M. Tech. (Computer Science) Dissertation Series

Design of an Efficient Content-Based Image Retrieval (CBIR) System

a ﬂissertation submitted in partial fulfillment of the
requirements for the M. Tech. (Computer Science)

degree of the Indian Statistical Institute

By

Debi Prasad Sahoo % dgﬁfﬁu} /g/'-‘@ o
s o JUJ g il

under the supervision of

Prof. Bhargab B. Bhattacharya

Advanced Computing and Microelectronics Unit

INDIAN STATISTICAL INSTITUTE . wmm
;,.-f"/:{ggac.;% m;;-{;;xh
203, Barrackpore Trunk Road A

Fa
Calcutta- 700 035 [AN

Certificate of Apporval

This is to cert;ify that this dissertation titled Design of an Efficient Content-Based
Imgae Retrieval(CBIR) System by Debi Prasad Sahoo towards partial fulfillment of

the requirement for the M. Tech. programme in Computer Science at the Indian Statistical

Institute,Calcutta. This report embodies the work carried out under my supervision. His

B Bhottr d

- .
Prof Bhargab B. Bhattacharya?/ >/ 02

Advanced Computing and Microelectronics Unit

work is satisfactory.

Indian Statistical Institute, Calcutta.

Acknowledgement

My sincerest gratitude goes to Prof. Bhargab B. Bhattacharya for his
guidance, advice and especially for suggesting a topic that I found challenging
throughout the phase of design, analysis and implementation.

['am thankful to our project assistant Arijit Bishnu who always encouraged

me to find an accurate retrieval scheme. He gave me a clear-cut idea of the problem to be
solved.

Last but not the least I would like to thank T. V. Sriram, Sanjeev Kumar
Mishra, Chinmoy Mukhopadhay and Kishori Mohan Kanwar for contributing numerous
suggestions thiroughout the dissertation work.

ABSTRACT

This thesis reports a study on an accurate and fast Content-Based Image Retrieval (CBIR) system
which is widely used for representation, storage and retrieval of images. In the proposed method, effort
has been made to select discriminating features for Image representation. Relevant data structures have |
been proposed for image database so that efficient retrieval can be effected. Performance evaluation has

been carried out over a number of binary images in terms of space and time complexities. Finally
comparison has been made with some of the existing CBIR systems.

INTRODUCTION

Content Based Image Retrieval (CBIR)[1] is the retrieval of Images, 10

the best approximation, similar to the query image submitted by the user.

In large image databases it is highly inefficient to store all the
features that are found in an image. Most image databases are similarity based. These

Systems represent images by using certain image feature spaces, define similarity metrics
on those feature spaces and do retrieve images similar to the query image. Images are
represented as points in the multidimensional feature space. Distance measure, usually
Euclidean , is followed as metric for determining the similarity. _
Basically two search schemes namely
1. nearest neighbor search
2. range search
arc most common in use. The nearest

neighbor search gives images that are more similar to the query image. But range search

gives images within a region of the feature Space as per the feature range specified by the

user.
Additional features of traditional CBIR
1. Nature of data structure

A dynamic indexing structure supports dynamic updates
like insertion, retrieval with each new query whereas a static structure
works only on the data set given beforeﬁand. Nothing can be done, in the
later case, if the query data is not present in the given data set.

2. Storage Type
A memory resident structure creates indices in the

computer memory, while disk resident indexing structure stores indices on

hard disk.

3. Dimension of feature space

This defines the number of decision paths taken for retrieving

images.

Category of the CBIR proposed
1. Similarity based
2. Euclidean-distance measure for classifying images
3. Search scheme: nearest neighbors search, exact match as well

4. Dynamic data structure: insertion, retrieval and update in the permanent

storage device
5. Memory resident data structure

6. One-dimensional search for tested database and multi-dimensional

search for modified version of the database.

L

Desired properties of the image atributes
I. Attributes should be invariant to scale change.
2. Attnibutes should be invariant to different orientation of the image namely,
a. Translation
b. Rotation

3. Attributes are selected in such a manner that their range is wide and spaced

more or less uniformly through out the range.

Keeping these 3 points in mind we have selected the following two

parameters for our CBIR system.

1. Inverse of compaction factor(area/perimeter square)
2. Number of vertices of the convex hull of the image
Assumptions
1. white portion of the image represents the object (white pixel be 0-bit)

2. black portion of the image represents the background (black pixel be 1-
bit)

Inverse of compaction factor
Definition
It 1s the inverse of the ratio of the area of the image to the square

of the perimeter of the image.

Image [i][j]: 2-dimensional matrix for storing the pixel values of the Image
Image edge[i][j]:2-dimensional matrix for storing the boundary pixels of the
Image
Area= no. of 0’s in Image][1][j]
Perimeter= no. of 0’s in Image edge[i]j}
Algorithm
F ind__cumpactionl'actor(image[(], height, witdh){
Image[][], Image edge[][]: n*n matrix
Area=(0, perimeter=0, temp=0;
Forilton
Forjlton
If (image [i][1]=0)
Area ++;
/*Area stores the area of the image and perimeter stores the perimeter of the
image */
If (! outermost pixels){
If (eight neighbor pixels are
all 0}{
Temp ++;
Image_edgel[i]{j]= I;
/* if all the 8-neighbours are object pixel, pixel considered is not an edge pixel */

;

else
Image edge{i]{j]=0 ;
/* if one of the 8-neighbours is not an object pixel, pixel considered is not an edge pixel
*/
}
else
if(imagefi][j]=0)
Image edge[i){j]=0:

/* outermost pixels whose Intensity values = 0 are part of the edge of the image */

else
Image edge[i][j]=1;
/* outermost pixels whose intensity values = 1 are part of the edge of the image */

;

Perimeter= area —temp;
. Inv_compaction=(perimeter)*/area:
. Retumn(inv_compaction);

} ,
Time Complexity: O(n?)

Number of convex hull vertices [2]

Definition

Convex hull of a set Q of points is the smallest convex polygon p for

which each point in Q is either on the boundary of p or in it’s interior.
_Algorithm
Ch}ll! __points(image_edge[1[], perimeter){

Counter=0;

/* counter stores the number of vertices of the convex hull corresponding to
image edge[][] */

Q contains the boundary points as stored in image edgel[][]

l.po be the point in Q with the minimum y-co-ordinate or the left most

such point incase of a tie.

2.<pl,p2............. ,p0> be the remaining points in Q sorted by polar angle in
counter clockwise order around p0.(if more than one point has the same angle ,remove all
but the one that is farthest from p0)

3.top[s]=0
4.push(p0,s)
S .p_us_h(p i,s)

6.push(p2,s)
7.for 1=3 to n (perimeter)

8. do while the angle formed by points Next_to_top(s),Top(s) and p;
makes a non-left turn

9. do pop(s)
10. push(s,p;).
11. counter ++

12. return(counter)

Time Complexity
Running time = O(nlogn) where n=|Q]
Sorting time in step 2 = O(nlogn) using heapsort
Step3 to step6 : O(1) time
Step 8 : O(n)
Since there are atmost m-2 pop operation to be performed and each call of
pop takes O(1) time and m<=n-1
Step-10 : O(1) time
Fo; 15013 in step 7 takes O(n) time exclusive of while loop of line §-9

\

DATA STRUCTURE FOR EXACT MATCH

- Tablel, Table2 : two hash tables created to store the inv compaction and

no_of_convex_hull vertices respectively whenever a new image is inserted into the
database.

Collision resolution scheme: chaining
Hash function selected: prime number but not near any power of 2(701)
H(k) = k mod 701

Where k= inv_compaction for tablel and
no_of_convex hull vertices for table2
Input to the CBIR system : image (filename)
Preprocessing step§

1. create table!l and table2

2. read image features stored in the image store (basically from secondary storage

device) called imagestore.dat say 1 record.

3. for uniform distribution of data into the hash table the following operation are
taken
a. 1f (attribute 1< 0 or <100) keyl = attribute1*10
b. if (attribute 2< 0 or <100) key2 = attribute2*10

~ keyl and key2 are used to determine the position of the attributes in the
f corresponding hash table.

4.Insert (tablel , keyl , attributel)
Insert (table2, key2, attribute2)

Step 2, 3 and 4 are repeated for all the records of imagestore.dat file
Query Session
The user has to give the choice whether he wants to insert the image or search the

image in the database. Processing starts only after the submission of the query image by
the user.

INSERT

' 4

Before inserting the image submitted by the user search 1S made for the query
image.If the search function returns 1 reject insert‘ operation saying exact match found
else insert function_is invoked .Instead of step2 of preprocessing steps described earlier
attributel and attribute2 are calculated using find_compaction () and chuil _points ()
respectively and then step 3 and step4 are followed. |
SEARCH:!. attributel=find_compaction(image, height, width)

attribute2= chull_peints(/mage_edge, perimeter)
2. determine key! and key?2 as described incase of preprocessing steps

3. invoke search function
flagl=search(tablel, keyl, attributel)
if(flag=1)/*data match in first table*/{
flag2=search(table2, key2, attribute?2)
- if{flag2=1)
match found in tablel as well as in table2

else

mismatch in attribute?

clse

infer query image not found due to mismatch in attributel
FUNCTIONS

1. void insertion(rable key, attribute)

" 1. ¢reate a temporary list capable of storing attribute and a link to a variable of its
type 1.e list.
1. determine the hashed slot by k=key%701/* position of the key in the table is

determined */

1. if table(k]->entry=null /* if key is hashed to an empty position attribute is stored there
*/

table[k]->entry= attribute:

table[k]->next=null;
else /* if hashed position is not empty all the entries of the list starting at that position is
moved one postion right */

temp->entry= table[k]->entry;

temp->next=table[k]->next:

tablefk]->next=temp;
}
2, int search (table, key, attribute){

1 k = key % 701;/* position of the key in fhe hash table is determined */
ii. temp = table[k]; -
111. if table[k]->num=0 /* if the hashed position entry is null */

return (0);/*attribute not present in the database*/

else { /* traverse the list starting with the hashed position and entry at cach-
position is compared with the attribute. This is done till the end of that list */
do { |
if(temp->num != attribute) {

if(temp->next == null){

flag=0;

break;

}
else
temp=temp->next;
flag=0;/*so far attribute has not been found
;
}
else
flag=1;/* exact match found*/
break;/* matching process is halt at this point */
h

} while (temp ! = null);
return(fiag); }/*end of search function */
Complexity Analysis (average case)
Let hash table concerned has m slots and it stores n elements
Load factor(a): it is the average number of elements stored in a chain
o= n/m
Assumption: Hash value h(k) can be computed in O(1) time
With the above assumption we can say time required to search for an element

with key k depends linearly on the length of the list Th(k)]

Two cases arise namely,

I. unsuccessful: no element in the table has key k

2. successful: finds an element with key k
Unsuccessful: under uniform simple hashing , any key k is equally likey to hash any of
the m slots. The average time to search successfully for a key is thus the average time to
search to the end of the m lists which is nothing but load factor o=n/m

Number of elements examined = o

Total time required =0 (1+o) including time for computing h(k)

Successful: Expected number of elements examined is given by the average over the n

times in the table, of | plus the expected length of the list to which i’th element is added
The expected length of that list is (i-1) /m.

S0 expected number of elements examined in a successful search is
I/n(2. (1+(i-1)/m)) fori=1 ton
=1 + (1/(nm))(n*(n-1)/2)
=1+ a/2-1/(2m)
=0(1+a)
1f n= O(m)
o=n/m
=0 (m)/m
=0 (1)

Thus searching takes constant time on the average.

Insertion

New key is inserted at the beginning of the list. So it takes O (1) running time in

the worst case.

IMAGE DATABASE FOR RETRIEVING IMAGES ON THE BASIS OF
NEIGHBORHOOD SEARCH '

Image plane

Plane created by taking attributel and attribute? as its two reference axes. So each image

1s mapped to a point on this plane.

Euclidean.distance

let p1, p2be two points on the image plane
E- be Euclidean distance between p; p;
(al)p-attributel corresponding to point p1
(a2)p1-attribute2 corresponding to point p1
(al)pz2-attributel corresponding to point p2
(a2)p;-attribute? corresponding to point p2

E = (((al)p2-(al)p1) *+ ((a2)p2-(a2)p1)*)2

We are using a certain minimum distance called min_class_distance for classifying images.

Data structure

A link list of class representative is created . The class representative is basically the node
created at the time when a new class is formed. The class representative is the root of the binary

search tree that holds images of its class while other members of the class are either internal

nodes or leaf nodes.
Class_list: It is defined as a structure as
Struct class list{
Int meanx, meany, no, load;
Struct node *class root;
Struct class_list *next;
}s
Description of the class list structure
1. meanx, meany représent the mean point of a class called class mean.

This is used for determining the Euclidean distance between the query image and class mean of

existing classes.

2. no represents the class number called class no

3. class_root is a pointer to a vanable of type node which is created when a new class is formed.

4. next is a pointer to the class next to the current class in the list of classes.

5. load gives the number of images present in the class at any point of time.

Node: It is defined as a structure as

Struct node {
Int numl,num?2;
Char *filename;
Struct node *léﬁ,*right;
};
numl, num2 are the attributes of an image which are inserted as image content into the
node of a tree repfcsenting a class,

Filename is a pointer to the image file.

Left, nght are the links of type node to form the left and right child of the node
concerned.

Image_store: This is a structure used to download the image features stored in the secondary

storage device into the image database created.
Struct image _store{)
Char filename[];
Int num1, num?2;
s
filename corresponds to image that has been inserted into the database earlier

numl, num2 are attributes of the image that has been inserted into the database earlier.

Steps for insertion

. calculate attributel and attribute2 of the query irnage using function
find_compactionfactor(image/][], height, width) and Chull_points(image edge[][], perimeter)

2. 1f (list of class is empty){
a. create a new class
class = create_class()

b. invoke function insert(class —root, numli, num?2, filename) to create a search tree of

the new class created in step 2(a)
¢. Class mean is the point corresponding to the image inserted first into the class.
class—meanx=numl;
class—meany=num?2; -
class—load=I;

d. this class is the starting of the list of classes

else{ /* if class list is not empty then the class of the query image is determined. In case

of exact match insertion operation is rejected. A new class is created for the query image 1if it

does not belong to any of the existing classes. */
a. n= Retrieve_images(filename, numl, num?2)
b. if{in=1)
reject inferring the presence of the image in database

else

mnsert the image in it’s class by invoking the function

2

m=Insert_in_it class(num!, num2, filename)

m gives the the class_number in which the query image inserted
Steps for image retrieval

I. Calculate attribute! and attribute2 of the query tmage as
numl=find_compaction(image, height, width)
num2=chull_points(image_edge, perimeter)

2.1f there is no class

it is inferred that database is empty

else
invoke function Retrieve iamges as
m=Retrieve_images(filename, numi, num?2)
1f{m=0)

it is inferred that no image found in the neighborhood of the query iinage.
Details of the functions used

()insert_ in_it class(numl, num2, filename)
1.define class_list *new class,*class

2.class = find_class(numi, num?2)

class 1s the pointer to the list of type class list into which image with num1 and num? falls.
3.1f(class 1= null){

i invoke insert(class —root, numl, num2, filename)
This inserts the query image into the search tree of its class.

ii. update_mean(class, numl, num2)/*after inserting a new image class mean is
updated */

iii. return(class—no)/* this returns the class number into which the Image is inserted
*/

else{

1. create a new class by , class= create_class()

1, insert(néw__roor, numli, num?, filename)/*new_root is assigned null initially */
1. class—root=new root

' class—>meanx=num|

V. class—>meany=num?

(1Dfind_class(numli, num2){
1. create class_list variable * class,*temp:;

2. traverse the class_list and determine the Euclidean-distance of the

query image from the class mean of each class.

a[1] =Euclid_dist(class -meanx, class —meany, numl, num2)

b[i]=class

3. sort the array a[]. While sorting swapping is done in between two
elements of b[] with swapping of two elements of af]. A[0] will the

minimum Euclidean distance .

4. Db[0] is be the class where the quefy image would be inserted provided
a[0] is less than minimum_class distance.
If(a[O]<minimum_class_distance) |

Return(b{0]) /* it gives the class in which the input image is to be
inserted */
else
~ - Return(null)/*it indicates a new class 1s required to be formed for
inserting the query image.
}

(IlD)insert(rnode, numl, num2, filename){
if(node = null){/*if input image does not belong to any of

the existing classes a new binary tree is constructed to construct a new

class */

f

(1) create a new tree with root node new root

(i) new_root—numl=num]
(i) new_root—num2= num?2
(iv) new root-sleft = null
(v) m=:1m.r_1rrc:rcnt—)»right-—-~ null

~ (vi) new_root—filename= filename

}

else{/* tree corresponding to the class returned by the find class() is

traversed to find the position for inserting image attributes into that class */

If (numl < node-»num1)

insert(node—Meft, numl, num2, filename)

else

insert(node —left, numi, num?2, filename)

(IV)Update_mean(class, numi, num?2)f

/* this function updates the mean of the class to which a new image has been
inserted. */

I. define two temporary variaables temp1,temp?2
2.temp]l = class—»meanx * claass—load
3.temp2 = claass—>meany * class—load

4. new class—load = class—load + 1
- 5. class—>meanx = (templ + num1 Y/ class—load

class—meany = (temp2 + num?2)/ class—load

;

(V)Retrieve_images(filename, numi, num2){

/* for retrieving images similar to the query image its class is determined and then the

tree corresponding to that class is traversed */

1. find the class of the query image by

class = find_class(numli, num2)

2. if(class ! =null)

m=inorder_traversal(class —class_root, filename, numl, num?2)

else

_ m = (/* it indicates the query image does not belong to any
of the existing classes */
3. return(m)
}

(VD)inorder_traversal(node, filename, num]. num2)4{

return(tag)}

1.tag =0 /* tag is used to check exact match */

if(node ! = null){

2.m=inorder_traversal(node —left, filename, numl, num2)
3.1f{((node -numl = num]) and (node -num2 = num2))

it is concluded, that exact match is found and tag 1s set to 1
4.print filename as lying in the neighborhood of the query image

J. m=inorder_traversal (node —right, filename, numl ,num2) }

MODIFIED VERSION OF THE IMAGE DATABASE (FOR ACCURATE
RETRIEVAL)

For accurate retrieval we define one variable called

radius_of _neighborhood.What is done at the time of retrieval is search is made in the

circular region formed in the image plane with query image as the center and

radius_of neighborhood as the radius.
- the
We call the point(in the image plane) corresponding to the query image
as query point and class mean as mean point of that class.
We afe considering only those classes those satistying the condition:
Euclidean distance between the mean _point of the class and the query point

1s less than the minimum_distance_of neighbouring class and call them

most_close neighbours .

Modification in the algorithmic steps

In find_class () function:

l. a temporary variable called class counter is used to store no of class
satistying neighborhood condition defined earlier.

2. In sorted arrary determine classes satisfying neighborhood condition
and increament the class_counter for each of the class found so.

The above two steps are included in step-3 of the find_class function described

earlier,
In Retrieve _image () function:
Step-2 is modified to)
For I =0 to class counter

M=inorder_traversal(b/I] -sclass_root, filename, numi Jum2)

In inorder_traversal() function:

The only variation in this function is in making decision whether an image

of the class being traversed falls within the circular_neighborhood region of the query

lamge or not.

S0 step-3 is modified to

If Euclidean_distance(node —numi.node —num2,numi ,num2)
ﬁradfus_“of_nefgh_bourhG::Jd accept the image present in the node as similar to the query
image.

For more accurate result of retrieval radius of neighbourhood is reduced with

cach iteration of the retrieval of the same query image during query session until

find_class() returns null.

PICTORIAL REPRESENTATION OF RETRIEVAL SCHEME:

class 1 cliss 2

v @ » v - r “ class n

—tlass_root

cdass_root O\D

/
{

RADIUS OF NEIGHBOURHOOD

o J& B

ds. (e
SUERY IMAGE

d1,d2 and d3 are less than minimum_disunce_of neighouring dass and hence class 1 ,class2 and class 3 considered
for retwrieval and dass corresponding to minimum among d1,d2 and d3 is considered for insertion of the query image

TEST RESULT

We have got the following result after testing the proposed CBIR

. (neighbourhood search method) using standard binary Lmages.
- Note

- Time measured excluding the time taken for image feature computation.

Total number of binary image stored in the image database=384

Average number of clock cycles required for inserting an image into the image
database=/718

Average number of clock cycles required for retrieving images similar to the
query image =/484

CLOCKS PER SEC=10°

Average time for inserting an image into the image database =1.718*107 seconds

Average time for retrieving images most close to the query image=1.484*10"
~ seconds

Average search space

It 1s defined as the average number of imaées examined while
inserting the query image into the image database as well as retrieving images
most similar to the query image.

For the system tested,

Average search space for insertion znverage search space
for retrieval=20

QUERY-IMAGE

Comparisions of standard indexing stiucture with the retrieval scheme proposed:

KDB-TREE:

ROOT 4 |
Quesy-image

RN

If the query image falls in the 1egion of class1 as shown in the figure KDB-tree retiieves image of class1 only

since there is no overlap between any pair of regions and each data has only one path bewean kself and the
foot.Unike KDB-tree our retrieval scheme will ietrieve image falling in the shaded region of the figure shown

below.[number of image retiieved depends on the radius_of neighbourhood]

Guery image

R-THREE

In R-tree the search algorithm descends the tree from the root to the find all the data objects whose
enclosing rectangles overlap a search rectangie.

Let t be the root of an R-tree,s be search rectangle specified by the user. The
search is performed by the following recursive operation:

1. i tis not a leaf, find all the entries e whose rectangle e.rect ovedaps s . For each overapping entry
set t=e,'rip and same operation is perform recursively.

2. lftis aleaf , find all the entries e whose rectangle e.rect overlaps s, and retreve the record that is
pointed to by e.id from the Jatabase.

Demerit: more burden on the user since he has to select the search rectangle and bounding rectang
les at'the leaf nodes are not optimised.

F= = "

Example: If the dotted rectangie is ths search rectangie
ther: mages present in the 1actangular ragions overlapping
with the search rectangle is retrieved. Here images
corresponding to class 1,2 .3, 5 and 8 are retneved.

R*TREE

It share the same_ uee structure with R-tree but

achieves a better performance by introducing more sophisticated
optimization critenia for node sphttng. |
Demert
1.Extra overhead in terms of node spitiing and forced re-insertion

SS-TREE

" Tres makes use of minimum bounding spheres instead of minimum bounding rectangles as in case of R-tree and

. R*tree.
E xample-

consider two classes class-1 and class-2 representing two leaf nodes of SS-tree,

APPLICATION

Secured Network (model proposed)

The concept of “seeing is believing” can readily be applied to the
computer system when it.comes to recognizing people. Content-
based image retrieval (CBIR) can play crucial role in building a

system that will allow only permitted users to access any device
connected to the computer network.

Steps involved

l. Image database is constructed to store discriminating features

of permitted users.

2. Features for existing users are computed and stored in the
Image database.

3. The user, who wants to access to any computer system

| connected to the network, has to submit his picture to a

scanner.

4. The image scanned is fed as Input to the server running the
CBIR Software.

5. If CBIR Server finds a match in the image database then status
of the terminal requested for is checked by the server If it is
found that the computer is readily availalf;le and the user has
the permission to access it then access is given to that user.

6. CBIR Server waits for the next request.
Note

I. If any user logged into the Intranet is interested In accessing the
_outside world request is passed to the WWW Server

2. Step 1 to step 6 is applicable to all users from outside world

for accessing the secured netrwork

MODEL OF A SECURED NETWORK SYSTEM

IMAGE LOIR

MAIN
SERVER

OUTSIDE WORLD

CONCLUSION

The Content-Based Image Retrieval system proposed is efficient in
terms of average insertion time, average retrieval time and search space. The
system has been implemented in SUN Workstation. Interface has been made for
demonstration of image retrieval. Only thing that need improvement is better user
interface for giving the query image as input to the system proposed. CBIR[1]

systems will play an important role in applications such as network security,

private information retrieval and forensic science.

References

| [1} Yihong Gong. Intelligent Image Databases Towards Advanced Image
" Retnieval.

[2] T. H. Cormen, Charles E. Leiserson and Ronald L. Rivest. Introduction
to Algorithms.

[3} Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.

