Estimating a Set in R2 Wlth F1n1te
Number of Points using

Minimum Spanning Tree and
| Mult1 Layer Perceptron

A Dissertation submitted in partla.l fulfillment of the
requirement for the M.Tech (Computer Science) degree
| of the Indian Statistical Institute.

| By
J VENKATESH BABU

Under the guidance of
Dr. C A MURTHY
.. Machine Intelligence Unit.
Indian Statistical Institute,
203, B.T.Road,
Calcutta 700 035..
| India.

CALCUTTA

ACKNOLEDGEMENT

of his busy schédule, to help me with the preliminaries concerning the topic of this
dissertation, and also for many interesting discussions. Many of i;he ideas in this

Indian Statistical Institute
- 203,B.T.Road, B |
Calcutta - 700 035, INDIA. |

| Certz:ﬁeete of Approval

This 1s to certify that the thesis titled Estimating a Set in R? with Finite Num-
ber of Points Using Minimum Spanning Tree and Multi Layer Perceptron
submitted by J Venkatesh Babu, towards partial fulfillment of the requirements

for the degree of M.Tech. in Computer Science at the Indian Statistical Institute,
Calcutta, embodies the work done under my supervision.

Machine Intelligence Unit
Indian Statistical Institute,
Calcutta - 700 035.

Contents

1 Introduction

5

t-1 Problem Specification. 5

1.2 Work Already Done 5

1.3 Organisation e e e e e . I e 7

2 Graph Theoretic Apprdach | | - | | 8

2.1 Introduction to Minimal Spanning Tree (MST). 8
22 Main Algorithm for Set Estimation 9

2.3 Implemerptation- e e e e e e e e | .. C e .. e 9

2.3.1 Implenientaﬁon of Krushl’s Algorithm . .-. e e e e e | 9

2.3.2 Dist#nce Measure e e IR I 12

24 Testsﬁnd Results 13

3 MLP Based Method 14

3.1 Introduction to Multi Lé,yer Perceptron (MLP). 14

3.2 The MLP algorithm _ 16

3.3 Approach to Solve the Problem e e e e e e .. 18

34 MLP for set estimation +.. 18

3.5 Tests and Results A e .20

4 Conclusions and Discussions | - o 21
41 Results............... F cee. 21
4.2 FurtherScope I 31
Bibliography | . _. 38

Chapter 1

- Introduction

1.1 Problem Specification

The problem discussed here is "@Given a collection of representa.tiire'points fmm a set
of points, how to get back the original set”. | - -

Once the set is computed, some salient features of the class can then be extracted
which may be useful in making decisions about a course of action (for eg. , in
identification , classification etc.) to be taken later. This will also reduce storage
requirement of the set. | | | | |

It may be noted that in most of the real life pattern recognition problems, the complete
description of a sef is not known. Instead a few sampled points are usually available.

Hence determining the set and its shape from sampled points is an inportant problem
in pattern recognition. o

1.2 Work Already Done

hulls. The efficient construétipn of convex hulls for finite sets of points in the plane is
one of the most exhaustively examined problems in computational geometry. Part of

- The first method by. which people tried to solve this probleni was constructing convex |

5

the motivation is theoretical in nature. It seems to stem from the fact that the convex
‘hull problem, like sorting, 18 easy to formulate and visualize. Furthermore, the convex
. hull problem, again like sorting, plays an important role as a component of a large
- -number of more complex problems. Nevertheless, much of the work is motivated by
~the direct applications in some more practical branches of computer science.

Akl and Toussiant [2], for insta.nce, discuss the relevance of the convex hull problem

~ to pattern recognition. By identifying and ordering the extreme points of a point set,

the convex hu]l serves to characterize, a.tleast in a rough way, the ”shape” of such a
set. '

Jarvis[3] presents several algorithms based on so called nearest- neighbour logic that
compute what he calls the "shape” of a finite set of points: The "shape”, in Jarvis
terminology, is a notion made concrete by the algorithms that he proposes for its
construction. Besides this lack of any analytic definition, the inefficiency of Jarvis’
terminology to construct the "shape” is striking dra,wba,ck Fairfeild[4] introduced a.
notion of the shape of a finite point set based on the closest point voronoi diagram of
the set. He informally links his notion of shape with human perception but presents
no concrete properties of his shapes, in particular, algorithmic results.

The disadvantage of the above methods is that they.do not work for non-convex sets.
- Grenander[11] tried to give a method which finds the pattern class for non-convex
sets. His method was , given a set of points , for each point include all the points
within a circle of ra.dius ¢ ¢ for suitable e. But'the drawback with his-method is that
he did not give any method by which to calculate the value of e.

The method suggested by Edelsbrunner et al[5] is the following. Remove from the

whole space open discs of radius(r) » 0, r is to be choosen suitably, such that they

do not have any intersection with the set given. But there is no automatic way of
choosing r.

The method suggested by Murthy[l] is an extension of the method suggested by
Grenander.' He gave the method to calculate the value of ¢ in the Grenander’s method.
He also gave another method by which to estimate the set given a set of points. Both

these methods are based on Minimum Spa,nnmg Tree and these methods will be
expla.med cha.pter II. |

The method suggested by Mandal et al [10] uses fuzzy logic to extend the _Boundary
to some extent to handle the possible uncovered portions by the sample points. They

argue that the boundary need not be limited by the saniple points because the re-

sulting boundary leaves certain regions not confined in the sample points, although'.
- it should be. Their method extends the boundary such that

L

(1) As the number of sample points increases the extended portion decreases.

(ii) The extended portions have less probability to be in the pattern class tha.n the |
portmns explicitly highlighted by the sample points.

1.3 Organisation
The work done in this thesis can be divided into two parts.

(1) First part deals with checkmg whether the method suggested by Murthy[l]

- works for different data sets. Different sets of data are taken and for each data
the number of points is va.ned and the results studied.

(ii) The second part deals W1th giving a Multi Layer Perceptrqn ba.sed implemen-
tation to the above method

Chapter II deals with the first part mentioned above. Flrst section glves a general
introduction to Minimal Spanning tree. In the second section the main algonthm

used is stated. Next section gives the implementation details. Last section gives the
tests and results.

Chapter III deals with 1tem(11) mentioned above. First section gives an introduction
to Multilayer perceptron and the second section gives the back propagation algorithm
on which the multilayer perceptron works. The third section gives the approach taken

to solve the problem. The fourth section explains the solution we obtmned for aolvmg
the problem. Fifth sectwn gives the tests and results

Chapter IV gives the conclusions and discussions_.

Chapter 2
1 Graph Theoretic Approach

2.1 Introduction to Minimal Spanning Tr_ee (MST) o

We begin by reviewing some terms of graph theory. A graph consists of a set of nodes
and a set'of node pairs called edges. We say that an edge links the two nodes defining
1t and it is incident on both of them. The degree of a node is number of edges incident
on it. A path between two prescribed nodes is an alternating sequence of nodes and
edges with the prescribed nodes as first and last elements, all other nodes distinct,
and each edge linking the two nodes adjacent to it in the sequence. A connected
graph has a path between any two distinct nodes. A cycle is a path beginning and
ending with the same node. A tree is a connected graph with no cycles. A subgraph
of a given graph is a graph, with all of its nodes and edges from the given graph.
A spanning subgraph of a given graph is a subgraph with node set identical to the
node set of the given graph. A spanning tree of a graph is a spanning graph that is a
tree. Note that there is a unique path between every two nodes in a tree and thus a

spanning tree of a connected graph provides a path between every two nodes of the
graph. | |

An edge weighted graph is a graph with a real number assigned to each edge. A
minimal spanning tree (MST) of an edge weighted graph is a spanning tree for which
the sum of edge weights is minimum. Note that a graph (collection of nodes and
edges) is assumed to be given for finding MST. But in this thesis, the graph is
complete graph and MST will be constructed when a set of points is given with the

edge weight being the euclidean distance between the corresponding points.

2.2 Main A.lgorithm 'for Set Esfimat_ion '

The a,lgorlthm being used for the set estimation. is the one given by Murthy[l] which
is given below. ~

1. Get the input set of points. Call this set S.

2. Find the distances between each pair of points.

3. Use the above distances as the edge cost to find Minimum Spanmng Tree. Call
this set . ‘

4. Let I, be the total cost of the MST. Calculate h, = \/E

5*. Let o
As = {X : |X = Xi|| < hy)

|A2n = {X : d(X,G) < hn}
where d(X,G) = minyec d(z,y)
Ay, — A and
Ay — A and

as n—r 00

2.3 Implementation

2.3.1 Implementation of Kruskal’s Algorithm

The problem of finding minimum spanning tree can be stated as follows: Gwén a
simple undirected graph G = (V, E) and a cost function ¢: E — R, the problem is to
find a tree T = (V, Er), where E/ C E with minimum cost. This needs clarification

as to what we understand by the cost of a tree. The cost of a tree T , denoted by

9

¢(T), 1s 3. .egr c(e), the sum of the cost of all the edges. Since the vertex set of T° and
coincides, we call T' as a spanning tree. Also, the minimum spanning tree need not
be unique. The Kruskal’s algorithm discussed in this section is based on a " greedy”
strategy. Such a strategy is not generally guaranteed to find global optimal solutions
‘to problems. - However, for minimum spanning tree problem, it can be proved that
Kruskal’s algorithm do yield a spanning tree with minimum cost[6].

- The algorithm is as follows: We can think of an’ equivalence relation on the set
of vertices such that the equivalence classes represent the growing trees. Also, we
associate a set of edges with each of the equivalence classes such that the equivalence
class together with the associated set of edges form a tree on the vertices of the class.
Initially each vertex is the sole element of its equivalence class, and the associated
set of edges is empty. When the algorithm terminates only one equivalence class
remains and the associated set of edges is a minimum spanning tree. At each step
of the algorithm, we select an edge with an end point in two different equivalence
classes and merge them. Edges, both end points of which lie in the same equivalence
class are permanently excluded from consideration for selection , since their selection
would lead to a cycle. In order to minimize the increase in the value of total cost, the
greedy approach dictates that the allowable edge of least cost to be chosen next.

Algorithm

1. Imtialise the equiva.lenée classes to a single vertex and the associated edge set
to empty. N

2. Pick up an minimum cost edge between two equivalence class, say the edge is
- e. Merge the two equivalence class. The associated edge set is the union of the

two edge sets of the equivalence classes participating in the merging together
with e. g |

3. Repeat step 2 until a minimum spanning tree is found.
Actual Implementation

1. Find all the edge weights 1e., the eucliden distance between each individual pair
of points. | -

2. Tree « ¢

10

3. va «— ¢

. For all vertex v € V, v8 ¢ vus U {{v}}
If | vs |=1 halt.

> o @

Find the edge uv with minimum edge weight and remove this edge from the
edge set.

.=

. Let u,v belong to the sets w;, w; respectively, in vs.

8. If w; # w; then add (u,v) to Tree and replace w;, w; by w; U w; in vs.

9. goto step 0.

From the above descnptlon of the algorithm, we see that the efficiency of the algorithm

depends highly on the way the distances are stored and also on the step 6. The storage
structure used for storing the distances 1s shown below,

du | d13 d14 dln
d23 d24 T d?n

This is not exactly a two-dimensional array. We store in row ¢ the distances of point
i with points i + 1 to n. Here d;; is the euclidean distance between point ¢ and point

. _j'-

The step which has to be handled efficiently is step 6 of Kruskal’s algorithm. Here
we find the edge with min. cost. We have maintained another array of dimension n.
The ith element of the array gives the miniraum element of i** row of distance matrix.
'So for finding overall minimum cost edge we just have to find the minimum of this

array. After removing this edge we have to update this entry wlnch m]l ta.ke atmost
n steps. |

11

2.3.2 ._D istance Measure

In the step 5 we find the sets A;, and A;,. To find these sets we have used graphics
support. To calculate A;,, the procedure we followed is as follows : For each point in
the point set we find the square of width h,, x h, with this point as the center. Then
we blacken this portion on the screen. After this procedure is repeated for all the
_points in the point set we will get an image which represents the obtained set such

that if the pixel value is black then the corresponding pmnt belongs to the set Then
- the screen dump is taken and stored in a file.

The procedure to calculate Agn is not so straight forward. We have to include all the
points which are at a distance less than h, from any point on the edges of MST. So
what we have to do 1s, find the rectangle around each edge of the MST leaving A, on
all sides of the edge. This can be done as follows : Rotate the coordinate axis so that
the y-axis becomes parellel to the given edge. Then with the transformed coordinates
of the edge we can easily find the coordinates of the rectangle enclosing this edge by
some simple additions and subtractions of k, from x and y coordinates of the edge.
Then the obtained vertices of the rectangle are transformed back to the original axis
by rotating the coordinate axis in reverse.direction. Now the portion of this rectangle

is blackened on the screen. The procedure is repeated for all the edges in the MST.
- Then the screen dump is taken and stored in a file.

Now what remains is to check how close these sets are with the original set. For this

purpose the distance measure we used is given below. We defined two functions as
follows

| 1 if(x,y) € original set
flz,y) = { 0 Otherwise

, |1 if(x,y) € obtained set
Flzy) = { 0 Otherwise

Distance measure is then defined as :

D=3"%" If(w,yj - (=, 9)|

12

2.4 Tests _and Results

The algorithm is tested for different data sets. But ma.in.thrust was given for set P.

The original set is shown in fig(i). (in the subsequent discussion set is assumed to be
displayed as an image). fig(ii) shows the points in the plane when number of points
1s taken as 100. fig(iii) shows the MST and fig(iv) shows the set A,, for the points

shown in fig(ii). fig(v) shows the set Ay, for 300 points. fig(vi) shows the set A,,
- for 500 points. fig(vii) shows the set obtained for 700 points and fig(viii) shows the

set obtained for 1000 points. It can be noticed from the figures how as the number
of points increases the obtained set tends towards the original set. Also from table
I (fig(xvi)) it can be seen that the distance between the original and obtained set is
decreasing with increasing number of points. fig(ix) shows Aj, set for 1000 points in
P. fig(x) shows the original set for B. fig(xi) and fig(xii) shows sets A;, and A;, for

1000 points. fig(xiii) shows the original set for c. ﬁg(xw) and fig(xv) shows sets Aln
and Agﬂ respectlvely for 1000 points.

fig(xvi) gives the ta.ble for various values of A, and distances from the original set for

different values of number of points for set P. ﬁg(xw1) is table for set B while ﬁg(xvm)
1s table for set C. |

13

Chapter 3

MLP Based Method

3.1 Introduction to Multi Layer Perceptron (MLP) B

Multi-layer perceptrons are feed forward nets with one or more layers of nodes be-
tween the input and output nodes. MLPs overcome many of the limitations of single
layer perceptrons, but were generally not used in the past because effective training
algorithms were not available. This has changed with the dévelopmnt of new train-
ing algorithms. Although it cannot be proven that these algorithms converge as with

single layer perceptron, they have been shown to be successful for many problems of
interest. o | ”

The capabilities of multi-layer perceptrons stem from the nonlinearities used within
nodes. If nodes were linear elements, then a single layer net with appropriately chosen
weights could exactly duplicate those calculations performed by any multi-layer net.

A single layer perceptron forms half plane decision regions. A two layer perceptron
can form any, possibly unbounded, convex region in space spanned by the inputs.
Such regions include convex polygons, called convex hulls, and the unbounded convex
regions. Here the term convex means that any line joining points on the border of a
region goes only through points within that region. Convex regions are formed from
intersections of the half plane regions formed by each node in the first layer of the
multi layer perceptron. Each node in the first layer behaves like a single layer and
has a high output only for points on one side of the hyper plane formed by its weights

14

and offset. If weights to an output node from N1 first layer nodes are all 1.0 and
the threshold in the output node is N1 — ¢ where 0 < e <1, then the output node
will be high only if outputs of all the first layer nodes are high. This corresponds to
performing a logical AND operation in the output node. Intersections of such half

plane regions form convex regions as described above. These convex regions have at
the most as many sides as there are nodes in the first layer.

This analysis provides some insight into the problem of selecting the number of nodes
to use in two layer perceptron. The number of nodes must be large enough to form
a decision region that is as complex as is required by a given region. It must not,

however, be so large that the many weights required can not be reliably estimated
from the available training data. | -

A three-layer perceptron can form arbitrarily complex decision regions and can sepa-
rate the meshed classes. This can be proven by construction{7]. The proof depends on
partitioning the desired decision region into small hypercubes (squares when there
are two inputs). Each hypercube requires 2N nodes in the first layer (four nodes
when there are two inputs), one for each side of the hypercube, and one node in the
second layer that takes the logical AND of the outputs from the first layer nodes. The
outputs of second layer nodes will be "high” only for inputs within each hypercube.
Hypercubes are assigned to the proper decision regions by connecting the output of
each second-layer nodes only to the output node corresponding to the decision region
~ that node’s hypercube is in and performing a logical OR operation in each output
node. A logical OR operation will be performed if these connection weights from the
second hidden layer to the output layer are one and thresholds in the output nodes are
0.5. This construction procedure can be generalized to use arbitrarily shaped convex

regions instead of small hypercubes and is capable of generating the disconnected and
non-convex regions.

The above analysis provides some insight into the problem of selecting the number of
nodes to use in three-layer perceptrons. The number of nodes in the second layer must
be greater than ene when decision regions are disconnected or meshed and cannot
be formed from one-convex area. The number of second layer nodes required in the
worst case is equal to the number of disconnected regions in input distributions. The
number of nodes in the first layer must typically be sufficient to provide three or more
edges for each convex area generated by every second layer node. There should thus
typically be more than three times as many nodes in the second as in the first layer.

The above discus sion_ centered Iﬁrimarily on MLPs with one outlput when hard hlmtmg

13

nonlinearities are used. Similar behavior 1s exhibited by MLP with _rnnli;iple output |
nodes when sigmoidal nonlinearities are used and the decision rule is to select the
class corresponding to the output node with the largest output. . |

3.2 The MLP algorithm

The back-propagation training algorithm(7] is an iterative gradient descent algorithm |
designed to minimize the mean square error between the actual output of a multilayer
feed-forward perceptron and the desired output. It requires continuous differentiable
non-linearities. The following algorithm assumes that the transfer function of each
node is sigmoid function where the sigmoid function f(a) is - | B

1
(1 + e(e—=B))

fla) =

The following notation 1s used in the following algorithm.

L-level MLP : MLP with L-1 hidden layers.

‘wﬁj . weight of the link joining node i at

level | to node j at level I-1.

Y; output of node j in the output layer.
z: output of node i at level I.

o momentum factor.

n : gain factor.

N; | - Number of nodes at level 1.

Step 1. Initialize Weights
set all weights to small random values.

Step 2. Present Input and Desired Uutputs
Present a continuous valued input vector Zo, Z1,-**,TNo-1 and specify the de-
sired outputs dg,dy, -+, dn;=1. If the net is used as a classifier then all desired

outputs are set to zero except for that corresponding to the class the input is

from. That desired output is 1. The mput could be new on each trial or samples
from a training set could be presented cyclically until weights stabilize.

16

- Step 3. Calculate Actual Outputs

Step 4.

Use the sigmoid non-linearity from above and formulas glven below to calculate
the outputs

e = fTE whal -0 0 <k < N

:r:i = f(Zf.i_El wij :E;-_l - 9) 0 <k < N
Here 6 is threshold fof the node.

Adapt Weights

Use a recursive algorithm starting at the output nodes and worklng back to the |
first hidden layer. Adjust weights by

wl!j('t +1) = wi;(t) + bzl
In this equation wi;(t) is welght at time t. If I = L i.e., node § is an n output

node then,
y.‘:‘(l y.r)(d) |

where d is desired output 0f node node j and y; is the actual Gutput i<l
1.e. node j is an internal node, then |

= gl (1 - g I+1
i =T Ec‘iw o

N
where k is over all nodes in the layers above node 7. Internal node thresholds are
adapted in a similar manner by assuming they are connection weights on links
from auxiliary constant-valued(-1) inputs. Convergence is faster if a momentum

. factor is added and weight changes are smoothed by

Step 5.

wli(t+1) = wli(0) + néal + auli(®) - wy(t ~ 1))
~where 0 < a < 1.

Repeat by going to step 2.

For the implementation of the above a.lgonthm the welghts are stored in a three
~dimensional vector. That is w; can be represented as wi[l] [i]{5]. The first dimension
gives the level number. The second and third dimension glves the node numbers at
level ! and I — 1 between which the link with this weight is present. The outputs

of the nodes are stored in a two dimensional array where the first dlmenswn gives

17

the layer number and the second dimension gives the node number, Sumla.rly the
errors are stored in a two dimensional array. Since the number of layers and number
of nodes etc. are not known initially all the memory allocation is done dynamically

at run time to save space. The gain factor was choosen as 0.33 and the momentum-
factor is choosen as 0.17. - |

3.3 Approach to Solve the Problem

We decided to use MLP because as explained above it can form complex decision
regions. The first method tried was : From the point set take each point. Let the
point be (z,y). Then form 20 four tuples (z,y,z1,3) such that for ten tuples the

distance between (z,y) and (z1,%;) is less than A, and for ten tuples the distance is
more than h,. Then we tried to teach a MLP to learn this patterns. The idea was to

teach the MLP such that if the point represented by third and fourth members of the

tuple is at a distance less than A, from the point represented by the first and second |
members of the tuple then the MLP should give output. 1 otherwise 0.

This idea didn’t work. The dicision region obtained was not what we wanted. But
trom this we got the idea that we can just teach an MLP to recognise points from a
circle of radius h, and use it to form A,, set. This idea is explained in next section.

The main difficulty in i'mplem,émtation is how to choose the MLP architecture. Also -

how to set the learning and gain factors. we obtained the final MLP by following the

heuristics given above to choose the number of nodes and trying various combinations
with different sets of initial weights.

3.4 .'MLP. for -Set estimation

In this section we Wln try to expla,m the idea given at the end of the last section.

Strictly spea.klng we will give a neural network to estimate the set Ay given in chapter
two which is given below for convenience

= {X 1 |X - Xil| < hy)

18

The property of MLP to act as pattern classifier is used here to e&tilﬁa,te Aip.

We first tried to solve the follﬁwing problem using which we can estimate the set.

Given a set of points P = py,p2,- -+, p.. Where p; = (z;,¥;) and a test point p = (:c,y) |
we have to find whether p belongs to the set obtamed by P or not

The basic approach is discussed first before giving the actual algorithfn The set
Aj, is nothing but union of all the points included within a radius A, around each

~ point for all the points in the set P. The method we adopted initially is as follows :

calculate k., for the set of points and then teach an M LP to classify points within a

‘circle of radius A, and points which lie outside this circle. Then we can use this MLP
to test whether the test point lies within the set A;, or not just by checking whether
this point falls within a circle of radius h,, from any point in the point set. This can
be done simply by changing the origin to each point in P and giving the translated

coordinates of the test point as input to the MLP. If the output of MLP is 1 for any
point then the point lies within the set Aj,.

But the above pmced_ure is cumbersome. For each set of points an M L P with suitable
number of nodes has to be choosen and then trained. Instead of this we can choose
a suitable r and an M LP which can separate points within radius r from origin as

belonging to one class, and points outside this radius r as belonging to different class.
Then given a test point and set of points we just have to scale the coordinates by the
factor r/h,. This is necessary because the MLP just tries to see whether the point
lies within a circle of radius r. But if h, is different from r then that is not what we
want. So we scale the coordinates so that the point can be checked w.r.to circle of
radius r. Now we check whether this point falls within distance r from any point in
the set or not. If there exists a point in the point set from which the distance of the
test point multiplied by r/h, is less than r then we say that the test point lies within -
the set determined by the set of points. The beauty of this method lies in the fact

that the same M LP will work for any set of points with any va,lue of h,. Formally
the algo. is gwen below |

1. Find A, \/— as in the algo. 2.2.

2. Choose a , suitable r and an M LP and teach the MLP to separate points within -
radius r from origin from points outside radius r from origin.

3. Take as mput the point to be tested p and the set of polnts P.

4. Scale the coordinates by the factor r/h,. For each point in P tra.nslate the o

19

~origin to the poini; and give the translated coordinates of the test point as input -

to the MLP. If the output of MLP is hlgh then the pomt belongs to the A;, set
of P. |

Now what remains is to get the set. For this we varied the x and y coordinates
from some minimum value to a maximum value and check whether each point (z,y)

belongs to the set. If the point (z,y) belongs to the set then we store the value 1.
Otherwise 0. Now this byte file can be displayed as binary image.

3.5 Tests and Results

First step is to choose the value of r. It'has been choosen as 0.47 arbitrarily. A four
layer M LP is choosen with 2 nodes in the input layer, 10 nodes in the first hidden
layer , 3 nodes in the second hidden layer , 3 nodes in the the third hidden layer and
two output nodes. The ML P was taught with 480 input points with 240 points with
distance less than 0.47 and 240 points with distance greater than .47 and less than
0.94 and the back-propagation learning algorithm was applied for 200 iterations. The
final error was 0.00016: Usmg this MLP and a set of 100 points taken from ﬁgure(l) |
randomly the ﬁgure(xvm) is genera.ted by giving as inputs the points varying from

(-0.5,-0.5) to (3.5,6.5) in steps of 0.1 in each direction. ﬁg(xlx) and ﬁg(xx) shows the
- sets obtamed for sets 8 and C. | *

20

' Chapter 4

Conclusions and Discussions

4.1 Results

The method given in [1] is tested for different data sets and is found to be satisfactorily
working. The distance of the obtained set from the original set decreased as the
number of points increased as it should. The MLP based method also worked well.
The set obtained was very close to the sets we obtained using the above method. -

4.2 TFurther Scope

The method given by [1] was tested only for points in R?. But this method works for -
points in any dimension. This can be tested in three or four dimension plane. Also

the MLP based solution tries to get the set A;,. A method can be given _which will
calculate the set Aj,. |

21

Figure 1: Original set for P Figure 2: 100 points randomly
taken from figure 1.

o3

Figure 3: MST for points Figure 4: Set A{ln}) with 100
shown in Figure 2. points.

23

l D
D t L] .
L
Et
p

24

Figure 7: S
: Set A{ln) with
] ? .
oefiva 00 Figure 8: Set A(ln) with
‘ i 1000
points.

25

Figure 9: Set A(2n) with 1000 Figure 10: Original set for 8.
points.

2.6

2F

Figure 13: .Original set for
C. |

2.3

(o

TABLE I

No. of Points | A Jq_Di's,t:a.,nf:,ve, for set,AI;

Distance for s

100 0.472 17178 17178
200 0.400 17556 16912
300 0.364 16979 16696
400 0.335 15889 15437
500 0.315 15295 15937
600 0.300 14831 . 14954
700 0.287 13778 14442
800 0.277 13480 14121
- 900 0.269 13115 13826
1000 0.262 13156 13203

fig(16) Table for set P

30

N

TABLE 11

No. of Points | A&, | Distance for set Ain | Distance for set A,,

100 0.513 21997 21802
200 0.416 20029 20586
300 0.376 18849 19237
400 0.349 17626 18026
500 0.329 17269 17611
600 0.314 17000 . 16838
700 0.301 16459 16462
800 0.290 16056 15868
900 0.281 15543 15427
1000 0.274 14551 15042

fig(17) Table for set 8

31

TABLE IIT

No. of Points I h., | Distance for set A;, | Distance for set A,,
100 0.458 17515 17656
200 0.380 16750 16641
300 0.345 15818 16276
400 0.317 14981 15408
500 0.299 14304 14686
600 0.286 13996 14422
700 0.274 13530 13320
800 0.264 13056 12817
900 0.256 12592 13092
1000 0.247 12186 12627

' fig(18) Table for set C

32

Figure 19: Set A(ln) obtained Figure 20: Set A(ln) obtained
with MLP for P with MLP for 8
with 1000 points with 1000 points.

Figure 21: Set A{ln) obtained

with MLP for C
with 1000 points.

BIBLIOGRAPHY

10.

11.

. C A Murthy, ”On Consistent Estimation of Classes in R? in the Context of Clus-

ter Analysis , Ph.D thesis submitted to Indian Statistical Institute,Calcutta,
1988. o : - - S

. 53GAkland G T Toussiant, ” Efficient convex hull algorithms for pattern recog-

nition applications” , Proc. 4** Intern. Joint Conf on Pattern Recognition,
Kyoto, 1978. |

. RAJ aﬁis, ” Computing the shape hull of a set of points in -t:he plane” | Pm_c.l_

of the IEEE Comp. Soc.’ Conf. on Pattern Recognition and Image Processing,
1977, | | - |

. J Fairfield, " Contoured shape generation forms that pecrple see in dot patterns”

, Proc. IEEE Conf.. on Cybernetics and Society, 1979.

. H Edelsbrunner, D G K.irkpa,trick and R Seiﬂel, "On the Shape of a Set of

Points in the Plane”, IEEE Tr. on Information Theory, Vol-11-29, July, 1983.

6. F Harary "Graph Theory” , Addison We'51ey,' 1969. |
. RC Lii)pmann, ” An Inrtoduction to Cdmputing with Neural Nets” \ fEEE ASSP

Magazine , April, 1987,

. I Aleksander and H Morton, An Introduction to Neural Computing, Chapman

and Hall, 1990.

. J Hertz, A Krough and R G Palmer _Iﬁtmduction to the Theory of Neural Com-

putation, Addison-Wesley, 1991. | | |

S G Tzafestas and A N Venetsanopoulos (eds), Fuzzy Reasoning in Informa-
tion, Deciston and Control Systems, Kluwer Academic Publishers Printed in
Netherlands._

V Grenander, Absract Inference, John Wiley, 1981. .

3o

