.M. Tech. (Computer Science) Dissertation Series

Analysis and Vectorization
of
Line Drawings

a dissertation submitted in partial fulfiliment of the
requirements for the M. Tech. (computer Science)
degree of the Indian Statistical Institute

By

Rajeev
(MTC3625)

Under the supervision of

Dr. B. Chanda

Certificate of Approval

This is to certify that the dissertation work entitled Analysis and Vec-

torization of Line Drawing submitted by Rajeev . in partial fulfillment

of the requirements for M.Tech in Computer Science degree of the Indian

Statistical Institute |, is an acceptable work for the award of the degree.

Date :

29th July 1998 é) b Nl 17/ 7’/ s

@ u_gz\ (External Examiner)

(Supervisor)

ACKNOWLEDGEMENTS

[would like to express my gratitude to Dr. B Chanda for
supervising this project and postng this interesting problem. I am thankful
to him for providing me with valuable suggestions during the course of the
dissertation work. This work would not have been realised without the help
of Mr. K. Rajesh Babu , Mr. Dinesh Pandc - Mr. Dipankar Saha and my

other batchmates.

CONTENTS

St No. TOPIC Page No.
1 Introduction 1
2 Problem Description 3
3 _Description of Algorithms 5
4 Experimental Results 2]
5 Conclusions 23
6 References 24

INTRODUCTION

[n any Industrial design and production activity, proper technical documentation is
one of the major components. In this context engineering drawing play a very vital role
Engineering drawing being graphical in nature. represents complex information in a very
concise manner. Any typical project of reasonable magmtude could consist of well over

10000 drawings as part of the documentation with design lives ranging from about 2' :0
30 years.

Most of the companies file a large number of such drawing in their cabinet .and
roughly 20% of these are active each year. A large number of man hours are required in
creating, updating and maintaining these drawings using conventional drafting techniques.
In the present time where time is money, no company would like to expend so many man
hours just for this purpose. Rather the company would prefer expensive computerised

design or drafting systems, which provides an efficient means for creating, storing and

updating engineering drawings.

Mechanical egineering companies that implement computer aided design (CAD)
and manufacturing (CAM) systems must convert their archives of paper drawings to a
format sﬁitable for CAD system. Digitisation of a drawing creates an image of several
million black and white pixel that represent the original drawing with varying accuracy.
depending on the resolution of the scanning device and the quality of the onginal drawing.
However this raster image information is not directly suitable for CAD systems, which

operate with basic structures such as lines and curves.

Manual entry of drawing into a computer database is slow, expensive and tedious
process. Hence one feels the need for an automated system that would convert raster
Images o vector representations suitable for vector editing. This would provide a

convenient Bridge between the manual and the computerised world.

This work presents the implementation of a system for processing scan-digitised

engineering drawings wherein the lines structures are fitted with CAD primitives such as

straight lines segments, circles and circular arcs.

Automated recognition and understanding of engineering drawing is by far a more
complex task requiring the capacity for visual perception and intelligent interpretation.
Some of the recent efforts aimed at understanding engineering rawings, include works

by Haralick and Queeny [1], Sato[2] and others {3].

PROBLEM DESCRIPTION

The problem -

Line drawings need to be converted to a format sutable for
computer aided system. Digitisation of a drawing creates an image
consisting of a few million white and black pixels which represents the
original drawing. The accuracy will be governed by the resolution of the
scanning device and the quality of onginal drawings. Generally, the
digitised image sufters from the minor deficiencies of scanning due to one

or more of the following factors:

1. Unequal iHumination of the document
Noise due to illumination fluctuation.

Spatial bandwidth himitations of the scanning system.

SIS

Poor quality of the onginal drawing

However this raster image information is not directly suitable for
CAD systems which operates with basic structure such as lines and curves
So the problem 1s to vectonze the digitised line drawings into hnes and
curves. In other words, from the raster image (black and white pixels) we
have to first identify whether the pixel point belongs to the background or
i1s a part of straight line segment or 1s a part of curve Nexi we trv to store

the end points of the straight lines and three points of the arc. This gives

us two fold advantages of

1. compressing the large raster image into a simpie data file, and
2. making 1t suitable for further processing by

computer {CAD system).

Assumptions

Developing such a system for any kind of tine drawing is difficult

because of the diversity of contextual knowledge. We would prefer to

design this system for a subset of line drawings with the following basic

assumptions

1.

2.

L.-..'r.

4.
5.

Fxperimental data

Dhgitised image contains pure graphics part, i.e. it
does not contain any text and dimension lines.
It has
(a) straight lines (horizontal and vertical)
(b) circular arcs.
The digitised imagye is free from noise.
IHlumination is proper and uniform.

Drawing 1s of good quality

. Synthetic data:

A synthetic digitised line drawing was generated
using Paintbrush application program. This was done in order to be
sure that the digitised image confirms to the above assumptions

Besides 1t is free from any of the deficiencies that are encountered

during scanning the real data.

2. Real data

[n order to check the validity of this system, we run the
algonthm on several real image data. These real data line drawings are
being taken from the engineering drawing book by N.D. Bhatt. These
line drawings were scanned at 200 dpi. Then the text portion as well as
dimension lines are erased from the digitised image maximally So

whatever 1s left is pure graphics

DESCRIPTION OF ALGORITHMS

In this section we go through the basic steps and algorithms used
for the realisation of this system We provide mainly the description of each

step with logic , the expected output and the figure depicting the validity

Following are the basic steps involved for the realisation of this

system:

. Skew Correction -

The document page from which we scan the line drawings might
not be properly aligned with the margins of the scanner. So, lines which
were horizontal or vertical in the original image might not be perfectly
honzontal or vertical in the digitised image. This is a human error, but the
computer does not know about it. The angle by which the image has tilted
ts called skew angle. Before going for further processing we will have to
correct this skew. The idea is to find the skew angle and the sense
(clockwise or anticlockwise). Once the skew angle and the sense is known
we can give the digitised image a rotation (equal to the skew angle) in the

reverse sense. In order to find the skew angle and the sense we use

HOUGH TRANSFORM

1.1 Hough Iransform:
Consider a point (x .V,) and the general equation of a straight line
In the slope ntercept form, Y. - ax + b Infinitely many lines pass
through (x .y). but they all satisfy the equation v, = ax + b for

varying values of a and b. However. writing the equationas b=-ax - y

and considering the a h- plane (also called parameter space) vyields the

equation of a single line for a fixed point (x ; .V,). Furthermore, a second

point (x .,y) also has a line in parameter space associated with it, and this

line intersects the line associated with (x ,y jat(a ,b) wherea isthe
slope and b the intercept of the line containing both (x, , y,) and (x ,,v
on the xy-plane. In fact, all points lying on this line correspond to lines in

parameter space that intersect at (a , b). Figure 4 illustrates these

concepts.
> Y b > b
/
fi
(x; ?yl)
a "),
v
X ('r j. !_}?_;) a
Figure 1
v t.)r” " C lf.} T Ax
-+ + - - b
(\{ I“l'"Ll_ﬁ , _:'r :' i r o
: » : [
_ l*_ +- A P 1
| | | |
R - \I;_ __:,__ . _.i'r,__ I], ,.T
{:! véd s o | : ; fl F v oW
. i ; :f .' |
: | i .'
- Lo |
e 0 T
AN
- A 'y i
bl'ﬁ . r__,_ IR B ol I
Y
L
Figure 2

utational attractiveness of the Hough transform anses
f the parameter space 1nto so called accumulator cells,

zure 2.

F{ g‘J re 3

ax ,amin) and (bmax . bmin) are the expected ranges

cept values. The cell at coordinates (7,j) with accumulator
esponds to the square associated with parameter space

h .). Imually these cells are set to zero. Then for every
'he image plane, we consider all possible values of a and
the equation b =-ax, +y,. The resulting bs are then

> nearest integer. At the end of this procedure, a value of
sponds to M points in the xy-plane lying on the line y =

accuracy of the collineanty of these points is determined

subdivisions in the ab-plane. Note that subdividing the a-

s gives, for every pomnt (x,_,y,), K wvalues of b

the K possible values of a. With n image points, this

method requires nK computations Thus the procedure just discussed 1s
linear in n, the number of points.

But a problem arises when we use the equation y = a x + b to
represent a line. The slope approaches infinity as the line approaches to be
vertical. So we use the parametnc equation of the line, i.e..

XCcosg +ysing =p

R R pra— |

P F,:gurr 4.

Figure shows the meaning of the parameters used in this equation.

Here each point (x, y) in the xv-plane corresponds to a sinusoidal curve

-

in the pé plane. As before, M collinear points lying on a line x cosd +y
sin@ , = p, vields M sinusoidal curves that intersect at (p, .8) in the

parameter space. Incrementing ¢ and solving for p gives M entries in

accumulator A(/,j) associated with the cell determined by (p,.0 . Figured

tllustrates the subdivision of the parameter space

Now the line drawing generally contains parallel lines. All these

parallel lines will have same value of @ but different value of p. The next

step 1s to find the global maximum from this two dimensional p 6 -array.

This maximum value will correspond to horizontal lines if number of

pixels on horizontal lines are more

than that on vertical lines or it

corresponds to vertical lines if number of pixels on vertical lines are more

than that on horizontal lines. So depending on this fact and the value of #

and its sign we can find the value of skew angle and its sense. This has been

lustrated in the following figures.

X

ki

h
|

tn r"

j 11?6? '3’ ~vo and doge d_{} o

Reratron - - O, Clokwise

9

R '3
/0
/
LF € TS - Y& Ll:"n_! E’[;E_,f? f_g 5{:.'
RCTATION ¢ 'i*?EJ--G) . “lockeNie
"’
X
*Eh"“--, "It
/6
+

'._.E,J‘a.l C.-ic_“){i "’"C 6‘
ant lowx

Yy ompE s e

RCTATION: &,

1.2 Rotation of the Image
Let & isthe skew angle. If sense of this skew 1s clockwise then we
give the image an anticlockwise rotation. If sense of this skew 1is
anticlockwise, then we give 1t a clockwise rotation. Let R denotes the
rotation matrix that will be used to give rotation to the original image to

get skew free image.

cos® — SinB

e (0S0

Problem in directly using R .

If we take coordinate of each black pixel of the original image
and multiply it by R we get the coordinates in the skew free image.
Corresponding to this coordinate, in the skew free image we can put the
pixel as black. But we miss certain information in this manner. Now, if we
try to get the original image from skew free image it may not be possible.
So we should use some method which would be compatible in both ways.
That is, we get back the original image from the skew free image. The
solution to this problem is very simple. Instead of using R we will use
mmverse of R ' |

[Cosg SinE
{

R7 = |

ro

o

Now we consider each coordinate of the skew free image and
multiply it by R™' to get coordinate point in the original image. If that
coordinate point in the original image correponds to black pixel we put
black pixel at the coordinate of the skew free image. The resulting image 1s
skew free. It should be noted that the accuracy depends on the
subdivisions of the parameter space. | . |

At the end of this step we get skew free image. In this skew free
image nearly horizontal and vertical lines will become horizontal and
vertical respectively. Validity of this step can be checked from Figure
that was obtained after this stage.

2. Isolating Horizomal and Vertical lines:

From the first step we get skew free image. In this image
we have perfectly horizontal and vertical lines along with the arcs. Now we
try to isolate the solid horizontal and vertical lines (leaving the dashed lines
and arcs). First horizontal lines are considered. Result of this step will be
stored in a two dimensional array. Let us name this array as h array,
Ir_array and rl_array. For this we do morphological op::ning using a long
honzontal structunng element (a simple one dimensional array) having all
the bits set to 1 (black pixel). Length of thisﬂmask will depend on the stroke
length of smallest solid line (excluding the dashed and the arc portion). The
synthetic data that is used has the stroke length of 40. Now start scanning
the image in row major fashion. We open the image twice with the same
structuring element except the onigin of the étructuring element is assumed
to be at two different ends. Finally, two opened images are ORed bitwise
to obtain image with horizontal hnes only.

Now we try to 1solate the vertical lines from the skew free image.
For this the basic method remains same as for hornizomtal lines. The basic

difference 1s the structuning element which is a vertical line 1n this case. So

e

at the end of this step we successfully isolate honzontal and vertical lines
from the image. They are stored in h_array and v_array respectively. Figure 5
shows the validity of this step

3. Thinning .

This is one of the most important step in implementing this system.
This ts required aftér almost every stage Before discussing thinning
algorithm let us clear the concepts about Medial Axis.

Suppose that a fire line propagates with constant speed from the
‘contour of a connected object towards its inside. Then all those points lying
in positions where at least two wave fronts of the fire line meet dunng the
propagation (quench points) constitutes a skeleton called medial axis of the

- object.

Thinning algorithms transform an object to a set of simple digital
arcs, which lie roughly along their medial axes. The structure obtaiﬁed
should not be influenced by small contour inflections that may be present
on the initial contour. The basic approach is to delete from the object X
simple border simple border points that have more than one neighbour in
X and whose deletion does not locally disconnect X. Here a connected
region is defined as one in which any two points in region can be connected
by a curve that lies entirely in the region. In this way, end point of thin arc
are not deleted. A simple algorithm that yields connected arcs while being

insensitive to contour noise 1s as follows:

12

labelling point p1 and its neighbours

Referring to the above figure, let ZOX(p1) be the number of zero to
- nonzero transitions in the ordered set P2,p3,p4,p5,p6,p7,p8,p9,p2. Let
NZ(p1l) be the number of nonzero neighbours of pl. Then pl is deleted if

2<NZ (p1)<6
and ZO(pl) =1
and P2.p4p8=0 or ZO(p2)= 1
and p2.p4p6=0 or Z0(p4)= I

This procedure is repeated until no further changes occur in
the image. Note that at each location such as pl we end up examining
pixels from a 5 x 5 neighbourhood. However first row (column) and last
row(column) pixel might create problem. So before thinning any n x n
array we must increase its dimension to (n+2) x (n+2). Validity of this

algorithm can be checked from Figure 4.

4. Reconstruction:

Before this step the h_array and v_array are thinned using
the above thinning algorithm. Let us store the thinned horizontal and
vertical image in two dimensional array hthin_array and vthi-n_array
respectively. This gives us thinned horizontal and vertical lines In this step
we reconstruct the image with just the thin horizontal and vertical lines
We perform OR operation on hthin_array and vthin _array and store the

result in another two dimensional array recon_array At the end of this step

'3

we will have "image with only the horizontal and vertical lines. The validity
of this step can checked from Figure ¥ '

5. Dilation:;

In this step we dilate the reconstructed image by a 3 x 3
structuring element and store the result in another two dimensional array
dilate_array. So dilate_array contains horizontal and vertical lines (at least
3 pixel thick) which are also present in the skew free image. So at the end
of this step we are able to separate horizontal and vertical lines from the
skew free image. Here we have assumed that in line drawings the lines are

also less than equal to 3 pixel thick. Figure 8 depicts the validity of this
step.

6. Subtraction

Once we get horizontal and vertical lines, we try to separate it from
the dashed lines and the arc portion. This is needed for further processing
of dashed lines and arcs. Once again, the algorithm employed is very
simple. Subtract the dilated image from the skew free image. That is put 0
in another array subtract_array if a pixel is 1 in the dilate array. At the end
of this step subtract array contains dashed lines and arcs. Next step will

separate out dashed lines from the arc portion.

1. Projection:

Now we have come to a point where we have an image that
contains only dashed arcs. In this step we separate dashed lines from the
arc portion. First we isolate vertical dashed lines from subtract_array and
store it in another array vdash array. Next we isolate horizontal dashed
lines from subtract_array and store it in hdash array. Then we eliminate

dashed lines from subtract_array to get the arc portion.

14

1.1 Vertical projection:

In this step we find the column sum for each column one by
one. If this column sum is greater than certain threshold value (for the
synthetic data threshold value of 50 was taken), it imphies that the 1s in
that column belongs to the vertical dashed lines and not the arcs. So we
copy that column of subtract_array into vdash array. So at the end of this
step vdash_array will contain the vertical dashed lines only.

1.2 Horizomtal projection:

In this step we find the row sum for each row one by one. If this
row sum is greater than certain threshold value (for the synthetic data
threshold value of 50 was taken), it implies that the 1’s in that row belongs
to horizontal dashed lines and not the arcs. So we will simply copy that
row of subtract_array into hdash array. So at the emd of this step

hdash_array contains the horizontal dashed lines only. .

Next step is to subtract vdash array and hd.ash_harray from
subtract_array to get the arc portions only. For this 1 is put in a new
array arc_array if there is 1 in subtract array and 0 in vdot _array as well
as hdot_array and a O is put in arc_array if it O in subtract array or 1 in
subtract_array as well as 1 in vdot_array or hdot_array. After this

subtraction arc_array contains points that belong to arc only.

IS

8. Vectorization

8.1 Vectorizing horizontal and vertical lines

In this step we represent the horizontal and vertical lines (solid as
well as dashed) by their end points. This process of representing a straight
line by its end point is called vectorization. For implementing this step first
we vectonze honzontal lines. For this, solid horizontal lines and dashed
honizontal lines are thinned (note that they were stored earlier in h array
and hdash_array) separately. Then the thinned solid horizontal lines and
thinned dashed horizontal lines are combined in a single array. So all the
lines are one pixel thick. Now we use this array for vectorization of
horizontal lines. This array 1s now scanned in row major fashion When a |
is encountered for the first time. it means that it is the starting point of the
honzontal line. Go on scanning in that row until a 0 is enicountered to get
the other end point of this line. Repeat the above step whenever next | is
encountered. Repeat the above step for all the rows

Next, we vectorize the vertical lines For this, solid vertical lines
and dashed vertical lines are thinned (note that they were stored earlier in
v_array and vdash_array) separately. Then the thinned solid vertical lines
and thinned dashed vertical lines are combined in a single array. So ali the
lines are one pixel thick. Now we use this array for the vectorization of

vertical lines. This array is now scanned in a column major fashion. When a

I 1s encountered for the first time, it means that it is the starting pomnt of
the vertical line. Go on scanning in that column until a 0 is encountered to
get the other end point of this line. Repeat the above step whenever next |
1s encountered. Repeat this step for all the columns

In this way we find the end points of the horizontal and vertical
lines and store 1t in a file . This file can be used iater on for regenerating the

horizontal and vertical lines of the original line drawing

<

8.2 Vectorization of arcs:

An arc 1s uniquely defined by three poimts. If two end pomnts and a
third point (other than end points) of an arc are known, then we can
always construct a umque arc between the two end points. Now the
problem is to find whether two points are on the same arc. The solution s
given by component labelling. We label the connected components This
gives us the number of components which should be equal to number of

arcs. The points that lie on the same component are given the same label by

this method.

Labelling of connected components .

Connectivity between pixels 1s an importamt concepi used in
establishing boundaries of objects compcnents of regions in an 1mage. To
establish whether two pixels are connected, it must be determined if they
are adjacent in some sense (say, if they are 4-neighbours) and if their gray
level satisfy a specified criterion of similarity (say, if they are equal). For
instance, in a binary image with values 0 and 1. two pixels may be 4-
neighbours, but they are not said to be connected unless they have the same
value.

Imagine scanning an image pixel by pixel, from left to nght and
from top to bottom. We are interested in 8-connected component Let p
denote the pixel at any step in the scanning process and let r and t denote
the upper and left hand neighbours of p. respectively Let g and s denote
the two upper diagonal neighbours of p. The n:ture of scanning sequence
ensures that these neighbours have already been processed by the time the
procedure gets to p. We maintain a hst of labels. Whenever a new label is
used we add that label to this list We also maintain an equivalent 1able

This 1s a simple array of list. The array index gives the component name

17

and list grves the list of labels which are equivalent to this label Whenever
we find that two labels are equivalent we put the two labels in each others’
list. This table helps in resoiving conflicts and minimising the number of
components. Steps are as follows

I. Ifpis O, move on to the next scanning position. If p is | and all
tour neighbours are 0. assign a new label to p. Add this new
label to the list of labels. If only one of the neighbours is 1.
assign its label to p. If two or more neighbours are 1, assign
one of the labels to p and make a note of the appropnate
equivaiences. For simplicity we assignl the minimum label value
to p.

2. After completing the scan of the image, we sort (in increasing
order) the hist of equivalent labels The equivalent iabels are
now assigned a unique label (minimum value among the
equivalent labels).

3. We do a second scan through the image, replacing each label
by the label assigned to its equivalence class Now we find the

number of distinct components from the final list of labels

We store the points that lie on the same component. This is done
for each component. Now, we know the points that lie on the same
component. The bounding rectangle is obtained by simple sorting ot these
points along two coordinate axes. At the end of this operation we xnow
the number of connected components, the points that e on the same
connected component and the bounding rectangle Bounding rectangle 1s
specified by the co« linates of the top-left corner of the rectangle. its
height and width. The next step 1s to find the two end poipts and a third

distinct point on the arc.

1R

9.

In order to vectorize the arc we need two end points and a distinct
third point on the arc. For each cormponent we know the bounding
rectangle and image array. In order to find the end pomts of the arc, we
make certain assumptions. For most cases this assumptions are valid
While isolating horizontal and vertical lines from the original image,
certain points (at ta.ngents to the circles parallel to the two axes) of the
arcs are also isolated as part of horizontal and vertical lines. So all the
arcs 18 of length less than a quarter of a ciicle. Under this assumption, one
end point must lie on the first row and the other on the last row of the

bounding rectangle. Searching for a 1 in these two rows. gtve the two end

points. For the third point, we find the middle row of the bounding

rectangie and look for a 1 in this row. This gives the third point of the arc.
We store these points in a data file This file can later be used for
regeneration of the original image. However, this assumption may not be

valid for every component. We will go through the special cases at end of

this section

Reconstruction

The first and foremost objective of developing this system is to
vectonze the given line drawing and store the points representing the
vectors in a simpie data file. But the ethiciency of vectorization depends on
the accuracy with which the line drawing can be reconstructed from the
data file. First we consider the reconstruction of horizontal and vertical
lines. This is quite easy in comparison to reconstruction of arcs. Since end
points of the horizontal and vertical lines are known (from data file), we
make a hornizontal or vertical line by putting | in the positions starting
from one end point and ending at the other end point. In this way we can
reconstruct the honzontal and vertical lines The nex step K to reconstruct

arcs from three points on the arc. For reconstruction of arcs we use

193

Lagrange interpolation. Since three points of the arc are Known, we use
Lagrange polynomial of second degree. |

Here we use row (say x) as the independent variable and column
(say y) as the dependent variable. We vary x from one end point to the
other end point and find out the value of v at the intermediate points Let

the three known points be (x,.¥,), (x,.y,)and (x,, y.) Then
Lagrange polynomial of second degree is
P)=1,)y, + 1, Xy, +1,(x)y,
where.
[(x) = (- %,) (=%,)/ (x, - %, X x;-x,)
l, (x) = (x-x,)(x-xs)/(xz-xl X, -x,)

I(X) - (x-xl)(}{-XE)ZJ{?{;—X])(K_.ﬂ-}izi)

EXPERIMENTAL RESULTS

The algorithm presented in the preceding sections i incorporated
INto a system for vectonzng line drawings, currently running on LINUX
operating system. A tool was developed for X-windows environment for
displaying the image at the end of each operation. This would also aid in
the analysis of the image. The input to this system consists. of line drawings
digitised at a resolution of 200 dpi using a scanner. Figure shows a
binary image obtained from the scanner The text and dimension lines are
erased from the original diagram using xpaint application program.
Figure 9§ shows the result of the skew correction operation described in
Section 1, which rectifies the possible skew error during scanning the
original image. Figure |q shows the result of thinning Operat:{)ns orn
the image This image is obtained by combining two images, one obtained
by thinning horizontal lines and the other obtained by thinning verticai
lines of Figure v, . Figure 11 shows the result after vectorization, wherein
all the horizontal and vertical line scgments are represented by their end
points and the arcs by their end points and a point in between the two end
poINnts. |

One of the major concerns in vectonzing line drawings is the
accuracy of the

resulting representation. The System was designed not only to get a
compact representation of the image of a line drawing, but an accurate
one as well Using this system we successfully vectorized A4 size line
drawings. Figures gand 13 show resuits afier vectonzation From these
results one can see that the representation of the fine drawing after
vectorization is in close agreement with the original. The system does
however fail in some situations where circles and arcs are intersected by

other line structures. In such cases entities are fitted by more than one arc

21

Pixel based thinning algorithms introduce defects in the arcs Also the
portions of arcs, which are small and do not appear to exhibit significant

curvature, are approximated with straight lines

22

ONCLUSIONS

This work discusses an algorithm required as a first step in
developing an intelligent system for interpreting line drawings. Our
implementation provides the tfollowing features:

* Correction of passible skew error during scanning

* Extracting thinned horizontal and vertical lines from the image.

* Extracting thinned horizontal dashed lines and vertical dashed lines
trom the image.

. Extrai:ting thinned arcs from the Image.

* Vectorizing line structures obtained from the umage The vectorization
procedure not only identifies straight line segments but reCOgnIzZes arcs as
well. This achieves a compact coding of information present in the line
drawing, since all the straight line segments are represented by two points,
while arcs are represented by three points only. This also provides a better
and more accurate representation of the line drawings.

* Reconstruction of honzontal and vertical lines as well as arcs from the

vector points,

Scope for Improvement

This vectorization process may be extended In the case of
inchined lines Possible modifications may be necessary during extraction of

the connected compone -« to identify and fit conic sections present in the

original line drawing.

23

REFERENCES

|. Haralick R M. and Queeney D . Understanding engineering drawings, (f'ompur._
Graphics Image Process 20, 1982, 244-258

2 Sato T. and Tojo A, Recognition and understanding of hand drawn diagrams,

Proceedings, Sixth International Conference on Pattern Recognition, IEEE, | 982,
674-677

5. Nagasamy V , Langrana N. and Peskin R._ Progress Toward the Development of

an Intelligent Engineering Drawing Interpretation System. 7echrucal Report CAIP-TR-
037, Rutgers University, May26, 1987

24

Fle - §

Fla- 6

10

e el A S —

[I-.- b ¥ T, b ere— [— ——im ——ar

-IIEI‘II!I-

Fio -6

Fie - 7

File- 8

Fia - 9

Fia -

10

= — T -y

- T — by -—

s vl ——
= T — fr—
Foin —— ry—
= - — I i
—t— fr—
= = L l— J—
JEP—
——
— —

- —_
—— =

Fiea ~ 1

-2

Fia

F16-\3

