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Abstract

We have concentrated on the speaker identification part of the speaker
recognition problem. Here, we have made a study which involves the classifi-
cation and identification of the speakers using the Gaussian mixture models
(GMM) and the mel frequency cepstral coefficients (MFCC). Due to its re-
ported superior performance, especially under adverse conditions, MFCC is
becoming an increasingly popular choice as feature extraction front end to
spoken language systems. The individual Gaussian components of a GMM are
shown to represent some general speaker-dependent spectral shapes that are
effective for modelling speaker identity. A complete experimental evaluation
15 conducted on two sets of data of 7 speakers and 21 speakers. The GMM
attains. 100% accuracy on the 7 speaker data and 97.3% on the 21 speaker
data using clean speech utterances.
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Chapter 1

An Introduction to
Speaker Recognition

The recent development of technology has raised the interest in science fic-
tion inspired biometric recognition i.e., recognition based on an individual’s
biological features. Numerous measurements and signals have been proposed
and investigated for use in biometric recognition systems [JAI99] such as fin-
gerprints, retinal scan, face, written signature, DNA-analysis, smell and voice.
Among the most popular measurements are fingerprint, face, and voice. Per-
haps the greatest advantage of biometric recognition is that you can forget
a PIN-code, but you will never forget your body. Moreover, if the biomet-
ric properties are unique then recognition could be rather safe provided the
technology can measure these properties accurately.

1.1 Voice as a Biometric

The speech signal conveys several levels of information. Primarily, the speech
signal conveys the words or messages being spoken, but on a secondary level,
the signal also conveys information about the identity of the speaker. How?

Speech is a complicated signal produced as a result of several transfor-
mations occurring at several different levels: semantic, linguistic, articulatory,
and acoustic. Differences in these transformations appear as differences in the
acoustic properties of the speech signal. Speaker-related differences are a re-
sult of a combination of anatomical differences inherent in the vocal tract and
the learned speaking habits of different individuals. In speaker recognition, all
these differences can be used to discriminate between speakers.
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Figure 1.1: Speech Processing

1.2 Automatic Speaker Recognition

Speech processing is a diverse field with many applications. Figure 1.1 shows a
few of these areas and how speaker recognition relates to the rest of the field.
Automatic speaker recognition is the use of a machine to recognize a person
from a spoken phrase. These systems can operate in two modes: speaker iden-
tification or speaker verification. Speaker recognition methods can also be di-
vided into text-dependent, texl-independent and text-prompted methods. Text-
prompted method is a nothing but a special case of text-dependent method.

A speaker known to the speaker recognition system who is correctly claim-
ing his/her identity is labeled as claimant and a speaker unknown to the system
who 15 posing as a known speaker is labeled as imposter. A known speaker is
also reffered to as a target speaker while an imposter is alternately called a
background speaker.

There are two types of errors in speaker recognition systems: false accep-
tances, where an imposter is accepted as a claimant, and false rejections, where
claimants are rejected as imposters. There are several factors that can con-
tribute to these errors. Table 1.1 lists some of the human and environmental
factors that contribute to these errors.
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¢ Mis-spoken or misread prompted phrases

e Extreme emotional states (e.g., stress or duress)

e Time varying microphone placement

e Poor or inconsistent room acoustics (e.g., multipath and noise)

e Channel mismatch (e.g., using different microphones for enrollment and
recognition)

e Sickness (e.g., head cold can alter the vocal tract)

e Aging (the vocal tract can drift away from models with age)

Table 1.1: Sources of error in speaker recognition

Verification
Result

{Accept / Reject)

Input Feature __.... . .
Extraction Similarity Decision

| A
Speaker ID
(#M)

Reference
Template or Model
(Speaker #M)

Threshold

Figure 1.2: Speaker Verification

1.2.1 Speaker Verification

Speaker verification is defined as deciding if a speaker is whom he/she claims
to be. The literature abounds with different terms for speaker verification, in-
cluding voice verification, speaker authentication, voice authentication, talker
authentication, and talker verification. Figure 1.2 shows the basic structure of
a speaker verification system.

1.2.2 Speaker Identification

In speaker identification, there is no a priori identity claim, and the system
decides who the person is, what group the person is a member of, or that
the person is unknown in case of an open set. In open set identification, the
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Figure 1.3: Speaker Identification

reference model for an unknown speaker may not exist. This is usually the case
in forensic applications. In this situation, an additional decision alternative, the
unknown does not match any of the models, is required. In both verification and
identification processes, an additional threshold test can be used to determine
if the match is close enough to accept the decision or if more speech data are
needed. Figure 1.3 shows the basic structure of a speaker identification system.

1.2.3 Text Dependent System

In text dependent systems, the users are required to pronounce the test sen-
tence that contains the same text or vocabulary as the training sentences. It
is done to reduce the intraspeaker variability. Here, the knowledge of knowing
words or word sequence can be exploited to improve the performance.

1.2.4 Text Independent System

In text independent systems, there is no such restriction on the user to pro-
nounce the same text as that pronounced during the enrollment.
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1.2.5 Text Prompted System

In the text-prompted speaker recognition method, the recognition system
prompts each user with a new key sentence every time the system is used and
accepts the input utterance only when it decides that it was the registered
speaker who repeated the prompted sentence. The sentence can be displayed
as characters or spoken by a synthesized voice. Because the vocabulary is un-
hmited, prospective impostors cannot know in advance what sentence will be
requested. Not only can this method accurately recognize speakers, but it can
also reject utterances whose text differs from the prompted text, even if it

is spoken by the registered speaker. A recorded voice can thus be correctly
rejected.

1.3 Why Speaker Recognition?

As speech interaction with computers becomes more pervasive in activities, the
utility of automatically recognizing a speaker based solely on vocal characretis-
tics increases.

While each biometric has pros and cons relative to accuracy and deploy-
ment, there are two main factors that have made voice a compelling biometric.

First, speech is a natural signal to produce that is not considered threat-
ening by users to provide. In many applications, speech may be the main (or
only, e.g., telephone transactions) modality, so users do not consider providing
a speech sample for authentication as a separate or intrusive step.

Second, the telephone system provides a ubiquitous, familiar network of
sensors for obtaining and delivering the speech signal. For telephone based
applications, there is no need for special signal transducers or networks to be
installed at application access points since a cell phone gives one access almost
anywhere. Even for non-telephone applications, sound cards and microphones
are low-cost and readily available.

Additionally, speaker recognition has found its way into a large number
of applications such as voice dialing, phone banking, telephone shopping,
database access services, voice mail, security control of confidential informa-
tion, remote access to computers, information services and forensics.

1.4 Outline of Report

This dissertation work concentrates on the text-independent speaker identi-
fication field of the speaker recognition problem. Chapter 2 deals with the
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production and classification of the speech signals. The speech analysis for
extracting the feature representation used in this work is presented in Chap-
ter 3. Next, the reference model of a speaker used for speaker identification is
described in Chapter 4. The experimental evaluation and the analysis of the
results obtained is done in Chapter 5 and finally we conclude with Chapter 6.



Chapter 2

The Speech Signal

2.1 Speech Production

Speech signals are composed of a sequence of sounds. These sounds and the
transitions between them serve as a symbolic representation of information.
The arrangement of these sounds (symbols) is governed by the rules of lan-
guage. The study of these rules and their implications in human communica-
tion is the domain of linguistics, and the study and classification of the sounds
of speech is called phonetics.

2.1.1 The Mechanism of Speech Production

A schematic diagram of the human vocal mechanism is shown in Figure 2.1
[FLAT72]. Air enters the lungs via the normal breathig mechanism. As air is
expelled from the lungs through the trachea (or windpipe), the tensed vocal
cords within the lgrynz are caused to vibrate (in the mode of a relaxation
oscillator) by the air flow. The air flow is chopped into quasi-periodic pulses
which are then modulated in frequency in passing through the pharynz (the
throat cavity), the mouth cavity, and possibly the nasal cavity. depending on
the positions of the various articulators (i.e., jaw, tongue, velum, lip, mouth},
different sounds are produced.

A simplified representation of the complete physiological mechanism for
creating speech is shown in Figure 2.2 [RAB03}. The human vocal mechanism
is driven by an excitation source, which also contains speaker-dependent in-
formation. The lungs and the associated muscles act as the source of air for
exciting the vocal mechanism. The muscle force pushes air out of the lungs
(shown schematically as a piston pushing up within a cylinder) and through
the bronchi and trachea. The excitation can be characterized as phonation,

7
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Figure 2.2: Schematic representation of the complete physiological mechanism
of speech production.

Other aspects of speech production are learned characteristics, including
speaking rate, prosodic effects’ , and dialect (which might be captured spec-
trally as a systematic shift in formant frequencies).

2.2 Classification of Speech Sounds

Most languages can be described in terms of a set of distinctive sounds, or
phonemes. There are a variety of ways of studying phonetics; e.g., linguists
study the distinctive features or charecteristics of the phonemes.

The four broad classes of sounds are vowels, dipthongs, semivowels and
consonants [RAB04]. Each of these classes may be further broken down into

‘Long-time variations, i.e., changes extending over more than one phoneme, in pitch
(intonation), amplitude (loudness) and timing (articulation rate or rhythm). See [QUAO4].
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Figure 2.3: Waveform of an utterance. Each line corresponds to 100 msec. S,
U and V stand for silence, unvoiced and voiced respectively.

sub-classes which are related to the manner, and place of articulation of the
sound within the vocal tract. This classification of sound is generally used in
the fields of speech recognition, language identification and speech synthesis.

Speech sounds can also be classified into 3 distinct classes according to
their mode of excitation [RABO04] (shown in Figure 2.3). These mechanism of
excitation are:

1. Air flow from the lungs is modulated by the vocal cord vibration, re-
sulting in a quasi-periodic pulse-like exciattion. These are called voiced

sounds.

2. Air flow from the lungs become turbulent as the air passes through a
constriction in the vocal tract, resulting in a noise-like excitation. These
are called fricatives or unvoiced sounds.

3. Air flow builds up pressure behind a point of total closure in the vocal
tract. The rapid release of this pressure, by removing the constriction,
causes a transient excitation. These are called plosive sounds.

In Chapter 3, we will see how we can use these attributes for the extraction
of features relevant for speaker identification.



Chapter 3

Feature Extraction

Chapter 2 shows a variety of voice attributes that characterize a speaker. In
viewing these attributes, both from the perspective of the human and the
machine for recognition, speaker-dependent voice characteristics can be cat-
egorized as “high-level” and “low-level.” High-level voice attributes include
“clarity,” “roughness,” “magnitude” and “animation” [REY92, VOI64]. Other
high-level attributes are prosody and dialect. These attributes can be difficult
to extract by machine for automatic speaker recognition. In contrast, low-level
attributes, being of an accoustic nature, are more measurable. These attributes
include primarily the vocal tract spectrum and, to a lesser extent, instanta-
neous pitch and glottal flow excitation, as well as temporal properties such as
source event onset times and modulations in formant trajectories.

‘We focus on features (derived from spectral measurements) identifying the
formants in the speech, which represent the changes in the vocal tract of a
speaker, and mel-frequency cepstrum coefficients (MFCC) is one such example
we have used for speaker identification.

3.1 Mel Scale and MFCC

A pure tone is uniquely defined by its intensity and frequency. The perceptual
counterparts of these quantities are termed loudness and pitch respectively.
Pitch is difficult to define. Mostly we agree that pure tones can be ordered
in such a way that one tone is higher or lower than another. Pitch is the
criterion that we use to make such decisions. Like loudness, it is a complex,
non-linear function of both frequency and intensity. Stevens, Volkmann and
Newman defined the Mel (melody) scale, which relates pitch to frequency as
depicted in Fig. 3.1. It was later refined by Stevens and Volkmann in their

11
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Figure 3.1: Linear frequency vs. Mel frequency

classical paper [STE40]. The form of the curve was determined by perceptual
experiments designed to find a linear relation among perceived pitches. A pitch
of 2000 mels is therefore subjectively twice as high as a pitch of 1000 mels. The
numeric range of the mel scale and its relation to sound intensity was fixed by
defining a 40dB tone with a frequency of 1000 Hz as having a pitch of 1000
mels. 1 mel represents one-thousandth of the pitch of 1 kHz.

- MFCC features are derived from the FFT [OPP98] magnitude spectrum by
applying a filter bank which has filters evenly spaced on a warped frequency
scale. The logarithm of the energy in each filter is calculated and accumulated
before a Discrete Cosine Transform (DCT) [OPP98] is applied to produce the

MFCC feature vector. The frequency warping scale used for filter spacing in
MFCC is the mel scale.

3.2 Pre Prbcessing of Speech Signal

Firstly, the amplitude of the input signal is normalized to remove the effect of
varying intensity. The speech signal as shown in Figure 2.3 consists of silence,
voiced and unvoiced part. The silence part does not contain any relevant infor-
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mation about the speaker. Thus we need to remove the silence part before ex-
tracting any features from the speech. We used the short-term energy [RAB04]
to remove the silence part which is described as follows.

Short-term energy allows us to calculate the amount of energy in a sound
at a specific instance in time, and is defined as

En} = i (z[m] w[n — m])* | (3.1)

m=n—N+1

where z is the speech signal, w is the window function, n is the sample that
the window is centered on, and N is the window size.
We used Hamming window [OPP98| which is given as

—~ (1 — 2 0<p<N-— = 0.
w[n]-—-{a (1—a)cos2 0<n<N-1, a=0.54

0 otherwise (3.2)

where N is the window size.

We segmented the speech signal into several non overlappinp parts of fixed
size and calculated the short-term energy of every segment. The segment hav-
ing energy less than a fixed threshold value was discarded for further consid-
eration. This removes the silence, weak fricatives and weak plosives from the
speech whose energies are approximately same as that of the silence part.

3.3 Computing MFCC

The block diagram for computing MFCC is shown in Figure 3.2. Let the N-
sample speech signal be x[n|, n=0,1,...,N-1. The step-by-step procedure for
computing MFCC is explained below [PHA, COM].

3.3.1 Pre Emphasis

The spectral characteristics of speech at higher frequencies are subdued in rela-
tion to the lower frequencies. In order to enhance their weight in the extracted
parameters, a pre-emphasis filter is applied which is a first order high-pass

filter described by: -
yln] =z[n] —azfn-1], 09<a<1.0 (3.3)

where the parameter o is not critical. We have taken a = 0.95.
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Figure 3.2: Block diagram for computing MFCC

3.3.2 Framing

The speech signal is a slowly time varying signal in the sense that, when
examined over a sufficiently short period of time {between 5 and 100 msec),
its characteristics are fairly stationary. An illustration of this effect can be
seen in Figure 2.3. Thus, we can isolate and process short segments of the
speech signal as if they were short segments from a sustained sound with fixed
properties.

50, the normalized and filtered signal is broken into M overlapping frames
with step size V' and frame size W. Frame size usually range from 10 msec to
20 msec. and step size between 20 and 50 percent of the frame size.

3.3.3 Windowing

Fach frame is multiplied with a window function w to minimize signal dis-

contunities in the time domain and the resulting spectral artifacts due to
pickel-fences effect.

y[n] = y[n]wln], n=0,1,... W —1 (3.4)
We have used the Hamming window given by Eq. 3.2.
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3.3.4 Power Spectrum

The power spectrum of each frame is calculated by calculating a discrete fourier
transform (DFT) [OPP98| of specified size U and then computing its magni-
tude squared. The frame size W may not be the same as U, and to overcome

this problem the frame could be zero padded or readjusted according to U.
The DFT is given by

U-1
Y[kl =) y[n]e U g =0,1,... U~1 (3.5)

n=0
where 7 = +/—1 and the magnitude square is given by
Slk] = (real(Y'[k]))? + (imag(Y[k]))?, k=0,1,...,U—1 (3.6)
The DFT can be computed efficiently using the FFT [OPP98] algorithm.

3.3.5 Mel Spectrum

The mel spectrum of the power spectrum is computed by multiplying the power
spectrum by each of the of the triangular mel weighting filters (described later
in this section) and integrating the result.

5[l = LfS[k]m;[k], 1=0,1,...,L—1 (3.7)
k=0

where L is the total number of triangular mel weighting filters and m; is the
1" filter.

Mel Filter Bank

The mel scale filterbank is a series of L triangular bandpass filters (Figure 3.3)
that have been designed to simulate the bandpass filtering believed to occur in
the auditory system. This corresponds to series of bandpass filters with con-
stant bandwidth and spacing on a mel frequency scale. On a linear frequency
scale, this filter spacing is appoximately linear up to 1 kHz and logarithmic at
higher frequencies. The following warping function tranforms linear frequencies
to mel frequencies:
S

mel(f) = 2595 log,, (1 + ——) (3.8)

700

If frmin and frax are the minimum and maximum frequencies in Hz, respectively,
fe the centre frequency of a filter, and the low and high cutoff frequencies, f;
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Filter magnitude
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Figure 3.3: The mel scale filter bank

and fp, as the centre frequencies of the two adjacent filters (Figure 3.3), then
the mel filter bank m is defined by the following equations.

 w-1
T= fmax _ fmin (39)
II — 7(fi - fmin)
Io = ¥(fe — fmin) (3.10)
Ir = y(fn — fnun)
g (5t fan— fi) L] <k <|L]
mi[k] = 14 fcifh ($ + fmin _ fl) if I-Ic-‘ <k < I_IrJ (3'11)

0 otherwise
for:=0,1,...,L —1.
Jmin 18 generally taken as 20 Hz (0 mels) and £, as half the sampling

frequency. The centre frequencies f, can be determined by dividing the mel
frequency scale, between the minimum mel frequency and the maximum mel

frequency ([fmin, fmax]), into L equal parts and then applying Eq. 3.8 to get.

f as f.. The number of filters is usually between 13 and 24. We have used 20
filters.

3.3.6 Log of Filter Coeflicients

This part of the process is completed by taking the logarithm of each filter
coeflicient to model the non-linear intensity-loudness relationship which is log-
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arithmic in nature.

Sl =log,, S, 1=0,1,...,L—1 (3.12)

3.3.7 Inverse Discrete Cosine Transform

The inverse discrete cosine transform (IDCT) [OPP98] is used to orthogonalize
the filter vectors. Because of this orthogonalization step, the information of
the filter vector is compacted into the first number of components and we can
shorten the vector to C components. The IDCT of the filter vector gives the
mel cepstrum ¢ as

2 I N
cln) = 7 > S cos ((I — 0.5)—3) , n=01,...,C~1 (3.13)
I=0

where C is the desired number of cepstral coefficients. C' is chosen to be less
than L, usually somewhere betwee 9 and 15. We have used 13 mel cepstral
coefficients. The first mel-scaled cepstral coefficient is dropped as it represents
the mean energy in each frame.

3.4 Why MFCC?

‘The mel warping transforms the frequency scale to place less emphasis on high
frequencies. The primary reason for effectiveness of MFCC is that, it models
the non-linear auditory response of the human ear which resolves frequencies
on a log scale. The mel cepstrum can be considered as the spectrum of the
log spectrum. Removing its mean reduces the effects of linear time-invariant
filtering (e.g., channel distortion). The cepstrum’s density has the benefit of
being modeled well by a linear combination of Gaussian densities as used in
the Gaussian mixture model.



Chapter 4

Pattern Matching and
Classiﬁcation

The pattern-matching task involves computing a match score, which is a mea-
sure of the similarity, of the input feature vectors to some model. Speaker
models are constructed from the features extracted from the speech signal. To
enroll users into the system, a model of the voice, based on the extracted fea-
tures, is generated and stored. Then, the matching algorithm compares/scores
the incoming speech signal with the model of the claimed user. There are two
types of models: stochastic models and template models.

In stochastic models, the pattern matching is probabilistic and results in a
measure of the likelihood, or conditional probability, of the observation given
the model. For template models, the pattern matching is deterministic. The
observation is assumed to be an imperfect replica of the template, and the
alignment of observed frames to template frames is selected to minimize a.
distance measure d.

We have used Gaussian mixture model (GMM) (Section 4.1) which is an
example of the stochastic model in this dissertation work to construct the
speaker models for the speaker identification problem.

4.1 Gaussian Mixture Model

The Gaussian probability density function in one dimension is a bell shaped
curve defined by two parameters, mean y and variance ¢2. In the D-dimensional
space it is defined in a matrix form as

B 1 [ L
T (27T)D/2|E|1/2 €Xp 9

N(Z; i, %)

8y
I
=
3
=)
I
=
e
oo
e
J
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Figure 4.1: The Gaussian mixture model is a union of Gaussian pdfs.

where T is a D-dimensional random vector, [ is the mean vector and ¥ the
covariance matrix. The Gaussian distribution is usually quite good approxi-
mation for a class model shape in a suitably selected feature space. It is a
mathematically sound function and extends easily to multiple dimensions. In
the Gaussian distribution lies an assumption that the class model is truly a
model of one basic class. If the actual model, the actual probability density
function, is multimodal, it fails.

‘Gaussian mixture model (GMM) shown in Figure 4.1 is a mixture of several
(Gaussian distributions and can therefore represent different subclasses inside
one class. The probability density function is defined as a weighted sum of
(Gaussians

p(£|A) = lecN (Z; e, Ze) (4.2)

where p, is the weight of the component ¢, 0 < p, < 1 for all components, and
M P = 1. Thus the complete Gaussian mixture density is parameterized by

the mean vectors, covariance matrices and mixture weights from all component

densities. These parameters are collectively represented by the notation

A=Ape,lic, L} c=1,.... M (4.3)

Given data set X = {&,75,..., 7} of size T, the aim is to estimate the
parameters of the GMM, A, which in some sense best matches the distribution
of the training feature vectors. There are several techniques, available in the



CHAPTER 4. PATTERN MATCHING AND CLASSIFICATION 20

literature, for estimating the parameters of a GMM [DUDO1, LACS88|. By far
the most popular and well-established method is the mazimum likelihood (ML)
estimation. This method is described in section 4.1.1

4,1.1 Maximum Likelihood Parameter Estimation

Given a density function p(Z|A) that is governed by the set of parameters A,
and a data set X = {i,7s,...,Z7} of T independent samples drawn from
this distribution. That is, these data vectors are independent and identically
distributed (i.i.d.) with distribution p. Therefore, the resulting density for the
samples is

p(X1A) = [T p(EIN) = LX) (4.4)

t=1
The function, £(X’; A), is called the likelihood of the parameters given the data,
or just the likelihood function. The likelihood is thought of as a function of the
parameters A where the data A is fixed. In the maximum likelihood problem,
the goal is to find the X that maximizes £, i.e.,, to find A* where

X = arg max L(X; ) (4.5)

Unfortunately, this expression is nonlinear function of the parameters A
and direct maximization is not possible. Usually this function is not maximized
directly but the logarithm

T
L{X; M) = log L(X; A) = )~ log p(F:| M) (4.6)

i=1
called the log-likelihood function is taken which is analytically easier to handle.
Because of the monotonicity of the logarithm function the solution to Eq. 4.5

is the same using L{X; \) or L(X; )).

Depending on p(Z|)A) it might be possible to find the maximum analytically
by setting the derivatives of the log-likelihood function to zero and solving
A. But usually the analytical approach is intractable. In practice an itera-

tive method such as the ezpectation mazimization (EM) algorithm [DEM77,
DUD01, BIL97] is used. This algorithm is described in section 4.1.2 and has

been used for estimating the parameters for the speaker recognition problem.

4.1.2 The EM Algorithm for GMM

The expectation maximization (EM) algorithm is an iterative method for cal-
culating maximum likelihood distribution parameter estimates from incom-
plete data (some elements missing in some feature vectors). It can also be
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used to handle cases where an analytical approach for maximum likelihood
estimation is infeasible, such as Gaussian mixtures with unknown and unre-
stricted covariance matrices and means.

The EM algorithm starts from an initial guess A° for the distribution pa-
rameters and the log-likelihood is guaranteed to increase on each iteration until
it converges. The convergence leads to a local or global maximum.

On each EM iteration, the following reestimation formulas are used which
guarantee a monotonic increase in the model’s likelihood value.

. | RN

pitt = ?ZP(CWHA) (4.7)
t=1

. Y1 e F, XY) 7 (4.8)

i P(clZs, X)

Z?:l P(C‘.fg, }‘i) ﬁt-ﬁ _ ut'.H
Et—1 P(clEe, A) i

where the a posterior: probability for class ¢ is given by

Lo = (et (4.9)

- ' pW(ft;lﬁrEi) |
plC|Z, AY) = — £l 4.10
A0 X) = S N @ B T (410

for ¢ =1,2,..., M. The superscripts ¢ and ¢ + 1 denote the i** and (i + 1)
iterations respectively.

- The interpretation of the Eqs. 4.7-4.9 is actually quite intuitive. The weight
pc of a component is the portion of samples belonging to that component. It is
computed by approximating the component-conditional pdf with the previous
parameter estimates and taking the posterior probability of each sample point
belonging to the component ¢ (Eq. 4.10). The component mean f, and covari-
ance matrix . are estimated in the same way. The samples are weighted with
their probabilities of belonging to the component, and then the sample mean
and sample covariance matrix are computed.

The initialization is one of the problems of the EM algorithm. The selection
of A% (partly) determines where the algorithm converges or hits the boundary
of the parameter space producing singular, meaningless results. Some solutions
use multiple random starts or a clustering algorithm for initialization [F1IG02].
We have used random initialization as the starting value of \°. The other
critical factor is the selection of the order M of the mixture. There are no
good theoretical means to determine this order, so it is best experimentally
determined for a given task. |
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4.2 GMM for Speaker Identification

Let us consider S speakers. The features for each speaker are extracted as
described in Chapter 3. These featurs are used to construct a GMM for each
speaker and the speaker is referred by his/her model ). This is called the
training phase of a pattern recognition system. These models (A1, A2, ..., Ag)
are stored and used for classifying an unknown speech sample as described in
Section 4.4.

4.3 Why GMM?

There are two principle motivations for using Gaussian mixture densities as a
representative of speaker identity.

Speech production is not “deterministic” in that a particular sound (e.g.,
a phone) is never produced by a speaker with exactly the same vocal tract
shape and glottal flow, due to context, coarticulation, and anatomical and
fluid dynamical variations. One way to represent this variability is probabilis-
tically through a multi-dimensional Gaussian pdf. The Gaussian pdf is state-
dependent in that there is assigned a different Gaussian pdf for each acoustic
sound class. We can think of these states at a very broad level such as quasi-
periodic, noise-like and impulse-like sounds or on a very fine level such as
individual phonemes. The spectral shape of the ¢** acoustic class can in turn
be represented by the mean i, of the ¢ component density, and variations of
the average spectral shape can be represented by the covariance matrix X,.

The second motivation for using Gaussian mixture densities for speaker
identification is that a linear combination of Gaussian basis functions is capa-
ble of representing a large class of sample distributions. One of the powerful
attributes of the GMM is its ability to form smooth approximates to arbitrary-
shaped densities.

4.4 Classification and Speaker Identification

Suppose, for a group of S speakers S = {1,2,..., 5}, we have estimated their
Gaussian models models Ay, Mg, ..., As. Then for each test utterance, features
are extracted as described in Chapter 3.

We have used mazimum a posterior probability classification, where we
compute the probability of each speaker model given the features

X — {fl,fz, . . .,fT},



CHAPTER 4. PATTERN MATCHING AND CLASSIFICATION 23

Le, Pr(Ag|X) for k =1,2,... 8. The speaker with the highest probability is
chosen. Formally,

iy

S =arg [nax. Pr(Az|X) (4.11)

Using Bayes’ formula, we can write

Pr(Az|X) = P ( (4.12)

Assuming equally likely speakers (i.e., Pr{Ax) = 1/S for k = 1,2,. .. S) and
noting that p(X’) is same for all the speaker models, Eq. (4.11) can be simplified
to

S = arg max p(X| M) (4.13)
= .a,rg llélfgsp({fl:l :EZ: * vy ‘fT}'Ak) (4'14)

which is nothing but maximizing the likelihood as in Eq. 4.5.
If we assume that the feature vectors are independent, then the likelihood
for an utterance is simply the product of likelihoods for each feature vector.

T
p({fl,fg, .« -:ET}IAk) = Hp(ftlAk) k = ]., 2, cony S (415)

t=1

The assumption of feature vector independence is a very strong one; an
implication is that both the speaker models Ax and the likelihoods calculated
above do not depend on the order of the featyre vectors. Dynamics of feature
vectors over time are thus not considered here. By applying the logarithm, we
can write the speaker identification solution as

T

S = arg II::I-lkaS.XS t; log p(Z¢| Ax) (4.16)



Chapter 5

Experimental Evaluation

5.1 Performance Evaluation

The evaluation of the speaker identification experiment was conducted in the
following manner. The test speech was first processed using the front-end anal-
ysis to produce a sequence of feature vectors X = {#, s, ..., Z;}. Then, this
sequence was divided into overlapping segments of T feature vectors each as

Segment 1
1, Tay .oy Ty Bret, ..., Ty
Segment 2
fl:fm .. ':i:T:fT+la g ':ft

Segment t — T + 1
- o R —
ml:ffZ:"':xt—T: j’t—T-i-l:'“!mt
The identified speaker of each test segment was compared to the actual
speaker of the test utterance and the number of correctly classified segments
were tabulated. This was done for each of the test speaker. The final per-
formance evaluation was then computed as the percent of correctly identified
T-length segments over all test utterances.

# of correctly identified segments

X 100 5.1
total # of segments (5.1)

Accuracy =

24
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5.2 Database Description

The experiment was done using two sets of speaker databases. The first one was
the database of speech samples recorded in ISI, Kolkata while the other one
was recorded in IISc, Bangalore. The features of the databases are summarized
in Table 5.1.

IST Database IISc¢ Database
Number of | 7 21
Speakers
Male-Female | 0:7 11 : 10
ratio
Mother Bengali Hindi, Punjabi, Ben-
Tongue | gali and Oriya
Recording bnglsh Bengal English +  Mother
Language Tongue
Sessions per || 6 4
Speaker
Description 3 utterances of one | 1 utterance of one fixed
of Sessions fixed sentence + 3 |sentence + 3 utter-
utterances of another | ances of arbitrary se-
fixed sentence quences of words
Sampling 44100 Hz 16000 Hz
Frequency
Speech Dura- || 29 sec. approx for every | varied from 40 - 120
tion speaker S€EC.

Table 5.1: Summary of the speaker databases

5.3 Results

In both the data sets;.,h the frame length for extracting the features was taken
20 msec with 10 msec overlap. We used 13 coefficients per frame as a feature
vector extracted using a filter bank of size 20.
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5.3.1 Results for 7 Speaker Database

The reference model was created with one utterance from each speaker. Testing
was done using utterances other than those used for training. The duration
of each segment of the test speech used was 5 sec. The accuracy obtained is

shown in Figure 5.1.
The summary of the results obtained is tabulated in Table 5.2 which shows
the accuracy in % and the graphical representation is shown in Figure 5.3.

8 Gausstan Mixtures 16 Gaussian Mixtures 32 Gaussian Mixtures
Text Dep. | Text Indep. | Text Dep. | Text Indep. | Text Dep. | Text Indep.
Min. 09.81 100.00 100.00 100.00 100.00 100.00
Max. 100.00 100.00 100.00 100.00 100.00 100.00
Avg. 99.97 100.00 100.00 100.00 100.00 100.00

Table 5.2: Comparison of results obtained for the 7 speaker database.

9.3.2 Results for 21 Speaker Database

The reference model was created with sentential utterance from each speaker.
The training speech was 40-75 sec. long. Testing was done using utterances
other than those used for training, i.e., the random sequences of words. The
testing speech was 60-120 sec. long. The duration of each segment of the test
speech used was 10 sec. The accuracy obtained is shown in Figure 5.2.

The summary of the results obtained is tabulated in Table 5.3 which shows
the accuracy in % and the graphical representation is shown in Figure 5.4.

8 Gaussian Mixtures | 16 Gaussian Mixtures | 32 Gaussian Mixtures

Text 1 Text 2 Text 1 Text 2 Text 1 Text 2
Min. || 43.61 49.75 51.08 68.22 72.02 79.93
Max. || 100.00 100.00 100.00 100.00 100.00 100.00
Avg. || 87.62 91.75 03.18 95.77 96.26 97.31

Table 5.3: Comparison of results obtained for the 21 speaker database.
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5.4 Analysis of Results

From the results obtained, we can see (Figure 5.3 and Figure 5.4) that as we
increase the number of Gaussians from 8 to 16 and 32 in the mixture, the
classification accuracy increases in both the cases which is expected. But the
average accuracy falls from 100% to 97.13% on increasing the population size
from 7 to 21, which shows that the accuracy decreases with the increasing

population size. Nevertheless, in both the cases, the accuracy is more than
90%.
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Chapter 6

Conclusion

We have used MFCC to extract feature vectors as it models the non-linear
auditory response of the human ear which resolves frequencies on a log scale.
GMMs are motivated for modelling speaker identity based on two interpreta-
tions. The component Gaussians represent characteristic spectral shapes from
the phonetic sounds and are able to model the short-term variations of a per-
son’s voice, allowing high identification performance for short utterances. The
GMM is also capable of modelling arbitrary feature distributions. As is ob-
served that on increasing the number of mixtures in a model increases the
identification performance, a minimum model order is needed to adequately
model speakers and achieve good identification performance.

The performance figures obtained are high because of small data sets and
idealized conditions under which recording was done. More testing is nec-
essary on a variety of channels like telephone and cellphone (noisy environ-
ment), and a greater number of speakers. It is expected that under such re-
alistic conditions, performance will drop to less than 75% as shown by T.F.
Quatieri [QUAO4] using the NTIMIT database. But, with high quality speech
sounds (TIMIT database), the Gaussian mixture model maintains an accuracy
of nearly 100% with large population also. A comparative study is being done
with iterative feature selection and classification using statistical networks.
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