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Abstract

In this dissertation first we critically review the Support Vector
Machine for both two-class and multiclass problems. There have
been a few attempts to deal with multiclass problems. Our
analysis of a number of such methods revealed several problems
assoclated with them. We then proposed six new methods. Three
ot proposed methods are modification of some existing methods,
while three methods involve reformulation of Support Vector
Machine . In this context we introduce a novel concept of utility
of training points, which make Support Vector Machine less
sensitive to outliers. We also introduce a new concept of optimal
hyper-sphere to design a Support Vector Machine type of
classifiers. All methods are theoretically formulated and
illustrated using the suitable datasets.
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Chapter 1

Basic SVM

1.1 Introduction

Support vector machine (SVM) devloped by Vapnik [1] is gaming popularity due to
m'any attractive features and promising empirical performance compared to traditional
neural networks. The problem which drove the mitial devlopment of SVMs occurs in

several guises- the bias variance trade off, capacity control, overfitting - but basic idea

1s same. Roughly speaking, for a given learning task. with given finite amount of train-

ing data, the best generalization peroformance will be achieved if the right balance is
struck between the accuracy attained on the particular training get, and the capacity
of machine,that is, ability of the machine to learn any training set without error. SVM
generalization performance either matches or significantly better than that of compet-
Ing methods. SVM possess following prominent advantages:

Advantages .

I. Strong theoretical backgroud provides SVM with high generalization capability

. - . "
and can avoid local minima. "

2. SVM does not determine the network topology in advance which can be auto-

~matically obtained when training process ends.

3. SVM can solve high dimensional problem and therefore avords the curse of di-

" mensionality.

3



The root cause the SVM attain the more and more attention is that SVM adopts
the structural risk minimization (SRM) ,which has been shown to be better than
empirical risk minimization (ERM) ciuployed by conventional nenral networks, SRM

minimizes the upper bound of test error by minimizing the VC dimension , as opposed

ERM minimizes the training error. It is the difference that eqips SVM with good

generalization performance which is the goal of learning problem.

As we know generalization performance is an important index to measure the goodness

of a learning machine and it can be predicted by well known bound {Vapnik,1995)

(1.1)

Rl) S Rema(e) + | (’*(‘f’g(?l/h) +1)- log(n/4))

where R(a) 1is the actual risk. R.m, is the empirical risk (training error). A is a non
negative integer called Vapnik Chervonenkis (VC) dimension, and is a measure of the
notion of the capacity mentioned .

The second term on the right hand side is called VC confidence.

The goal of learning is to minimize R(«),the actual risk.

(venerally there is a trade off between the two terms of the right side of the inequal-
ity (1.1). When VC ronfidence is fixed, which means structure of learning machine
is given, only R,,, nced to be minimized. This case is well known neural network
learning. On the other hand when E..,.,(say, 0) is fixed and we need to need to min-
imize the VC confidence. This case is called support vector machine learning. The
main idea of support vector machine is to map a non-linear problem from an input
space to higher dimension via. non-linear mapping ¢, where ¢ is unknown in general.
Fortunately computation related to ¢ could be induced to the computation of inner

product in the feature space.

1.1.1 Organization of the Report

A
This project report is organized in six chapters. In the first chapter we have described

the advantages of SVM over the others competing methods and some basic idea of
SVM. In chapter 2 we explain the construction of two-class support vector machine

for limearly seprable classes. This is followed by considering more difficult case of non

4



seprable data. In chapter 3 we describe four popular existing methods for multiclass
support vector machine. In chapter 4 we explain the tnree proposed solution for
multiclass SVM followed by a disscussion on problem of optimal boundary. This will
followed by two proposed solutions for shifting the optimal boudary for getting the
better result. Chapter 5 consists of experimental results of different types of SVM
(existing and proposed) over artificial datasets, followed by observations and remarks.
Chapter 6 describes the problem with vapnik’s optimal hyperplane over certain type
of datasets, followed by proposed concept of optimal hypersphere with complete theo-

rectical foundation. Finally we discuss some possible future work.
f



Chapter 2

I'wo Class Support Vector Machine

2.1 Optimal Hyperplane for Linearly Seprable Pat-
terns

Consider the training sample (z;, d.,;)fil, where z; is the input pattern for the : th

~example and d; is corresponding desired response (target output). we assume that
the pattern (class) represented by the subset, d; = +1 and the pattern represented

oy the subset d; = —1 are linearly seprable. The equation of a decision surface in
form of the a hyperplane that does the sepration is

(2.1)

a bias. we may thus
wiz, +6>0 for d; = +1

0 Ab <0 for di= ] o«
For a given weight vector w and the bias b. the sepration betwaen

the hyperplane
defined in Eqn. 2.1 and the closest data point is called

the margin of sepration. denoted

the particular hvperplane for which
margin of sepration p is to be maximized. Under this condition

by p. The goal of support vector machine is to find

the decision surface



Optimal Hyperplane

Figure 2.1: Linear separating hyperplanes for the separable case. The support vectors

are circled

1s refiered as optimal hyperplane. Figure 2.1 illustrates the geometric construction
of an optimal hyperplane for a two dimensional input space. The issue at hand is
to find the pa"rameteré w and b for the optimal hyperplane, given the training set
S = {(z;, d;)}f_l . In light of the results portrayed in Fig. 2.1, we see that the pair

(wo, bo) must satisfy the constraint:

wr;z:.,- + b 2 i for d; =
(2.3)
wliz; +b< —1 for d; = ~1

Note that if the Eq.( 2.2) holds. that is, the patterns are linearly seprable, we can
- always rescale w and b such that Eq. ( 2.2) holds; this scaling operation leaves the

optimal hyperplane unaffected.

The particular data points (z;, d;) for which first or second line of Eq. (2.3) is satisfied
is called Support vector. These vectors play a prominent role in this class of learning
machines. In conceptnal terms. support vertors are *hose fraimeng points that lie closest
to deciston surface and are most difficult to classify. Consider the support vector r°

\
for which d* = +1. Then by definition, we have

wie;=b==F1  for d, =71 (2.4)




The distance of the support vector z/*. dist(z*) (say) to the optimal plane is

| L gt = 4
ist(z's) :{ 5t =

u!

[
L .

t
!

where the plus indicates that ) lies on the positive side of the optimal plane and
the negative sign indicate that z(*)lies on the negative side of the optimal hvperplane.
Let p denote the optimun value of margin of sepration between the two classes that

constitutes the training set $.Then from the above equation it follows that

2
p =
]

(2.6)

Equation (2.6) states that max1mizing the margin of the sepration between the classes

1s equivalent to minimizing the Euclidean norm of the weight vector w .

2.2 Quadratic Optimization for Finding the Opti-
mal Hyperplane

Our goal is to devlop a computationally efficient procedure for using the training sample

J = {(.ri-,,d,-)};il to find the optimal plane subject to constraints
df(wa;A-b)?_l for 1=1,2... N. (2.7)

Now we have to solve the constrained optimization problem. This may be stated as:
Given the training sample S = {(z;. df)}j.il . find the optimum value of w and b that

satisfy the constraints
di(w'z; +b)>1 for i=12.. . N. (2.8)

and the weight vector w minimizes the cost function



'2.2.1 Lagrangian Formulation

We will switch to lagrangian formulation of the problem.There are two reasons for

doing this.

1. The constraint, in Eqn. 2.3 will be replaced by constraints on themselves, which

1s much easier to handle.

2. This reformalisation results in, the training data will only appear in form of

dot products between vectors. This is a crucial property which will allow us to

generalize the procedure for nonlinear case.

We construct the Lagrangian function:

1

N
J(w,b,a) = swhw — Y asfdi(wTz; 4+ b) — 1]
= =1

(2.9)

where the auxjliary nonnegative variables 'cr; are called Lagrange multipliers. The

solution of the constrained optimization problem is determined by the saddle point of

the Lagrangian function J(w,b, a), which has to be minimized with respect to w and

b. Thus, differentiating J(w, b, a) with respect to w and b and the result to ZEero, we

get the following two conditions for optimality:

Condition 1

dJ(w, b, a) 0
ow -
Condition 2 : o
dJ(w,b. a) )
0b B

condition 1 to lagrangian function in Eqn ( 2.9)vields

J.Mr
o= E a:d; r; = ().

=1

condition 2 to lagrangian function in Eqn{ 2.9}vields

9
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It is also important to note that at the sadd]e point. for each Lagrange multiplier a; .

the product of that multiplier with its corresponding constraint vanishes, as shown by.
aldi(w'z; +b) —1]=0 for i=1.2.... . N (2.12)

Therefore only those multiplier exactly meeting the Eqn.{ 2.12) can assume non zero
value.This property follows from the Kuhn-Tucker conditions of optimization the-
ory.Primal problem deals with convex cost function and linear constraints.Given such
Primal problem,it is possible to construct another problem called the dual problem. This
second problem has the same optimal value as the primal problem.This is a basically

duality theorem. We state the dual problem:

Given the training sample {(:.c,;,d,-)}?;l Jind the Lagrange multipliers {a;}:y, that

=1

marnimize the objective function

1 N

N N
(Qla) = Za._: =3 ZZ&{CEjd{deiij

i=1 i=1 j=1

subject to the constraints

t

@ >0 for 1=1,2.....N

Note that the dual problem is cast entirely in terms of training data.
Having datermined the optimum Lagrange multipliers.denoted bv Q,; We can com-

pute optimum weight vector w,,using the Eqn { 2.10) so we can write

N
', = Z ﬁ_d‘_;d;' . lef-}}
1=1
To compute the optimum bias b, use the equation
b, =1 — {L',_,Tur{'ﬂ ford's) = 1| (2.14)

[}



would like to relax the constraints in Eqn ( 2.3) ,but only when necessary,that is,we
introduce a further cost (1.e, an increase in the primal objective function) for doing so.
This can be done introducing positive slack variables §;, i =1 » 7 1n the constraints,

which then become:

wiz, +b> 41 — ¢ for d; = +1
(2.15)
w'z; +b< ~1 +& for di=
for & >0 v; (2.16)

thus for an error to occur, the corresponding §; must exceed unity, so ;€ is an

Optimal Hyperplane

cost:for an errors is to change the objective function to be minimizéd from w||? to
1wl +¢(T, €)%, where ¢ is a parameter to be chosen by the yser. a large ¢ correspond--
ing to higher pPenaity to errors. As it stands. this 1S convey programming problem for

any positive integer k. for k = 2 and & — 11t is also quadratic programming problem.

11



and the choice & = | has further advandatage that neither the €

. nor their Lagrange
multipliers,appear in the Wolf dual problem, which becomes:

I N .:V

Z:}.ﬂl — *ZZa,aJdd T, :rJ (2.17;

=1 t—'l =1
subject to the constraints

ch,d = J

OS&{SC for i=1,2,...,N.

The solution is again given by

N
w = Z cra_gd.-xf (218)

=1
where N, is the number’of support vectors.The Kuhn-Tucker condition is now defined

by |
aildi(w'zi +8) 14+ &]=0. i=12. N (2.19)
and

wi&i =0, =12._...... N. (2.20)

At the saddie point the derivative of lagrangian function for the primal problem with

respect to the slack variable §; is zero, the evalution of which vields

o; + [ =c. (2.21)
By combining the Eqn.{ 2.20) and kqn.( 2.21 ).we get

Si=0 1if a;<ec (2.22)
g " 4
zi,d;) In the training set

that data point in Eqn.{ 2.19).

better to take mean value of b, resulting
fmm all such data points in the training sample.

We may determine the value of b, by taking the data point (
for which 0 < @,; < ¢ and therefore & = 0,and using

I‘Mever from a numerical perspective it is



2.3.1 Decison function

For a given test pattern z, we calculate the class label by

D(z) = sign(w, -z + b,)

2.4 Nonlinear Support Vector Machine

Now, We generalize to case where decision function is not the linear function. Basically,

the 1dea hinges on two mathematical operations summerized here:

1. Nonlinear mapping of an input vector into higher dimensional feature space.

2. Construction of an optimal hyperplane for seprating features discovered in step
1.

Fortunately data appeared in the training problem Equation ( 2.17) is in form of dot
products, z; e z;. Now suppose we use the nonliear map ¢ to map the data from input

space to feature space (H).
$:RY— H.

Then training algorithm only depend on the data through dot products in H i.e, on
the fuction of the form P(z;) - ¢(x;). Now if there is kernel function K such that

K(2:,2;) = $(;) - d(z;) . (2.23)
we only need to use A in the training algorithm, and never need to explicitly know

the ¢ .

241 Optimum Design of a Support Vector Machine

We may now state the most general dual form for the constrained o%)timizatiﬁn of a
support vector machine as follows:

?J ;V ;h"llr
|

Qla) = Z = 5 Z Z oo did .ol r, )To(tr_;)

t=1 =1 j=1

-
[ ]

{ o
-
——r

13



subject to the constraints

0<a;<c for 1=1,2,... N

where c is user specified positive parameter.

Adapting Eq.( 2.10) to our present situation involving a feature space,we may write

N
w= ) o;did(z;).

1=1

Here again we use Kamsh-Kuhn-Tucker(KKT) condition to calculate b as follows:
aifdi(w $(z;) +b) — 1+ &] =0, i=1,2,....N

and
pili =0
a; +a; =c¢

Consequenly we see that & = 0 if a; < ¢.So In this case the explicit formula for b is

N
b=d; — zdjﬂj‘ﬁ(xj)qf’('rf)
=1

. N
= b = d; — Zdjajﬁ'(scj,.r;)
=1

So we don’t need to know ¢ explicitely for calculating &
Decision function
In-f the test phase. r will be classified by coraputing the sign of
v, N, T
f(.r) = ; (I,'di@(eﬁ'f) y (35(1:) + b = ; afdffi_(S;..Il‘Q + b
where s; are support vectors.Also we don't need to calculate o(r) explic-

itly.

L4



2.5 Mercer’s Condition

Mercer’s condition tells us whether or not a perspective kerhel 1s actually
a dot product in some space In other word it tells for which kernel there
exist a pair {H, ¢},which satisfies the Eq.( 2.23). Formally the Mercer’s
condition can be stated as follows: .

There ezists a mapping ¢ and an expansion
K(z,y) =3 ¢(z)id(y);
if and only if, for any g(z) such that

[ 9(z)%dz

s finite then

| (=, y)9(z)g(y)dzdy > 0

Some example of kernels which satisty the mercer’s condition are as fo)-

lows :

1. Polynomial kernel K(z,y) = (z-y+ 1)
2. Gaussian kernel K(z,y) = elle=ull/2o*

3. Hypebolic tangen kernel Mz, y) =tanh(kz - y - ).



Chapter 3

Multiclass Support Vector Machine

In this chapter we explain the extension of SVM for multiclass problem.
As discussed in the chapter [ 2], support vector machine directly deter-
mine the decjsion tunction for two-class problem. so that generalization
ability is maximized while minimizing the training error. Because of
this formulation, extension to multiclass problem is not unique. Here
we explain the four most popular existing methods for multiclass prob-

lem which are as follows -

1. One-Against-All SVM proposed by Va,pnik 1]
2. Pairwise SV by Krebel [4]
3. MSVM proposed by K.P. Bennett [3]

4. Fuzzy Support Veetor Machine (FSVAI) propesed by Huang and
Liu [2]



3.1 One-Against-All SVM

This concept of multiclass Support vector machine proposed by Vap-
nik [1]. In this method n class problem is converted into n two class
problem. In ith two class problem, we determine the optimal decision
tunction D;(z) so that class i is seprated from remaining classes with
maximum margin. So using Binary SVM discussed in chapter [ 2], we

get the following n decision boundaries
Di(z) =wiz+8b;, i=1,2....n (3.1)

where w; is m-dimensional vector and b; is a scalar.

The hyperplane, D;(z) = 0, forms the optimal seprating hyperplane, and
1f the training data are linearly seprable, the support vectors belonging
to class : satis%y D;(z) =1 and those belonging remaining classes satisfy
Di(z) = -1 ,if for the input vector z

Di(z) >0 ' (3.2)

satisfies for one :. z is classified into class ;. Since only the sign of the

decision function is used, the decision is discrete.

If( 4.8) is satisfied for plural i’s or there is no ; that satisfies( 4.8).r is
unclassifiable(the shaded region in F 1g. 3.1 are unclassifiable regions).To

avoid this. x is classified into the class:

tion the decision is CONTINUoOuUs,



e ——e st

Figure 3.1: Unclassifiable region by the one-agaist-all formulation

3.2 Drawbacks of One-Against-All SVM

This formulation for muliclass svm has following demerits:

1. we need to solve n-quadratic program to detemine the decision
boundary for n-class problem and Each Quadratic program has
number of constraints equal to the number of Training points.So

this makes SV a computationally expensive classifier.

2. This contains unciassifiable region inside the cofivex hull of training

datas ,which can effect the Generalization performance of SVM

1S



3.3 Pairwise Support Vector Machine

In Pairwise classification, The n-class problem is converted into "(,"2'1)
two class problems which covers all pairs of classes. Let the decision

function for class ; against class 7 with maximum margin, be
Dij (:c) = wfj.r + b,‘j. (34)

where w;; is an m-dimensiona] vector, b;; is a scalar, and D;; = —D;; for
Input vector z we calculate

n

Di(z) = ¥ sign(D;;(z)) (3.5)

j#ig=1
and classify z into the class

” ' arg max D;(r). (3.6)

=1, ..n

But if Eq[ 3.6] is satisfied for plural i’s, z is unclassifiable. In the shaded
region in Fig.[ 3.2], Di(z) = 1,V¥i.Thus the shaded region is unclas-
sifiable. To resolve the unclassifiable region for the pairwise classifi-
cation, Platt,Cristianini?a,nd J.Shawe-Taylor [5]proposed Decisipn tree
based pairwise classification Called Decision Directed Acyclic Graph(DDAG).
Fig [ 4.1] shows the decision tree for three classes shown in F 1g 3.2 At
the top level, we can choose any pair of classes. And except for leaf
node if D;;(x), we consider that z does not belong class j.If Dy >0,
beleng to class 1 or 3 and the next classification pair is Classes 1 and

3. The generalization tegion becomes as shown in Fig:7 . Unclassifiab]e

if)



3(X)=0

- D

Figure 3.2: Unclassifiable regions-by the pairwise formulation.

3.3.1 Drawbacks of Pairwise SVM

1. Number of quadratic programming problem is ”("2'1) for n-class

problem which will make the training process very slow.

2. Although unclassifiable region reduced compared to One- Agaznst-
All SVM but still it remain.

3. Its performance is too bad for 3-class data set having two class
overlap.

3.4 MSVM

\

Unlike One-Against-All and parrunse sum . MISVX rquires the solution of

single quadratic program for determining the decision function. Assume
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ClaSS 1 ClaSS 1 - Class 1

Figure 3.3: DDAG

w' € R* +* ¢ R,i=1,..., ksuch that For z € clasgi

xwi—'}f"e>xwi—7je L,=1,... ki # . (3.7)

The class of a point z is determined from (W', v).i =1
t such that
fi(z) = 27w’ — 4

1S maximized.

For this piecewise- linearly seprable problem:, mﬁmteh many (u’

that satisfy Eq.[ 3. 1]. intuitively.the optimal” (u* )prm ides the Iargest

margin of classification.The margins for each piece (

-+ exist

W — wd At~ ~/Yof
the piecewise linear seprating function. The margin of sepration between
the classes i and ;, i.e. the distance between \

r(w' — el > (4! — e + e for € cigss



and

r(w' — w’) > (v =~ )e — e for = €cduss j

is quﬁ“.so we would like to minimize |lw’ — wi|| Vi j=1. .. . ; %

J-Also,we add the regularization term %Zfz__l_”w"llgto the objective func-

tion.For convenience Let 4’ be matrix whose rows denote the n-dimensional

training points from the class ; , For the piecewise linearly seprable prob-
lem we get the following Primal problem:

1 & i-1 _ _ k

. ; 2 1 in2
min 33 5t~ w4 L5
W',y i=1j=1 =1
8.t A(w' — w’) — e(y' — ) — e >0 (3.8)

Li=1,nk i

To simplify the notation for tormulation of

we rewrite thié In matrix notation. For three
be obtained: Let

the piecewise-linear SVM,

class following matrix wil

I -1 0]
I 0 —J
0 I —J]
where I € R"™" is the 1dentity matrix.
Al 4l
140 —41
(o -4 42 9
' 0 AT - 42
-4 0 &
0 —4% 4




where A* € R™*" = 1,...,3,and et € R™* 1 = 1,...,3, 1s vector of

ones. Here m; denotes number of point in class i. Using this notation
the Primal problem becomes:

: Ly o2 Lo
min  LICul+ Hu
s.t. Aw+Ey—e >0 | (3.9)

where w = [w!,... w¥]and v = [41,. .. ,7*]*. The dual of this problem
can be written as:

min  SICwl? + 3wl - o (Aw + By — o (3.10)
s.t (I +CTCYyw = ATy
~ETu =
u > 0.

here u is column vector of lagrange multiplier. From Eq.( 3.10) we get

1
=(I+C'C) 14Ty = e 11
w={([+C"C) u AR (3.11)

Using this relationship we can eliminate ' from the digal prablem. Additionally

v 18 removed because —ETy = ().

. . . \
After some simplification the new dual problem becomes:

| 1 ,
max efu _ w447y
. 2(k 4+ 1)
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st. ETu=0 (3.12:
u >0

So from Eq.( 3.13) we will get the optimum value of u and then from
Eq. 3.11 value of w can be determined.

lo determine the value of ~* having fixed w we use the inequality in
Eq. 3.9.

3.4.1 Formulation of M-SVM:Piecewise Inseprable case

To construct a classification for a piecewise-linearly inseprable dataset.
we need to add error term in the objective function.
Using the same matrix notation as for linearly seprable case MISVM.

The resulting primal problem will be as follows:

1.1 . N
min §||C'w” +§||w” +c;§£
st. Aw+Ey—e+€E>0 (3.13:

20

where ¢ is error vector and c is user specified parameter.

Solving for the dual. substituting w = ﬁATu, and simplifving produce

the following problem:

max ely — ul AATy

2k +1)
st. ETu=0 ) (3.14)

0<u<ec

h

On selving the 3.15 we get the 1 which results in determination of w.

To determine the threshold values ~' i, ... k.ave solve the primal prob-

24



lem ( 3.13) with w fixed. This problem is as follows:

N
IHIHZ{,_
v.€ 7
s.t. Aw+Ey—e+€>0 (3.13)
' £>0

3.5 Fuzzy Support Vector Machine

SVM is a powerful tool for solving classification problems, but there are
still. some limitations of this theory.From the formulation discussed in
chapter( 2), each training point belongs to either one classs or other.For
each class,we can esily check that all training points of this class are
treated uniformly in theory of SVM.

In many real -world applications, the effect of the training points are
different.It is often that some training points are more important than
others in the classification problem. We would require that the meaning-
tul training points must be classified correctly and would not care about
some training points like noises whether or not they are misclassified.
That is,each training point no more exactly belongs to one of the two
classes.It may be 90% belong to one class and 10% be meaningless .In
other words.there is tuzzy memebership 0 < s, < assoclated with each
training point r; .This tuzzy membeship s;can be regarded as the atti-
tude of the corresponding training point toward one class in the classifi-
cation problem and the value (1 —s;) can be regarded as the atritude of
meaningless.So the concept of SVM is extended with fuzzw membership
and make it an FSV)[.

o
] |



3.90.1 Formulatisation of Fuzzy Support Vector Machine

Since the Fuzzy membership s; is the attitude of corresponding point
z;toward one class and the parameter §; is measure of error in the SVM,
the term s;{;is a measure of error with different weighting. The optimal
hyperplane problem is then regarded as solution to following primal

quadratic program

1 N
min -w.w + ¢ » . $;&;
wg 2 i=1
s.t
df(w,.’rf—l-b)Zl*Ei,£=1,...,i\r

where c is comstant.It is noted that a smaller s; reduces the effect of
the parameter ¢; in problem ( 4.9) such that corresponding point z; is
treated as less important.

To solve this optimization problem we construct the Lagrangian

1 N N | N

L(w,b,¢, a,3) = ;w-w+cZ i€ — 3_ ai(di(w - z; + b) —14+&) - > B
=~ 1=1 1=1 =1

| (3.17)

and the saddle poiﬁt of L(w,b,£.«r,3). The parameters must satisfy the

following conditions:

- | b.. y £ Al
oL(w.b.6, e 5) _ S aydir; =0 (3.18)
ow i=1
! *-bn Y 'J'j J )
oL{w.b.§a, ) S id; =0 (3.19)
(96 =1 \
OL(w. b€ . 3 |
(wa; 0 e — 3 =0 (3.20)



Apply these codition into the 3.17.the problem 4.9.transformed into

N 1 &N N -
Q(Ot) = Z ¥y — 5 Z Z Ckfajdidjxf L (321)

=1 =1 =1

subject to the constraints

1. N
ZCI,‘d,':O
=1
2.
0<a;<s5¢c for 1=12,.... N

and the KKT conditions are defined as

oi(d(w... i +b) —14+6)=0, i=1,. N (3.22)
(sic— )€ =0, i=1,... N (3.23)

The point z; with the corresponding «o; > 0 is called a support vec-
tor. There are two types of support vectors.The one with corresponding
0 < a5 < s;c lies on the margin of the hyperplane.The one with cor-
responding o; = s;c is misclassified. An important difference between
SVM and FSVM is that the points with the same value of «; mayv indi-
cate a different type of support vectors in FSVM due to the factor s;
Free Parameter

The only free parameter cin SVM controls the tradeoff between the max-
imiiation of margin and amount of misciassifications” A larger ¢ makes
the training of SVM less misclassification and narrower margin.The de-

crease of ¢ makes SV'M ignore more training points and get t=e wider

IMAargin.



In FSVM. we can set ¢ to be sufficient large value.lt is the same as SV
that the system will get narrower margin and allow less misclassification
1f we set all s; = 1.With different value of s;, we can control the tradeoff
of the respective training point z; in the sysytem.\ smaller value of s;
makes the corresponding point z; less important in the training.

There is only one free parameter in SVM while the number of free pa-

rameters equal to number of training points.



Chapter 4

Proposed Methods for Multiclass
SVM

As we have seen there are number of drawbacks with the existing meth-
ods for the multiclass SVM. In this chapter we have proposed three new
methods for multiclass SVM. we have also proposed two new reformula-

tion of Basic SVM to enhance its performance.

4.1 MMSVM-1(modified multicategory support vec-

tor machine-1)

MMSVM 1s basically modification of MSVM. In MSVM we find n-
hyperplane(w!,v!),.... (w™. ~") where w', ¥ represent the hyperplane
seprating the class i/ from the rem'aining classes. As we know MSV)]
objective function contains two terms which are ot o u”’ and ||ul?,
Here first term is used to maximize the margin between the class i and
class ) which is piecewise seprated by the plane (w' — ).r + b))

and the second term 1s maximizing the margin of sepration between the
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class ¢ and remaining classes. If we see the decision function. which
is max;(zfu! = v'). used in MSVM infer that piecewise seprating hyv-
perplane 1s not the actual decision boundary instead second term of
objective function is defining real decision boundary.

T'herefore In this modification we have removed (|w’ — w/ ||2 from the

objective of MSVM keeping the constraints unchanged.

4.1.1 Formulation of MMSVMI1

In this formulation we have used the following notations.

n : number of classes,

Ni’} :kth point in combinally taken training points of class i and class ].
Efj :Error in kth point in combinally taken training points of class i and -
class 7, . | '
A :Training points of class i

ALE has defined in section 3.3
Other notation has usual meaning.

Primal problem:

1 n
min =3 fui e 3 3 €
| w*.y! ~ =1 1=1 j=1 k=1
s.t A w' — w!) — e(v' =) —e +E§ > () (4.1)
Ly=1l.....n 1#£3 51320

Ly=1....n. k=1....,N;

where ¢ is user specihed non unegative number. .

Dual problem : v

1
max e — —uT 447y

30



s.t. ' (4.2)
Efu=0
0<u<ec

From Dual problem we can obtain the value of .

where w can be determined by:
w=u’A

To determine -y, we need to solve primal problem for fixed w

4.1.2 Decision function

The class of z is determined by finding i such that

filz) = el w® — '}fiis mazximaized.

4.2 MMSVM2

In case of pairwise support vector machine discussed in section 3.2, we

need to solve -- quadratic programming promblem and it has poor
performance over dataset having two class overlap. So we have pro-
posed the support vector machine whose objective function is combi-
nally taking all objective function of pairwise support vector machine
and also all the constraints at the same time. which will detemine the
parrunse decision houndary between the n class ande we need to solve
one quadratic programming and has improved performan\ce over above
mentioned dataset.This 2ives better performace since here roral error

1s reduced instead of error due to decision boundary between pair of

31



classes. Here Although we need to solve only one quadratic program
but it is very big compared to quadratic program 1n pairwise support

vector machine.

4.2.1 Formulation of MMSVM-2

The following notations are used for this formulations Notations
D;;: Decision boundary between class i and class 7

wi; :Weight vector for D;;,

bij :Scalar for D;;,

xf} :kth point when training point for class ¢ and class 7 taken together

I —1 1f:z: € class ]

3

N;j : Number of training points when class i and class 7 taken together,
E : Slack variable for ¥, 1
afj . kth lagrange multiplier for the first constraints of ( 4.3)
,ufj- . kth lagrange multiplier for the second constraints of ( 4.3)
other notation has usual meaning Primal problem :

min 23 3wyl rey 3 g (13)

Wiy Ef;-*-'s_h{j} =1 1=1 1<, j=1
s.t.

dk wt. ¥ + b)) > 1 — &%

S1

S g5 J
£ >

Here c is user specified parameter. To solve above primgal problem we

costruct rhe lagrangian



Lagrangian function:

i

L=33 & fuslf+ey 3 eh-3 5 S ab(dt 1y

1:<y,5=1 i=1 i< j=1 =1 1< j=1 k=1

S1HE) S 3 Ykt ()

=1 1<j,j=1 k=1

and find the saddle point. The parameter must satisty the condition

OLy _ o, 0L, _ 9L,
3’10,‘;; o ab 65

SO we get,
Wiy = Z atjd,:; i; (4 0)
# LS
2;1 agdi = 0. (4.6)
c— af} — E:Z. 0 (4.7)

Dual problem

Q(c ma‘fZ > ZCf-

a;;” =1 1<}, )=1 k=1

la & HE kol okl
—)-Z > ZZ &Ududu‘ruru (4.8)
= =1 i<ygy=1 k=11=1

< ko "

Z aijdij = {

k=1

1) =1..... n

)< n f‘; < ¢

13



solving the Eq.( 4.8) we will get the optimal value of lagrange coefficients
then by using the Eq.( 4.5)we will get the value of weight vector u;;.Using
the KKT condition we will determine the value of bi;So

ko gk t k

Decision boundary:

Here decision function will be same as used in palrwise support vector

machine.

4.3 MMSVM-3

MMSVM-3 is modified form of One-Against-All svm. Here instead of
solving seprate quadratic program for every hypeplane, we will solve
one quadratic programs whose objective function is combination of all n
objective functions of one-against-all svim and all costraints are taken
together. Hence total number of constraints is n times the number
of training points.It is also based on the criterion that minimizing the
total error, instead of minimizing the error due te individual decision

boundary, will enhance the performace of SVM.

4.3.1 Formulation of MMSVM-3

Following notations are used in this formulation:
D;: Decision boundary between class i and remaining classes

w;: Weight vector for D,
bg: Scalar for D.g



rf :kth point in training point for class ; +remaining classes

b 1 if zf € class i
1 —1 Otherwise

£F k. Slack variable for a:

af: kth lagrange multlpher for the first constraints in Eq. (4.9)

¥ :k th lagrange multiplier for the second constraints Eq.( 4.9).
Prlma.l problem :

s.t.

the lagrangian.

Lagrangian function:

n

—lew:” +cZ£ —ZZaf{d“(w S+ bi) — 1+ ¢F)

=1 k=1

+Z Z Zﬂ: & (4.10)

1=1 1<), j=1 k=

and find the saddle point. The parameter must satisfy the condition
JL, oL

=0, == — =0

@w; ? c%i o C)E’L -

So we get,.

A |
wi = 3 afdt e (4.11



I

k=1
c—af —¢F =9 - (4.13)
Dual problem
Qa) = maXL“L of
1 n NN -
52 2 2 ofaididizt! (4.14)
2 i=1 k=1 l=1
N
Y afdt =0
=1
1 =1,.... n
0<af<e

After solving the Eq.( 4.14) we will get the optimal value of lagrange
coefficients then by using the Eq.( 4.11) we will get the value of weight

vector w;. Using the KKT condition, we will determine the value of b;.So

by = = d* — wizrk

- Decision Function:
Here decision function will be same as used in one-against-all support

vector machine.

4.4 Reformulation of Basic SVM

-

Although SV M is a very powerful tool for solving the clasmﬁcatmn prob-

lem but it has two major drawbacks:
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1. Unclassifiable region exist inside the convex hull of data as shown
in Fig.{ 1.

unclassifiable region inside the conex hull
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2. SVM is highly sensitive to outliers and noise in the training set as

shown in the figure 4.1

So to reduce the effect of above mentioned drawbacks we have proposed
two types of SVMs :

1. SBSVM (Shift Boundary SVM).

2. USVM (utility based SVM).



optimal hyperplane

V V 2
v
vvvvv
v
VgV V O 5
vV V /O O
V v O O
class—1 OOO

Figure 4.1: SVM hyperplane sensitive to outliers

4.4.1 SBSVM

Here we have proposed an algorithm to reduce the area of unclassifiable
region inside the convex hull of the data in optimal way. This method is
based on the fact(Vapnik [1]) that ¢f the dataset is nicely seprable then
number of support vectors are less compare to the case when dataset is

nonseprable. consider a three class problem having decision boundary
Wik + b;, 1 = 1,2.3

here we will replace the plane by the parallel plane.So we only change
the scalar b; and w; will be unaffected Let the updation in the b, is ub;

.50 our new decision plane will be \

w;r +0; + ub;. 1 =1.2.3,
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Here we are replacing the optimal hypeplane by other parallel hyper-
plane such that sign of none of training points should change in other
words sign of support vector with respect to new plane should be same
as the previous optimal plane. Here we also want that shifting of the
plane should be inversly proposnal to number support vectors. So to get

the value of updation in scalar part we need solution of following LPP:

Di(z)(wiz + b; + ub;) > 1 (4.15)

Here SV;denote the number of support vectors for the ¢tth optimal hypr-

plane

4.4.2 Drawbacks of SBSVM

We observe the following drawbacks of SBSVM

1. This scheme can effect the generalisation of SVM.

2. For Diamond shape data .it will give poor performance.

4.4.3 USVM

We have proposed a method for getting the hyperplane which is less sen-
sitive to outliers and noises in the dataset.Here we are constructing the
hperplane based on the density of the training point in the respective
class.we are giving the more inportance to the point which 15 deep inside

the dataset and less importance to training which is far awayv from their
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respective class.To obtain this we are measuring the potential of train-

ing point.Let p; denote the potential of the /th point
potential of ith irarning point 1s defined by

in the class. Then

Mz ~ 3|2

where o is determined by average edge length of minimum spaning tree

(mst) of respective class and then the utility of the ith point is denoted
by p

Hi = &
" max;p;
So then we need to solve following primal problem
1 N
min §w.w+cz pilis.tdi(w.ri4b) > 1-§,i =1, ... NE>O0 =10, ... Vv
w, i=1 |

where c is constant. -
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Chapter 5

Experimental Results

We have taken Three data sets generated randomly under the normal
distribution using the MATLAB Toolbox.Each dataset containing the
datas from three classes and each class has 70 data points in which 30

data points is for training and 20 data point for testing

1. : In first data set(say ,F'1), datas of three classes are nicely seprable.
2. : In second data set(say ,F'2), there is 2-class overlap.

3. ¢ In third data set(say ,F'3), there is 3-class overlap.

Linear Decision Boundary

Observations

From Table 5.1-53.3. we observed:

1. Modified MMSVM1 performance is either matches or better than
MSVAL
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Table 5.1: MSVM and MMSVM!

F1| F2 | F3 [F1] F2 F3
Training error | 0% | 2% | 18.66% | 0% | 2% | 11.66%
Test error 0% | 3.33% | 23.33% | 0% | 1.66% | 18.33%
No.of SV 50 14 | 75 |51 13 57
Value of C | 30 15 5 [30] 30 [ s
Table 5.2: Pairwise and MMSVM3
| F;lJ F2 | F3 l F1| F? F3
Training error | 0% | 4.66% | 18.66% | 0% | 3.33% | 18.66%
Test error | 0% | 11.66% | 25% [o% 3.33% | 23.33%
Num SV 7 | 32 75 |9 | 33 7
| Value of C 30| 30 | 30 [30] 30 | 3

2. Pairwise SVM giving poor performance for the data set having two

class overtap. MMSVM3 giving slightly better performance.

3. MMSVM2 perform better than Pairwise SVM.

Non Linear Decision Boundary

Here we have used Gaussian kernel K (z,y) = e~==¥ll/2¢* ip a1l the ex-

periments o value mentioned in the table

Observations:

From Table 5.4-5.9, we observed:

1. MSVM performance is worst.

2. Value of o is inversly propotional to number of Sipport “ectors.




Table 5.3: One against all and MMSV\[2

F1| Fo F3 |FL| F2 | F3
| Training error f)% 2.66& 17.33% | 0% | 2.66% | 17.33%
Test error 0% 1333% | 20% | 0% |3.33% | 1.66%
| Num SV 9 | 33 77 | 9| 33 | 34
Value of C 30 | 30 | 10 30 | 10
- Table 5.4: MSVM
Class name F2 F2 F2 F3 F3 F'3
| Sigma ﬁ 05 | 1] > 0.5 HEE
Training error | 6% | 6% | 6% |18.66% | 21.33% | 26.66%
Test error | 6.66% | 5% | 6.66% | 33.33% | 31.66% | 33.33%
(NumSV_— | 118" | 63‘[ 5 | 115 109 | 66
[ Valueof C | 30 [30] 30 | 30 | 30 | 30
Table 5.5: MMSVM1
Class name F2 F2 2 F3 F3 F3
 Sigma 05 | 1 | 2 0.5 1 >
Training error | 6% | 6% | 6% | 17.33% | 23.33% | 30%
Test error 6.66% | 5% | 6.66% | 31.66% | 337 | 31.66%
Num SV BT 53 | 45 [ 174 109 66
Value of C 30 |30 | 30 30 30 30
A}
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Table 5.6: Pairwise SVM

Classpame | F2 |[F2[ F2 | F3 | F3 F3
Sigma 05 | 1 | 2 0.5 | 1 >
Training error [0.66% [ 2% | 2% | 6.66% | 10% [12.66%
Test error 3% 5% |3.33% | 33.33% | 23.33% | 25%
Num SV 115 _64_+ 45 | 143 91 | 93
Valweof C | 30 [30] 30 | 30 | 30 | 30 _
Table 5.7: MMSVM3

Class name F2 |F2| F2 | F3

Sigma 0.5 1 2 2

Training error | 0.66% | 2% | 2% | 19%

Test error -5% __3%4 3.33% 1 25%

Num SV | 115 | 64 | 45 | 94

Valueof C | 30 |30 30 | 30

Table 5.8: One against All

Class name F2 3
Sigma. 0.5 0.5
Training error 2% 6.66%7 |’
Test error 3.335% | 31.66'7
" Num SV 15 | 115 |
Value of C 30 30
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Table 5.9: MMSVM?2

. Class name F2 F2 F2 F3
Sigma 05 | 1| 2 0.5
Training error | 0.66% | 2% | 2% | 6.66%
Test error 5% | 5% t 3.33%; 31.66%
Num SV 100 |97 65 | 100 |
Valueof C | 30 |30] 30 | 30




Chapter 6
Optimal Hypersphere

il

Figure 6.1: Three aligned class \

[f we have dataset as shown in figure( 6.1)Then by One-Against-All
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SVM(without kernel) for multiclass will not give any solution since it

will not able to find the optimal hyperplane seprating class 2 from re-
maining.So we inspired after the work by David M.J.Tax and Duin 6]
regarding data domain description using the hypersphere. We extencded

their concept to multiclass problem, so Here instead of Iinding optimal

hyperplane, we will find sphere having minimun volume corresponding
to each class containing all object of the class.

6.1 Theory

Now we formulate the concept of classification by hypersphere for two
class problem. We try to find spheres for respective class with minimum
volume containing all(or most of )dataohjects.This is very sensitive to
most outlying object in the target data.Sphere with high volume will
also increase the misclassification. Therefore we allow some for data
points outside the sphere and introduce slack variables &

suppose R,y and a;,a5 denotes the radius and centres of two spheres.

To get the optimal value of Ry,Ry and a;,a5, we need to solve following

primal problem:

F(Ry, Ry, ay, ay, &1, &) = R}E‘:&ﬂz Ri+Ri+cY 6 + DIY
_ (6.1)

st (a! — a])T(:Ifi —ay) < R; + &, for 7 G r;\(rwsl

(’I; — ag)T(:rg — ay) < Rﬁ + Eé, for 15 c class?

‘ &2 0,8 >0,

oW
Langrangian for above optimiztion problem will be

‘ . .ot . . ) . .
F(Ri.Rs.ay.a4. € 0y +ah) = R 4 Bi+e867 + 0578

r LI?-



(YI{RZ"I"EI ( 2"‘2&]151 +a1)}’

i :" i i i2 i i o _
— Z 71 2 “2{R% + &5 — (372 ~ Zagzry + a%)} ~ Z’)’zgz (6'2)

=1

L is minimized with respect to Ry, Ry, &1, €y and maximized w.r.t o o

oL
(l=>2]?|—-22rt1]?1—"0=>2—rr|=1 (6.3)
OR,
(')R U=>2R2—-22(1'2R2-—0=>Z-—(I2—-1 (6.4)
2
3L - ,
=0=c—-a] -+ =0 6.5
g&l 1 N ( )
L . .
—"'——:"'—“'0:'(3'—&’!— t=0 66
L i 4
o =0=a; =) o} (6.7}
OL i
Day = 0= ay =3 ol (6.8)
-~ ) >0 (6.9)
vi > 0 (6.10)

take 0 < o} < ¢ and 0 S o < ¢ this implies that £ = 0,6 = 0:
Rewriting the Eq.( 6.2) and using the equation we get the Dual problem,
stated as follows:

nax L = ZW%(’?‘?,T’,) + 2‘111(3311;37!1) T T Zfriﬁy{(mizrf)
i

0 <l <o (06.11)



From the Eq. 6.7 we can see that the center of the sphere is a linear
combination of dat with the weight factor o} and o} obtained by solving
the dual problem.Only for small set of training points equality constraint |

in ( 6.2) satisfied .For those data point o and o are non zero and are

called support vector.

6.1.1 Decision function

For a given Test point 2

It z is not in ambiguous region then

f(z) = min{(z - 0;)7(z - a;) — R} (6.13)

value of f(x) will be class label for z.

It z is in ambiguous region then

}(:.-;) = miin{(m — a;)T(fU — @)} (6.14)

value of f(z) will be class label for z.

6.2 Conclusion

In this report we have discussed various types of existing methods for
multicategory support vector machine and point out their drawbacks
and proposed six new formulation for multicategorv S\ M which are as

tollows - y

1. MMSVMI1 (Modified Multicategory Support Vector Machine 1)

2. JINMSVAR2 (N odified Melticarecory Support Vertor Machine 2



3. MMSVM3 (Modified Multicategory Support Vector Machine 3)
4. SBSVM (Shift Boundary Support Vector Machine)
2. USVM (Utility based Support Vector Machine)

6. Optimal Hyper Sphere Support Vector Machine

We have given theoretical justification and followed by experimental

results for each of them. . There are following thing which can be

possible extensions of reported work.

1. : All the methods for muliclass SVM using optimal hyperplane can
be extended for optimal Hyper sphere.

2. : Devlopment of multiclass SVM using using optimal ellipsoid.

A
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