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Abstract

The field of digital image processing is continually evolving. It finds massive
applications in areas like medical imaging, remote sensing, geological surveys etc. With
the rapid growth in Internet and multimedia technology, the image processing
applications are on more demand than ever before. Images and applications built around
them involve vast amount of data and therefore takes too much space and time, in other
words image processing tasks are computationally expansive. At the same time most of
the image processing applications demand real time response.

High performance, special-purpose computer systems are typically used to meet specific
application requirements or to off-load computations that are especially taxing to general-
purpose computers. With the advancement in VLSI technology hardware cost and size
continue to drop. On the other hand processing requirements are becoming well
understood in areas such as signal and Image processing. As a result systems on VLSI
chips are becoming essential to accomplish image processing tasks.

A number of computing features for binary images like Euler number, convex hull etc are
present. There are also many fast algorithm present for their implementation. But
unfortunately, there is no such measure for grey level images. In our real life, we are
much more concerned with grey-level images. Many image processing applications
requires recognition of grey level images. In this work I have tried to define few new

computing features of grey-level images. I have also described both the parallel and
sequential algorithm and their architectural issues.
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Chapter 1

Introduction

1.1 Background

Every now and again, our necessity increases. Computers are becoming faster to meet
computing requirements, also computing are made faster to grab computer speed. A few
years ago, computers were large, room-filling - machines requiring ultra clean
environment, controlled temperature and humidity, and were to be approached by only
authorized staff. These days, "computers" are found in every household. Technical
advancement made it possible. Today I am writing my thesis, sitting in my own home,
with no extra precaution and arrangement for my PC.

The image processing community have always bemoaned the inevitably heavy
demands of their work makes on computer resources. Image contains large amount of
data and seem to require highly complex and therefore computationally expansive
analytical programs. These demands, coupled with rapidly Increasing availability of
cheap computer hardware, have led to a proliferation of novel processor architectures. As
a result people started Implementing various image processing algorithms into hardware
architectures. Several work has been reported over past few years on filtering,
convolution, geometric warping, cluster analysis, curve detection, radar signal
processing, to name a few. However, since most of these systems are built on an ad-hoc
basis for specification tasks, methodological work in this area is rare. Because the
knowledge gained from individual experiences is neither accumulated nor properly
organized, the same errors are repeated. Therefore there is a need for systematic approach

for designing algorithm for specific tasks in such a way so that they can be mapped to
VL3I architectures automatically or with ease.

1.2 Why VLSI

It is useful to consider why special architectures are needed for image processing. Clearly
any algorithm can be implemented on a sequential computer. So why a powerful main-
frame or super-computer is not adequate ? The answer is that general purpose computers



can not easily exploit the parallelism in an arbitrary algorithm. Simply improving the raw
speed of a sequential computer is not a cost-effective approach for image data which has

well defined parallelism. The whole essence of developing special architectures for image
processing is to exploit the special forms of parallelism found in image data and
algorithms. Specially low level image processing algorithms exhibits higher degree of
inherent parallelism and hence most suited for implementation on special architectures.

Nowadays, mature VLSI technology permits the manufacture of circuits whose
layout have minimum feature sizes of 1 micron. The effective yield of VLSI fabrication
processes make possible the implementation of circuits with order of million transistors at
reasonable cost - even for relatively small production quantities. However the advantages
of this technology are not fully realized unless simple, regular and modular layouts are
used. Fortunately, as mentioned earlier, it has been found that an Image processing task
can usually be decomposed into a set of sub-tasks distributed over the image. This
observations encourage to devise regular and parallel algorithms for image processing
tasks which can easily be mapped to regular modules of an architecture.

1.3 Problem Formulation

Image features, specially topological and shape features are very useful for various image
processing applications like image characterization, image matching, shape analysis etc.
For such applications feature extraction has become an indispensable task. As a case
study I tried to develop a content based image retrieval system [9]. I have studied the
characteristics of grey-level images. As a conclusion, I found that there is a trade-off for
image characteristics. If we want to get a match between similar images through
some image feature, the match will return all similar images, but will also return
several dissimilar images. Again, if we want not to get any dissimilar image in
return, the matching algorithm will not return all similar images. Finally we have
found three features of grey-level images which are topologically invariant. We have
named them (1) CEN-VEN, (2) DWGYV (3) Diffusion Value.

We have suggested algorithms for computing these features and tested them with a
number of images with different size. All of these measures are parallelly computable.
Due to shortage of time we have only implemented parallel algorithm for CEN-VEN
measure. These measure is applicable for both grey images and binary images.

1.4 Organization of the thesis.

These thesis is organized in several chapters. In chapter 2 review of earlier work in
development of special purpose architectures for image processing tasks has been
discussed. Chapter 3 embodies the work on CEN-VEN - definitions, algorithms and
results. Chapter 4 and 5 discusses the work on DWGYV and Diffusion value. An extensive

bibliography given at the end, will help one to find directions for further study and
research.
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Chapter 2

VLSI for Image Processing

2.1 Introduction

An increasingly accepted contemporary view of image processing is to regard it, in a
broad sense, as being nothing more than one aspect of ‘information processing' [11]. An
1mage' 1s basically a two dimensional, almost invariably Cartesian, array of data resulting
from sampling of the projected instantiation of a local variable, the scene brightness
function, obtained through a sensing device, e.g. a camera. The function values are either
brightness values or vectors of brightness values sensed in different spectral brands, e.g.
color images. The array values are usually integer, non-negative, bounded and implicitly
zero outside the field of view bounded by the array dimensions. Image processing
algorithms and basic definitions won't be discussed here. There are several good texts
which deal with various aspects of image processing in details [7,16,14]. Still for the sake
of completeness relevant discussions regarding the shape features will be presented In
subsequent chapters.

A large variety of tasks in the field of image processing demand very high rates of
instruction throughput. Such high instruction rates can not be supported by conventional
serial (Von Neumann) computer architecture. A close analysis of many image processing
algorithms reveals that the same sequence of instructions is normally repeated, in an
essentially separable manner, on every pixel item, pixel by pixel over the entire image.
The nherent parallelism can be exploited to achieve high computational throughput. A
number of non-Von Neumann architectures which seem to offer acceptable solution have
been exercised and implemented [3]. In the following sections they are discussed.

2.2 VLSI Architectures

Normally two type of parallelism are observed in various tasks and hardware
architectures are proposed to use them extensively, spatial and temporal, and image data
is no exception. Computer architectures have traditionally been classified according to
the uniqueness or multiplicity of their instruction and data streams. By considering the
Certesian product abbreviated as (SI,MI) X (SD,MD), we obtain four generic

11



(Single Instruction, Multiple Instruction) X (Single Data, Multiple Data)

architectures : SISD, SIMD, MISD, MIMD [(6]. Most conventional UNIProcessor

architectures are unambiguously classified as SISD, which in effect categorizes the

classical Von Neumann architecture. MISD finds no application and use. SIMD and
MIMD are discussed below.

2.2.1 SIMD Arrays

SIMD architectures involve a single control unit fetching and decoding instructions,
which are then, executed in the control unit itself. Number of processing elements (PEs)
are 1nterconnected by a switching network. The PEs -operate on their local memories
independently. There is no doubt that the SIMD architecture is best fitted to image
processing problems as its memory organization matches exactly the image structure and
thetr interconnections between the memory points with their associated processors
closely aligns with the neighboring relations between the pixels. As SIMD machines are
optimized for paraliel neighborhood operations, the data access of each processor is

usually restricted to its nearest neighborhood. Typical examples of SIMD architectures
are CLIP4 [4], GRID [13], and DAP [S].

2.2.2 MIMD Arrays

An MIMD architecture consists of a number of PEs, each with own program and data.
Each PE can communicate with every other one through a communication network. The
main feature of MIMD machine is that the overall processing task may be distributed
among PEs in order to exploit the inherent concurrency/parallelism in the task and thus
decrease the overall execution time. The PEs co-operate in the execution of the overall
task by passing messages to each other through communication network.

MIMD architectures can be classified according to their mode of interaction; that is, the
degree of coupling and the nature of intercommunication between PEs. Coupling refers to
the ability of sharing the system resources. Accordingly MIMD machines may be
classified as loosely coupled, moderately coupled and tightly coupled. Loosely coupled
systems have a low degree of interaction due to the large geographical dispersion of the
system components and low data communication rates. Tightly coupled systems have a
high degree of interaction due to close proximity of system components. Moderately
coupled systems, also known as distributed computing systems, lies within two
extremities of loosely and tightly coupled systems. Image processing tasks requires high
speed communication between the PEs and are, therefore, generally implemented on
tightly coupled architectures. The location of image(s) in an MIMD system is a
significant factor in assigning the viability of the architecture for executing a range of
image processing tasks. In an MIMD system the 1image may be located in the common
memory, or distributed among the local memories of PEs. Each PE may have access to
the whole image or regions of the image in common memory. Alternatively, each PE may
contain a local copy of the whole image or a region of the image. The choice of
architectural alternatives depends on the range of iImage processing tasks to be executed.

12



There is, therefore a close relationship between machine architecture and Image
processing algorithm.,

MIMD architecture for image processing applications fall into four broad

Example of loop architecture is ZMOB [15]. CYBA-M implements common
memory architecture [2]. Computer designers recognized that a machine which is

2.2.3 Pipeline processors

The concept of pipeline processing has been developed to match an 1mage
processing system architecture to serial data inputs. Pipelining of operations is being
extensively used in general computing involving operations on vectors and matrices.
Typical examples are the F loating Points Systems array processors. Here paralielism
1s achieved by overlapping several phases needed for instruction, i.e., fetching,
decoding, operand address indexing, operand fetching and execution. In the Image
processing context, pipelining usually implies concatenation of number of operators
performing logical and arithmetic operations on small neighborhoods. Typical
representative of this category of systems is CYTOCOMPUTER [17].

2.3 From Algorithm to Architecture

Principal goal of this dissertation is to develop architecture to facilitate Image
feature computation by designing suitable algorithms for specific tasks which
exhibits maximum concurrency in execution steps. Designing of algorithms for
specific task and developing VLSI architectures apparently seem to be different
domain of concentration. Hence is a need for development of a formally
sustainable, implementable connection between these two domains. Efficient
implementation of complex high performance systems embodying considerable
inherent parallelism, as is to clearly appropriate for image processing, will impose
some fundamental high level constraints on the system designer. The data
structures need to be matched, as far as possible, to the implemented processor-
meémory-communications architectural topology. High level languages are needed
for specification, description and coding. Some effective means of ‘concurrency
extraction' need to be available, preferably as a tool within the system designing
environment. The facility to perform various types of optimization needs to be
available so that complex trade-offs can be constructively explored. This eventual
goal is to establish an environment where 'from algorithm to architecture'
mapping can be done automatically with best possible optimizations exploring
various design alternatives. [rrespective of whether we are trying to automate the
whole design cycle or executing them step by step, a formal framework is
mandatory if a manageable and sustainable design methodology is to be
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developed. Theoretical tool, such as complexity theory, are required if appropriate
measure of performance and efficiency are to be incorporated into the design
path, both at algorithmic and architectural levels.

|_ Problem Specification l

\ Algorithm Design "—l

Algorithm Pertitioning
(Concurrency Extraction) I

| Simulation and Verification I

Mapping Decision wmm Database |
| Architecture Specification

h 4 _

_1 Simulation and Verification !

‘ Final Architecture ‘

Fig 2.1 : Flow chart of the algorithm to architecture mapping
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Chapter 3

Crest Euler Number & Valley Euler Number

3.1 Introduction

This work is very much related with Euler number, which is defined for
binary images and that concept is extended to grey level images. It is very useful
to discuss a little bit about Euler number, and also how the concept is related to
our new measure for grey level images.

The Euler number (or Genus) is the difference between the number of
connected components and the number of holes [12, 7]. It is a topological
property. Topological properties serve the purpose of geometric shape
representation of an image. Topological properties are invariant under any
arbitrary "rubber sheet" transformation [7, 8, 14]. Hence they are very useful in
image characterization and can be used for matching shapes, recognizing objects,
image database retrieval, and many other image processing and computer vision
application.

In our real life, it is not sufficient to analyze only binary images. Today
many image processing applications require some measure which are defined for
grey-level images. It is not always sufficient to use the measures, defined for
binary images only, after binarizing the grey level images with a suitable
threshold value, because once we binarize a grey-level image it loses many
information. Also choice of suitable threshold value also plays important role in

it. For example say we want to classify a number of grey-level images into few

15



in grey-level domain. Only those properties of images which are defined for
binary images only will not suffice in these cases . So we are to define and grab
some properties of images which are the properties of the grey-level image itself.

Taking the above criteria in consideration we have defined a measure
which is solely dependent on the grey-level image itself. Our defined measure for
a grey-level image is an ordered pair of "Crest Euler number” and "Valley Euler
number”. This measure for grey-level images is invariant under “rubber sheet
transformation. It is also invariant under image sharpening , contrast enhancement
or reduction unless the image loses its visual similarity. The measure is same for
an 1mage with its negated image considering the pair in reversed order. In other
words, if two images have the same pairs, after reversing the order of exactly one
of the pairs, it is with high probability that one of the images is the negated
version of the other.

The proposed measure has been implemented with an O(MxN) or O(N?)
algorithm (as O(M) = N). Recent advances in parallel processing and VLSI
technology can be exploited to develop high performance algorithm and
architecture to achieve real-time response. In this chapter an algorithm has been
proposed which computes this new measure of an NxN image in O(N) time. Our
proposed algorithm can be easily implemented in a special purpose VLSI chip
which can serve as a co-processor to the host computer.

3.2 Definitions

‘Scan path : It is the sequence of pixels along a straight line through which we
scan. |

Axiom : For a pixel in an image there exists at most four different scan paths
through it. (See Fig 3.1 for elucidation) .

Proof : For an image pixel with it eight neighbors we can feet at most four
different straight lines through the pixel. If the pixel locatien is (1) , the four
directed line through it are Ry((i+1,j-1),3i-1,j+1)) , Rx((1,5-1),(1+1)), Rs((i-1,j-
1),(1+1,j+1)), Ra((i-1,),(i+1,))).

Grad of a pixel along a scan path : Grad of a pixel is defined as the difference
between the grey value of the pixel under consideration, and that of the pixel
previous to it, in that particular scan path. Grad of a pixel may differ if the scan
path differs.

Sign of the grad of a pixel may be defined as "+" if it is positive or "-" if it is
negative or "0" if it is zero.

Crest : A pixel is said to have a crest if the ordered pair, consisting of the sign of
the grad of the pixel and the sign of the grad of the next pixel along any scan
path through the pixel under consideration is an element of the set {(+,-), (0,-),

(+,0)}.
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Valley : A pixel is said to have a valley if the ordered pair, consisting of the sign

of the grad of the pixel

and the sign of the grad of the next pixel along any

scan path through the pixe! under consideration is an element of the set {(-,1),

(Oa+)! ('!0) } -

Note : If there is crest - valley conflict to a pixel , it is declared as crest/valley if
more number of crest/valley is detected while scanning through four scan paths.If
the same number of crest and valley are reported 1t ts declared as crest.

CREST :

Connected Crest : (i)
(11)

(111)
Disconnected Crest :

Crest background pixel :

Crest Hole ;

Crest Euler Number :

Valley :

Connected Valley :(i)
(11)
(111)

If pixel Pjis a crest pixel , it is a connected crest.

If two pixels Py, Pj are crest pixel and they are in
eight-neighborhood of each other, they form a
connected crest.

If pixels P; and P; form a connected crest and
pixels Py; and Py form a connected crest , pixels P, ,
Pjand Py form a connected crest.

Two crests are said to be disconnected crests iff
they are not connected crests.

Any pixel other than crest pixel is called Crest
background pixel.

Crest holes are 4-Neighborhood connected crest
background pixels which are encircled by crest
pixels (8-Neighborhood connected).

Crest Euler Number or CEN is defined as the
difference between the number of connected

crests (CN) and the number of crest holes(CH).
1.e. CEN = CN - CH.

If pixel Pyis a valley pixel , it is a connected valley.
If two pixels Py, Pj are valley pixel and they are in
eight-neighborhood of each other, they form a
connected valley,

It pixels P; and P; form a connected valley and
pixels P; and Py form a connected valley , pixels P;
, P; and Py form a connected valley.
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Disconnected Valley : Two valleys are said to be disconnected valleys iff
they are not connected valleys.

Valley background pixel : Any pixel other than valley pixel is called Valley
background pixel.

Valley Hole : Valley holes are 4-Neighborhood connected valley

background pixels which are encircled by vallcy
pixels (8-Neighborhood connected).

Valley Euler Number : Valley Euler Number or VEN is defined as the
difference between the number of connected

valleys (VN) and the number of valley holes(VH).
1.e. VEN = VN - VH.

3.3 Examples

Consider the following figure (fig 3.1), scan paths are shown by arrowhead lines.
Let P; be the pixel under consideration. P, and P;:; be the previous and next pixel
along a scan path. Grad of P; is G(P;) - G(Pyy) along scan path R; , j = 1(1)4
where G(P) is the grey-value of pixel P; .

Fig : 3.1_: Labeling of pixels w.r.t. Scan path.

Now let us see figure 3.2. Numbers in square bracket represent the grey value of
those pixel. With respect to scan path R; the ordered pair, consisting of the sign of

the grad of the pixel P; and the sign of the grad of the next pixel P;4; is (+,-). So
there is a crest at pixel P;

18



With respect to scan path R, the ordered pair, consisting of the sign of the grad of

the pixel P; and the sign of the grad of the next pixel Piy; is (+,-). So there is a
crest at pixel P;

With respect to scan path R; the ordered pair, consisting of the sign of the grad of

the pixel P; and the sign of the grad of the next pixel Pi+ is (+,-). So there is a
crest at pixel P;

With respect to scan path R4 the ordered pair, consisting of the sign of the grad of
the pixel P; and the sign of the grad of the next pixel P;;; is (+,-). So there is a
crest at pixel P;

N _ R,
IH‘Q?_ “@ ®
Pi-l‘““{.g‘“ P !100] P.;}.,{lzol
@ . | Ao
................. | Pia 158).. Pi\ii!ml P10 R .5
I f,r"f ; .-'-"""-,,
o @ ON
Pi—lﬁ_[69] P11 [85] mel‘l.ﬁ_ﬁo]
- i\.‘.
R4 Ri:y
\'4

Fig : 3.2 : Labeling of pixels w.r.t. Scan path. Grey value of pixels are shown.

Let us see figure 3.3. Numbers in square bracket represent the grey value of those
pixel. With respect to scan path R, the ordered pair, consisting of the sign of the

grad of the pixel P;and the sign of the grad of the next pixel Pi+y is (-,1). So there
is a valley at pixel P;

With respect to scan path R, the ordered pair, consisting of the sign of the grad of
the pixel P; and the sign of the grad of the next pixei Pi i8 (-,+). So there 1s a
valley at pixel P;

With respect to scan path Rj the ordered pair, consisting of the sign of the grad of

the pixel P; and the sign of the grad of the next pixel Pi+y is (-,+). So there i1s a
valley at pixel P;
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With respect to scan path Ry the ordered pair, consisting of the sign of the grad of
the pixel P; and the sign of the grad of the next pixel P, is (-,+). So there is a
valley at pixel P;

Fig : 3.3 : Labeling of pixels w.r.t. Scan path. Grey value of pixels are shown.

Let us see figure 3.4. Numbers in square bracket represent the grey value of those
pixel. With respect to scan path R, the ordered pair, consisting of the sign of the

grad of the pixel P; and the sign of the grad of the next pixel Py, is (-,+). So there
1S a valley at pixel P;.

With respect to scan path R, the ordered pair, consisting of the sign of the grad of
the pixel P; and the sign of the grad of the next pixel Py, is (+,0). So there is a
crest at pixel P;

With respect to scan path R; the ordered pair, consisting of the sign of the grad of

the pixel P; and the sign of the grad of the next pixel Pi; is (+,-). So there is a
crest at pixel P;

With respect to scan path R4 the ordered pair, consisting of the sign of the grad of

the pixel P; and the sign of the grad of the next pixel Piy; is (+,-). So there is a
crest at pixel P;

Now as we can see there is a crest - valley conflict at pixel P; . In this P, will

treated as crest, because in three cases it is declared as crest and in one case it is
declared as valley.
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T | <Crest Euler No., Valley Euler No.>
| = <0.1>

-
i-."
]
+l
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et H 1L
------
___________ et

.........

Grey Value 2

Position 2

Fig : 3.6 : Position of crest and valley are shown in the negated image of the
image shown in fig 3.5.

3.4 Proof of the invariance of CEN & VEN :

Claim 1 : CEN & VEN are invariant under "rubber sheet" transformation.

Proof : (1) If we rotate and/or translate an image , the grey value of a pixel and
its neighboring pixel remains fixed. So the position of crests and valleys remains
unchanged w.r.t. any reference point of the image. So connected crests and
valleys remain connected even after rotation and/or translation of the image. Thus
CEN & VEN are invariant under rotation and/or translation.

(2) If we enlarge and/or stretch an image, from the properties of
enlargement and stretching few points are added to the image or removed from
the image. The grey value of the new points are interpolated w.r.t. its neighboring
point . So connected crests does not become disconnected or disconnected crests

does not become connected after these transformations. Thus CEN & VEN are
invariant under enlargement and/or stretching .
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Claim 2 : CEN & VEN are invariant under any filtering applied over it till the
image remains visually same w.r.t the original image.

Proof : Whatever filtering is applied over an image, the grey value distribution
of a pixel w.r.t. it neighboring pixels remains same, if the resulting image is
visually same with the original image, (i.e. if a pixel in the original image has
highest/lowest grey value w.r.t. its neighbor's grey value, if, after any filtering
applied over the image, the image is visually same with the original image, the
pixel under consideration must have highest/lowest grey value w.r.t. that of its
neighbors.). So a crest/valley in the transformed image remains unchanged w.r.t.
original image. So CEN & VEN are invariant under any filtering applied over it
till the image remains visually same w.r.t the original image.

3.5 Computing CEN and VEN

Let S be the input grey-level image matrix. We apply Mean filtering and
Histogram Kqualization over the image S. Histogram equalization tool is
available in MATLAB toolbox. Let S' be the histogram equalized image matrix.
Now according to definitions of crest and valley we check the locations where
crests and valleys exist in S'. Now let T; and T, be two matrix of same dimension
as that of S' with all elements of them initialized to zero (0). Now if there is a
crest at (1,))th location of S', we put 1 at the same location of T, and if there is a
valley at (i,j)th location of S', we put 1 at the same location of T, . Now Ty/T; are

binary images with pixel value "1" for crest/valley and background as "0". Now
we compute Euler Number for these two binary images.

Theorem : The Euler Number of binary image matrix T, gives CEN and Euler
Number of image matrix T, gives VEN.

Proof : According to our definition CEN/VEN are the difference between the
number of connected crest/valley and number of crest/valley holes. Now if pixel
P; 1s a crest/valley in image matrix S', it is an object pixel (pixel value 1) in Ty/ T,
and 1f P; is a crest/valley hole in image matrix §', it is a background pixel (pixel
value 0) in Ti/ T2. As we mapped every crests and valleys of image S' in T; and
T2, connected crest/valley remains connected object in matrix T,/T,. As
crest/valley holes (4N connected) are encircled by crest/valley pixels (8N
connected) in S', crest/valley holes in S' are mapped to binary image matrix T;/ T,
as heles (4N connected). Euler number is the difference between the number of
connected objects and the number of holes. Thus Euler Number of binary image
matrix T,/ T, gives CEN/VEN of grey-level image S'. From now on we shall call

them as CEN/VEN of image S as every image under test will be histogram
equalized as pre-processing.
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Algorithm 3.5.1 : Computing CEN and VEN of a grey-level image.

Procedure ComputeCENVEN( S, row, col)
/* S 1s the input image matrix,
row 1s the number of rows or vertical length of the image,

col is the number of columns or horizontal length of the image,
*/

begin

Let Ty and T; be two matrices with same number rows and columns as that of
S. Initialize all elements of T; and T, to O.

S' = histogram_equalize(S); /* S' is Histogram equalize image of S */
fori:=1 torow-2 do /* Neglect the edge pixel */
forj := 1 to col-2 do
count_cr :=count vy :=0;

it (S]] > S'i-1][j-1]) and (S'[i][j] > S'i+1][j+1])) or
((S'1JJ) > S'i-1][-1]) and (S'[i](j] = S'[i+1][j+17)) or
((S'TiI0] = S'Ti-1][-11) and (S'[i][j] > S'[i+1](j+1])))  then
begin
count_cr :=count cr + 1;
end
it (((S'11)0) > STi-1][])) and (S'[i][j] > S'[i+1]j])) or
((S'1))] > S'i-1](j]) and (S'[i][j] = S'[i+1]{j])) or
((STi](3] = S'[i-1]G]) and (S'[i][j] > S'[i+1](j1))) then
begin
count _cr :=count_cr + 1;
end
it ((ST1]0] > S'](j-1]) and (S'Ti][j] > S[i][j+11)) or
((ST1]D1 > S'i)[-1]) and (Si](j] = S'[i][j+1])) or

((S'1]13] = STil{5-1]) and (S']{j] > S'EIG+1D))) then
begin
count_cr :=count cr-+1;

end
i (((STilG) > S'Ti+1](3-1]) and (S'[i][j] > S'i-11(j+1])) or
((ST1](3] > S'[i+1][)-1]) and (Si]{5] = STi-1]{j+11)) or
((S'11}h] = STi+1]h-1]) and (S'i][j} > S'(i-1](j+11)))  then
begin
count_cr :=count_cr + 1;
end

i (((S1]D] < S'(3-1][3-1]) and (S'i][j] < S'[i+1][j+1])) or
(S0 < 8'[i-1]-1]) and (S'Ti][j] = S'Ti+1][j+1])) or
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(STillj] = S-1](-1]) and (S'(i)[j) < STTi+1])[j+1])))  then
begin

- count_vy:=count vy + 1;
end

it ((ST1)0] < S'Ti-1](5)) and (S'i](] < S'i+1]5])) or
((STi}3] < S'i-1](5]) and (S'i}[5] = S'i+1][]) or

((ST1]G] = S'[i-1](5]) and (STi][j] < S'[i+1]1G1))) then
begin

count_vy := count_vy + |;
end

it (((S'THID] < S'(i][j-1]) and (S'[i][j] < Si][j+11)) or
((STHID] < STH][-1]) and (S(E]{j] = S'(i](j+1])) or

((ST]h)] = S'Ti]G-11) and (S'i1(j] < S'G]G+1D))) then
begin

count_vy :=count vy + 1;
end

it ((STi][] < S'i+1][j-1]) and (S'(i][5] < S'i-1](j+1))) or
((ST1l] < STi+1](-1]) and (STi]{j] = S'[i-1](j+11)) or
((S1]D] = STi+1][j-1]) and (S'Ti][j] < S'[i-1]j+1])))  then
begin
count_vy = count vy + 1;
end

if ( count_vy > count cr) then

begin
- T[]} =1,
end
else
begin
Ti1]h] == 1,
end
endfor

endfor

CEN := CalculateEuler(T};, row,col);

VEN := CalculateEuler(T,, row,col);
return;
end

3.5.2 Time Complexity

Asymptotic time complexity of the procedure ComputeCENVEN is O(N°) . To
create crest/valley matrix T,/ T, eight access is required for each pixel. So total

pixel access is 8N° . Procedure CalculateEuler takes kN? time. So procedure
ComputeCENVEN takes 8N* + kN? time which is O(N?).
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3.6 Experimental Result

/#****#*******#***#***#****##*#*******#*#*#####***##*****###*#/

OUT FILE OBTAINED FROM "file3.c" & "proj3a.c” and over the

RAW Images (*.H).The idea 1s to calculate the CREST-EULER
number and VALLEY-EULER number of the image which are

defined in the main C file.
/*#**#****#****##*********#***#**#**#*###***#*#*#****#**#****#/

No of header bytes : 0

Give the size of image (Row,Column) : 480 640
FILENAME CREST EULER NO. VALLEY EULER NO.
AFRICA.H 398 1301
ARMY . H | 629 1694
BLAZE . H 572 1513
CASTLE.H 1472 3294
CATHED . H 1709 4186
CATTLE.H 1405 4275
CHIMP.H 576 1359
CHOPER . H 1307 3181
COUPLE.H 471 1579
FISH.H 334 709
GOLDFISH.H 304 558
HAWK . H 136 198
ICE.H 104 240
INSECT.H 404 1030
KID1.H 526 895
KID2.H 458 977
KID3.H 198 425
LEAF .H 1231 2368
NEWENG. H 2768 7081
PHOTOGRA .H 1140 3502
RGB3 .H 1200 2293
ROCK.H 520 1418
RODEO.H 603 1869
RCSE.H 1757 4308
SANTA .H 262 ~ 521
SEAFISH.H 469 1005
SOLDIR.H 2086 4584
STAR.H 1573 2088
SUNSET .H 499 6477
TOWN.H 1310 2823
WAVE.H 601 1537
ZEBRA . H 1268 2535
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/***#**#*#**##*#***#***#*#***#**#*#*********#**####**##**##***##***#***#/

OUT FILE OBTAINED FROM *"file3.c" & "proj3a.c" and over the rotated

RAW Images (*.M).The idea is to calculate the CREST-EULER

number and VALLEY-EULER number of the image which are defined

in the main C file.
/**#******************#****#********#**##*#****#********#*****#******#**/

No of header bytes : 0
Give the size of image (Row,Column) : 640 480

FILENAME CREST EULER NO. VALLEY EULER NO.
AFRICAM 398 1302
ARMY .M 629 1694
BLAZE.M 571 1517
CASTLE.M 1471 3295
CATHED.M 1709 4186
CATTLEM 1405 4275
CHIMP.M 576 1358
CHOPER.M 1306 3178
COUPLE.M 471 1579
FISHM 334 709
GOLDFISH.M 304 996
HAWK.M 136 198
ICEM 104 240
INSECT.M 404 1030
KID1.M 526 895
KID2.M 458 977
KID3.M 198 425
LEAF.M 1231 2369
NEWENG.M 2768 7081
PHOTOGRAM 1140 3502
RGB3.M 1203 2290
ROCK.M 521 1418
RODEO.M 602 1870
ROSEM 1752 4284
SANTAM 260 523
SEAFISH.M 471 1001
SOLDIR.M 2081 4583
STARM 1573 2089
SUNSET.M 499 647
TOWN.M 1308 2825
WAVEM 601 1537
ZEBRA.M 1268 2534
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3.7 VLSI Implementation

3.7.1 Parallel Algorithm

Algorithm 3.7.1 : Computing CEN and VEN in parallel.

Procedure ParallelCENVEN

begin

for each pixel Py in the image do in parallel
do in parallel

enddo

a=Piygn - Py
b= P|J+1 - Pu

C = Py e - Py
d = PH-]J - Pu
€= P]J - P1+1,j.1
f= Pu - Pl.j-l

g = Piy- Py
h= Pu - PHJ

do in parallel

if(((a>0]:);nfl(e<0))0r((a>0)and(e=0))0r((a=0)and(e<0)))
gin
count_crj ;= count_cr;; + 1;
end
if(((b>0t),an§l(f<0))0f((b>0)md(ﬁO))or((b=0)and(f<0)))
egin
count_cry := count_cr;; + 1;
end
ifI((c>0t)}:n§1(g<0))0r((c>0)and(g=0))or((c%)and(g<0)))
gin
count_cr;; == count_cry; + 1;
end
if(((d>0)and(h<0))or((d>0)and(h=0))or((d=0)and (h<0)))
begin
count_cr; = count_crj; + 1;
end

if(((a<0)and(e>0))or((a<0)and(e=0))or((a=0)and(e>0)))
begin
count_vyj == count_vy; + 1;

end
i{(((b<0)and(f>0))or((b<0)and(f=0))or((b=0)and(f>0)))
begin
count_vy;j; := count_vy;; + 1;
end
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end

if(((C{Ogan{i(gw))or((c{())and(ﬁﬂ))Or((c=0)and(g>0)))
egin
count_vyj; .= count vy; + 1;

end
if(((d<0)and(h>0))or((d<0)and(h=0))or((d=0)and(h>0)))
begin |
count_vyj; = count_vy;; + 1;
end
enddo
if{(count_cr != 0)and(count vy !=0))
begin
if(count_cr >= count vy)
begin
- Ty =1,
end
else
begin
Ty = 1;
end
end
endfor

Now send matrices T, (Crest matrix) and T, (Valley matrix) to
ParallelComputeEuler( ) to get CEN and VEN.
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Chapter 4

Distance weighted Variance of grey-value (DWGYV)

4.1 Introduction

Our main objective is to recognize images. Sometimes we may want to classify
images according to there nature i.e. whether the subject of the images are same
not. Two images of bushes look similar, but one image of bushes and other of
animal do not look similar. When two images are of same nature, their grey-level
distribution is also of same nature. We made few experiment on this feature of
images and got good results. |

4.2 Preliminaries

When two images look similar, there grey-level distribution are also similar. We
can find pixels of an image which has maximum grey-level values. We then
compute the center of the image (x.,y.) using the formulae

Xe =2 Xmi /N3 Yo =2 Ymi/

where (Xmi , Ymi)s 1 = 1(1)n are the co-ordinates of maximum grey-level valued
pixels and n is the number of such points. Now distance weighted grey-value
variance (DWGV) of all pixels is calculated w.r.t. the maximum grey value. The

weight to each pixel is given by their distance from image center. This gives a
feature for images.

34



Formula for DWGYV :

10000 row - | col - |

DWGV = ————————73 3 (Gj- Gm) 2 [(Xi - x> H(y; - yo) 1]
nxX{rowxcol)xD i=0 j=0

where Gy = grey value of (i, j)th pixel.
Gm = maximum grey value of the image.
D = distance of point at maximum distance from image center
= [(xa - xo)* Hyd - yo) ] |
(X4 , ya) is at maximum distance from image center.

Theorem : DWGYV is invariant under rotation/translation.

Proof : By rotation or translation the position as well as the grey value of any

pixel remains unchanged w.r.t. the image, so DWGYV will remain unchanged afier
rotation/translation.

4.3 Computing distance weighted variance of grey value

At first we compute the maximum grey value of the input image. We then note
the co-ordinate of pixels having the maximum grey value. Now we find the center

of the image, and calculate the distance weighted variance of the image about the
center according to the formula given above.

Algorithm 4.3.1 : Computing variance of distance of highest grey-level points

Procedure VarMaxGrey(S, row, col)
/* S 1s the input image matrix,
row 1s the number of rows or vertical length of the image,
col 1s the number of columns or horizontal length of the image,
*/
begin
maxgrey = Maximum_Grey_Value_of Image(S):
k :=0;
for1:=0 to row-1 do
for) := 0 to col-1 do
1f(S[1][j] = maxgrey) then

begin
X[k} =1; Y[k} =j;
k:=k+1:
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end
endfor
endfor

Xe =0, yo = 0;

Xe == XJK; ¥e = yIKk;

DWVAR = ComputeDistWgtdGrVal(row,col); /* calculate according to

the formula given above */
return,

end.

4.4 Experimental Results

f#*#*####**###*#*######*######***#*###*##***#*#*#*###********#******/

OUT FILE OBTAINED FROM "file2.c" & "proj2.c” and over the
TAGRA Images (*. TGA).

f#*#*##*#########*#*##*#####*#*#*####**######**##**###****##***##***/

Size of image (Row,Column) : 480 640

FILENAME MAX GREY VAL CENTROID VALUE
armyl.tga 255 (309, 320) 9.823565
blazel.tga 255 (263 , 385) 13.027952
castiel.iga 255 (451, 349) 2670.471004
cathedl.tga 255 (387, 365) 137.222901
chimpl.tga 255 (140, 360) 2.702023
choperl.tga 255 (198, 330) 481.788713
fishl.tga 255 (340, 351) 4(.714603
goldfish!.tga 255 (222, 290) 16.426345
hawk]1.1ga 235 (201, 249) 14.161354
icel.tga 255 (90 , 283) 375.286889
msectl.tga 255 (368 , 345) 11.364667
kidil.tga 255 (179, 221) 3.944026
kid21.tga 255 (179, 172) 2.392170
kid31.tga 255 (293, 536) 9.044316
leafl.iga 255 (479, 639) 34617.493046
newengl.tga 255 (20, 212) 23.829639
photol.tga 255 (342, 276) 1818.407731
rgb31.iga 255 (187, 424) 47.365645
rockl.tga 255 (303 , 198) 93.006744
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rodeol .tga
rosel.tga
santal.tga
seafishl.tga
solderl.tga
starl.tga
sunset].tga

255
255
255
255
255
255
255

(278 , 493)
(479 , 639)
(479 , 639)
(270, 472)
(144 , 327)
(236 , 310)
(479 , 639)

5.064832
66589.046907
51627.769189
10.379608
85.160010
4.914920
9328.099197

SRR e ok #*#****#***#**##(ROTATED IMAGES)****##*##*##########}

OUT FILE OBTAINED FROM "file2.c" & "proj2.c" and over the

TAGRA Images (*. TGA).

/##*#****#***#**###***##*#*###*########*#***#######*#*####*#######}

Size of image (Row,Column) : 640 480

FILENAME
army2.tga
blaze2.tga
castle2.tga
cathed2.tga
chimp?2.tga
choper2.iga
fish2.tga
goldfish2.tga
hawk2.tga
ice2.tga
insect2.tga
kid12.tga
kid22.tga
kid32.tga
leaf2.tga
neweng2.tga
photo2.tga
rgb32.tga
rock2.tga
rodeo2.tga
rosc2.tga
santa?.tga
seafish2.tga
solder2.tga
star2.tga
sunset2.tga

MAX GREY VAL

255
255
235
235
235
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
255
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CENTROID
(320, 168)
(386 , 214)
(321, 103)
(362, 101)
(359 , 338)
(328 , 284)
(352, 137)
(290 , 255)
(250 , 276)
(281 , 393)
(343 , 109)
(222, 299)
(173, 299)
(537, 185)

(319, 478)

(213 , 457)
(269 , 159)
(425 ,291)
(199 , 177)
(494 , 199)
(319, 478)
(319, 478)
(473 , 207)
(325, 335)
(311, 241)
(319, 478)

VALUE
9.806927
12.976175
2786.568130
139.419367
2.714331
479.092319
40.612099
16.508964
14.220951
367.378433
11.408110
3.953612
2.400152
9.035187
21047.066766
23.867451
1760.169615
47.199385
93.561879
5.053361
45568.781048
33764.800552
10.348899
85.217084
4.947305
7486.311274



Chapter 5

Grey-Level Diffusion Value

5.1 Introduction

Our main objective is to recognize images. Sometimes we may want to classify
images according to there nature i.e. whether the subject of the images are same
not. Two images of bushes look similar, but one image of bushes and other of
animal do not look similar. When two images are of same nature, their grey-level
distribution is also of same nature. Here we analyzed the images in 3-Dimensions
(see fig 5.1). An image has certain grey value at each point on the image plane. If
we plot the grey values of an image in Z-direction corresponding to every poi

nt on the image which is lying on X-Y plane, this look like hills or mountains
standing on a plane. Now the idea is to let every point on the mountain emit a ray
in the direction normal to the plane surrounding the point and let the rays hit a
plane parallel to

X-Y plane. Now we measure the normalized positional variance of the points

on the new plane where the rays hit. We made few experiment on this feature of
images and got good results.
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Plane parallel to
X-Y plane.

LR UL L1 L L] Ll ] mmmaL +tddddddnhunnn gy -mw

Fig . 5.1 : Illustration of Grey-Level Diffusion.

5.2 Definitions :

Normalized positional variance : It is defined as the variance of the distance
about the image center divided by the maximum distance from the image center.

5.3 Preliminaries

Theorem : Grey-level diffusion value of an image is invariant under rotation ,
~ translation.

Proof : If we rotate and/or translate an image, the position of pixels remains
unchanged about the image. So position of image center remains unchanged w.r.t.
the image, thus the distance of the points on the projection plane from image

center remains unchanged. Therefore grey-level diffusion value of an image
remains invariant under rotation , translation.

5.3.1 Mathematical Tools

For our calculation we consider a right handed rectangular co-ordinate system.
Let  i: unit vector along positive X-direction.

I : unit vector along positive Y-direction.
k : unit vector aloay positive Z-direction.

Formulae :

(1) 1xi=jxj=kxk=0 (null vector)

i) ixj=kijxk=ijkxi=j;

(Ii) ixj=-jxi;

(iv) It A=Ai+Aj+Ak;B=Bii+Bj+Bk;
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Then AxB=|i J k| = (AjBx-AxB)i+ (AL B;- A; B
A; Aj Ay + (A; Bj - Aj Bi)k

(V) Ail + Aj + Aikk = Bii + Bjj + Bik then
= B

If
Ai=B;; Aj=B;; Ay = By;

¢ If co-ordinate of 3 points are given we find the normal to the surface defined
by these 3 points in the following way.

Let the points are P1( X1, Yy, Z1), P X2, Y2,22),P3( X3, Y3, Z3).

P, F2=(X2 -X;)i'*‘(Yz -Yl)j+(Zz -Zl)k

PP =(Xs -X)i+(Ys ?Yl)j+(23 -Z1 )k

Normal : n=P, D5 x P; P = i j k
(X2 -X1) (Y2-Y)) (Z2-Z))
(X3-X1) (Ys-Yy)) (Z3-Z))

* Formula: Position vector r of any point on the line AB passing through the
point A with position vector a and parallel to the vector b is given by
r=a-+tb; wheretis ascalar variable. (See fig 5.2)

b

A(a B(r)

Fig 5.2

Say, we want to find normal at point P,. Let the normal will hit the projection
plane at point Q( X,, Yq, Zq ). Now

X=Xy +tl(Y2-Y)(Z3-21)- (Y3 - Y1) (2, -Z))]

Yo=Y+ t[(Z2-Z21) (X5 -Xi)-( Z3 -Z1) (X3 - X))
Lq = Zi + (X2 -X))(Y3-Y1)-(X-X)(Y2-Y1))
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Now Z, is the height of the projected plane, which is taken as the maximum grey
value of the image. known constant and X;,Y; ,Z; i = 1(1)3 are known.

Thus, t=(Zq-Z1) (X2 -X1) (Y53 -Yl)-(xz -X1) (Y2 - Y1)l

So Xg ,Yq ,Zq are found.

¢ Formula to find the center ( X., Y. ) of the image

row-1 c¢ol-1 ow-1 col-1

Xe= 2Xi 26X, Y / 2 X G(Xi,Y)
i=0 =0 i=0 §=0
col-1 row-1 row-1 col-1
Ye= 2Y 2G(X,Y)/ 2 2 G(Xi,Y)
j=0 =0 =0 j=0
Diffusion Value :

row-1¢col-1

DV = (IN) [T, T[(Xi- X + (¥;- Yo D AKa- X + (Y- Yo

»

where, N = total number of points (row x col)
(Xa , Yq) : co-ordinate of the point at maximum distance from the image
center on the projection plane.
Maximum possible value of X4 and Y4 is 255x255 = 65025.

5.4 Computing grey-level diffusion value

Computing Normal to the surface concerning a image point : Any three points in
space defines a plane. It is very difficult to predict which two points except the
point of consideration are to be taken for calculation. If these points are chosen
arbitrarily the measure may not be rotationally invariant. So we have used the
following way to compute this (See fig 5.3).
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We calculate 4 normals taking 3-points at a time, they are (1,2,8); (3,2,4); (5,6,4);
(7,6,8), and draw 4 lines parallel to these four normals passing through point P; .
We treat these 4 lines as 4 normals from paint P; and let them hit to the projection
plane.

Algorithm 5.4.1 : Computing grey-level diffusion value

Procedure ComputeDiffValue( S, row, Col )
/* S 1s the input image matrix,
row is the number of rows or vertical length of the image,
col is the number of columns or horizontal length of the image,
*/
begin

Compute image center (X , Y,).
Zq = ComputeMaxGreyValue(S); /* height of projected plane */

fori=1 to row -2 do
forj=1tocol-2 do
Compute and store locations (Qx[k] , Qy[k]) of 4 points on the
projected plane which are hit by 4 normals from point S[ilj],
also note the co-ordinate of point(s) (Xg, Ya4) with maximum
distance from (X, Y,)
endfor
endfor

DV = CalculateDiffValue( ) ; /* using the formula of DV */
return;
end
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5.5 Experimental results

/#*##*****#**#*##**#*#***************#***#**##**********#*#***/

OUT FILE OBTAINED FROM “filed.c" & “proj4.c" and over
the TAGRA Images (*. TGA).

f*#**##***#****#*#**#*#****#*****#*******#***#***##*******#*#/

Size of image (Row,Column) : 480 640

FILENAME CENTROID VALUE
army|l.tga (260, 314) 2.185231
blazel.tga {218, 346) 1.041019
castlel.tga (229, 339) 4.568130
cathedl tga (239, 334) 4.717816
chimpl.tga (188, 355) 3.679135
choperl.tga (193, 338) 3.887817
fishl.tga (259, 343) 2.681433
goldfishl.tga (267 , 250) 2.204353
hawk1.tga (243, 280) 1.397021
icel.tga (184, 324) 3.069224
insectl.tga (240, 340) 1.665033
kid11.tga (226, 304) 2.244071
kid21.tga (220, 301) 3.360692
kid31.tga (253, 311) 1.750604
leafl.tga (249, 339) 2.549981
newengl.iga (227, 292) 5.830454
photol.tga (289, 309) 4.348589
rgb31.tga (249, 332) 3.153349
rockl.tga (186, 303) 0.779668
rodeol.tga (256, 352) 2.658918
rosel.tga (240, 328) 0.281841
santal.tga (223, 319) 2.272003
seafishl.tga (242, 324) 1.228714
solder].tga (208, 318) 4.172575
star!.tga (239, 322) 5.973378
sunset].tga (233, 313) 2.535313
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[rEdERERRE R AR ENARE% DOTATED IMAGES ##*¥%dskkdimkhkiokksiokkoh

OUT FILE OBTAINED FROM "file4.c” & "proj4.c” and over
the TAGRA Images (*.TGA).

/#**#******************#**#******#***#*****##**#**#*#****#**/

Size of image (Row,Column) : 640 480

FILENAME CENTROID VALUE
army2.iga (314, 213) 2.073447
blaze2.tga (346, 261) 1.145902
castle2.tga (340, 250) 4.602276
cathed2.tga (334, 240) 4.748223
chimp2.tga (355, 290) 3.638443
choper2.tga (337, 285) 3.961723
fish2.tga (343, 219) 1.738296
goldfish2.tga (250, 212) 3.356736
hawk2.tga (280, 236) 1.731179
ice.tga {324 , 294) 2.223029
insect2.tga (339, 238) 2.229364
kid12.tga (304, 253) 2.201501
kid22.tga (301, 259) 4.334070
kid32.tga (311, 226) 1.794460
leaf2.tga (338, 230) 1.637974
neweng2.tga (292, 253) 5.020532
photo2.tga (309, 191) 4.394399
rgb32.tga (332, 231) 2.722346
rock2.iga (303, 292) 1.413704
rodeo2.tga (352, 223) 3.062215
rose2.tga (328 , 239) 0.277976
santa2.tga (320, 256) 2.322583
seafish2.tga (324, 237) 1.581731
solder2.tga (318, 271) 4.223330
star2.tga (322, 240) 6.003699
sunset2.tga (313, 246) 2.714187
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Conclusion

This is well understood that the Image features we have proposed can serve the purpose
of image recognition. We have already proved our measures are invariant under
rotation and/or translation. The first measure , CEN & VEN, as we have proved, 1t is
invariant under “rubber sheet” transformation and/or filtering unless the resulting
image get changed. However, our second measure DWGYV is invariant under rotation
and/or translation but we need more research on the measure to make it full-proof. Our
third measure Diffusion Value is also a good measure and it actually shows the
direction of approach to the image recognition. It also need more research.

As a conclusion of this dissertation work I would like to say that Image feature
is very peculiar. If we want get a match between all similar images, it is likély to return

few dissimilar images also. If we strictly want not to get any dissimilar image in return,
it is likely that we can not recognize all similar images.
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