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Abstract

The present dissertation attempts to employ hybrid genetic algorithms (GAsi 1o
solve the flezible-ligand docking problem i.e. predicting the binding conformation of
a flexible ligand molecule into a rigid protein. Our hybrid GA scheme uses the
concept of Lamarckian genetics to perform a local search about an individual. followed
by replacing it with a better solution found in iis neighborhood. Two local search
schemes have been investigated and their performance relative to the standard GA

have been compared. Preliminary results obtained on a set of three protein-ligand
complexes have shown promising results.
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Chapter 1

_ Introduction

1.1 Introduction to bioinformatics

Bioinformatics is an interdisciplinary aclence that seeks to uncover knowledge from
a vast quantity of biological data using computational and informational approaches.
Currently, the use of computers has revolutionized the field of biology and has helped
in developing a better understanding of various processes taking place at the level of
genes and proteins. A gene is a fundamental unit of inheritance and it codes for
a protein. A protein, in turn, is responsible for various metabolic functions taking
place in our body. Some of the challenging problems being faced today include gene
sequence analysis, protein structure prediction, drug docking and analysis
of genetic and metabolic networks [1]. In this dissertation, our focus is on
attempting to solve the problem of docking of a drug molecule into a protein.

1.2 The molecular basis of life

The molecular basis of life is formed by complex biochemical processes that con-
stantly produce and recycle molecules and do so in a highly coordinated fashion. The
reactions comprising this “molecular circuitry” perform several important functions

[1]:

* Construction of molecular components essential for life.
¢ Breakdown of molecules harmfil to the cell.

 Storage and conversion of energy.

e Exchange of information in the cell or between cells.

The “molecular circuitry” has intended modes of operation that correspond to
healthy states of an organism and aberrant modes that correspond to diseased states.

3
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1.3 Role of drugs in curing diseases

Some metabolic reactions do not happen at their intended rate, resources that are
needed are not present in sufficient amounts or waste products accumulate in the
body, leading to diseases such as sickle cell anaemia, diabetes. Alzheimer’s disease
etc. In order to replace the aberrant processes with those that restore a healthy

state, the effectiveness of the proteins responsible for the disease has to be controlled.
A drug molecule (also called a ligand molecule) is a chemical compound, of typieally
small size, which modifies th: enzymatic action of a protein by strongly binding to it.

An inhibitor is a drug molecule which binds to a protein more strongly than
the substrate.  Then the binding site of most enzyme molecules will contain drug
molecules and cannot, catalyze the desired reaction in the substrate. In some cases,
the drug molecule binds to the protein for the remaining lifetime of the molecule.

Such a drug is called a suicide inhsbitor. The effect of the drug can be controlled by
the time and dose it is administered.

1.4 Designing drugs
Current pharmaceutical research involves the following :

* Identification of target protein to which a dritg hinds.

¢ Identification of potential drug candidate.

Once the target protein has been identified, the search for drugs is governed by
several procedures. The dominating paradigm has been the concept of molecular
similarity based on the “lock-and-key” principle. According to this principle, a drug
molecule fits into the binding pocket of the protein like a key inside a lock. Thus,
molecules whose surfaces are similar in shape and chemical featyres should bind to the
target protein with comparable strength. Drug design was based on comparing drug
moleciles, either intuitively or systematically with the help of compnters, without
using the 3D structure of the protein (about which little was known anyway ).

However, as 3D structure of the target proteins hecame known, the focus of drug
research shifted to a rational or structure-based approach, which involved pre-
diction of the structure and binding affinity of the molecular complex involving a
structurally resolved protein and 3 drug (ligand) molecule. With the advent of
computer-based techniques to screening potential molecules for drug-likeness. also

called high-throughput screening, the binding affinity of several hundred the-
sand drug candidates can be determined within a day. Rational based ddrug design
has the potential to reduce the cost and time for developing drugs drasticallv,

1



1.5 The docking problem

The docking problem can be classified into three kinds, depending on which molecules
participate in docking protein-ligand, protein-protein and protein-1NA.
The Protein-ligand Docking problem can be stated as follows:

(Fiven a protein molecule (receptor) and an arbitrary small ligand molecule, predict

whether the ligand will bind to the protein, and if so, predict the geometry and affinity
of the binding. |

Here, the geometry of the configuration should be the configuration of the system
that minimizes its free energy (potential + entropy).

1.5.1 Components of a docking procedure

A docking procedure consists of three interrelated procedures [2|:

o Identification of the binding site.

e Search algorithm to effectively sample search space.

¢ Scoring function.

The location of the binding site can be obtained from comparison with other known
protein structures or biochemical constraints. Also, cavity detectjon programs can
be used to identify binding sites on a computer.

The search algorithm must efficiently sample the search space of the ligand-

protein complex, i.e. the translation, rotation, and conformation space of the ligand
relative to the protein.

The role of scoring function is two-fold — as a target function for the search algo-

rithm (a quantity to be optimized), and to give a ranking to the set of final solutions
generated by the search.

1.5.2  Why is docking computationally difficult?

Several aspects make docking hard to solve 2, 3}
e Large number of degrees of freedom — Includes:

— relative orientation of the two molecules.

— conformational flexibility of ligand.

— partial flexibility of protein.

Typically, the conformational search space for a protein-ligand complex is of

the order of billions. hence. niling out exhanstive enmmeration of afl possible
complex structures.



¢ Lack of accurate scoring function — Currently, popular scoring functions sim-
plify many of the chemical interactions to enable quick computation, at the
cost of accuracy. A full molecular dy®amics based simulation is prohibitively
expensive for docking of a large number of molecules for screening purposes.

Depending on the degrees of freedom available to the protein and ligand molecules.
docking approaches can be classified into the following :

{ .
e Both p}o.tein and ligand rigid — This is computationally the simplest, as the

number of degrees of freedom of the complex is minimum i.e. 6 (3 (translation)
+ 3 (rotation)).

* Rigid protein and flexible ligand — Ligand flexibility is modeled by rotatable

bonds. The number of degrees of freedom equals (6 +.V), where N is the number
of rotatable bonds in the ligand.

¢ Both protein and ligand flexible — This is compﬁtationa]ly the most difficult

as the search space is huge, even if protein flexibility is limited to typically a
small fraction of all protein atoms.

In this dissertation, our focus will be on docking a flerible ligand into a rigid
protein.

1.6 Application of computational drug-docking

Computational drug-docking has immense application in the pharmaceutical ind ustry.
Currently, the search for novel drugs, for diseases that afflict the human society, is
very time-consuming and laborious, apart from being too expensive. If the computer
s able to predict a subset of compounds, among those currently available, which
qualify as potential drug candidates, the experimentation and testing aspects of the
drug development phase can be targeted towards such promising compounds only.
This will help save huge amounts of time, labor and money.

Another application is de novo ligand design in which a combinatorial library of

virtual ligands are designed on a computer, followed by docking of these molecyles to

screen for candidate drugs. Time-efficient docking algorithms are required to screen
a huge database of virtual ligands.



2.1 Introduction

The term evolutionary computation (EC) refers to the study of the foundations
and applications of heuristic techniques based on the principles of Darwinian evo-
lution - survival of the fittest and descent with modification. These techniques are

a living being. In addition, Darwinian principle of “survival of the fittest” or in
other words, natural selection is the mechanism that relates chromosomes with :he
efficiency of the entity they represent, thus allowing those efficient organisms which
are well-adapted to the environment to reproduce more often than those which are
not. The evolutionary process takes place during the reproduction stage. Each of the
selected chromosomes is syb Jected to a variation operator. Most common ones are



as drug docking, protein [olding and biological sequence analysis. However, one ¢har-
acteristic feature that distinguishes EAs from classical optimization approaches, is
that they do not guarantee convergence to the global optimum. In practice, the
solutions provided by EAs are sufficiently close to the global optimum. An additional

benefit of EAs over conventional approaches is that they can be parallelized easily,
further increasing their efficiency.

2.4 Constituents of EAs

A variety of evolutionary algorithms have been proposed. The major ones being:

¢ Evolution Strategies (ES)

* Evolutionary Programming (EP)
e Genetic Algorithms (GA)
* Genetic Programming (GP)

While all of the above approaches give preference to the fitter individuals in a
population, the differences between them can be attributed to the relative importance

given to each of the variation operators e.g. GAs typically give more preference to
the crossover operator whereas in ESs, mutation is the primary operator used.

2.5 Outline of an EA

An evolutionary algorithm is an iterative and stochastic process that operates on a set
of individuals called population. Each individual represents a potential solution to
the problem being solved. This solution is obtained by means of an encoding/ decoding
mechanism. Initially, the population is randomly generated {perhaps with the help
of a construction heuristic). Every individual in the Population is assigned, by means
of a fitness function, a measure of its goodness with respect to the problem under
consideration. This value is the quantitative information the algorithm uses to guide
the search. Selection of individuals takes place according to a selection strategy.
with fitter individuals having a higher probability of getting selected. The selected
individuals are allowed to undergo reproduction through application of evolutionary
operators, to generate a new population, and the cycle repeats. The steps involved
in an EA are outlined in Algorithm 1.

Since, modified GAs have been used in the current problem, let us briefly review
them first.



Al_gurit.l}m 1 Evolutrc;mfy Algorithm
I: ¢ + 0 {initialize time}
2: Generate [P(0)]

3: while NOT Termination_Criterion (P(t)] do
Evaluate [P(t)]

P’ (t) ¢ Select [P(t)]

P”(t) « Apply-Reproduction_Operators [P'(t)]
P(t+1) « Replace [P(t), P” (t)]

8 tet+1

9: end while

10: RETURN Best_Solution
—_—

2.6 Genetic algorithms

O A

GAs are search techniques based on the mechanics of natural selection and evolution
[4, 5]. The following are the defining characteristics of a GA.

2.6.1 Encoding

Each individual is encoded in a binary string, also called the genotype. The phenotype
or actual interpretation can be got back by decoding individuals from the genotype.
However, the binary encoding of chromosome has been found to be inadequate for

optimization problems in real-valyed spaces. Hence, a real-coded GA is often used,
in which a chromosome consists of a set of real-valued parameters.

2.6.2 Selection

A user-defined fitness function is used to score each solution Based on the fitness
scores, various selection methods are ysed:

o Proportional selection — Probability of selection varies directly with fitness
value e.g. Roulette wheel selection.

o Tournament selection — Utilizes competition between each individual and a
randomly chosen set of n other individuals in the population. In each compe-
tition, the individual with the higher fitness value is assigned a “win’. After
all competitions are completed, the individual are ranked with respect to the

number of “wins”, and the lowest scoring half of the population is removed.
The remaining individuals become parents for the next generation.

2.6.3 Variétion

The variation operators used are

10



e Crossover - - For crossover, individuals of the parent generation are randomly
grouped pairwise. Then, one of the several crossover schemes are applied:

— Stngle-point - One crossover point is selected, binary string from the be-
ginning of the chromosome to the crossover point is copied from the first
parent, the rest is copied from the other parent.

- T;wo pownt - 'Two crossover points are selected, binary string from the be-
ginning of the chromosome to the first crossover point is copied from the
first parent, the part from the first to the second crossover point is copied

from the other parent, and the rest is copied from the first parent again.

~ Uniform - Bits are randomly copied from the first or from the second
parent.

¢ Mutation -— Mutation is done by flipping a randomly chosen bit of a chromio-
some.

Both the variation operators are applied to selected individuals with a certain
probability. Since, GAs lay more stress on the crossover aperator, the probability of

crossover (pcross) is typically taken to be high (e.g. 0.8) whereas mutation probability
(pmut) is taken to be low (e.g. 0.05).

2.6.4 Elitism

Elistism preserves the best solution obtained in the current generation. Elitism has
been found to be useful in problems involving function optimizations.

11



Chapter 3 .
GA-LS hybrids

3.1 Local search algorithms

A local search (LS) algorithm is one that iteratively improves its estimate of the
minimum (or maximum) by searching for better solutions in a local neighborhood of
the current solution. The neighborhood of a LS algorithm is the set of solutions that
can be reached from the current solution in a single iteration of the LS operator. The

termination of the algorithm is governed by a stopping criterion and the output of
the LS algorithm is typically one of the local minimas of the objective function used.

d.2 Local search operators

Several local search operators have been proposed in the literature [6]. Broadly speak-
ing, local search operators can be classified into two categories:

o Gradient-based Search
¢ Random Local Search

3.2.1 Gradient-based search

Gradient methods for local search require the use of the derivative of the objective
function. The minimization is based on the steepest descent principle, wherein. the
search moves along the local downbhill gradient direction —V f(z) by a step proportion
to the magnitude of the gradient at that point. Gradient-based methods have been
used extensively in several problem domains, such as the learning algorithm used in
multilaver perceptrons, called the backpropagation algorithm. The stopping criterion
for search is governed bv convergence to one of the local minima of the objective
function. where the value of the gradient becomes 0 and no further moves are possible.

12



J.2.2  Random Local Search

new point is worse than than the current point, a new point is generated by taking a
step in the opposite direction from the new point. If neither point is better than the
first point, anpther new point is generated.

The above operator automatically adjusts the variance of jts normal deviates
based on the rate at which better solutions are found. If the new solutions are better
sufficiently often, the variance is increased to allow the algorithm to take larger steps.
If poorer solutions are frequently generated, the variance is decreased to focus the
search near the current solution. The algorithm is lerminated, after a fixed number
of iterations, or when the step size becomes smaller than a given threshold.

3.3 GA-LS hybrids

3.3.1 Why hybridize?

Two competing goals govern the design of global optimization methods. Global re.
liability is needed to ensure that every part of the domain i8 searched to provide 1
reliable estimate of the global optimum. Locgl refinement is important since the re-
finement of the current solution will often produce a better solution. Thus, any global
optimization algorithm, such as a genatic algorithm, must, try to achieve both goals
using a combination of global strategy and local strategy. "

A hybrid GA-LS approach possesses both the global optimality of the genetic
algorithm and the convergence of the local search. In addition to finding better
solutions than the GA, they also optimize more efficiently.

3.3.2 Models of hybridization

Several models of GA-LS hybrids have been proposed. They include the two-phase
approach and the Lamarckian and Baldwinian models.

Two-phase approach

In this approach, the search process is divided into two phases. In the first phase, a
standard GA is used to search for “good” solutions, i.e. solutions close to the global
optimum. Once the population has converged to such a solution, search enters the
second stage, wherein a local search is employed to search refine the solutions obtained
during the first phase.

13



Lamarckian model

According to the Darwinian model of evolution, transfer of information is one-way.
1.e. from the genotype to the phenotype. However, in those cases, where an inverse
mapping function (from phenotype to genotype) exists, it is possible to finish a
local search by replacing the individual with the result of the local search. This strat-
egy is called the Lamarckian Genetic Algorithm (LGA). LGA is the based on the
(discredited) assertion made by Jean Batiste de Lamark that phenotypic character-
istics acquired during an individual’s lifetime can become heritable traits. Figure 3.1
contrasts Lamarckian and Darwinian models of evolution. The local search process
is shown on the left hand side and pure Darwinian mechanics is shown on the right.
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Figure 3.1: Lamarckian v/s Darwinian evolution

The LGA has been successfully used for the docking of flexible ligands into rigid
proteins in the program AutoDock [7]. In AutoDock. the genotype consists of, a
string of real-valued genes: three Cartesian coordinates for the ligand translation,
four variables for the ligand rotation, and a set of NV angles for the NV rotatable
bonds in the ligand. After applying selection and crossover operators, a local search
is performed on a fraction of the new population. The local search method is based

on the Solis-and-Wets operator. At the end of the local search, the new chromosome
replares the old one.

14



Baldwinian model

In contrast to the Lamarckian model, Baldwinian model of evolution does not allow
a parent to pass on its learned characteristics to its offspring; instead only the fitness
is retained. Therefore, after learning, the chromosome is associated with a “learned”

fitness that is not the same as its “inborn” fitness. Baldwinian learning has been
shown to be able to direct genotypic changes.

"y



Chapter 4

Approaches to drug docking

As briefly mentioned in Chapter 1, a docking method is composed of three components
- tdentification of the binding site, search algorithm and scoring functions.

4.1 ldentification of the binding site

Most docking methods rely on the binding site being predefined, so that the search
space is limited to a comparatively small region of the protein. The binding site may
be identified by comparison with the protein co-crystallized with a different ligand.
or comparison with proteins of similar functions. In absence of such information.
computer-based techniques rely on cavity detection programs |[8].

4.2 Search algorithms

A variety of search algorithms have been applied to the docking problem, the proini-
nent ones being matching algorithms for rigid body docking, incremental CONSTTIC-
tion methods, simulated annealing and population-based methods such as genetic
algorithms and evolutionary programming.

4.2.1 Matching algorithms

The earliest docking algorithms considered protein and tigand molecitles as rigicd ho-
les, in order to reduce the search space. One of the first, and currently, one of the

most widely used software tools for molecular docking, is DOCK 9]. DOCK repre--
sents the ligand moleenles as rigid spheres and tries to optimize their POSILIONS nsing
A distanee-compatible matching criterion. A set of atoms with given chemical prop-
erties are matched to complimentary atom positions within the binding pocket. and

the interatomic distances between ligand atoms provide constraints on the solution
set.

16



However, the utility of rigid-body docking algorithms is limited beeanse lignan
maolecules and, to some extent, the protein molecules exhibit conformational flex-
ibility. To account for this, later versions of DOCK programs use an ensemble of
rigid structures, each representing a different conformation of the same ligand. Sev-

eral other docking algorithms such as LIGIN [10] and FLOG [11] are also based on
similar ideas.

4.2.2 Incremental construction

Incremental construction techniques use 2 piecewise assembly of the ligand within a
defined binding pocket. Rigid fragments are generated from the ligand by breaking it
at rotating bonds, to create a set of fragments to be used by the docking algorithm.
The algorithm starts by placing one fragment (called base or anchor fragment) into
the active site of the protein. Usually, the largest ragment is chosen as the base
fragment. Then. the remaining parts of the ligand are added to the alreadv place.
fragment, iteratively. Several software tools use incrémental construction techniques
for docking purposes, most notable among them are FlexX [12] and LUDI [13].

4.2.3 Simulated annealing

Simulated annealing [14] is based on a model of cooling processes. In this model. the
initial state of the system has random thermal motion or “high” temperature. This
random motion is decreased over time (using a cooling schedule), until a final stable
docked position is obtained. The random motion of the ligand allows for exploration
of the local search space, and the decreasing temperature of the system acts to drive
it to a minimum energy.

Simulated annealing has been applied to numerous docking procedures, such as
an early version of AutoDock (7).

4.2.4 Genetic algorithms

Molecular docking is a difficult optimization problem, due to the combinatorial oYX -
plosion caused by the many degrees of freedom of the molecules. Thus, it requiires
efficient sampling across the entire range of positional, orientational, and conforma.
tonal possibilities. GAs fulfill the role of global search particularly well. and have
tound successful application in drug docking,.

Jones et al.[15| introduced a program GOLD (Genetic Optimization for Ligand
Docking) which incorporated full ligand flexibility with partial Hexibility of the pro-
tein. Each chromosome encoded the internal coordinate of both the ligand and protejr
active site, and a mapping between hydrogen-bonding sites. Fitness was determined
by summing the hvd rogen-honding sites, the pairwise interaction energy between the
ligand and protein atoms. and the ligand steric and torsional energies.
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1.3 Scoring function

Given a molecular docking algorithm, a means is required 1o identify the best of
set, of possible solutions. A scoring function provides an estimate of the strength of

interaction between the protein and the ligand, and can be used to rank the possible
solutions. There exist primarily three kinds of scoring functions:

* Free energy perturbation (FEP)

e Empirical scoring function

» Knowledge-based scoring function

4.3.1 Free energy perturbation

These are the most rigorous approaches for calculating binding affinities as they
deal with molecular dynamics simulations, considering, for example, quantum-
mechanical effects and solvent molecules. However, these methods are less practical
for solving drug docking problems as they require huge computational resonrees.

Execution time per protein-ligand conformation varies from minutes to hours of com-
piutation time.

4.3.2 Empirical scoring function

Empirical scoring functions are the most common means of estimating a binding
affinity and have become quite popular in drug-docking studies. The basic assum ption
underlying such approaches is that the overall binding free energy can be partitioned
into a set of components. Thus, the free energy of binding is written as a sum of terms,
accounting for various effects such as hydrogen bonding, torsional effects, and
interactions such as van der Waals. electrostatic, and hydrophobic. Empirical

scoring functions were pioneered by Béhm (13}. A typical function is given in Fquation
41

E == E}mﬂd + Ephi -4~ Egm- -4 E,.jmp.,-
+.F1-cﬂv + Eg[gﬂ +- EH + E,d (I])

where Fy 4. Eonis Eror Eimpry Evaw, Fue., Ey and F.x refer to the hond length
potential, bond angle potential. torsion angle potential. improper torsion angle po-

tential. van Der Waals pair interactions, electrostatic potential. hvdrogen bonds and
solvent interactions respectively. This particular energy function has been used in the
program CHARMm [16].

The weighting of each of the interaction termns Is nbtained by fitting a regression
model to a test set of ligand-protein complexes.
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4.3.3 Knowledge-based scoring function

These functions are based on statistical analysis of pairing frequencies of atoms within
known ligand-protein complexes, with the underlying assumption that the more fa.
vorable the interaction is, the greater is the frequency of occurrence. Thus, the total
interaction is approximated by the sum of pairwise potentials between the atoms.

Several such functions have been developed in recent years, e.g. PMF [17], BLEEP
[18], and DrngScore [19].
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Chapter 5

A GA-LS algorithm for flexible
docking

In this dissertation, an attempt is made to tackle the “Rexible ligand docking problem”
using a hybrid GA-LS algorithm modeled on the principle of Lamarckian genetics.
Further, we have tried to modify the local search operator used, in order to maintain
the diversity of the solutions throughout the run of the algorithm.

In the following sections, the details of the docking procedure are presented.

9.1 Input parameters

The input to the algoritiim consists of several files containing the structures of the
protein and the ligand, a file containing the parameters governing various aspects of
the GA-LS run, and the approximate location of the binding site region.

The protein structure information 18 obtained from the Brookhaven Protein Data
Bank (PDB) format. The 3.D structure of the ligand molecuyle is stored in the
Tripos MOL2 format. This file contains. besides the coordinates of the ALOms, {he

information about charges on each atom, the type of bonds and whether the hond 1S
rotatable or not (to calculate changes in atom coordinates due to torsional rotation
about those bonds). In addition, the scoring function requires the use of two files
containing data about the physical and chemical aspects of the ligand atoms and
the protein residues like VDW radii, atomic weight, hydrogen bonding character.
hydrophobicity etc.

The GA-LS parameter file contains all the parameters required during the run of
the algorithm ©.8. popuiation size, crossover and mutation probabilities, mavimnm
mutnber of function evaluations, various parametors controlling the local search (kind
of operator, step sizes for each of the translation. rotational and torstonal parameters)
etC.

The location of the binding site is specified by the approximate coordinates of the
Active site and a bounding dox within which the GA-L> algorithmn will Hane 115 Search.
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This helps to reduce the search complexity as the algorithm is not required to seareh
the entire protein moleenle,

0.2 Preprocessing stage

After extracting the coordinates of the protein and the ligand from their respective
files, the first task is to place the ligand at the binding site. This is because the trans-
lation values encoded in the chromosome are defined w.r.t. binding site. Placement
of the ligand is accomplished by translating all the ligand atoms by an amount equal
to the difference in coordinates between the binding site and the mean coordinate of
all ligand atoms.

Next, for each rotatable bond, we maintain a list of all the ligand atoms “affected”
by rotation of this bond. Jince, the rotation of a bond only modifies the relative
position between any pair of atoms connected to opposile ends of the bond, we obtain
LWO sets, one containing all atoms connected to one end of the bond and the other,
of atoms connected to the opposite end. This is done by using a breadth-first search
(BFS) on the graph defined by considering the atoms as nodes and bonds as edpes
The set of “affected” atoms is taken to be the set having smaller cardinality (to redaee
computation time).

The search algorithm for our drug docking problem is composed of two com ponents
-~ the global genetic component and the local search component,

9.3 Genetic component

The current problem uses a real-coded GA to encode the conformation of the ligand
relative to the protein. Each chromosome is composed of a string of N real valued
genes: three Cartesian coordinates for the ligand translation, three for rotation, and
the remaining (V — 6) for torsional angles of the rotatable ligand bonds.

A user-defined parameter. popstize, gives the total number of individuals in the
population. Initially, for each individual. the vahies for the transiation parameters,
Iy y and z, are randomly chosen within the limits specified by the binding site. The
angle parameters are chosen to uniformly lie within a range of 0° and 360"

Thereafter, each generation of the GA run consists of several stages:

» Mapping
e Fitness evaluation
e Selection
¢ Crossover

® Lol Seurco
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e Mutation
e Elitism

[t may be noted that the local search stage is not exactly a part of the (A
component. Local search is discussed in detail in section 3.4.

2.3.1 Mapping

Mapping translates from an individual’s genotype to its phenotype. In the current
problem, the task of the mapping function is to convert the translation, rotation and
torsional parameters into the actual coordinates of the ligand atoms.

The coordinates of each atom are obtained by applying the following set of trans-
formations. First, the ligand atoms affected by torsional rotation are rotated about
their corresponding rotatable bonds. Next. the whole molecule is rotated about the
X, Y and Z axes. Since, the rotation axes must pass through the ligand molecule, the

ligand molecules are initiaily translated, so that the origin of the coordinate system
coincides with the center of the ligand molecitle. After the rotation, the atoms are

translated back to their original location. Finally, the translation operator is applied
to each of the ligand atoms to obtain the final coordinates of the molecule.

9.3.2 Fitness Evaluation

The role of the scoring function to evaluate the binding affinity between the protein
and the ligand atoms is very crucial for successfyl docking. Hence, in our current
endeavor, we have used the wall-known scoring function, SCORE [20], to rank the
solutions provided by the GA. Basically, SCORE is a linear embpirical method for
estimating the absolute binding affinity of the protein-ligand complex with known
three-dimensional structure. The mode] takes into account several factors such as
Van der Waals (VDW) interaction, metal-ligand bonding, hydrogen bonding, desotva
tion and deformation effects. The model parameters were obtained from regressional

analysis upon a training set composed of 170 complex structures from the PDR. The
output of score is expressed in the negative logarithm of the dissociation equilibrinm

constants. i.e. pKy. The pK; values range from 1.54 to 13.96, covering over 12 orders
ol magnitude.

Since, onr GA was designed keeping minimization of ohjective function in mind,
the fitness value is taken to be the negative of the value returned hy SCORE.

9.3.3 Selection and Variation

Proportionate selection is used to decide which individifls will reproduce. Two-point
crossover s nsed with the ernssover points chosen only atgene boundaries. This is
L0 prevent large and random changes in the value of the genes. Since we are using
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real vartables, bit-Nip mutation can’t be used. Iustead, mutation is performed by

adding a random real number having a Cauchy distribution to the variable, as shown
in Equation 5.1.

__. o . _ -
C(ﬂ’ﬁ'x)Hrr(ﬁ?-}-(_a:—a)?)'azo‘ﬁ:?ﬂ’ X < I < . (5.1}

(Generational replacement of population is performed. Also. a user-selected Hag is
used to decide whether elitism will be applied. If true, the worst individual among
those obtained after application of selection and variation operators is replaced hy
the best individual in the previous generation. The termination of the run ix deeided
by checking if the number of function evaluations performed till now, exceeds a user-

defined maximum value. The final output of the algorithm is a set of & top-ranke
protein-ligand complexes.

5.4 Local Search Component

For the local search, we have used the Lamarckian model in which a chromosome is
replaced by a better chromosome in jts neighborhood. At each generation. a user.
defined fraction of the population undergoes such a local seareh. The individials
undergoing local search are chosen from the population in an unbiased manner.
Two search strategies have been implemented and their performance compared.
One of them is the Solis-Wets random operator, described in chapter 3. The other
one is inspired from the mechanics of simulated annealing and attempts to overcome

the problem of getting trapped in local minima by a self-adaptation mechanism. The
algorithm is described below:

1.4.1  Self-adaptive 1.8

In this method, the self-adaptation of the local search is governed by a temperature
parameter. This temperature determines the degree, by which. uphill moves will he

allowed. At the start of each local search stage, the temperature parameter is ser
(Eaquation 5.2).

|

termperature = — \ NP (5.2
\maz Fitness — minFitness

where marFitness and minFitness are the maximnm and minimum values of the
hitness function, respectively.  As the temperature is inversely proportional to the
spread of fitnesses within the population, when the latter converses. the former rises.
Therefore, each individual in the population will be more —nervous” and will trv
' mave away from its initinl position. exploring the search spacs. Fventuallv, the
litnesses wilt spread, lowering the population temperatnre. However, in this method,
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we don™t allow the best individual to perforin a loeal search to maintain the overadl
best fitness.

24



Chapter 6

Results and discussion

This chapter describes the results of running the GA-LS algorithm described in Chap-
ter 5 for docking of several well known ligands to their corresponding proteins. Three
different methods (GA, LGA with Solis-Wets local search (LGA-SW), and LGA
with self-adaptive local search LGA-SA) have been employed for docking of each
complex. Results of all the three methods have been compared and critically ana-
lvzed. In cases where high deviation from the experimentallv-determined complex
structures have been found, we have tried to analyze the causes for failure.

6.1 Test complexes

For our current docking experiments, we chose three protein-ligand complexes havin g
varying degrees of ligand flexibility:

e 3-Trypsin/Benzamidine
e Streptavidin/Biotin

» DHFR/Methotrexate

The pdb code, resolution, number of rotatable bonds of the ligand molecule and
the enerpy of the crvstal structure for the above complexes is given in Table 6.1

The 3D structures of the protein-ligand compleces were obtained from the Brookh:aven
Protein Data Bank (PDB). The ligand structure was obtained in the Tripos Mol?2 for
madt. |

6.2 Search-specific parameters

In all of the methods. the population size (popsize) was taken to be 50. Increasing the
value of popsize was found not to significantly affect the results obtained, in addition
to requiring more computational cost.

i-.J
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Table 6.1: Protein-ligand complexes used in docking experiments

rlFmLeiria—ligand PDB Code | Resolution | No. of rotatable Energy
complex (A%) bonds of ligand | (keal mor ')
- Trypsin/ dpth 1.7 I 0 -7.86 |
Benzamidine |
Streptavi&fn/—ﬁotin Istp 2.6 5} -8.86
DHFR/methotrexate | 1dra L7 ] 7 [ 1364

Ty

we have taken mazeval to be vary between 30,000 and 50, 000. The choice of sych 1

value was governed by the maximum affordable computational time for a single dock-
ing while at the same time ensuring that the fing] solution set, is fairly converged.
The parameters for the variation operators were taken to be 0.80 and 0.02. for

the crossover and mutation operators respectively. The parameters for the Canchy
distribution used in mutation were o = Q and B =1.

A number of parameters were used to control the exploitation abhilities of the local
search. For the search based on the Solis-Wets method, the local search frequency, i.e.
the fraction of population undergoing local search at every generation, was chosen t
be 0.1. Since, transiation is more sensitive to large step-sizes than either orientation
or torsional rotation, the initia] step size for transiation was taken to be 0.24° and
for both rotation and torsion, it wag 59 Another important parameter for the above
method is the maximum number of local moves per individual. Higher the vahe,
more is the exploitation of the search space, however, it can also lead to premature
convergence. For the present experiment, a value of 10 wag found to he 3 good com-
promise. The maximum number of consecutive successes or failures before doy bling
or halving the search step, p, was 4.

For the self-adaptive local search described in 5.4.1, the only parameter needed for
the controlling the search is the search frequency, which was chosen to be 0.5: sinee,

each individual performs only a single energy evaluation, a higher valye (compared
to the Solis-Wets method) is acceptable.

6.3 Docking results

For each of the three protein-ligand complexes, the search algorithms of chapter 5 wer..
run, resulting in a total of nine dockings. The output was obtained in the form of A
PDB file containing the coordinates of the protein and ligand atoms, together with
the computed root-mean-square-deviatijon (rmsd) between the docked structire
nd the coordinates determined from X-ray crvstallosraphy. On an AVerare. o sinelso
docking took 1.5 hours (using mazeval = 20.000) on a Pentium 1V machine, the
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bulk of which was acconnted for by the scoring ealeulations. The details of docking
simulations on individual complexes is presented helow:

6.3.1 [-Trypsin/Benzamidine

The experimentally obtained complex structure (see Figure 6.1 (a)) shows that ben-
zamidine binds tightly in a specific pocket of trypsin. The coordinates of the binding
site was taken to be (0, 1.5,0) and the bounding box had dimensions of 10 x 10 x 10,
All the algorithms were run fou 30, 000 function evaluations. The results of binding
are shown in Table 6.2 and the final complexes for the GA, LGA-SW and LGA-SA
are shown in Figure 6.1 (b),(c) and (d) respectively. -

As can be seen from the results, all the three methods are able to approximatelv
identify the location of the binding site though not the actual orientation. The rined
is highest for the GA, and lowest for LGA-5A, showing the effect of local search in
fine-tuning the results.

6.3.2 Streptavidin/Biotin

Biotin binds very tightly to streptavidin due to the formation of hydrogen bonds
and van der Waals interactions (see Figure 6.2 (a)). In our simulation experiments.

the binding site was (—11,2, —-10) with the same bounding hox as above. All the
algorithms were run for 50, 000 function evaluations. The risd’s ‘obtained for 1he

runs are shown in Table 6.2 and the final complexes are shown in Figure 6.2 (b}.(c?
and (d).

6.3.3 DHFR/Methotrexate

Dihydrofolate Reductase (DHF R) is an enzyme important for the process of cell
growth in organisms. Thus, an inhibitor for DHFR can be useful to reduce the rare
of cell growth. Methotrexate  such an Inhibitor and is used as an anticancer drug
In chemo therapy. In our sim.lation experiments, the binding site was (20.62. 63)
and the bounding box had dimensions of 20 x 20 x 20. All three algorithms were rnn
for 50,000 function evaluations. Unfortunately, dne to the high degree of freedon
(13), none of the algorithms were able to find = suitable conformation (having rined

< 10A4%). The reasons for failure of the search algorithims have been analvzed in
sectlon 6.4. |

0.4  Analysis of results

From the results obtainerd above, it can be said that a satisfactory docking was ob.
tatned in the first 2 test cases by all the methods, with the local search based ones
showing a stightly better performance. However, it can he observed that ine ADOVe
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implementations have been able to obtain only moderate success in docking probiems
involving ligands with high number of degrees of freedom (> 108.  The failure of the
algorithms in test case 3 can be attributed to several reasons. First, the aumber 3i
function evaluations were far less as compared to the algorithms reviewed in chapter
4 e.g. in [7], the maximum number of function evaluations were set to (1.3 x 10°.
- However, i our current sitaation, such a high number was computationaily infeasibie.
since function evaluation (done by SCORLE) was fairly slow. Increasing the number
of evaluations in test case 3 to 1.0Q, 000 gave us marginally improved results. Sec-
ondly, the choice of the scoring function is also believed to have affected the results
As pointed out in [20], SCORE muakes a few assumptions about the ligand structure
(e.g. the similarity between the modeled structure and the actual structure). In cases
where the above conditions are violated, SCORE is not able to accurately predict the
binding affinity. A more robust and fast scoring function is thus required.
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Chapter 7

Conclusions and Future Work
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