3
#5. < §(p - Din(p—1) + (3y — ;z—)(p - 1)+ O(/p) = O(pinp) (2.6)
andd |
3 2
#5- > 5P+ O(p3) (2.7)
i

#5. = Q(p) (2.8)

(Here 5 reprosents Euler's constant defined As Yy = limy, 5o (1 4 % + - ;'; ~In(n)) = 0.57721566 . ]
Sinee S is the disjoint union of S_ and Sy, from above equations we have,

N |
#5: > (p—-1)? - 5= Nin(p = 1) + O(p) (2.9)
2 93 2
#o2 < (p-1)2- ;2-;}-!—()(];3). (2.10)
In particular,
#'q‘f = @(.”2) (2] l)

From this it is clear (hat partial CSC problem, ignoring the bounds on x4 and 2 has

Approxi-
mately p° number of solutions



-

We are more intrested I knowing the value of # S0 which is esitimated by 1he i'nlh_:nwillg
conjectire,

Conjecture 2.1 75, crpected cavdinality of 5, 14 asymplohically cqual to \p'e ! Jor atl
Va1 and for some constant y =~ | |

Cood number of experimental verifications with various sizes of primes ranging from 15hits to
2bits. do support above conjectiure. Few such results are included in next section.

2.2 Verification of conjecture.

As onr first step, as in [, we tabulated results for varions primes. ‘I'wo such resulls are given
heve as Table 2.0 and Table 2.2, In this first colummn is the value of v, second column is the
hittmber of solutions witly Yy, and = with order P third column is value of }:;;"‘“ "and fonrth
cohimn is valuye of PN These resnlts indicate that as o inereases the number of solutions et
closer 1o p* U and also for sufficiently large o depending on the size of prumne (in case of 39hit
primes this ey is 0.41) %p””“' gives us a lower bound to number of solutions.

To continne oy vertfication, we calculated

Number of solutions of order po
T

I].. iy —

[or ev ranging from .34 to A0 for fifty randomly choosen primes. Then in Table 2.3 we tabulated
information as ev in first column, mean of above fifty fractions for that o in second column and
in last column standard deviation of the same values are given. Resulis here indicate that as
s inereasing to 50 we see that mean is getting closer to 1.0 and standard deviation gpelting
closer 1o 0.0, this Justifies the above conjecture,



(¥ # of solutions %pﬂ"_’ pi“‘_'
0.340000 | 0 () 1
0.350000 | ¢ 2 3

- 0.360000 | 2 3 5
(L.370000 | 6 7 X
Gsoooe i | g
0.390000 | 27 28 43
0.400000 | 69 56 84
0.410000 | 151 109 164
0.420000 | 283 BEPIVEREIIE
0.430000 | 573 413 620
0.440000 | 1135 8014 1206

| 0150000 | 2223 1561 | 2347
0.160000 | 1107 3043 | 1565
[L4TUUUU;_8639 5919 | 8879
0.480000 | 16910 11513 [ 17270
0.490000 | 33179 22392 | 33589
0.500000 | 65137 43552 | 65329

Table 2.1: Prime : 42680029019

Table 2.2: Prime -

g |

(Y q # of solutions g;yl"*l | p‘;“"r"
0.310000 | 0 () 1

[ 0.3500007 172 12 I3
0.360000 | 1 B I
0.370000 | 5 7 11
0.380000 | 13 14 929
0.390000 | 27 98 13
0.400000 | 54 | 56 84
0.410000 | 126 108 163
0.420000 | 257 211 317
0.430000 | 547 112 618
0.440000 | 1080 800) 1201
0.450000 | 2150 1557 [ 2336
0.460000 | 4235 3028 | 4543
0.470000 | 8300 5888 [ 8832
0.480000 | 16427 [ 11448 [ 17172
0.190000 | 32211 22958 | 33387

- 0.500000 | 63262 13271 | 64911

121358677
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Mean

Ste.Div

().31

0.35

L 0.2800000

0. 00000

(1.607 1369 |
.51 15004

(.36

0.5340000

0.4082616

.37

[

0.6622222

0.4120630

(.38

0.7054902

0.3139408

0.39 { 0.7988400

0.2547877

0.40

0.8296789

| 0.1910907

.41

| 0.8618105

0.1410821

(.12

(1.83()3438

| 0.1060304

0.43

0.9261365

0.0804415

0.44 [ 0.93804G3

0.0643277

(.45

0.9533673

0.0441644

0.46

e

0.9686826

0.0338940)

0.47 |

0.9715897

0.0261893

(.48

0.9799228

0.0207219

(.19

0.9810180

(0.0138331

0.50 | 0.9883767

i

0.0111183

§

Table 2.3: Verification of conjecture




' Chapter 3
An Algorithm to solve CSC.

3.1 CSC in Parametric form.

To have a hetter understanding of the problem, we tried to CXpress it in parametric lorm as

|

7= 72 (mod P) and y = va(mod P) (3.1)

here condition 7 # 1%z in CSC can he rewritten as @ #£ 22, We shall denote this problem as
CSCP. |

Lemma 3.1 Problen, CSC 13 equivalent to problem CSCP.

Proof : Given a solution (24, yy, 0. ) of CSCP we can see that (iry, ug. ) is a solntion of
CSC, beeanse

(]
S

y(i;z{} ( Vo = ?fn.'f-"{](lll(}(.l p))

ey
gy
|

=TTy T
L ™

(" g = 15 20 (Iod »))
(mod p)

i
-~
SWOKON
St
=

i

x

Similarly, given (e, 11, 21) a solution of CSC, we have (reo w2z, 1) where i = {{f{ as solntion
of CSCP. T'his is trie, because

. : |
i = Ugl = 3 =y (mod p)

el

vy = P—;‘:‘ = y1(mod p)

S0 we have the cquivalence as needed, o

For the remaining part of this chapter we focuys only on CS¢'p wroblem in a rost.atoed form alon
L l . | ')
with bounding condition of CSC problem.

=



3.2 Some Observations

We restate CSCP problem along with bounding condition of CSC as
r=vz(mod p) and gy = vr{mod p)

with & # v?2 and 0 < Ty, 2 < pP° Our aim is to solve this problem with its conditions, Ag
seenin the previous section this is sae as CSC problem with o - 0.5

Heneeforth we write v = p" (Lhis v has nothing Lo do with tpper bound of »y and z) and
2 = p" for some real o, 4.

Lemma 3.2 o > (.95 Jor all valid solutions (r,y, 2,v) of CSCP.

Proof : This is easy to see becayse ity = p™ <" then both of our congruence relations
become equalities as

r=v%2 .,  since 2a + 3 <2(0.25)+ 05 = 1.
Also
y=vr, sincer<p’ andy < p0,
This violates our requirement. So o > .25 8

Lemma 3.3 For any fized v = p™ with o < 0.5, we have (if it exists) «x < pth-a | |
Proof : This follows from the fact that vz = y < p"5. But as « < 0.5 and < p%5 this
congruence is an equality i.c. yz = Y.

\ ' 0.5 . . .
Irom this we have, vr < %0, therefore ¢ < 2 — = p""% % ag neoded. s

S0 having,

v,z <p" and x = p?; < pB-e

immediatly gives us suitable solution with y = yr < p"*. These observation along with above
two lemmas form the basis of our Algorithin. Here for each fixed v in the range p™% to 908

we vary 2z (using information provided by the following lemma) and compute = for each pair

(v, 2). Once the suitable z is found we stop by giving the corresponding solution as output. In
HexXt section we try to look at the applicabilty of the algorithm,

Unless stated otherwise, from now onwards we work with v = p® with 0.95 < < ().5.

Lemma 3.4 For u fized v = p” that is part of a solution (z,y, 2. v), we have z > pl-20
Proof : From the fact that "% < v < p®5 we have P <v? < p

Now if we assume that 2 < p'~% then we have (with out taking modular operations)

(L5

7 < ”22 - Jlinz < p?n,}l—--:?n ==,

Fherefore 2 = 922 can uot be of ordor o,
This proves that z > p!'=20 a¢ needed. B



From this lemma, we can see that for fixed v, smallest z that can be considered is [pl—2a].
We represent this as z; and also write 2, = Pt for some real £ < 0.5,
For this z;, we have

vz = p?th P+ ky | (3.2)
for some () < &, < p. .
Now we have two possible cascs, they are
Case 1: k; < pVh-c
In this case our problem is solved by letting » = k. Becanse, from earlier dicussion we

know that if v, 2 < 295 and r < p"5= then we can have a solution just by taking y = vur.

Case 2: k> 5o

I this case we may try for ‘next suitable’ z it the increasing order. Let that be 23 = 1"? of the
formm 2, = 2; + t;. Also we need 23 to be such that

vizy = pPthr — g 4 ko (3.3)

for some 0 < ky < p.
We shall look this more closely, because

U222
= UZ(Z] -+ t])

i

2p + ko
2p + ko

This gives us,

TJ2t|

20 + ky — 12y,
2p+ kg — _(]J"f- kl)
(IJ - I(l) + kg.

}

It

From this we have,

t = &= f,%”k’-

Since our aim is to minimijze ks, we can take

tl = ,-(p;;ﬁ)-‘.

Again as above, we have two cases as,
Case 11 ky < p®5-2 this leads to a solution.
Case 2: k., > p%® 2 we can continue to next 2y SAY 23 = 25 + {5 where t) = [L”—;,@]

We can repeat this process until it terminates by giving us a ‘valid’ selution or it reaches

hostage as 2. > p%% in some 1 cycle. If 2, becomes larger, we can restat, with v = 1 + 1 til
< s



Al this leads to an Algorithm as below.

[ Min = p0-25
[ Max = 05
|l Start with v = Min
Y while(v < Maz){
I Va z = [4]
AWP k= (122) mod p
Ve it (k < 22
Output solution as (z = k. y=kv,z=z0v=0)
STOP
}
AW f = f%h!é]
Ve T=z+¢
AV} While (2 < 9%5) {

k= (v’z) mod p
if (k < 22)¢
Output solution as (z=k,y=khy, 2 = 2,V = v)

STOP

} k

t =[]

2=2z24+1

f
Vg v=uv+1
}

V Output (No solutions in range p'*asx,y, z,v < pOS ).
vV STOP.,

3.3 Usefulness of this Algorithm.

We shall give here few of our results in using this Algorithm.

prime : 145678132176163

P’ = 3475
P = 12069719
v = 27000
r = 17
¥y = 459153
z = 9785284

10



prime : 145678132176162513743

P’ = 109863

p’® = 12069719639
v = 115472
r = 18609
y = 2148818448
2 = 10925491628

prime : 23456543676548754325781

e = 301351

p’* = 153155202682
v = 1440247
r = 48034
y = 69180824398
z = 147005442243

prime : 66666555558888899999267

{

pY-2 508133

p’° = 258198674587
v = 11225651
r = 16104
y = 180777883704
z = 117974951645

To assert that this algorithm is useful, we need to prove that for every given prime, there exists
A solution (z,y, z,v) with all of order p®5. But in reality it is not true, as we managed to
see some primes (eg: 17011, 741799451) with no such solutions. But still, though it is not
‘complete’, this algorithm is effective, as seen by our statistical observations. Table:3.1(for 25

primes of size 30bits) is normalized distribution of a’s in intervals of length 0.05 in range 0.25

# of o’a in_that interval
ctual Tength on real Tine
in most cases i8 in some interval in the range (.25 to .50 as we need it. Table:3.2 gives the

actial number of a's in each interval in above range.

to 1.0, Each cell in this table is

2% Here we can see a larger mass

11
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. Distribution of a’s of v

3 35 |4 45 15 55 [6 165 17 [.75 18 18 [9 [.95 T
210.10 1 0.00 1 0.00 7 0.00 [0.00 [0.00]0.00[070]0.88 1021108 LO9 T 110 1.12 | 1.0
0.00 [ 0.00 Tn.uu 581 [2.12 107710561052 L1915 [ 122 (137 133 [ 139 1137
O.00  10.00 13292 [0.00 [0.00 [0.00]1.18]097 | 11da 113 F.4$"1.41 1.39 1.-40'"173‘1
0.00 1000 11423 [511 [0.00 [1.32 | 1.42 | 0.77 | 1011133 11T {121 [ 117 [1.18 [1.14
L 0.00 [ 3649 2595 461 J0.00 1058 ] 041 ] 155 (091 [ 125 [T.1071.02 | .04 | T8 TTT0
199.65 | 35.37 [0.00 [ 0.00 1000 12.21 [1.37]055[0.74 [ 1.07 0.97 ] 1.01 [ 1.02]0.99
[0.00 ['37.7870.00 | 482 | 0.00 |2.46 [ 0.66 1.02][0.37 1.10 | 1.10 | 1.08 [ 1.09 | 1.07
11561 [ 0.00 }0.00 [10.97 397 [1.44 (2.86 [1.04 | 1161301 1.37 { 1.20 | 1.25 | 1.9
.00 1 0.00 10.00 [5.29 000 |0.60(1.090.98 174100 1.22 1161 1.18 [ 1.2

10143 1 0.00 0.00 10.00 [0.00 [057]1.011.080.92 (100 0.97 | 1.08 [ 1.0i [ 1.0

0.00 10.00 {42.62 1.83 1.66 | 0.85 [ 1.25 [1.23 | 0.08 [ 1.16 | 1.1d | 1.7 .17
0.00 |87.13]0.00 |[40.39 [12.60 1.67 2.65 [1.01 [ 1.24 [ 1.39 | 1.30 | 1.32 | 1.3¢
0.00 136.27]12.80 [0.00 | 0.00 0.62 1.2210.95 | 1.06 | 1.07 [ 1.02 | 1.03 | 1.05
734.57 { 89.42 { 16.33 | 0.00 | 0.00 1.74 1.47 | 1.44 [ 1.39 | 1.37
000 [0.00 {000 1000 |183 04 1.13 1 1.20 11,16 1.

119.52 { 43.4910.00 |0.00 | 0.00 (12413913313

0.00_10.00 12643 [4.71 | 1.68 G | 1.06 | 1.13 | L9 107
| 115.07 [ 0.00 [0.00 1545 |0.00 01 1.32[1.271.26 | 1,28
000 }350910.00 [4:39 [0.00 0.55 0.99 1 0.96 [ 0.99 ] 0.9¢
0.00 1000 [0.00 [0.00 {0.00 |2.03 1.18 ] 1.14 [ 1.20 [ 1.18.
J02.54 | 0.00 |50.71 [4.49 [0.00 |0.00 1911 0.99 [ 1.02 [ 1.03 [1.80
{845.19 1 41.62 [ 30.12 [0.00 |0.00 | 143 131119 1.26 [1.23 [ 1.35
[ D00 10.00 ]200.87 [20.65|1.86 | 1.34 110 111 [ 118 [ 1.18
.00 | 45.13 1 49.50 [0.00 10.00. | 0.00 1140 | 1.36 | 1.34 | 1.38
(000 17429 [79.42 [4.72 {336 120 1 0.98 [ 1.0877 1.10 [ 1.09

Table 3.1



Prime

[ < .3

I<.4

< .45

895917131

2

v

F
R

593554447

0

0

091556059

0

774712823

()

el IR AN

061314259

()

b

1052502491

—

'F

F ]
e

| 877166131

e
St

669150091

]

e

. —tp

721235807

997165739

777782111

}

| 601873567

976974643

[ 561998999

| 784308199

——

—

604718867

920692687

e

{ 678600491

| = SN OO = O]

T

SN QOO ==l Ol | o] o

1066913867

0

e $
p e = QLSO O =3 00| S = B = o] i =

LZ41799451

)
b
R
s

1014893507

s
—

| 678813823

Gl

2 (

759828683

| 548375899

0

017289047

Table 3.2: Number of »'s
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We also tried to look at the distribution of »'s from 0 to p — 1. For this we made

the total length into 10 parts as =1y to f'{—]p for i € {1,2,...,10} and calculated the valye

10
- of s in an interv - .
# Toial #a“flzﬁx ﬂl. We tabulated the mean and standard deviation of this values for above

rimes in Table:2.3. Results here show that v’s are uniformlv distributed
I ]

Upper Bd | Mean Std.Div,
1p 0.10067 | 0.00176
2 0.10059 | 0.00206
3p 0.10053 [ 0.00220
Ap 0.10013 | 0.00179
5p 1 0.09914 | 0.00260 |
Gp 0.10032 [ 0.00184
p 0.09893 | 0.00229
8p) 010035 1 0.00195
9p 0.10004 | 0.00222
p 1 0.09930 1 0.00209

Table 3.3: Distribution of v’s

14



Chapter 4

Extensions.

4.1 A polynomial time Algorithm.

Here we present another met}tmd to solve CSCP, but applicable to ‘few’ primes only. Let p be
given prime then take n = {p3]. So we have

n' <p<(n+1)>

0.5 . * '
Now let k= (n+ 1) -p. If k < =, by letting v =n+1and z = n + 1, we have the required
solution as seen earlier. Likewise, we can also consider values such as n’(n+ 1), n?(n + 2),
(n + 1)°n, n®(n + 3). All these values are of the form a2b where a2 is the perfect square part

of the product and b is the remaining part, they all lie hetween n® and (n +1)'. Say if any
particular a®h satisfies the following two conditions,

i) a’b>p
i) k=a%h-pc< &Z—ﬁ

Then we have a solution by takingv=a and 2 = b

Though this method takes time polynomial in log(p), it is applicable only to primes that’
are “slightly’ smaller than perfect cubes or values of the form a2b as described above. One catl
improve this method by looking at more dense set of numbers of the form a2h then the one
deseribed above.
we can see few examples to see the simplicity of this method and also observe how rarcly this can
be used. We shall consider the primes between 16003 and 16013 solvable by this method, they
are 4098559973, 4098559991, 4098559999, 4101119977, 4101119993, 4101121567, 4103684779,
We can see a solution of CSCP when p = 4098559999, here p < 160021601 and k = 1. So by
taking v = 1600 and z = 1601 we have z = 1 and y = 1600. In a similar way it is easy to solve
other primes listed above. In breif, the solutions are given in Table:4.1 |
| But this is very small number of total number of primes in this interval. In the interval
~ from 107 to 113, we can use this method only for 2 of the 49 primes.



| Prime 2 k orx
4098559973 | 1600 | 1601 | 17
40098559991 1601 | 9
4101119993 | 1602 [7 ]
4101121567 | 1601 [ 1600 | 33
4101119977 | 1600 | 1602 | 23
4103684779 [ 1601 | 1601 | 29

Table 4.1: Solutions

4.2  Further improvements to consider.

As deseribed earlier, algorithm in Chapter.3 uses gap in ‘suitable 2° for a fixed v, In a similar
wav we ean try to work with gap in ‘suitable o' for A fixed 0 But, we beliove to have good
improvement, by finding a ‘better’ (v1, 21) pair for given (vo, 20) pair that is not part of any
solution. Here by ‘better’ we aim at having &k, < ko where v2z, = Lp+ ky and vg 20 = lop + ks.

We can also transform CSC to a quadratic form by taking y, = z™'yz mod p. After this,
the new relation is

y; = z2(mod p) (4.1)

But in this transformation one has to work on understanding how the bounding condition, T,
i and z are of order p? for 31- <a< %, 1s transformed.
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