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Abstract

In this thesis we review some standard clustering algorithms and use them to analyze
the gene expression data. We also improve upon one of these algorithms which leads
to better results on certain data sets. We also discuss a case based system to select
prototypes in the data set and apply the clustering algorithms upon the resultant
prototypes. This approach results in reduced time complexity of the clustering al-
gorithms while maintaining the quality of the clusters obtained on the original data
sets. The results of the algorithms are presented on the breast cancer data set, yeast
data set and a simulated data set.
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Chapter 1

Introduction

1.1 Gene Expression

In each and every organism, different genes are active in different cells /tissue types
and the level of this activity changes under different conditions. These conditions
could be stages of a cell cycle, environmental conditions, diseases etc. The measure
of this activity level is called gene expression. Analysis of the these variations in the
activity levels can lead to a better understanding of diseases and in the development
of drugs to treat those diseases.

One of the most important task of the cell is protein synthesis [5). Each protein
has a specific function. When the cell needs a particular proteln, the nucleotide
sequence of the appropriate portion of the long DNA molecule in a chromosome is
first copied into RNA (through a process called transcription). It is these RNA copies
of segments of the DNA that are used directly as templates to direct synthesis of the
protein (through a process called translation). The flow of genetic information in cells
1§ therefore from DNA to RNA to protein. So in the above process the decoding of
the genome (information in an organism’s DNA) takes place to produce protein.

The first step in decoding a genome is the process of transcription by which an
RNA molecule is produced from the DNA of a gene. Transcription and translation are
the means by which cells read out, or express, the genetic instructions in their genes.
kach gene can be transcribed and translated with a different efficiency, allowing the
cell to make vast quantities of some proteins and tiny quantities of others. The
amount of a protein depends on the corresponding amount of RNA produced from
gene; more is the amount of RNA more will be the protein. Thus this amount of
RNA produced from gene is considered as a measure of expression /activity level of

the gene. Also cells can control (regulate) the expression of each of its genes according
to the needs.



1.2 Microarray Technology

The study of gene expression has been greatly facilitated by the development orf
microarray technology. There are mainly two tvpes of microarravs. viz.. cDNA mi-
croarray developed in Stanford University and oligonucleotide microarrav developed |
by Affymetrix Corporation. Here we describe cDNA microarray. in brief. as we are
~considering it in our experimentation. cDNA microarrays allow us to study genome-
‘wide patterns of gene expression in any given cell type. at any given time, and under
any given set of conditions [1]. ¢DNA microarrays consist of thousands of individ-
ual DNA sequences printed in a high density array on a glass microscope slide using
a robotic arrayer. The relative abundance of these spotted DNA sequences in two
DNA or RNA samples may be assessed by monitoring the differential hvbridization
of the two samples to the sequences on the array. For mRNA samples, the two sam-
ples are reverse-transcribed into cDNA, labeled using different fluorescent dyves mixed
(red-fluorescent dye Cy3 and green-fluorescent dye Cyv3). After the hyvbridization of
these samples with the arrayed DNA probes, the slides are imaged using scanner that
makes fluorescence measurements for each dye. The log ratio between two intensities
of each dye is used as gene expression data.

Chapter 2 discusses control of gene expressions. Chapter 3 describes the task of
clustering and the some clustering aigorithms. In Chapter 4. we provide a modifi-
cation to the DIANA algorithm and a case based svstem for case selection prior to
clustering. Chapter 5 deals with the description of both simulated and real life data
set used in analysis. Chapter 6 analyzes the results obtained with the data sets, while
concluding remarks are mentioned in Chapter 7.



Chapter 2

Control of Gene Expression

2.1 Controlling Factor

The cell types in a multicellular organism become different from one another because
they synthesize and accumulate different sets of RNA and protein molecules. The
different types of cells arise because different sets of genes are expressed. Also the cells
can change the pattern of gene expression in response to changes in their environment, -
such as signals from other cells. Although all of the steps invoived in expressing a
gene can in principle be regulated, for most genes the initiation of RNA transcription
is the most important point of control. The differential expression of genes is also
evident in the development cycle of cells and in the difference between the diseased
cell types and normal cell types.

The expression level of a gene may be regulated in various ways. Some of these
are given.

1. Controlling when and how often a given gene is transcribed (transcription con-
trol). The transcription of each gene is controlled by a regulatory region of
DNA relatively near the site where transcription begins.

2. Controlling how the RNA transcript is spliced or otherwise processed (RNA
processing control). The processes by which gene expression can be controlled at
this stage include attenuation of RNA transcript by its premature termination.
alternative splice-site selection and RNA editing.

3. Selecting which completed mRNAs in the cell nucleus are exported to the cy-
tosol and determining where in cytosol they are localized (RNA transport and
localization control). It has been observed that only a fraction of the RNA syn-
thesized ever leaves the nucleus and only completely processed RNA molecules
are sent out of the nucleus.

4. Selecting which mRNAs in the cytoplasm are translated by ribosomes (transia-
tional control).



5. Selectively destabilizing certain mRNA molecules in the cytoplasm (mRNA
degradation control). Gene expression can be controlled by a change in mRNA
stability. The unstable mRNAs code for regulatory proteins, such as growth
factors and gene regulatory proteins, whose production rates need to change
rapidly in cells. The stability of mRNA can also be changed in response to
extracellular signals.

6. Selectively activating, inactivating, degrading, or compartmentalizing specific
protein molecules after they have been made (protein activity control).

2.2 Gene Expression Analysis

Gene expression analysis involves looking for informative patterns in multidimensional
data obtained from microarray experiments. The main purpose of gene expression
analysis could be any of the following

e Identifying function of new genes.

e Discovering new therapeutic drug targets.

¢ Studying diseases like cancer where the goal is to identify the expresszon differ-
ences responsible for the change from normal to cancerous cells.

e Grouping genes with correlated expression profiles or finding groups of genes
participating in the same biological process.

e Studying transcriptional change in response to environmental stimulus. For
example to identify which genes control the response and which are affected by
it.

o Interpreting gene expression in terms of metabolic pathways which is done in
the case of yeast data set mentioned above [4].

e Identifying genetic regulatory networks conveyving the mteractwns between genes
and proteins. -

Gene expression analysis that we discuss in this thesis mainly relates to clus-
tering genes by expression patterns to look for correlated gene expression patterns.

Also we discuss the use of clustering techniques to identify the expression differences
responsible for the change from normal to diseased cells.



Chapter 3
Clustering

The term clustering refers to the grouping of a set of data points based on their
properties so as to achieve maximum intra-cluster similarity and maximum inter-
class dissimilarity. As opposed to classification, clustering is unsupervised.

For the task of clustering we, first of all, need to measure similarity between a pair
of data points. This is followed by grouping these data points based on the similar-
ity values. The similarity among the data points can be defined using measures like
Fuclidean distance, correlation coefficient etc. We use Euclidearr distance as a mea-
sure of similarity in our analysis of gene expression data. The clustering algorithms
are used to estimate the distribution of the data, analyze the clusters and also as a
forerunner to classification.

The results, when clustering algorithm is applied to a sample data set, can give
two different interpretations.

1. When the genes column is considered as the number of data points and the num-
ber of samples is considered as the number of dimensions, then the clustering
results can be used to predict which genes are co-regulated.

2. The case in which the number of genes is considered as the number of dimensions
and number of samples is considered as the number of data points is usually
useful in the case of samples being from different disease types. In this case
the clustering results may indicate that the different disease type samples are
clustered separately. In the case of time series data set the clustering is done to
predict the co-regulated genes as discussed above.

Here we describe some standard clustering algorithms. that we have taken into
consideration in our experimentation. These include :

1. K-means algorithm.



2. Agglomerative hierarchical Clustering Algorithms like single linkage, complete
linkage, average linkage algorithm.

3. K-ary Clustering algorithm.

4. Diana Clustering algorithm.

3.1 K-means

K-means is a well known partition based clustering algorithm [9]. In this algorithm,
each cluster is represented by its mean. It requires user to specify number of clusters
in advance. Given k, the algorithm first randomly picks up k data objects and assigns
them as cluster means. It then (re)allocates the remaining data objects to that cluster
to which the object is closest. The cluster mean is then recomputed for each cluster.
This process continues till the membership of the objects becomes stable. The detailed
algorithm is given below.

1. Choose, randomly, & points in the data set D and initialize them as a set of
mean points M.

2. For each point, p € D do (3),

3. Find 6 € M, such that d(p,b) > d(p,m),¥m € M. Assign p to the cluster Cj,
where (), is the cluster with mean b.

4. Let M' = M. Reconstruct set M by finding mean of clusters C; to C; and
adding them to set M.

5. If M' = M, then stop, else go to (2).

The distance between points is measured using metrics like Euchidean, Manhattan,
and Mahanalobis distance. This algorithm has a time complexity of O(ntk), where
n is the number of data sets, k is the number of clusters, and t is the number of
iterations. The k-means is a fast clustering algorithm as it converges quickly. The
disadvantage of the algorithm is that the quality of the clusters produced varies quite
sharply with the choice of the initial mean points. For example if two of the initial
mean points chosen lie within the same cluster then the resuit will be poor. Another
disadvantage of this algorithm is that the number of clusters expected needs to be
given as an input to the algorithm.



3.2 Hierarchical clustering algorithms

In hierarchical clustering the goal is to create a hierarchy or a tree in which nodes
represent the clusters. Hierarchical clustering techniques can be divided into agglom-
erative and divisive methods. Agglomerative methods consider each ob Ject to belong
to a singleton cluster and proceed: by a series of fusions of these n clusters into coarser
clusters. Divisive methods proceed by starting with a single cluster and then succes-
sively separate the clusters into finer clusters. We now consider three agglomerative
methods single linkage, complete linkage and average linkage. These three methods
differ in the criterion used to fuse the clusters. The algorithm is given below.

1. Let D = {D,,D,,...,D,}. Each data point placed in its own cluster, creating a
list of clusters L = {L,,L,,...,.L.}.

2. Find L,, and L, such that mf(Lm, Ly) > mf(L,, L;),VL,,L; € L. The func-
tion mf() is called the merge cost function. |

3. Remove the clusters L., and L, from L.
4. Merge the two clusters L,, into L,, a single cluster and add the cluster to L.

5. Go to (2) until there is only one cluster in L.

The merging cost function may have three forms,

mf(L, L;) = zeflﬂi%@ (z.y) (3.1)
mf(Li,L;) = reP2X, (7,9) (3.2)
mf(Li, L) = avgeer,yer, (2, y) I (3.3)

and corresponding to above three forms the resulting algorithms are called single
linkage, complete linkage and average linkage respectively. The time complexity of
all the three methods is O(n®) as the construction of tree takes n steps and in each
~ step of construction there are O(n2) comparisons to find the two clusters to merge.

One of the advantages of these methods is that once two data points are assigned
to a single cluster there is no way for them to get separated at later stage. These
methods, especially single linkage, are susceptible to noise. For example one data
point (noise) may lead to fusing of two distinct clusters into a single cluster.



3.3 K-ary Clustering Algorithm

K-ary clustering algorithm is a agglomerative hierarchical clustering technique [2].
This algorithm constructs a k-ary tree, where each internal node can have up to k
child nodes. One of the assumptions in this methods is that relying on the similar-
ities among large groups of genes helps reduce the noise effects that are inherent in
expression data [12]. k is the upper bound on the number of children of each internal
node so it allows us to highlight some actual clusters since nodes with less than k
children represent a set of data points that are similar but significantly different from
rest of the data points. The detailed algorithm is given below

1. Each data point is placed in its own cluster, creating a list of clusters C.

2. For each j€C, construct L;, the ordered linked list of data points based on the
similarity to j. Compute b; = j U first k-1 data points of L.

3. Fori =1 to (n-1)/(k-1) do,
4. Find b = argmax;ec{V(b;}), C = C \ b. Let p = min{m € b}.
. For all clusters j € C do, -

- 5(Pd) = Xomes S(M, 7) + Lmes
Remove all clusters in b from L;. Insert p into L,.

o

b; = j U first k-1 clusters of L;. Go to (5).

L X N>

C = C U p. Generate Ly from all clusters in C and find b,,.
10. Go to (3).

11. Return C, where C is a singleton which is the root of the tree.

The complexity of this algorithm is O(n?), which is same as that of hierarchical
clustering algorithms. -

3.4 DIANA

DIANA (Divisive Analysis) is a divisive hierarchical clustering technique, first intro-
duced in {10]. Initially (step 0), there is one large cluster consisting of all n data
points. At each subsequent step, a cluster is split intc two clusters until finally all
clusters. comprise of single objects. Thus, the hierarchy is built in n-1 steps. In
each iteration, the cluster with the largest diameter is chosen for partitioning. Let us



define a cluster C such that C = py,ps, ..., p,, wWhere p;. po, ..., p, are the data points
in the cluster C. Then the diameter D of a cluster is defined as,

D= max_d(p.p; (3.4)

where d is the distance measure between two data points. The cluster is split by
hirst considering a point with the highest average dissimilarity to other points in the
cluster. This point initiates a new cluster. Then for each point in the original cluster,
we find its awerage distance from the both the new and original clusters and the point

is assigned to the cluster with the least average distance. Detailed algorithm is given
below.

1. Find the object, which has the highest average dissimilarity to all other ObJECtS
This object initiates a new cluster, called the splinter group.

9. For each ob ject i outside the splinter group compute

3. Dy = [ avg d(i,j)¢& chlintergroup ] - [ avg d(i.j)e Raptintergroup |

4. Find an object h for which the difference Dy, is the largest. If D is positive,
then h is, on the average close to the splinter group.

9. Repeat steps 2 and 3 until all differences D), are negative. The data set is then
split into two clusters.

6. Select the cluster with the largest diameter. The diameter of a cluster is the
largest dissimilarity between any two of its objects. Then divide this cluster,
following steps 1-4.

7. Repeat Step until all clusters contain only a single object.

As can be seen in the results section the DIANA algorithm gives good results on
all data sets. The disadvantage of the DIANA algorithm is that the time complexity
of the is high.

10



Chapter 4

Modification to DIANA and
Selection of Prototypes

4.1 Modification to DIANA

DIANA partitions the clusters based on the criterion of maximum diameter of the
cluster. There are cases where DIANA wrongly partitions a large homogeneous cluster
rather than a cluster with two small homogeneous clusters inside it. This case is shown
in the figure below.

+
>
-~ s T
»
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-
- Y *
e
-++
* - ¥
+
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Chuster ¢ - Chepter?

As shown in the above figure, the DIANA will incorrectly partition the large
cluster, Cluster 1 rather than Cluster 2, in spite of the fact that Cluster 1 is more
dense in comparison to the Cluster 2 which has two distinct clusters contained in it.

- To rectify the above said anomaly the partitioning criterion in the standard DI-
ANA algorithm was changed from maximum diameter to maximum density among
the clusters. Let the diameter of the cluster ¢ be D and the the number of data
points in the clvster be N, then the density d of the cluster C, using equation 3.4, is
given by,

11



d=D/N (4.1)

Now we will consider the scenario shown in the above figure and see how the
modification to DIANA algorithm leads to better result. We can observe that Cluster
1 has higher diameter compared to Cluster 2, but as Cluster 1 has greater number
of data points than the Cluster 2, the Cluster 1 has lesser density than Cluster 2.
Modified DIANA algorithm would choose Cluster 2 for partitioning rather than the
Cluster 1. The modified DIANA algorithm also gives good results with other data
sets we have considered in our experimentation, which can be seen in the results
section. The computational complexity of the modified DIANA is almost same as
that of the original DIANA algorithm, as the diameter of the cluster is calculated in
the original DIANA algorithm and the number of points in each cluster is aiso known
to us in original DIANA algorithm. The only extra operation done in each iteration
of the modified DIANA algorithm is the calculation of the density using the diameter
of the cluster and the number of points in the cluster.

4.2 Selection of Prototypes

-

A case-based system adapts old solutions to meet new demands, explains and cri-
tiques new situations using old instances (called cases), and performs reasoning from
precedents to interpret new problems [11]. Case-based system in contrast to tradi-
tional knowledge based system, operates through a process of remembering one or a
small set of concrete instances or cases and basing decisions on comparisons between
the new situation and old one. In this thesis we describe a model for selecting cases
in data sets prior to clustering. The clystering algorithms are applied on the selected
cases. This model discussed here is derived from [3].

Initially all the points in the data set belong to a single class. Cases are viewed
as labeled patterns which represent different regions of the class. A notion of fuzzy
similarity, using 7-type membership function, is incorporated together with repeated
insertion and deletion of cases in order to determine a stable case base. Let z =
21, T9, .-, T4, ---, Tn] b€ point in aznw;.»ensional feature space. & = &, &2, -1 Ekiy vy Sk
denotes kth case in the case base. ui(z) represents the degree of similarity of x to
a case &. di(z) stands for the distance between x and &. The degree of similanty
between a point £ and a case & is defined as

1-2(42)2 0 <d(z) < A\/2
u(z) = { 2(1 5%1]2 A/2<d(z) < A (4.2)
0 otherwise |

12



where A 1s the bandwidth of u,(z), i.e., the separation between its two (crossover)
points where ui(z) = 0.5. The distance d, is taken as the Euclidean distance.

Effect of A: As A increases, the extent of the region around a case increases, and
therefore the number of cases required for representing the data set decreases. This
implies that the generalization capability of an individual case increases with increase
in A. Initially, although the number of cases decreases with the increase in A, the
generalization capability of individual cases dominates. For further increase in A, the
number of cases becomes so low that the generalization capability of the individual
cases may not cope with the proper representation of class structures. Algorithm for
finding cases is described below.

1. Select an initial point z randomly from the data set. Add z to the case base £.
2. Choose a point z randomly from the data set. Calculate belz), V{; € £.

3. If u(z) > 0.5 for at least one case then declare the point to be belonging to the
case with maximum u(z) value.

4. If u(z) < 0.5 for all cases in the case base, then declare the data point to be a
case and add the case to the case base ¢.

. Go to (2) till all the points in the data set have been chosen, eise g0 to next
step.

(k) |

6. A case is deleted from the case base for which u(z) is minimum and number of
data points for which u(x) > 0.5 is less than some pre-defined value.

7. If the case base has changed from previous iteration then go to (1), else return
the case base £.

Now we describe how the above algorithm has been used in our analysis. The
algorithm was applied on an unclustered data set and the set of cases in the data set
- were derived as a result. Also we store the data points associated with each case.
Then we cluster the cases using any of the clustering algorithms described in the
previous chapter. Then in all the clusters we have obtained as the output of clustering
algorithm, we substitute in the place of each case, the data pomts associated with
that case. The clusters obtained contain, between them, all the data points in the
oniginal data set. The quality of clusters obtained is similar to the clusters obtained
when the clustering algorithms are applied to original data set. The advantage of
this method that we are clustering data set with reduced number of points, so the
clustering algorithm run faster compared to the case when algorithm is run on tae
original data set. This algorithm is useful in the case, when we need to apply many
clustering algorithms to a data set. Then in this case the cost of running the case

13



selection algorithm is offset by the the cost of running the clustering algorithms with
the original data set.



Chapter 5

Data Sets

The gene expression data is primarily of two types depending on how the experiments
are conducted

e The expression of a set of genes is measured on different sets of samples. The
different set of samples generally correspond to different disease types. For
example, consider the leukemia data set [6]. This data set has some samples
taken from patients with ALL (acute lymphoblastic leukemia) type cancer, some
samples taken from patients with AML (acute myeloid leukemia) type cancer
-and some samples taken from normal persons. The expression of a set of genes
are measured in all these samples. These type of data sets are henceforth
referred to as samples data sets.

e The expression of a set of genes is measured on single sample over a certain
time period. The samples are studied during fixed time intervals. These time
mtervals usually correspond to some natural processes like cell development
cycle. For example in yeast data set [4], the yeast sample is studied during the
metabolic shift of the yeast from fermentation to respiration. The sample is
studied in an interval of two hours for a total of 14 hours. This type of data, set
1s henceforth referred to as time series data set.

The gene expression data, for the purpose of analysis, is organized as a matrix. |
Usually the rows represent the genes and the columns represent the samples or the
time intervals. The columns and rows can be interchanged depending on the intended
result from the gene expression analysis. |

(;ene expression data are concerned with ratios of the expression levels of two
different samples. One of the samples is a test sample and the other is a reference
sample. This is done so as to maintain the consistency of the results even if the
experiment is repeated under slightly different conditions.



In this chapter we discuss two gene expression data sets and one simulated data
sets which we have used in our analysis.

A simulated data set was generated with patterns similar to the gene expression
data sets. We explain the methodology used to generate the data. Firstly, we generate
9, 1x20 vectors. Then the discrete cosine transformation of the 3 vectors is computed,
The resulting coefficients are again 5, 1 x 20 vectors. Thus we have 5 data points
with dimension 20. We call these data points as seed points. Now considering a seed
point, we generate a small increment value, say z, using random normal distribution
for each dimension of the seed point.The generated increment values are added to the
seed point to get a data point close to the seed point. In this way we generate 500
points around the seed point. The above process is repeated for other seed points.
Thus we generate 2500 data points, each with 20 dimensions. These 2500 points
roughly fall into 5 clusters with 500 data points each. |

The second real life data set is a samples data set. This data set was a result
of an experiment to study two major types of breast cancer. Invasive ducral carct-
noma(IDC) and invasive lobular carcinoma(ILC) are the two major histological types
of breast cancer [7]. The InICroarray experiments were conducted to study whether
IDC and ILC represent molecularly distinct entities and what genes might be in-
volved in the develaprqent of these two phenotypes. Total RNA samples from 21
ILCs, 38 IDCs, and 3 normal tissues were amplified and hyvbridized to 42.000 cDNA
microarrays. The data set derived from this experiment was downloaded from Stan-
ford Microarray Database (SMD). The data set has 49 data points (samples) and
42,000 dimensions (genes).

Our first real life data set is a time series data set. In this data set DNA mi-
Croarrays containing almost every gene of Saccharomyces cerevisige (yeast) were used
to measure the gene expression accompanying the metabolic shift from anaerobic
(fermentation) to aerobic (respiration) metabolism [4). This shift is called diauxic

glucose is correlated with widespread changes in the expression of genes involved in
fundamental cellular processes such as carbon metabolism, protein synthesis, and car-
bohydrate storage. DNA microarrays, containing appraximately 6400 distinct DNA
Séquences, were printed onto glass slides by using robotic printing device. The sam-
ples harvested at seven successive 2-hour interval and mRNA was isolated and gene
expression measurements were taken. The data set derived from this experiment was
downloaded from Stanford Microarray Database (SMD). The data set has 6153 data
points (genes) with number of dimensions seven (time intervals).



Chapter 6

Results

Before presenting the results we discuss two cluster validity measures in order to
investigate how clustering algorithms can be efliciently applied on the gene expression
patterns. The quality of the clusters produced by the clustering algorithms can be
measured using two type of scores called Jaccard score and Minkowski Score.

6.1 Jaccard Score

Jaccard Score [8] is given by,

J(T,S) = —Bu_—

nii+nig+neg '’

where T is the true solution we expect from an ideal clustering algorithmn and S is
the solution obtained from the clustering algorithm we wish to measure. The terms
g1, Mo, M1y are defined below.

e ng - Number of pairs of elements that are in same cluster only in S.
e ny9 - Number of pairs of elements that are in same cluster only in T.

e 7117 - Number of pairs of elements that are in same cluster in both S and T.

Intuitively, higher the Jaccard score, better is the clustering.

6.2 Minkowski Score

Minkowski Score [13] is given by,

M(T.5) = \/uzia

niy-+Mo

17



The meaning of the symbols is the same as for the case of Jaccard Score. Lower
the Minkowski Score, better is the clustering.

6.3 Clust_ering

The clustering algorithms, described in Chapter 4, were run on the simulated data set
with 2500 data points, where each data point had a dimension of 20. The clustering

algorithms were run with expected numher of clusters equal to 5. The Minkowski
and Jaccard Scores for the clusters produced are given in Table 6.1.

Table 6.1: Results with Simulated Data Set.

Jaccard Score | Minkowski Score
0.7 0.419
0.74 0.395
0.71 0.401

0.735 | 0.4
0.754 0.3804 . |

plies that the M-DIANA gives best clustering result and the k-means algorithm gives
worst clustering result on the simulated data set. This result i3 verified by observ-
ing the Minkowski score for the clustering algorithms on the simulated data set. The
Minkowski score of the M-DIANA algorithm is minimum and the score of the k-means
algorithm is maximum.

The clustering algorithms were run on the breast cancer data set to differentiate
between the the samples corresponding to different histological types of breast cancer.
e.g, invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). The data
set has 49 data points, where each point has dimension of 42.000. So the clustering
algorithms were run with expected number of clusters equal to two. The Minkowski
and Jaccard Scores for the clusters produced are given in Table 6.2

As we can observe from the Table 6.2, the Jaccard score of the M-DIANA algo-
rithm is maximum and Jaccard score of the average linkage algorithm is minimum
among all the clustering algorithms, when applied on the breast cancer data set. This
implies that the M-DIANA gives best clustering result and the average hinkage algo-
rithm gives worst clustering result. This result is verified by observing the Minkowski
score for the clustering algorithms on the breast cancer data set. The Minkowski

18



Table 6.2: Results with Breast cancer data set.

Jaccard Score | Minkowski Score
k-means 0.63 0.357
k-ary 0.683 0.552
Average Linkage 0.63 0.557
DIANA 06501 0.561 ]
M-DIANA | 07 0.546 ]

score of the M-DIANA algorithm is minimum and the score of the average linkage
algorithm is maximum.

We can observe the variance in the clustering resuits depending on the data sets
on which the clustering algorithms are applied. For example, in the case of simulated
data set the average linkage algorithm gives better results compared to k-means al-
gorithm, whereas in the case of breast cancer data set the k-means algorithm gives
better results compared to average linkage algorithm. _

In the results we have also observed that 75 genes show high expression in ILCs
-amd low expression in IDCs, and 75 genes vice versa. Most of these 150 genes
can be categorized into five biological processes: cell adhesion/mobility, lipid/fatty
acid metabolism, inmune and defense response, electron transport and nucleosome
assembly {7]. |

The clustering algorithms were applied on the yeast data set. The yeast data set
being time series data set the goal was to check whether the functionally related or co-
regulated genes are clustered together, as this could provide clues to the functionality
of genes about which we do not have information.

- In results using all the clustering algorithms we have observed that genes MLSI,
IDP2, ICL1, ACS1, ACR1, FBP1 and PPC1 are clustered together. These seven
genes were known to be glucose repressed and five of these seven (MLS1, ICL1, ACSL,
ACR1 and FBP1) genes were noted to share common upstream activating sequence
(UAS), the carbon source response element (CSRE) {4]. The set of seven other genes
(GSY1, CTT1, HSP42, HSP26, HSP12, YKL026C and YGRO043C) forms a separate
cluster. All the seven genes contain stress response elements (STRE), and with the
exception of HSP42 have been previously found to be controlled at least in part by
these STRE [4].

We now consider the clusters produced by the M-DIANA algorithm with the simu-
lated data set and breast cancer data set and compare these clusters with the clusters
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produced by other clustering algorithms discussed in Chapter 4. The comparison for
the simulated data set is given in Table 6.3 and for the breast cancer data set is given
in Table 6.4.

Table 6.3: Cluster Comparison for Simulated data set.

| Cluster 1 | Cluster 2 | Cluster 3 Cluster 4 | Cluster 5
(489) (506) (495) (502) (508)
k-means 9 [ 4 | 2 5 6
k-ary 3 3 | o 2 1
Average Linkage | 4 0 8 9 2
DIANA 2 2 1 3 2

We now explain the Table 6.3. The first row of the table gives the clusters produced
by the M-DIANA algorithm, where the values in the paranthesis give the number
of data points in the corresponding cluster. For each subsequent row. the clusters
produced by the corresponding algorithm are compared with the clusters produced by
the M-DIANA algorithm. For example the value in the first row, third coloumn gives
the number of data points not present in the Cluster 2 of the clusters produced by
the k-means algorithm, that were present in the Cluster 2 of the clusters produced by
the M-DIANA algorithm. Consider the clusters produced by the k-means algorithm.
The cluster which has maximum number of data points common with the Cluster 1
of the clusters produced by the M-DIANA algorithm, is assigned as Cluster 1. This
process is repeated for all the clusters. This scheme for assigning the cluster names
is used with all other clustering algorithms.

From Table 6.3 we can infer that clusters produced by the k-ary algorithm are
most similar to the clusters produced by the M-DIANA algorithm when applied on
the simulated data set. Also the clusters produced by DIANA algorithm are also
similar to the clusters produced by the M-DIANA algorithm.

The comparisons for the breast cancer data set is given in Table 6.4. Table 6.4 has
the same format as that of the Table 6.3. |
In the Table 6.4, we observe that the clusters produced by all the clustering
‘algorithms are similar to the clusters produced by the M-DIANA algorithm, but this
may be a misleading result as the number of data points in the breast cancer data set
18 small (49) and thus may result in fewer differences between the clusters produced.

6.3.1 Case based system

The case based system for selecting prototypes was applied on the simulated data
set. The data set had 2500 points and we took the parameter A = 0.75. The algo-
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Table 6.4: Cluster Comparison for Breast cancer data set.

Cluster 1 (33) | Cluster 2 (26)
k-means 1 0
k-ary 1 0
Average Linkage 1 0
DIANA 0 1

rithm returned 804 resultant prototype data points. Then the prototype points were
clustered using all the clustering algorithms discussed in Chapter 3. This process was

Table 6.5: Prototyping results for simulated data set.

Jaccard Score | Minkowski Score
k-means 0.91 0.21 <,
k-ary 0.907 0.213
Average Linkage 0.914 Tﬂ]g——_j,
DIANA | 0.0% 0.2
M-DIANA 0.921 0.205 |

cancer data set. The data set had 49 points, where each data point has dimension
42,000 and we took the parameter ) 13. The algorithm returned 17 resultant
prototype data points. This result was also analysed the way it was done for simulated
data as explained above. The results are shown in Table 6.6.

In the results for the breast cancer data set also we observe the same trend we
observed in results for simulated data set. Here also the resultant prototype points
represent the original breast cancer data set for the purpose of clustering, but to
a lesser extent as compared to simulated data set. This can be inferred from the
relatively low Jaccard scores in the results for breast cancer data set as compared to
the results for the simulated data set.
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Table 6.6: Prototyping resuits for breast cancer data set.

Jaccard Score | Minkowski Score
k-means (.89 (.24
kary 0.902 0.22
Average Linkage | 0.89 0.24
DIANA 0.896 0.226
M-DIANA | 001 0.218

- . m

6.4 Timing Comparison

In this thesis we also present the relative comparison of the time requirments of
different clustering algorithms. The results are shown with simufated data set and
the breast cancer data set. The algorithms were run on the simulated data set, with
the expected number of clusters £ = 5 and on the breast cancer data set, with the
expected number of clusters k = 2. The results are shown in table given below.

Table 6.7: Timing Comparison.

simulated Data Set (secs) | Breast Cancer Data Set (secs)
k-means l 206,639 | 3
k-ary 394 94
“Average Linkage 371 | 69
DIANA ' 357 42
M-DIANA 361 49
"C?s“&Basgd System 423 72

Two values corresponding to k-means clustering algorithm show time taken with
two different initial set of mean points. Here we observe that the there is sharp
variance in the time for convergence of the algorithm depending on the choice of
Initial mean points. As can be observed in the Table 6.6, k-means algorithm has
the least running times and the k-ary clustering algorithm has the highest running
time, respectively, among the clustering algorithms discussed. The time complexity
of the k-means algorithm is O(ntk), where n is the the number of data points, £ is
the number of iterations and k is the number of clusters. The time complexity of the
k-ary algorithm and all other heirarchical algorithms is of the order O(n®). In both
the data sets the number of expected clusters is far less than the the number of data
points. Thus the running time of the k-means is lowest whereas the running time of
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the k-ary algorithm is highest.

The case based system for selecting prototypes was applied on the simulated data
set. The data set had 2500 points and we took the parameter A = 0.75. The time
taken to run this algorithm was 423 seconds. The prototype points were clustered
using the clustering algorithms. The case based system for selecting prototypes was
also applied on the breast cancer data set. The data set had 49 points and we took
the parameter A = 13. Thetime taken to run this algorithm was 72 seconds.
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tering criterion was changed from maximum diameter to maximum density. As we
have seen in the results this algorithm gives better clusters than the standard DI-
ANA algorithm, particularly with the real life gene expression data sets. The time
complexity of the modified algorithm remains the same.

We also had discussed a case based system to select prototypes from a data set
and applied clustering techniques on the resultant, prototype points. This approach
as we have seen in the results leads to faster clustering whereas retaining the cluster
quality predicted on original data set.
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