STOCHASTIC COMPARISON OF TESTS
By R. R. BArADUR

Indian Statistical Institute, Calculla

1. Introduction. It is shown in [1], in & special case, that the study (as randm
variables) of the levels attained when two alternative tests of the same hypotbess
are applied to given data affords a method of comparing the performances of thy
tests in large samples. It is the object of the present paper to show that &y
method, which may be called stochastic comparison, is quite generally applicabe.
It is shown here, in particular, that in a given statistical context there is usuly
a wide class of tests such that, if test 1 and test 2 are in the class, the asympio;
efficiency of 1 relative to 2 is well defined and readily -calculable. The argunes
is stated and discussed in general terms in Sections 2, 3 and 4, and ilustatin
examples are given in Section 5. The examples include comparison of the Wa}
Wolfowitz test and the Smirnov test for two samples, and of the Kruskal-Wak
test and the F test for k samples.

3, Standard sequences. Consider an abstract sample space § of points 14
suppose that s is distributed in S according to some one of a given set |Pf d
probability measures Py , where 6 is an abstract parameter taking valuesinaw
0. Let @ be a subset of 9, and Jet H denefe the hypothesis that 8 £ 0.

Let n be an index that takes the values 1,2, 3, «-- . Foreach n, let T, beamy
valued statistic defined on S. We shall say that {T.) is & standard sequence (f
testing H) if the following three conditions are satisfied.

1. There exista a continuous probability distribution function F such that, kk
each fe 0,

1) bm Py(Ts < z) = P(2) forevery z.
II. There exista a constant 6,0 < a < =, such that
L]
(2) log 1 = P(z)] = —%[1+0(1)] 88 T — o,

HII. There exists & function b on @ — @, with 0 < b < =, such that, ks
each 60 — Q,

® lim Py (

The following is a typical example of a standard sequence. Let S be tbe:
of all sequences 8 = (z), 71, - - - ad inf) with real coordinatesz,, let @ bo s«
of distribution functions 8(z) on the real line such that u(8) = [2,zds2¢
and [Z.7'd8 < «, and let Py denote the product measure 8 X ¢ X --i;d

%-b(o)‘>=)=o forevery z > 0.
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Let H be the hypothesis that s = 0. For each n, let T’ be the { statistic based
oo the first n co-ordinates of 8. Then I is satisfied with

P [0 ap (~22) ds

this F satisfies II with 8 = 1 (cf. para. 1 in Section 5); and III is satisfied with
b(#) = u(8)/0(8), where o = [2.(z — p)'d8. In this example the index n
denotes the sample size, and n has essentially the same role in other examples.

Returning to the general case, suppoee that | T,| is a standard sequence. Then
T. has the asymptotic distribution £ if H obtains, but otherwise T, — o in
probability. Consequently, large values of T, are significant when 7', ia regarded
as & test statistic for H. Accordingly, for any given s, we define 1 — F(T.(s))
to be the level attained by T. in the given case (n = 1,2, --+).

In general, 1 — F(T.(s)) is only an approximate level, i.e. for given n and &,
it does not equal the probability of T. being as large or larger than T,(s) when
H obtains. However, the study of such levels seems legitimate and useful. In
numerous cases of interest, in practice only approximate levels are used; perhaps
because the exact null distribution of T is not tabulated and too difficult to
compute, or because n ia so large that it is believed unnecessary to refer to the
exact distribution, or even because the “exact level attained by T," does not
exist, i.e. for the given n the distribution of T, varies with # as 8 varies over
0, . Even in the cases where exact levels exist and are used (or at least in prin-
ciple could be used) for every n, one hopes that conclusions based on comparisons
of spproximate levels would provide at least an indication of what to expect in
comparisons of exact levels. At present exact levels can be compared in only &
few cases, e.g. the cases discussed in (1], because sufficiently precise estimates of
the relevant tail probebilities are not available. This point is discussed further in
remarks 8 and 10 of Section 4.

Now let us regard the level attained by T in a given case as a random variable
defined on S. It is convenient to describe the behaviour of this random variable
asn — @ in terms of K, , where

IO K.(s) = —21log |l — F(Ta(e))}
Then, for each 8 in
(5) liﬂPo(K.(u):Pr(x:<v)=l—e"' forevery v > 0,

where x3 denotes a chi-square variable with 2 degrees of freedom. Again, with
_ 1] for fefy

" lalb(Ot for gro- g

we have that, for any given 6 in 0,

7) Ki/n=0+e,

where (3, 8) — 0 in probability as n — o,

(6) c(6)
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To prove the propositions just stated, first consider a 8 in Q. Let y and 2t
given constants, 0 < y < z < 1. Since F is & continuous distribution lunetion,
there exist nurabers a and b such that F(a) = z — y, F(b) = z Let 4, =
{8:Ta < a}, B, = [8:F(T.) < 2],and Co = {8:T,, < b). Then 4. C B.C(,
for every n, and hence z — y S lim inf Py(B.) S lim sup Po(B,) S z2by (1),
Since y and z are arbitrary, we have lim Py(B.) = z for all zin (0, 1). (5) sox
follows from (4), and it follows from (5) that (7) is satisfied with ¢ = 0.

Now consider a §in 2 — . For any z, let f(z) be the o(1) term on the righ
side of (2), ~1 < f S . It then follows from (4) that K./n is identical wig
a(T%/m){L + f(T.)]. It is plain from this identity and (2), (3), and (6) that
is satisfied, and this completes the proof.

In view of (7) we shall call ¢(8) the asymplotic slope of the lests based o
| Ta] (or simply the slope of | T\]) when 6 obtaips.

The sequence | 7.} will be said to be strongly consistent if condition ITL is uti
fied with (3) replaced by

(8) Py (lim T./n' = b(8)) = 1,

and if (8) also holds with b = 0 for each & in Q. It is readily seen that if {T;
is strongly consistent the ¢, in (7) — O with probability ore.

In concluding this section it may be worthwhile to note that the statistic £
is equivalent to T in the following technical sense: (i) { K%} is a standard sequen,
(ii) for each 6 in £, the slope of {K}) equals that of | T, and (idi) for any gz
n and s, the level attained by K equals the level attained by T. . Since the ke
attained by K%, is found by referring K to the upper tail of a fixed distrbuus
independent of F, [K%] is (so to speak) & normalised version of | T.|. The ns
malised version of { K%} is (K4} itself.

3. Comparison of standard sequences. Suppose now that

(T8 =t 7, -1 and (T} = TR, T, .-}
are two standard sequences defined on S, and let F**(z), a,, and b,(8) bede
functions and constants prescribed by conditions I, II, and 11 for sequente:

(¢ = 1, 2). Consider an arbitrary but fixed 8 in @ — 0, and suppose that :
distributed according to Py . It is argued in this section that

(9) ©a(8) = a(8)/a(8)

then serves as the asymptotic efficiency of sequence 1 relative to sequent -
where ¢; = a;b} is the slope of sequence 1,7 = 1, 2.

First consider the comparison of attained levels for a given sample sig sl
a given instance, i.e. for a given s in S, it would be fair to say that the tet bas:
on T4 is less succesaful than that based on T if the level attained be I¥ a
ceeds the level attained by 737, ie., if K < K, where the K. are defini
(4), (4,7 = 1, 2). Since {T\"} and [T are standard sequences, it follows s
(7) and (9) that

(10) KS.“/K‘.”—'PH
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in probability as n — . Consequently, with probability tending to one, T is
Jess successful than T if » < 1 and more successful if ¢ > 1, If ¢ = 1, the
two tests are equally successful up to terms of the order considered here,

To eompare the sample sizes required to attain the same level, for each 7 let
m® m®, ..., mi®, .- be a sequence of positive integers such that

) umm$° = (i=1,2).

For simplicity in motation, let Kt"(s) be wntben 28 K%n, 5) and T(s) as
T™(r, s). We may then say that m!” and m® are asymptotically equivalent
sample sizes for sequences 1 and 2 respectively if

(12) KP(m®, )/KP (m®, 8) > 1

in probability as r — e, In view of the arg t of the p g P

the defining condition (12) means that, with probability tendmg tolas r — o,
(m®) and T™(m'®) are equally successful test statistics up to terms of the
order considered here. Now, since (ll) is satisfied, we can apply (7) to K*'(n)
with n restricted to the sequence {m¢"}, (i = 1, 2). This application shows that

m" and m" are asymptotically equivalent sample sizes if and only if
(13) lim {m®/m"| = g2,

It should perbaps be noted here that asymptotically equivalent sample sizes
always exist, e.g. m = rand m® = the integral part of rp + 1.

Now let us consider the case when both the sequences heing compared are
strongly consistent. It is plain that in this case (10) is valid as & pointwise limit
for slmost all s in S. Sirnilarly, (11) and (13) suffice for the validity of (12) as
a pointwise lioait for almost all s, but in the present case a considerably stronger
interpretation of ¢ can also be given, as follows. For any positive real number o,
and for any s in S, let N (v, s) denote “the sample size required in order that K"
sttains the value v.” N is not well defined, but surely Nv € N, S N, where

= the least n such that K\ = v and Ny =  if no suchn exists, and
N7 = the Jeast m such that K > vforalln 2 m, and NV = « if nosuch m
exisls. Now define R™(v, s) = N7/NT and R*(v, 8) = N3/N7, with the conven-
tion that @/ = 1 (say). Then, except for a set of points s of Py measure zero,
we have

) lim R~ = lim R* =
To establish (14), choose and fix an s for which
(15) K¥/n ¢ ssn— o ({=1,2)

Since the set of a1l such points s has probability one, it will suffice to establish
{14) for the chosen s. 1'- is clear from (15) that 0 < K% < e for all auﬂicxently
large n, and that K3 — « asn — «. Consequently, 1 £ N7 < Nf < o for
all sufficiently large v, and N7 — o 2gv — «. We observe next that K(')(N“) <
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v S EO(NT+ 1), KNt — 1) S v < K*(N?T) provided only that 2 §
Nt < =, It follows from these relations by application of (15) that

(16) aNe/v—1, eNT/v—1 (=12
asv — o, It follows from (16), as desired, that (14) ia satisfied.

4. Discussion. The following remarks are by way of discussion of the preceding
two sections.

1. The notion of a standard sequence is by no means essential to stochaste

parison. Suppose for ple that [TS"] satisfies condition I with #° a4
condition III with b, (i = 1and 2), that F** = F™ = F, and that the comma
limiting distribution function F is strictly increasing. For each s and n, let L}
be the level attained by T.. Then LY < L& if and only if T8 < ¢
(5,7 = 1, 2). It follows, exactly as in Section 3, that b}/b3 serves as the asymp
totic efficiency of sequence 1 relative to sequence 2. In particular, when a gra
pon-null 4 obtai q 1 is asymptotically inferior to, or equivalent lo, &
guperior to sequence 2 according a8 bi(8) <, or =, or > b1(6).

This last criterion was suggested by Anderson and Goodmaa ([2], pp. 108109,
in the context of chi-square and likelihood ratio tests of certain contingenq
tables. Their suggestion seems to be the first explicit reference to stochastic con-
parison in the literature.

2. Suppose that in Sections 2 and 3 the index n is reatricted to a subeet of the
positive integers. It is easily seen that the various definitions and conclusos
remain valid in this case, except possibly for (14). However, the proof of (1}
goes through if the following condition is eatisfied: with ji < j; < -« thes
quence of values of n, j./frn = 1 aar — =. This condition also ensures te
existence of asymptotically equivalent sample sizes in the sense of (13).

3. In the paragraph preceding (14) in Section 3, the random variables R u
R* are well defined even if neither of the two standard sequences is strongly o
giatent. It would be interesting to know whether (14) holds in this case with the
almost everywhere limits replaced by limits in probability.

4. Suppose that it is desired to make an asymptotic comparison of tw s
quences of tests, which happen to be based on standard sequences of real valoed
statistics. The verification that this last is the case, and the determination o t?
respective asymptotic slopes, requires little knowledge of the exact distributie:
of the individual members of each sequence of etatistics. Consequently, ir
method of this paper is much more readily applicable than comparisons b
explicitly on power functions (cf., e.g., (3], (4}, [5}, [6], [7)), since the latter co
parisons ily require detailed knowledge of the exact distributions o>
dividual statistics at least in the non-null case. This remark is supported byl
examples given in the following section.

5. Although stochastic comparison a8 formulated in Sections 2 and 3 makesn
reference to power function considerations, there is a formal connection beime
the asymptotic slope of & standard sequence and the asymptotic power ol
corresponding sequence of tests. This connection is discussed in the appeodis
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to this paper It is pointed out in Appendix 1 that ¢ can be regarded as the asymp-
totic relative efficiency when the power is held fixed (or at least bounded away
from 0 and 1) and the resulting test sizes are compared. This fact (cl. also the
last sentence of remark 6 below) is stated here not so much a8 a justification of
stochastic comparison 88 a comment on the numerical value of ¢.

6. Suppose that Q is 8 metric space, and that @ — 2 is dense in & . Let [T'")
and [T} be standard sequences, and Jet ¢ 1(6) be defined by (9). Suppose that,
for each 6 in Qs , 1.2 has a limit a8 8 — 6, through values in @ — @, and call
this limit y» 2(60).

Limiting efficiency functions such as y have & special role in any asymptotic
theory of comparison, for the following reason: if the experimentation is under-
taken mainly for the purpose of teating H, large sample sizes will in practics
occur in the non-null case only if § is in the neighbourhood of some point in 9, .
it is therefare of some interest that alternative methods of sasymptotic compari-
son often lead to the same limiting efficiency function. In partioular, as is shown
i Appendix 2, it is quite generally true that the limiting efficiency y derived in
the preceding paragraph coincides with Pitman’s efficiency function in cases
where Pitman’s theory is also applicable.

7. Given a parameter space { of points 6 and 8 hypothesis H concerning the
value of 8, suppose that [T'+"] is a standard sequence (for testing H) defined on
a sample space S of points s, 7 = 1,2. Let § = S” X S be the set of all
pairs s = (s, s), and Yor each 8 ip 2 let P, be any probability measure on §
which is consistent with the marginal distributions of the s'°. Then both sequences
'T.} are standard sequences defined on S, and the argumenta of Section 3 apply
verbatim.

In other words, stochastic comparison can be applied even in cases where the
two sequences are not defined on the same sample space to begin with, e.g., if
S and § are the spaces of nlternative experiments. It follows, in particular,
that if { 72"} is a natural or optimum sequence on S'” then ¢, is, in s sense, the
usymptotic efficiency of experiment 1 relative to that of experiment 2. This ap-
plication ig discussed in more detail in [8]. In this application, the limiting
cfficiency y,., corresponds to the relative “‘amount of information per obeerva-
tion” in the theory of estimation.

8. The formulation of Section 2 can be generalised so as to include the case
when for each n the level attained by the statistic 7', is defined in terms of a dis-

iribution function depending on n. One such gencralisation is the following. Let
I7T.] be a sequence of rea) valued statistics such that conditions I and 111 are
Eatisfied. For each n, let F,(z) be a distribution function, to be thought of as the
pull distribution function of T, , such that the following condition I1* is satisfied:

1%, (i) lima—a Fa(z) = F(z), and (ii) there exists a function f on (0, «)
into (0, =) such that, for any given sequence |u,} of positive constants u.
such that limaa {ua/n] = z, where 0 < z < w, we have

207" log [1 — Fua(ua)] = —f(2)(1 + o(1)] AN — o,
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For each s and n, let L,(T.) = | — F.(T.), and let K, = —2log L(P.).1t
can then be shown that (5) and (7) continue to hold, with ¢ defined by

0 for 8¢y
6 O =1 tor 60— 0.

The proofs, though not entirely trivial, are omitted.

In the special case when F satisfies condition 11, and F. = F for eachn I'
is also satisfied with f(z) = az, and the formula (6°) reduces to (8).

Let us say that | T.} is a standard sequence in the sirict sense if there exists,
sequence | F.) such that P(T. < z|8) = F.(z) for each n, z, and §in By, uy
such that I, II*, and III are satisfied by | T.] and [F.}. In this case c(8) defoed
by (8°) serves as the exact slope of the tests based on { 7.}, and this can be wu.
pared with other slopes (exact or otherwise) as in Section 3. It ia clear, boweve,
that determination of the exact slope (assuming that it exists) ig as difficultp
ooncrete cases as exact analyses based on power function considerations.

9. Fori = 1and 2, let | T'"} be a sequence satisfying I, II, I1* and 111, Sy
pose ¢y ia the efficiency function denved in Section 3, and 1. the limitag
efficiency funcuon derived from ¢y s . Let o2 be the efficiency function obtais

by com n of the exact slopes, and Vi the limiting efficiency function denvyg
from ¢11. In the examples available at present where the conditions of the
paragraph are eatisfied, g3 differs from pys at every non-null 8, but ¥i.1 = #
at every null 8. (cf. example 1 in Section §). It is not difficult to formulxe
! sufficient conditions in order that yr.s = yir, but perbaps it woud b
more useful to discover and study further examples of sequences which pose
exaot slopes.

10. In the examples of stochastic comparison given in the following sectin
the level attained by a statistic T.. is defined as in Section 2. As was stated s
8ection 2, this procedure is g \ly inexact. It is therefore of some importase
to consider whether it is mlly useful to compute ¢{8) = ¢,(8)/cx(8), and x
study » as a function of 4, unless it is known that ¢, and ¢; are the exact sopy
of the pequences being compared. A categorical answer to this question shod
await the study of further examples, and of certain theoretical problems Tl
author’s opinion at p is that lusions based on an inexact o are b
sarily tentative, but that such conclusions may well prove useful, especially
cases (e.g. examples 2 and 3 in Section 5) where no exact methods of comparize
are available at present. Some of the iasuea involved here are mentioned in
following paragraphs.

The formal content of this paper is easentially desecriptive. Given a sandwl
sequence (or more generally, a sequence satisfying I, J1* and 111) a deartiz
of the asymptotic behaviour of the sequence is given in Section 2, and it 8 posid
out in Section 3 that two such descriptions admit a direct and intuitively psss
ble comparison. Consequently, whether or not ¢, and ¢, are exact slopes, g = g4
18 an exact relative efficiency in the sense that it is based on an sccurate decy
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tjon of what happens in the limit when the prescribed methods of computing
levels are used.

If the preseribed methods of computing levels are inexact, the plausibility and
wselulness of the present descriptions is diminjshed by the following considera-
tions. The usual inexact methods (e.g. referring a contingency table chi-square
to the chi-square distribution) are not intended for computation of very low
probabilities. Consequently, if a non-null 8 obtaing, and = is sufficiently large,
the chances are that the prescribed methods will be abandoned, or at leaat that
the levels computed thereby wall not be taken seriously. A related consideration
is that the inexact slope ¢ of a statistic 7. can scarcely be said to describe the
actua) performance of T , since ¢ incorporates computational errors of unknown
magnitude and direction. Consequently, if i a given case p(8) = a/c = 4 (say),
it cannot be concluded that T ig really twice as efficient as Tf.", or even that
T is really more efficient than TS, when § obtaina. There are examples showing
that this objection to the comparigon of inexact slopes is not purely hypothetical,
ie., that the values of an inexact ¢ can indeed be misleading (of., e.g., the last
part of example 2 in Section 5).

There is, however, some reason to think that the numerical value of an inexact,
o can be very misleading only if 8 is far from {2 . In particular, the limiting effi-
ciency ¢ derived from an inexact ¢ often coincides with the limiting efficiency
functions derived by exact methods of comparison (cf. remarks 6 and 9). It is
perhaps fair to say that such value as a given method of asymptotic comparison
may have stems mainly from the limiting efficiency function obtainable by that
method. If so, the comparison of inexact slopes affords, or at least promises, a
very short cut to the main conclusions of exact analyses.

6. Examples. It is convenient to note at the outset of this section that the
lollowing distribution functions F satiafy condition I of Section 2: F*"(z) =
[ (20) exp (— 37} dt, with a = 1; F"(z) = P(x < 1), where x} denoteaa
chi-square variable with k d.f. (1 S &k < =), also with a = 1;and F™(z) =
1= 2) s (—1) " exp (—2'%"), witha = 4.

That F*" satisfies (2) with a = 1 follows from ((9), p. 168). To treat F™, lot
m be a positive integer such that 2m 2 k. For any z > 0 we then have

2l = (1)) = P(xa > z) S Pl > 2)
=1—F%2) SP(xsm>2) =P(ZSm—1)
where Z is a Poisson variable with mean 3z". It follows from the result for 7'
aod from 8 direct calculation, respectively, that the lower and upper bounds for
1 = F are both of the form exp (—4z'(1 + 0(1))}; hence 1 — F* is also of
the same form, i.e. (2) is satisfied with @ = 1. The verification in the case of
F* is straightforward from the definition of F**.

In the examples of stochastic comparison that follow, every sesquence [T.,}
tntroduced in a particular context is a standard sequence in that cootext, and
the asymptotic aull distribution is either P!, or F (forgomek = 1,2, ---),
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or ¥, Except poasibly for sequence 1in example 3 and sequence 3 in example 5,
each [T.| is strongly consistent. Throughout the remainder of this section
G denotes the standardized normal distribution function, i.e. G(z) =
fra 20) oxp [-0/2)d.

Examprr 1. Lot ¢ = (21,24, - - ad inf), where the z, are independent random
variables with each z. distributed according to G([z ~ u)/s), where yande > ¢
are entirely unknown. Let 6 = (4, ¢), and let H be the hypothesis that u = (.

For each n = 1, 2, - let U, = the number of positive z,’s in the m
{z, 22, -, Z}, and let T = {20, — n|/n’. Foreachn = 2, 3, --- let T®
denote the ¢ statistic based on {21, 22, -+ -, 7.]. Then for any 8 = (u, o) with
» # 0, the efficiency of sequence 1 relative to sequence 2 is

(17 via(0) = [2G(a) — 1'/a! where A = /s

This efficiency function is different from the ones derived in (1] by compariss
of exact levels, and also from the one derived in [7) by comparison of power fune.
tions. However, we have ¢11(¢) = lim,apra(n, o) = 2/x for every o, and the
same is true of the other efficiency functions cited. It should be noted that g,
is a decreasing function of | 4 |.

Now suppoee that ¢ is known and for each n let T be Kolmogorov's statistie,
fo. T™ = (n) sup, | Ku(z) — G(z/0) | where K. denotes the distribution fuse-
tion with masses 1/n at each of the points z;, 23, -+, and z, . It follows from
Kolmogorov’s theorem, and the Glivenko-Cantelli theorem, that the asymptotic
slope of [T} is 45", whered = sup, | G(z — &) — G(z) |. 1t follows hence tha

18) na(0) = (2G(4/2) — 11'/(4a/2)’

Since we always have w1 = v 1/m., it follows from (17) and (18) th!

e1a(8) < 1,that $ru(0) = 1forallo,and that oy ; —Qas | A | — =.
ExampLr 2. Let s = (2, 72, - - - ad inf) where the z, are independently dis

tributed according to G(z/¢), where o is entirely unlmown. H is the hypothesi

o=1.

Let T be Kolmogorov's statistic based on {z,, z,, - - - , z.} and let T =
| (221‘ a2 — (2n)} |- It is then found that ¥y = Lim, . ¢ra(o) = 1/(xe) &
12/100, but the function ¢ s need not be given here.

Next, let T be the sequence obtained by normalizing the best eatimate o
o e TO = | (12l - n)/(2n)|. We then have
(19) nale) = 4/(1 + o).

That ¢ i8 not = 1is due entirely to the fact that the common ssymptotic distr-
bution function for sequences 2 and 3 (i.e. F™ with k = 1) does not provide th
exact levels attained for a given n.

ExamrrE 3. Let Fi(z) and Fy(z) be probability distribution functions oa the
real line, such that dP; = f,(z) dz where f; is a continuous function of z, except
poasibly at s finite number of points, (j = 1, 2). Let s = (z{a); z{%)) where
) = (2, 28", - ad inf) and z{%) = (z®, z§®, - - - ad inf) areindependent
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o of independent random variables, with z distributed according to
Fi,(n=12-;75=12) Let 8 = (Fi, F1) and let H be the hypothesis
that Pi(z) = Fa(z).

Let & and I be given positive integers with k < I, and write p = k/l, ¢ =
]| — p. Assume henceforth in this example that n is restricted to the set I, 21,
3L, -+~ . For each n, let my = my(n) = np and my = ma(n) = nq.

Foreach n, let s, = (=", zi", -+ | 28} ; 2", 2{®, -+, z&)). Let U, denote
the statistic of Stevens and Wald and Wolfowitz [10] when the datum is a. , i.e.
{". = the total number of runs of superseripts 1 or 2 when the n elements of s,
are arranged in ascending order. It follows from the results given in [10] that,
for any 6, Ua/n converges in probability to 2pg(l — v], where

“[(2) — £}
- @D T o &

This form of the consistency theorem of Wald and Wolfowitz is due to Pitman
131, Now let T8” = [u(n) — U.l/o(n) where s and o' are the mean and variance
of U when H obtains. It then follows by referring to the resuits in (10] for the
null case that { 72" is & standard sequence, and that its slope is

2 a(8) =+,
where v is given by (20).
Next, let TS be the statistic of Smirnov, i.e.
T = (npg)' sup, | K" (2) — KP(2) |,

where K" is the distribution function with masses 1/m; at each of the points
A zl.‘,’, (; = 1, 2). It follows from the theorem of Smirnov and the

Glivenko-Cantelli theorem that the slope of | T} is

(20) v = (pg)

(22) al(8) = ipgs', where 5 = sup | Fi(z) — Pa(z) |

Cunsequently, the efficiency of the Wald-Wolfowitz test relative to the Smirnov
test is

(23) a8) = v'/4pgs’.

It isscen from (20) and (23) that if (fi — f1)*/min {f; , fi} is integrable, ¢ — 0
10 p — 0 or 1, i.e. the relative cfficiency of sequence 1 is very small if the two
somple sizes my , my are very different. It is also seen from (20) and (22) that if
¥, and F; are both members of a sufficiently smooth parametric family of distri-
imtion functions, and il Fy ia close to Fy, then ¢ will again be nearly zero, for y
will then be of the order of magnitude of &', This is the case, for example, if
{21 F, = G(z), Fx = G(z — &), snd [4] is small, or if (b) Fy = G(z), Fy =
Cu1/e), and o is nearly 1.

We observe next that regularity conditions are essential to the arguments of
"u: preceding paragraph. Thus if (¢) fi = 1 on (0, 1) and 0 elsewhere, and f; =
Jur — A), we bave ¢ = 1/(4pg) for all A. A different irregular case is (d)
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fi=1on(0,1) and 0 elsewhere, and fy = 1 + #in (2rkz) oa (0, 1) and 0 de-
where, where & is 8 positive integer. In this case & = 1/(xk) and p = ¥\ ){p},
where M i8 & positive constant independent of k. By taking k sufficiently large v
gee that sequence 1 can be much more efficient than sequence 2 even though 7,
ia close to Fy in the sense that 4 is small.

Supposs for a moment that in case (d) it i8 required to discriminale betwers
Fy and Fy (with 8 given large k) on the basis of a single observation 7. [t is thes
clear that discriminant functions such as z or |z are practically useless (betsom
§ is small) and also that, in comparison to the optimum criterion of Neyman sad
Pearson, z and |z] are very inefficient (because fi(z)/(z) is far from mono
tonic in z or |z]). We shall show that ¢ can be very large only in the ratber
extreme cages where both these conditions are satisfied. More precisely, it will be
ghown that in general

(%) 0a(8) S (1/4pq) min {€', (34/28)")

where 8, is the I, distance between /; and fy (0 < &, < 2), and £ is essentially
the least upper bound to the number of timea that the graph of y = fi(z)/(z)
crosses any line y = conat.. It follows from (24), in particuler, that if p = g =}
and f3/f, is monotonic then necessarily ¢ S 1.

To establish (24), let 8 = (Fi, F1) and p be given, with dF; = f;dz, and jy
v be defined by (20). Defineg(z) = pfi(z)/pHi(z) + ¢fi(2) i fi(z) + fi(z) >¢
and g = p (eay) otherwise. Let Fo = pF, + gFy. Then

oo Lomer
Consequently
1= () [ U~ J/oh + i aRy

= o) [ 1o — p)/p' aFs

(26) = _[: (g — P)/pql-g-dFy

= [G-sga
= oy

where p; = 2 g dF; (j = 1,2). It follows from (25), by & well known represests-
tion of the expected value of a random variable, that

(26) = [16) - Gy ay,
where Gy(y) = Pr.(glz) S y|F)j=1.2



BTOCHABTIC GOMPARIBON OF TEATS 287

Now let P; denote the probability meagure on the Borel sets of the real line
corregponding to F;, 7 = 0, 1, 2. It is evident from (26) that

v % supy [Gx(y) — Gi(y)] = supa [Py(4) —~ Pi(4)}.

As is easily seen, sup. [Pi(4) — P(4)] = Y2 (fi — fi|dz = §8, . Hanoe
v S 80/2.

Next, for any interval I on the real liné define §(I) as follows: { = 0 if
Po(I) = 0orif Po(I) = 1;¢ = 1if 0 < Py(I) < 1 but ] is unbounded; and
¢ = 2 in the remaining case. It ia then easily seen that Py(I) — Pi(I) s 1(I)-4
for all I, where § is given by (22). Now chooee and fixa y, 0 < y < 1, and an
e« > 0. Let A = |z:9(z) < yl. Let gy, ¢) be the infimum of §(Iy) + {(I) +
+« - = (Is) over all finite collections {f;, Iy, -+, L} of disjoint intervals I,
such that with B = I, + Iy + -+ + I, we have Py(A) — Pi(4) S Py(B) —
P1(B) + ¢ Itisthen clear that Py(A) — P{A) S n(y, )-8 + « Since ¢ is arhi-
trary, we bave that Py(A) — Pi(A) < n(y)-8, where 9(y) = limon(y, o),
0 = n(y) £ =. Assuming that 5 is & measurable function function of y, it fol-
lows from the precent definition of A and (26) that y < &-f3 2(y) dy. In any
case, if £ is the essential supremum of p(y)(¢ S «) we have ¥ S ¢-3. Thus
v = min [£-8, §,/2}, and (24) now follows from (23).

The argument of the preceding paragraph is valid without any restrictions on
11 and fr, but the final result is nontrivial (i.e. § < =) only under certain condi-
tiops. The reader may verify, in particular, that if there exists a set B with
Po(B) = 1 such that g or —gis non-decreasing oo B then ¢ < 1. More generally,
if for some k = 1,2, --- it is possible to find disjoint intervals I;, - - -, I, such
that > Po(I,) = 1 and such that g is essentially monotonic on each I, then
£ Sk

In concluding this discussion of example 3, let us note that the numerical value
of v depends on F; and F only through the error probabilities in the Neyman-
Pearson theory of testing F, against Fy given z. This dependence can be made
explicit as follows. For any subset A of the real line let a{4) = Pi(A) and
B(A) = 1 — Py(A). a and B are then the errors of the first and second kind in
using A as the critical region. Forany 2,0 < z < w,letr(z) = a(4,) + 8(4.)
where A, = {z:fi(z) 2 #(z)|. It follows from (26) by a straightforward calou-
lation that

(27) v= [ 0= @/ tp + e

It follows from the preceding paragraph that the slope of the Wald-Wolfowits
test remains unchanged if each observation in the two samples is subjected to a
1 — 1 transformation before being supplied to the statigtician. This transforma-
1ion need not be continuous or monotonic—all that is required is that the distri-
butions of the transformed variable aleo eatisfy the conditions stated at the
outset of this example,

ExaMpLE 4. Let 3 = (21 ; 28 ; -+ ; zith) be k independent sequenoes
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2D = (2", 7" ... od inf) of independent random variables z” (m = i,
9, 3f = 1,2+, k). Lat P(z) be a continuous distribution function smeh
that

(28) [:zdF-o, [:x'dﬁ-l.

Let ¢ > Oand g, s, - -, i be constants and suppose that &' is distribuieg
according to F([z — wl/o), (m = 1,2,-- ;5 = 1,2 .-, k). Here t =
(F;mom, - o). B is the hypothesia that u, = uy = -+ = s

Foreachn = k, k+ [, .- let m(n), -+, mi(n) be positive integers such
thatn = m + me + - + my. It is assumed that

(29) limm,/n = p;, where 0 < p, <1(j=1,2-,b
Foreachn, lets, = (z{", -, 28 ;- ;z™ -~ 22), andlet 77" bethemur

root of the statistic of Kruakal and Wallis ([11), Section 2). it then lollows Ira
the results given in {11) that | T%"} is a standard sequence, with slope ¢, defined
a5 follows. Let

A= {w —mlfe  a,= [: [F(z 4+ &) = F(0)1dF,
(30) .
B = ;l Pr @,

forallr, sandj = 1,2, ---, & Thea

() ) = 12@ p,a;).

Next, let T.” denote the squars root, of the usual analysis of variance stausy
based oo & . Thea (72"} is also a standard sequence, and we have

(32) oy = 12 (;:; rﬁ)/ (; ﬂn’),

where
»

(33) v = 2 pbs forj = 1,2,- t

)

Buppose vow that dF = f(z) dz, and that f is sufficiently regulsr w
[2alF(z + A) — P(z)]dF = &fZ f(z)dF + A-o(1) an & — 0, It e
follows easily from (30), (32), and (33) that, forany & = (F; 4, -+, 50

(34) () = lim ns(0) = 12 [[:/ .w]'.

Itiuhown'mmthnw'mnumlmlhm.w.(.)ntheotherhand,uinealn..lsl
we have [8,] S 1 and bence wa S 12/( 21 Pvl). Consequently gy — 03
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max; {|v;[) — =, i.e. a8 the mean of at least one sequence z'” becomes very
different from the weighted mean of the others.

Examrre 5. Let 8 = (n, t, -+ ad inf) be a sequence of independent and
identically distributed random variables va = (za, ya), Where z and y have a
bivariate norma! distribution. H is the hypothesis p = 0, where p is the correla-
tion between z and y.

For each n, let r. denote the sample produet moment correlation based oo

L=, n, o, 0). Let T = dliog (1 + r)/(1 - r)]|, and T2 =
(n = 2"1r2/1 — r% . We then have

1=, 1+ 0\T
w9 ) = 58 [ (112)]

It is easily seen that vy i8 & decreesing function of |p}, varying from 1 to 0.

Next, let a, = the median z value in s, , and b, = the median y value in s, .
Let fo. = the number of pairs v; in 8, with z; > 6., yi > ba ; fau the number
withz < au, y > B, fia the number with z; < a., i < ba ; and f,, the num-
berwith 2, > 6., ¢ < o . Let T2” = the square root of the chi-square statistic
based oo the 2 X 2 table of the four frequencies f. Then

@) = (4 (1 - "]’. 20 vaa(8) = 44" & 41/100.

Now let 7. be Spearman’s coefficient of rank correlation based on s, , and let
7 be the difference ign covariance, i.e.

2= 3 ogn (= 35 (v — w)/n(n = 1),

where sgn (z) = +1, 0, or —1 accordingly as £ >, =, or < 0. Let T{ =
ir./o’(n) and T4 = | 7% |/a”(n) where o' and o” are the standard deviations
of 7 and r* respectively when o = 0. We then have, by using formulae given in
fiz},

sin~"(o/2)

v«.,(0)=(9/-')-(1—n')-|: o

. =1
() = (9/2)-(1 = #)- [“‘—“f]‘
It follows from (37) that guq(8s) = ¥sa(6) = 91/100. It also follows that
¢1,i8 8 decressing function of | s |, varying from 1 to 4/9.

APPENDICES

The argument of this paper depends entirely on the practical principle that it
the null hypothesis does not obtain, and if in & given instance test statistic 1
stiaiva the Jevel [, while statistic 2 attaina Ly, statistic 2 is superior in that
stance if and only if L, < L». As might be expected, thia principle is closely

(37
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related to comparisons based ou power funation considerations. The ennedin
is discussed in the following appendices.

Appendix 1. It will be shown here that the asymptotio slope of a sisadul
sequence is & functional on the family of power functions amocisted with U
of statistics (proposition 2), and that slopes are consistent with powr
in the following sense: if the power of the test besed on T never exceeds t
of the corresponding test based on T then ¢»a S 1 (proposition 3). Thewom
olusions are useful analytical tools in applications such as the one mentionsis
remark 7 of Section 4.
Consider & sample space § of points s, a set [Py:8 £ 0} of alternative ditrk
tions on S, and a hypothesis H:8 ¢ . Let |Tu| be a (not necessarily stasdu]
gequence of real valued statistics such that, for each 9 in 0,

(i) % Py(T. < z) = P(z) forevery z,

where F is a probability distribution function, and such that, for each #ing-{,
(i) T,— » in probability.

For any given constant @, 0 < a < 1, and each n, the &ize « test (of H) by
on T. is then defined to be the following procedure: reject H if and oalyj
1 = F(T.) S a. In general, this test is not literally of size a, i.e.

Pl — F(T.) Sa) # a

for each n and each 8 in 0y , but the present definition seerns legitimate and wif
in view of the reasons stated in Section 2. For any 6 in 0 and any », k|-
Ba(a| 8) denote the power of the size a test based on T. when § obtams i
Bala|8) = Py(F(T.) <1 - a).

Now consider a fixed 6 in @ — Qs and a fixed a. It is easily seen from (i} e
. —0a8n — o It can be shown in certain cases that in fact n”™" log 8, — -
where 7 is a positive constant depending on ¢ (and possibly also o o] j
guch cases, if r, and ry are the t iated with two seq T8
{TP), ri/rs i3 the asymptotic efficiency of sequence 1 relative to sequene ¥
the following sense: ry/ry is the (limiting) ratio of sample sizes required 19 st
an assigned (arbitrarily emall) probability of an error of type two. This meth
of comparison is due to Hodges and Lehmann {7]. A very similar methof oy
devised earlier by Chernoff [6]. The method is, however, quite difficult to
because precise estimates of S, are required.

An alternative analysis which suggests itself is the dual of the preceding o,
i.e. to let 6 and B be fixed, 88y Su(aw | 8) = o, Where 0 < B¢ < 1, and losak
the rate at which a, must then tend to zero. This approach was meationd
Cochran ([13}, p. 323). It might appear at first sight that this second mekd
would be just ag difficult as the first, but that is not the case. In the pem
formulation, a and 8 are not really interchangeable. Indeed, in the definitmé
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the power function, we bave already exploited the lack of symmetry between
nand @ — 0 by replacing the set of null distribution functions

[Py(Ta < 2)i0e0,n=1,2 |
by the gingle distribution function F(z). It follows from proposition 2 below that
if |T.| is a standard sequence then n™" log an — —¢/2, where ¢(8) is the slope
of {Tu} 85 defined in Section 2. Consequently, ¢ = ¢)/cx serves 28 the relative
efficiency of two standard sequences in this method of comparison.

A third method of comparison of power functions, due to Pitman (2], depends
essentially on fixing both a and B, say Ba(« [ 8.) = B0, and studying the rate at
which 4. must then tend to some null value. It will be eshown in Appendix 2,
under essentially the same general conditions as are usually required for applica-
tion of this method (cf., e.g., [4]), that asymptotic efficiency in Pitman’s sense
coincides with ¥, the limit of ¢ a8 8 tends to a null value.

We proceed to establish the connection between the slope of 8 standard se-
quence and the family of power functions associated with the sequence. In the
following propositions 1-4 we consider an arbitrary but fixed 6in @ — .

ProposiTioN 1. Suppose that {T,) 18 @ standard sequence with slope c(8). For
my sequence ln.] of values an R (0. 1); let

(i) va = 2 log (1/an).

Then

(iv) lim inf [#./n) < ¢(8) implies lim inf |Ba{an | 6)) = O,
and

(v) lim sup {v./n} > ¢(8) implies im sup {B.(ax | 8)] = 1.

Paoor. Let K, be defined by (4). It then follows from the definition of 5, and
(i) that
(vi) Bulon | 8) = Po(K. < wa).
As s ghown in Section 2, K./n — ¢ in probability. It follows hence from (vi)
that (iv) and (v) are valid.

Asan immediate consequence of proposition 1 we have

ProrosiTion 2. If

(vii) 0 < lim inf [B,(as | 6)) S lim sup {Bu(an | O)} <1,
then
(vi) lim fo./n] = ¢(6).

It should be observed that there may exist no sequence |a.| such that (vii) is
salisfied. We shall then Bay that [ T.| is degenerate at 8. Although degeneracy can
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scarcely ocour in the applications, it is necessary to take it into account in the
general case.

Next, let [T} and { 74"} be two standard sequences, and let 1 — 8"(a| )
denote the power function of the size o test based on T4, i = 1, 2. For eachn,
Iot 8a(1,2] 8) = sup. (85 (a | 8) — B2 (a| 8)). It is easily soen (e.g. from (i)
that 0 S 8 S 1. Let us say that {T5'] dominates { 75"} at 6 if

(ix) lim 8.(1,2]8) = 0.

ProposrrioN 3. If [T'"] dominates | T2'| af 0, then ¢1.4(8) < 1.

Proor. Suppose first that { T<"] is not degenerate. Let {a.} be a sequence such
that (vii) holds with # = 8%, and let v, be defined by (iii). Then a4 =
lim (vo/n) by proposition 2. Since {T4"] dominates { 7"}, we have

lim inf 85" (ca | 8) 2 lim inf A" (axa | 6) > 0.
Henoe ¢,(8) S lim inf (va/n) by (iv). Thus ci(8) S ci(6).

Suppose now that {T."| is degenerate at 8. Let ¢ be a non-negative random
variable with a continuous distribution function (e.g. a chi-square with 141,
independent of s, and let {AJ be a sequence of positive constsats with
liaea Mo = O, (.8 Aa = 1/n). Define T% = (K + \.-1}\. It is readily wes
that | T+"} is a standard sequence on the space S* of points (s, {), that ¢ = ¢.
and that 7 (a | 8) = Py(K™ 4 A.-t < v), wherev = 2log (1/a). Since h.-{ >0,
and since 857 (a | 8) = Pi(KY < v), it follows that [T} dominates { T*") ud
hence also [T<"]. For each n, the distribution of K" + .- is continuous wiee
8 obtains, 8o that { T%"} in not degenerate. Hence ¢, S ca =c1) by the preceding
paragraph. This completes the proof.

The following is a partial converse of proposition 3.

ProrosrTION 4. If g1 < 1, then (T"} dominates | T ).

Proor. For any a we have

6(al 8) = PR < o) by (i)

= P(ED < v, R <'v) o PHEY <0, K" 2 9)

S PUED <v) + PUKY < KO

=80 (a | 8) + PED < KL) by (vi).
Since K"/K — g in probability (cf. (10)), and sincs p < 1, PHED ¢
K) — 0asn— o It follows hence from (x), as desired, that (ix) is st

It follown from propositions 3 and 4 that ¢ < 1 if and only if sequence !

dominst 1 but seq 1 doea not dominate sequence 2. It alw ld
lows that ¢ = 1 if and only if (a) each sequence dominates the other, or (%
neither sequence dominates the other. It can be ahown by simple examples ts:

contingency (b) does ocour, i.e. in the gensral case, domination induces osly s
partial ordering of the class of all standard sequences.

(x)
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Appendix 2. In this appendix we discuss ¢, the limit of ¢ 88 8 tends to & null
value, in & special context. Suppose that @ is an interval on the real line, and that
H:8 = 6, where 8 is a point in . Let {U.} be & sequence of statistics on S
such that the following conditions are satisfied for each 8 in 2. (A) pa(8) =
EiU.| 0] and oh(6) = Var (U.|8) exiat, 0 < o% < ; (B) Vu(s, 8) =
[Us = #2(8))/04(6) is asymptotically normally distributed with zero mean and
wit varianoe; (C) With 8,(8) = [un(8) = wn(00)}/on(8t), limaun 80(8)/0' =
b(8)(s8y), where b > O for 8 7 6y ; (D) [0(8)/0a(60)]/n' — 0 881 — «; and
(E) there exist an even positive integer k and a positive constant A such that
O = 2-(8 = 8)° [1 + o(1)] 88 6~ 6.

Suppose that | US”] and | US| are two sequences satisfying conditions (A)-
(E), and let A27(8), b,(8), %, and X, be the corresponding parametric functions
end constants, i = 1,2, Define T+ = | V&"(q, 6,) |. It is then readily seen from
14)-(D) that {T%"] is & standard sequence with slope [b,(6))". Hence ;s =
[b/b’. It now follows from (E) that

0 if by > &y
() Via(be) = lim o 4(8) = {N/M if by = by
-t © ik <h.
It follows from (C) that we also have
(«i) Via(b) = '11130 lim [a5°(8) /88" (0)]".

The right side of (xii) is closely related to Pitman’s formula for the relative Limit-
ing efficiency, and becores identical with the latter under certain additional con-
ditions. Suppose, for example, that k = k» = 2, that A is a continuously
differentiable function of 8, da%’/d8 = A%"(8) say, and that condition (C) ie
satisfied uniformly in a neighbourhood of 8, by both sequences. In this case, by
first interchanging the order of the two limita in (xii), and then using the differ-
entiability conditions, we obtain

(xii)) ¥ra(Bo) = lim (AL (6)/A%" (6))

Suppose pext that o and B, are constants, 0 < a < 1 — f < 1, and {4,} isa
wquence in 9 such that

vy Bm (A (8,)/A(8)) = 1,  limBY(al8) = B, (=12

It then follows from (xiii) and the first part of (xiv) that
() vis(8) = Um [A2(8.)/A°(6,)).

Snee the right side of (xv) is Pitman’s formula, we see from the second part of
(uv) that ¥ is the asymptotic efficiency of sequence 1 relative to 2 in Pitman’s
wnse. As far a8 calculation of ¥ is concerned, however, (xii), (xiii) or (xv) are
not required since ¢ is alreacly given by (xi).
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Appendix 8 Under certain conditions the slope of a standard sequence [T,
can be expressed as the limit, as n — , of n™" times the expected ratio of the
power of the test based on P\ to its size, with the size chosen at random accord.
ing to & certain fixed distribution. This representation of a slope secms to be of
some interest, partly because slopes are considered in Sections 2 and 3 of th
paper without reference to testing at a preessigned level.

Suppose, for example, that T', is a sequence such that in the null case T, s
asymptotically normally distributed with zero mean and unit variance (eondi-
tions I and II, with a = 1), and that in the non-null case

. . T :
(xvi) l"u.!_x.E [ 7 b] 0,
where b is the parametric function specified in Condition ITI. For any givenu > 0.
consider the following test: reject H if and only if | T | 2 u. Let « be the (3p-
proximate) size and v, the power (y = 1 — 8) of this test, and let p, = v,/a,it

1 4a _
) alu) 2[\/—2_15 &, yuul0) = PUTa| 2 ule),

o W(u]8)
¥alu
on(ulf) = o)
Let U be a random variable taking valuesin (0, « ) according to
o %] a
(i) P(U ) = [ (4:)“ Vol dz}dt.
We then have
(xix) o(0) = lim ! Flp(U|0)]

for every non-null 4. It follows from (xix), in particular, that in the non-null as
K./E(p,) — 1 in probability.

To verify (xix), we note that ¢ = ab’ = b", and that b’ is the limit of a BT,
by (xvi). Since E[T% | 6) = [T P(T% 2 t| 8) &, it follows that

(=) w0 =lmL ["PIT.I2 VIO &

‘The desired conclusion follows from (xvii) and (xviii) by a change of variste
i the integral on the right side of (xx).

The formula for ¢ obtained above is perhapa the simplest one in & class of ach
formulae. To obtain another member of the class, we note from (xvi) andb>0
that b is the limit of s VE(| T |). It follows hence that

. 2. 1
(0d) ol8) = - lim = Elpn(V | 8)],
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where V is distributed in (0, ) according to
) co-[{[a)a
(s PV $v) f{fe i
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