

XML Retrieval By HyREX
and

Some Improvements By Relevance Feedback

by

Tamoghna Ghosh

Dissertation
Submitted in partial fulfillment of the requirements for

M.Tech in Computer Science

Advisor Dr. Mandar Mitra
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute

July 07

Certificate

This is to certify that this dissertation thesis titled “XML Retrieval By HyREX and
Some Improvements by Relevance Feedback” submitted by Tamoghna Ghosh in
partial fulfillment of the requirements for the degree of M-Tech (CS) at Indian
Statistical Institute, Kolkata, embodies the work done under my supervision.

Dr. Mandar Mitra

Acknowledgments

I hereby take this opportunity to thank my advisor Prof Dr. Mandar Mitra for his
support and insightful suggestions. It is an honour to work under his supervision.
It is my pleasure to thank Sukomal Pal and Kuntal Chakraborty, both ISI fellows for
their suggestions and help during this work.

Tamoghna Ghosh

Indian Statistical Institute
July 2007

Abstract

The eXtensible Markup Language (XML) is the emerging standard for representing knowledge

for many applications. XML retrieval is thus becoming increasingly important. A number of

research groups from all over the world are actively working in this area.

HyREX is an XML retrieval engine designed by Norbert Govert, University of Dortmund,

Germany. In this thesis we have made a detail study of the HyREX system and finally improved

the search performance by implementing relevance feedback. Here the assessments were done

manually using the queries and assessment files provided by INEX 2002.

Contents

Acknowledgments iv

Abstract v

1 XML Retrieval
1.1 Introduction . . . 1

1.2 Basic XML Concepts. 1

1.3 Why XML? 2

1.4 Challenges in semi structured retrieval 3

1.5 An introduction to XPath and XIRQL 6

1.6 Evaluation of XML Retrieval . . 10

2 Term Weighting – BM25
 2.1 Introduction 11

2.2 Term Frequency and Weighting 11

2.3 Inverse Document frequency . . 11

2.4 Tf-Idf weighting . . 13

2.5 Maximum Tf Normalization 13

2.6 The effect of document length. . 14

2.7 Relevance weights 14

2.8 BM25. . 15

Relevance Feedback and query expansion
 3.1 Relevance Feedback . 17

3.2 The Rocchio Algorithm for relevance feedback. 17

3.3 Pseudo-relevance feedback . . 19

3.4 Query expansion. . . 19

4 HyREX – A XML Retrieval Engine
 4.1 Introduction 20

4.2 HyREX Architecture 20

4.3 Index structure Overview . . . 21

 4.4 How Index Is stored. . 23

 4.5 How Structure Is stored. . . 24

 4.6 The query form. . . . 24

 4.7 Overview Of HyREX Indexing Algorithm. 25

 4.8 Overview Of HyREX Searching Algorithm. 26

 4.9 HyREX @ INEX 2002 27

5 Pseudo-Relevance Feedback With HyREX
 5.1 Pseudo Relevance Feedback Algorithm 29

 5.2 Results. 31
References 32

Chapter 1

XML Retrieval

1.1 Introduction

There are two types of information retrieval problems that are intermediate between text
retrieval and search over relational data. The second type, XML retrieval, is the subject of this
chapter. We will view XML documents as trees that have leaf nodes containing text and labeled
internal nodes that define the roles of the leaf nodes in the document. We call this type of text
semistructured and retrieval over it semistructured retrieval. Semistructured retrieval has
become increasingly important in recent years because of the growing use of Extensible
Markup Language or XML. XML is used for web content, for documents produced by office
productivity suites, for the import and export of text content in general, and many other
applications. These days, most semistructured data are encoded in XML.

1.2 Basic XML concepts

An XML document is an ordered, labeled tree. The nodes of the tree are XML elements and are
written with an opening and closing tag. An element can have one or more XML attributes. One
of the elements in the example XML document in Figure 1.1 is scene, which is enclosed by the
two tags <scene ...> and </scene>. The element has an attribute number with value VII and two
child elements, title and verse.

<play>
 <author>Shakespeare</author>
 <title>Macbeth</title>
 <act number="I">
 <scene number="VII">
 <title>Macbeth’s castle</title>
 <verse>Will I with wine and wassail ...</verse>
 </scene>
 </act>
</play>
 Figure 1.1 An XML document.

There is a standard way of accessing and processing XML documents,viz the XML Document

Object Model or DOM. DOM represents elements, attributes and text within elements as nodes

in a tree. XPath is the standard for paths in XML. We also need the concept of XML schema. A

schema puts constraints on the structure of allowable XML documents for a particular

application. Two standards for schemas for XML documents are XML DTD (document type

definition) and XML Schema. The purpose of a DTD is to define the legal building blocks of an

XML document. Using DTDs , each XML file can carry a description of its own format with it.

With a DTD, independent groups of people can agree to use a common DTD for interchanging

data. XML schema is a XML based alternative to DTD.

1.3 Why XML?

Relational database systems cannot meet all the demands of electronic business because they

process data independently of its context. Traditional databases may be well suited for data

that fits into rows and columns, but cannot adequately handle rich data such as audio, video,

nested data structures or complex documents, which are characteristic of typical Web content.

To deal with XML, traditional databases are typically retrofitted with external conversion layers

that mimic XML storage by translating it between XML and some other data format. This

conversion is error-prone and results in a great deal of overhead, particularly with increasing

transaction rates and document complexity.

XML databases, on the other hand, store XML data natively in its structured, hierarchical form.

Queries can be resolved much faster because there is no need to map the XML data tree

structure to tables. This preserves the hierarchy of the data and increases performance. XML

documents can contain any imaginable data type - from classical data like text and numbers, or

multimedia objects such as sounds, to active formats like Java applets or ActiveX components.

The look and feel of documents or even entire websites can be changed with XSL Style Sheets

without manipulating the data itself. XML documents can consist of data from many different

databases distributed over multiple servers. In other words: With XML the entire World Wide

Web is being transformed into a single all-encompassing database.

 Internationalization is of utmost importance for electronic business applications. XML supports

multilingual documents and the Unicode standard. XML’s one-of-a-kind open structure allows

the addition of other state-of-the-art elements when needed. This means that a system can

always be adapted to embrace industry-specific vocabulary.

In future Web development, it is most likely that XML will be used to describe the data, while
HTML will be used to format and display the same data. Since XML data is stored in plain text

format, XML provides a software and hardware independent way of sharing data. Users can
write structural queries for an XML retrieval system if they have some minimal knowledge
about the schema of the underlying collection.

1.4 Challenges in semi structured retrieval

We need to choose a document unit for indexing and retrieval. In unstructured retrieval, it is

usually clear what the right document unit is. A traditional Unix (mbox-format) email file stores

a sequence of email messages (a folder) in one file, but one might wish to regard each email

message as a separate document. Many email messages now contain attached documents, and

you might then want to regard the email message and each contained attachment as separate

documents. Sometimes people index each paragraph of a document as a separate pseudo-

document, because they believe it will be more helpful for retrieval to be returning small pieces

of text so that the user can find the relevant sentences of a document more easily. The first

challenge in semi structured retrieval is that we don’t have such a natural document unit or

indexing unit. There are at least three different approaches to defining the indexing unit in XML

retrieval. One is to index all components that are eligible to be returned in a search result. All

subtrees in Figure 1.1 meet this criterion. This scheme has the disadvantage that search results

will contain overlapping units that have to be filtered out in a post processing step to reduce

redundancy. Another approach is to group nodes into non-overlapping pseudo documents as

shown in Figure 1.2. This avoids the overlap problem, but pseudo documents may not make

intuitive sense to the user. And they have to be fixed at indexing time, leaving no flexibility to

answer queries at a more specific or more general level. The third approach is to designate one

XML element as the substitute for the document unit.

If we query Shakespeare’s plays for Macbeth’s castle, should we return the scene, the act or the

whole play in Figure 1.1? In this case, the user is probably looking for the scene. On the other

hand, an otherwise unspecified search for Macbeth should return the play of this name, not a

subunit. One decision criterion that has been proposed for selecting the most appropriate part

of a document is the structured document retrieval principle:

Structured document retrieval principle. A system should always retrieve the most specific
part of a document answering the query. This principle motivates a retrieval strategy that
returns the smallest unit that contains the information sought, but does not go below this level.
However, it can be hard to implement this principle algorithmically.
The user interface should expose the tree structure of the collection and allow users to specify
the nodes they are querying. As a consequence the query interface is more complex than a

search box for keyword queries in unstructured retrieval. This is one of the challenges currently
being addressed by the research community.

Figure 1.2 Indexing units in XML retrieval. Unlike conventional retrieval, XML retrieval does not have a natural
indexing unit. In this example, books, chapters and sections have been designated to be indexing units, but without
overlap. For example, the leftmost dashed indexing unit contains only those parts of the tree dominated by book
that are not already part of other indexing units results.

Another challenge is how we store the structure information of the whole document collection
in main memory at the retrieval time. One solution to this is the XML structure tree or XS-tree
data structure. It is highly compressed so that the XS-tree of the whole document collection can
be kept in main memory. Consider the XML document in figure 1.3

We can assign a path handle to each element, attribute and text part sequentially as follows:
Attribute class is assigned handle number 1, the element title handle number 2, then the text
part ‘John Smith’ a handle number 3, <title> a handle number 4 , ‘XML Retrieval’ a handle number 5
and so on. Given this position there is a resolution method that yields the corresponding path.
For creating a linear representation of the XS-tree the following design is chosen.
Enumerate nodes top-down (in preorder): By choosing a top-down sequence, we can apply
context-specific compression methods. Given the DTD, there is only a small set of elements that
can occur as children of a specific element, so we only need a few bits for coding each of these
alternatives.
Parent-child relationship via level numbers: Level numbers are compact. For compressing level
numbers, we use run length encoding, thus only the relative differences between the level
numbers are stored.

<book class="H.3.3">
<author>John Smith</author>
<title>XML Retrieval</title>
<chapter>
<heading>Introduction</heading>
This text explains all about XML and IR.
</chapter><chapter>
<heading>
XML Query Language XQL
</heading>
<section>
<heading>Examples</heading>
</section>
<section>
<heading>Syntax</heading>
Now we describe the XQL syntax.
</section>
</chapter>
</book>

Figure 1.3

Positions as element numbers: Element numbers are compact, and therefore efficient
encoding for use as path handles in the inverted lists is possible.
Element and sequence indexes implicit: Each element in a path has an element index and a
sequence index that denote its relative position among the children of the parent node. These
indexes could be encoded explicitly, but would require additional storage space; in contrast, by
scanning the representation linearly, the indexes of each element can be computed
on the fly.

Universal codes are used for compression of the level numbers. In order to encode the element
names given for each node of an XML tree, we use Huffman coding.
A part of the XS tree of the above document is shown below:

The xs tree of the above doc is basically two linear arrays,

Array1=(Books,@value,author,#PCDATA,title,#PCDATA,Chapter,heading,#PCDATA,#PCDATA,…)
Array2=(1,2,2,3,2,3,2,3,4,3,…).

1.5 An introduction to XPath and XIRQL

XPath is a language for addressing parts of an XML document. XPath models an XML document
as a tree of nodes. There are different types of nodes, including element nodes, attribute nodes
and text nodes. XPath defines a way to compute a string-value for each type of node. XPath
retrieves elements (i.e., subtrees) of the XML document fulfilling the specified condition. The
simplest kind of query specifies elements by giving their names, for instance, the query heading
retrieves the four different heading elements from our example document 1.3. Attributes are
specified with a preceding “@” (as in @class). Context can be considered by means of the child
operator ‘/’ between two element names, so section/heading retrieves only headings occurring
as children of sections, or by the descendant operator (“//”),so that book//heading finds
headings which are descendants of a book element. Wildcards can be used for element names,
as in chapter/*/heading. A “/” at the beginning of a query refers to the root node of documents
(e.g., the query /book/title specifies that the book element should be the root element of the
document). The filter operator (denoted with square brackets) filters the set of nodes to its left.
For example, //chapter[heading] retrieves all chapters having a heading. (In contrast,
//chapter/heading retrieves the heading elements of these chapters.) Explicit reference to the
context node is possible by means of the dot (.): //chapter[.//heading] searches for a chapter
containing a heading element as descendant. Square brackets also are used for subscripts
indicating the position of children within an element, with separate counters for each element
type; for example //chapter/section[2] refers to the second section in a chapter (which is the
third child of the second chapter in our example document). Disjunctive conditions can be
specified via the | operator, for example //(chapter|section) will find all chapter elements in
addition to all section elements. In order to pose restrictions on the content of elements and
the value of attributes, comparisons can be formulated. For example, /book [author = "John
Smith"] refers to the value of the element author, whereas /book[@class ="H.3.3"] compares
an attribute value with the specified string. Besides strings, XPath also supports numbers and
dates as datatypes, along with additional comparison operators like > and <.Sub queries can be
combined by means of Boolean operators and ‘and’ or ‘or’ be negated by means of not. For
considering the sequence of elements, the operators before and after can be used, as in
//chapter[section/heading = "Examples" before section/heading = "Syntax"]. These features of
XPath allow for flexible formulation of conditions with respect to the structure and the content
of XML documents. The result is always a set of elements from the original document(s).

XIRQL Concepts: From an IR point of view, XML offers the following opportunities for
enhancing IR functionality in comparison to plain text:
—Queries referring to content only should retrieve relevant document parts according to the
logical structure, thus overcoming some limitations of passage retrieval. The FERMI model
[Chiaramella et al. 1996] suggests the following strategy for the retrieval of structured
(multimedia) documents: A system should always retrieve the most specific part of a document

answering the query. As an example, consider a user searching for information about
multimedia databases. If multimedia and databases are discussed in the same section, then
surely that section should be returned as the query result. If the two concepts are covered in
two distinct sections within the same chapter, then the chapter should be returned.
—Based on the markup of specific elements, high-precision searches can be performed that
look for content occurring in specific elements. Possible scenarios include distinguishing
between the sender and the addressee of a letter, and finding the definition of a concept in
mathematics textbook.
—The concept of mixed content allows for the combination of high precision searches with
plain text search. An element contains mixed content if both plain text (#PCDATA) and other
elements may occur in it. Thus, it is possible to mark up specific items occurring in a text. For
example, in an arts encyclopedia, names of artists, places they worked, and titles of pieces of
art may be marked up (thus allowing, for example, to search for Picasso’s paintings of
toreadors, avoiding passages mentioning Picasso’s frequent visits to bullfights).
—For query conditions referring to the structure of documents, it should be possible to perform
vague comparisons with the actual document structure, such as semantically related element
names.
With respect to these requirements, XPath seems to be a good starting point for IR on XML
documents. However, the following features should be added to XPath and we get XIRQL:

Weighting: IR research has shown that document term weighting as well as query term
weighting are necessary tools for effective retrieval in textual documents. So comparisons in
XPath referring to the text of elements should consider index term weights. Furthermore, query
term weighting also should be possible, by introducing a weighted sum operator [e.g., WSUM (

0.6 ・ “XML” + 0.4 ・ “retrieval”)]. These weights should be used for computing an overall
retrieval status value for the elements retrieved, thus resulting in a ranked list of elements.
The query is decomposed into basic query conditions (leaf nodes of the XPath expression parse
tree) and combining operators (inner nodes). The basic query conditions return weighted sets
of results, which then are processed by the combining operators. Assuming probabilistic
independence, the combination of weights according to the different Boolean operators is
obvious, thus leading to an overall weight for any answer. However, there are two major
problems:
(1) How should terms in structured documents be weighted?
(2) What are the probabilistic events, that is, which term occurrences are identical, and which
are independent?
At first, we need to define the “atomic” units (or hierarchic aggregations of those) in XML
documents. Text is contained in the leaf nodes of the XML tree only. So these leaves would be
an obvious choice as atomic units. But we can use the concept of index nodes as in figure 3.2 to
construct atomic units.
Given these units, we can separate indexing and retrieval methods. Thus, for indexing, we can

start with a standard formula such as a kind of tf ・ idf (for details refer to chapter 2).We
interpret a weight as the probability that the corresponding condition is true. For example the
XML retrieval engine HyREX uses the BM25 formula [Robertson et al. 1995] multiplied by a

normalization constant, thus yielding values from the interval [0, 1] which can be interpreted as
probabilities.
Thus we have a method for computing term weights and we can do relevance-oriented search.
For this, we must be able to retrieve index nodes at all levels. The indexing weights of terms
within the most specific index nodes are given directly. For retrieval of the higher-level objects,
we have to consider that their content is made up by the content of the index node under
consideration plus the content of the descendent index nodes. Therefore, for a given index
node its term weights have to be combined with the term weights of the descendant index
nodes. For example, assume the following document structure, where we list the weighted
terms instead of the original text:
<chapter> 0.3 XQL
<section> 0.5 example </section>
<section> 0.8 XQL 0.7 syntax </section>
</chapter>
A straightforward possibility would be the OR-combination of the different weights for a single
term. However, searching for the term ‘XQL’ in this example would retrieve the whole chapter
in the top rank, whereas the second section would be given a lower weight. It can easily be
shown that this strategy always assigns the highest weight to the most general element. This
result contradicts the structured document retrieval principle mentioned before. For this
purpose, index term weights are down weighted (multiplied by an augmentation factor) when
they are propagated upwards to the next index node. In above example, using an augmentation
factor of 0.6, the retrieval weight of the chapter w. r. t. to the query ‘XQL’ would be 0.3 + 0.6 ·
0.8 − 0.3 · 0.6 · 0.8 = 0.596, thus ranking the section ahead of the chapter.

Datatypes and Vague Predicates: Since XML allows for a fine-grained markup of elements, there
should be the possibility to use special search predicates for different elements of various data
types (e. g. person names, dates, names of geographic regions). For each data type, the system
must provide appropriate search predicates, most of which should be vague. For example, in an
arts encyclopedia, it would be possible to mark artist’s names, locations or dates. Given this
markup, one could imagine a query like “Give me information about an artist whose name is
similar to Ulbricht and who worked around 1900 near Frankfort, Germany”, which also should
retrieve an article mentioning Joseph Maria Olbrich’s work in Darmstadt, Germany, in 1901.
Thus, we need vague predicates for different kinds of datatypes (e.g., person names, locations,
dates). For supporting IR in XML documents, there should be a core set of appropriate
datatypes and there should be a mechanism for adding application-specific datatypes.
Candidates for the core set are texts in different languages, hierarchical classification schemes,
thesauri(i.e, a precompiled list of important words in a given domain of knowledge and for each
words in this list a set of related words is provided) and person names. In order to perform text
searches, some knowledge about the kind of text is necessary. Truncation and adjacency
operators available in many IR systems are suitable for western languages only (whereas XML in
combination with Unicode allows for coding of most written languages). Therefore, language-
specific predicates, for dealing with stemming, noun phrases, and compound words and so on
should be provided.

Person names often pose problems in document search, as the first and middle names may
sometimes be initials only (so, searching for “Jack Smith” should also retrieve “J. Smith”, with a
reduced weight). A major problem is the correct spelling of names, especially when
transliteration is involved (e.g., “Chebychef”); thus, phonetic similarity or spelling-tolerant
search should be provided. For retrieval, the only operations to be applied are vague
predicates, where even a few type errors can be tolerated: vague predicates are hardly always
correct (e.g., equality based on stemming), so single incorrect values also won’t have significant
effects on retrieval quality.
 As a framework for dealing with these problems, we adopt the concept of datatypes in IR from
[Fuhr 1999], where a datatype T is a pair consisting of a domain |T| and a set of (vague
comparison) predicates PT = {c1, . . . , cn}.Like in other type systems, IR datatypes also should be
organized in a type hierarchy (e.g., Text – Western Language – English), where the subtype
restricts the domain and/or provides additional predicates (e.g., n-gram matching for general
text, plus adjacency and truncation for western languages, plus stemming and noun phrase
search for English). Through this mechanism, additional datatypes can be added to the system
implementation by refining the appropriate datatype (e.g., introduce French as refinement of
Western Language).

Structural Vagueness: XIRQL supports four different types of structural vagueness, which are
described in the following.
 Elements vs. Attributes. The distinction between elements and attributes may not be relevant
to many users. Thus, in XIRQL, author searches for elements,@author is for attributes, and
=author is used for abstracting from this distinction.
Datatypes as Generalization of Elements and Attributes. Further abstraction from the concrete
XML syntax is possible by introducing datatypes. For example, a date value can be represented
in various forms in an XML document, as illustrated by the following example:

<date year="2001" month="12" day="11"/>
<date>2001-12-11</date>
<date><year>2001</year>
<month>12</month>
<day>11</day></date>

With the ‘date’ datatype, users just specify the date in a standard format in their query (e.g.,
/article [pub-date>"2001-12-11"] and do not need to know how dates happen to be
represented in the current document type.
Besides abstracting from the concrete syntax, datatypes also can be used for generalizing from
specific element or attribute names. For example, we may want to search for persons in
documents, without specifying their role (e.g., author, editor, referenced author, subject of a
biography) in these documents. Thus, we provide a mechanism for searching for certain
datatypes, regardless of their name and their position in the XML document tree. For example,
#persname searches for all elements and attributes of the datatype persname (for person
names).

Similarity of Element Names. The precise naming of elements (or attributes) may be a major
problem when formulating structural conditions in a query. For this purpose, we provide a
similarity operator for element names, which is expressed in XIRQL via the tilde as prefix of an
element name: Whereas author searches for an element by specifying an element
name,˜author searches for an element semantically similar to “author”; in the latter case,
elements with different, but similar names will also match, but with a lower score than
elements with the specified name.
Generalizing Parent/Child Relationships. In the case of complex DTDs, most users will have
problems in specifying the precise path to an element. However, instead of replacing all child
operators in the query by descendant operators, they might want to prefer those matches that
are close to the path specification in the query. For this purpose, we provide the vague
extension of the child operator, which is written as \\. So chapter/title specifies a parent child
relationship, chapter//title specifies an ancestor-descendant relationship, and chapter\\title
specifies that a parent-child relationship should get a higher weight than a grandparent-
grandchild relationship and that the weight should decrease with the number of intervening
levels of elements.

Document Classes: In many applications, documents will belong to different schemas. For this
reason, we assume that a document base may contain different document classes. All
documents belonging to a single class conform to the same schema. When formulating a XIRQL
query the name of the document class addressed has to be specified first, (e.g., class
(book)//chapter [heading cw "XML"]).

1.6 Evaluation of XML Retrieval

A large part of academic research on XML retrieval is conducted within the INEX (INitiative for
the Evaluation of XML retrieval) program, a collaborative effort that includes reference
collections, sets of queries, relevance judgments and a yearly meeting to present and discuss
research results. There are two types of queries, called topics, in INEX: content-only or CO
topics and content-and-structure or CAS topics. CO topics are regular key word queries as in
unstructured information retrieval. CAS topics have structural constraints in addition to
keywords These two different components of CAS queries make relevance assessments more
complicated than in unstructured retrieval. INEX defines component coverage and topical
relevance as orthogonal dimensions of relevance. The component coverage dimension
evaluates whether the element retrieved is “structurally” correct, i.e., neither too low nor too
high in the tree.

Chapter 2

 Term Weighting-BM25

2.1 Introduction

In case of large document collections, the number of matching documents for a query can be
far in excess of the number a human user could possibly sift through. Accordingly, it is essential
for search engines to rank-order the documents matching a query. To do this, an engine
computes, for each matching document, a score with respect to the query at hand. In this
chapter we discuss methods of assigning a score to a (query, document) pair.

2.2 Term frequency and weighting

We assign to each term in a document a weight for that term in that document that depends
on the number of occurrences of the term in the document. The simplest approach is to assign
the weight to be equal to the number of occurrences of the term t in document d. This
weighting scheme is referred to as term frequency and is denoted tft,d, with the subscripts
denoting the term and the document in order.
For a document d, the set of weights (determined by the tf weighting function above, or indeed
any weighting function that maps the number of occurrences of t in d to a positive real value)
may be viewed as a vector, with one component for each distinct term. In this view of a
document, known in the literature as the bag of words model, the exact ordering of the terms
in a document is ignored. The vector view only retains information on the number of
occurrences. Thus, the document “Mary is quicker than John” is, in this view, identical to the
document “John is quicker than Mary”. Nevertheless, it seems intuitive that two documents
with similar vector representations are similar in content.

2.3 Inverse document frequency

Raw term frequency as above suffers from a critical problem: all terms are considered equally
important when it comes to assessing relevance for a query. Certain terms have little or no
discriminating power in determining relevance. For instance, a collection of documents on the
insurance industry is likely to have the term insurance in almost every document. To this end,

we introduce a mechanism for attenuating the effect of terms that occur too often in the
collection to be meaningful for relevance determination. An immediate idea is to scale down
the term weights of terms with high collection frequency, defined to be the total number of
occurrences of a term in the corpus. The idea would be to reduce the tf weight of a term by a
factor that grew with its collection frequency.
Instead, it is more commonplace to use for this purpose the document frequency dft, defined to
be the number of documents in the corpus that contain a term t.

Word cf Df

Ferrari 10422 17

 Insurance 10440 3997
 Figure 3.1 Collection frequency (cf) and document frequency (df) behave differently.

Figure 3.2 Example of idf values. Here we give the idf’s of terms with various
frequencies in a corpus of 1,000,000 documents.

The reason to prefer df to cf is illustrated in Figure 3.1, where a simple example shows that
collection frequency (cf) and document frequency (df) can behave rather differently. In
particular, the cf values for both Ferrari and insurance are roughly equal, but their df values
differ significantly. This suggests that the few documents that do contain ferrari mention this
term frequently, so that its cf is high but the df is not. Intuitively, we want such terms to be
treated differently: the few documents that contain ferrari should get a significantly higher
boost for a query on ferrari than the many documents containing insurance get from a query on
insurance. Denoting as usual the total number of documents in a corpus by N, we define
the inverse document frequency (idf) of a term t as follows:

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be low. Figure
3.2 gives an example of idf’s in a corpus of 1,000,000 documents; in this example logarithms are
to the base 10.

Term df idf
Calpurnia 1 6
Animal 100 4

Sunday 1000 3

Fly 10000 2

Under 100000 1

The 1000000 0

2.4 Tf-idf weighting

We now combine the above expressions for term frequency and inverse document frequency,
to produce a composite weight for each term in each document. The tf-idf weighting scheme
assigns to term t a weight in document d given by:

tf- idf t,d tf t,d id ft.

In other words, tf-idft,d assigns to term t a weight in document d that is
1. highest when t occurs many times within a small number of documents (thus lending high
discriminating power to those documents);
2. lower when the term occurs fewer times in a document, or occurs in many documents (thus
offering a less pronounced relevance signal);
3. lowest when the term occurs in virtually all documents.
We may view each document as a vector with one component corresponding to each term,
together with a weight for each component that is given by above equation.
The score of a document d is the sum, over all query terms, of the number of times each of the
query terms occurs in d. We can refine this idea so that we add up not the number of
occurrences of each query term t in d, but instead the tf-idf weight of each term in d.

 Score (q, d) t in q tf- idf t,d

2.5 Maximum tf normalization

One well-studied technique is to normalize the individual tf weights for a document by the
maximum tf in that document. For each document d, let Then, we compute a normalized term
frequency for each term t in document d by

ntft,d = a + (1-a)

where a is a value between 0 and 1 and is generally set to 0.5. The term a in is a smoothing
term whose role is to damp the contribution of the second term – which may be viewed as a
scaling down of tf by the largest tf value in the dictionary. The main idea of maximum tf
normalization is to mitigate the following anomaly: we observe higher term frequencies in
longer documents, merely because longer documents tend to repeat the same words over and
over again. To appreciate this, consider the following extreme example: supposed we were to
take a document d and create a new document d’ by simply appending a copy of d to itself.
While d’ should be no more relevant to any query than d is, the use of would assign it twice as
high a score as d. Replacing tf-idft,d in by ntf-idft,d eliminates the anomaly in this example.
Maximum tf normalization does suffer from a couple of issues:

1. A document may contain an outlier term with an unusually large number of occurrences

of that term, not representative of the content of that document.

2. More generally, a document in which the most frequent term appears roughly as often as

many other terms should be treated differently from one with a more skewed distribution.

2.6 The effect of document length

The above discussion of weighting ignores the length of documents in computing term weights.
However, document lengths are material to these weights, for several reasons. First, longer
documents will – as a result of containing more terms – have higher tf values. Second, longer
documents contain more distinct terms. These factors conspire to raise the scores of longer
documents, which (at least for some information needs) is unnatural. Longer documents can
broadly be lumped into two categories: (1) verbose documents that essentially repeat the same
content – in these, the length of the document does not alter the relative weights of different
terms; (2) documents covering multiple different topics, in which the search terms probably
match small segments of the document but not all of it – in this case, the relative weights of
terms are quite different from a single short document that matches the query terms.

2.7 Relevance weights

The relevance weighting model (Robertson and Sparck Jones, 1976), referred to as RSJ, shows
that under some simple assumptions, the probability of relevance ordering can be achieved by
assigning weights to query terms, and scoring each document by adding the weights of the
query terms it contains. The term weight may be defined as follows. First we define two
probabilities for term ti:

pi = P(document contains ti|document is relevant)
qi = P(document contains ti|document is not relevant)

RSJ weight w(1)
i = log (3.)

If we have, as before, a total of N documents of which ni contain the terms, and further R out of
the N are relevant and ri relevant documents contain the term, then the obvious estimates of pi
and qi are:

 (3.)

However, because of the form of Equation of w(1)

I a modification to these estimates is
appropriate. Here 0.5 added to each of the components can be seen as a smoothing correction
and we have:

2.8 BM25

The weighting function known as Okapi BM25 (it was developed as part of the Okapi
experimental system (Robertson, 1997), and was one of a series of Best Match functions). The
following is a brief account of the derivation of BM25:
First, we assume that all documents are the same length – this assumption will be dropped
below. Next we assume (this is the central assumption of the model) that each term (word)
represents a concept; and that a given document is either ‘about’ the concept or not. This
property is described as eliteness: the term is elite in the document or not. This terminology, as
well as the statistical model described below, is taken from Bookstein and Swanson (1974) and
Harter (1975). Eliteness is a hidden variable – we cannot observe it directly. However, we then
assume that the text of the document is generated by a simple unigram language model, where
the probabilities of any term being in any given position depend on the eliteness of this term in
that document.
If we take all the documents for which this particular term is elite, then we can infer the
distribution of within-document frequencies we should observe. If all documents are the same
length, then the distribution will be approximately Poisson. If we take instead all the documents
for which this term is not elite, we will again see a Poisson distribution (presumably with a
smaller mean). But of course we cannot know eliteness in advance; so if we consider the
collection as a whole, we should observe a mixture of two Poisson distributions. This two-
Poisson mixture is the basic Bookstein/Swanson/Harter model for within-document term
frequencies.
Eliteness thus provides the bridge between the event-space of documents (or rather the cross-
product of documents in the collection and terms in the vocabulary) and the event-space of
term positions, which gives us term frequencies. For each term, eliteness is a property of the
document, but determines the properties of the term positions in the document. Finally, we
have to make the connection with relevance. Relevance is a property at the document level, so
the connection is with eliteness rather than with term occurrences; but now we have to make
the bridge between query and document terms. But we know how to do that, having done it in
the original relevance weighting model. So now we re-use the relevance weighting model, only
applying it to query-term eliteness rather than to query-term presence or absence.
From the above arguments, we can formulate a weighting scheme which involves the following
five parameters for each query term:
• the mean of the Poisson distribution of within-document term frequencies for elite
documents;
• ditto for non-elite documents;
• the mixing proportion of elite and non-elite documents in the collection;
• the probability of eliteness given relevance; and
• the probability of eliteness given non-relevance.
The BM25 weighting function is based on an analysis of the behavior of the full eliteness model
under different values of the parameters. Essentially, each term would have a full eliteness
weight, that is, a weight that a document would gain if we knew that the term was elite in that

document. If we do not know that, but have a TF value which provides probabilistic evidence of
eliteness, we should give partial credit to the document. This credit rises monotonically from
zero if tf = 0 and approaches the full eliteness weight asymptotically as tf increases. In general
the first occurrence of the term gives most evidence; successive occurrences give successively
smaller increases.
BM25 first estimates the full eliteness weight from the usual presence-only RSJ weight for the
term, then approximates the TF behavior with a single global parameter k1 controlling the rate
of approach. Finally it makes a correction for document length.

 BM25 weight wi = f(tfi) wi
(1)

 wi
(1) is the usual RSJ weight,

 f(tf i) =

 K = k1((1 − b) + b

dl and avdl are the document length and average document length respectively k1 and b are
global parameters which are in general unknown, but may be tuned on the basis of evaluation
data.

Chapter 3

Relevance Feedback and Query
Expansion

3.1 Relevance feedback

The idea of relevance feedback is to involve the user in the retrieval process so as to improve
the final result set. In particular, the user gives feedback on the relevance of documents in an
initial set of results. The basic procedure is:
• The user issues a (short, simple) query.
• The system returns an initial set of retrieval results.
• The user marks some returned documents as relevant or not relevant.
• The system computes a better representation of the information need based
on the user feedback.
• The system displays a revised set of retrieval results.
Relevance feedback can go through one or more iterations of this sort. The process exploits the
idea that it may be difficult to formulate a good query when you don’t know the collection well,
but it is easy to judge particular documents, and so it makes sense to engage in iterative query
refinement of this sort. In such a scenario, relevance feedback can also be effective in tracking a
user’s evolving information need: seeing some documents may lead users to refine their
understanding of the information they are seeking. Image search provides a good example of
relevance feedback. Not only is it easy to see the results at work, but this is a domain where a
user can easily have difficulty formulating what they want in words, but can easily indicate
relevant or non-relevant images.

3.2 The Rocchio Algorithm for relevance feedback

The Rocchio Algorithm is the classic algorithm for implementing relevance feedback. It models a
way of incorporating relevance feedback information into the vector space model.
Underlying Theory: We want to find a query vector that maximizes similarity with relevant
documents while minimizing similarity with non relevant documents. If Cr is the set of relevant
documents and Cnr is the set of non-relevant documents.

Consider first the unrealistic situation in which the complete set Cr of relevant documents to a
given query is known in advance. In such a situation the best query vector for distinguishing the
relevant document from the non-relevant documents is given by,

qopt = (1/|Cr|) dj (1/|Cnr|) dj
 dj Cr dj Cnr

i.e, optimal query is the vector difference between the centroids of the relevant and non-
relevant documents.
The Rocchio (1971) algorithm. This was the relevance feedback mechanism introduced in and
popularized by Salton’s SMART system around 1970. In a real IR query context, we have a user
query and partial knowledge of known relevant and irrelevant documents. The algorithm
proposes using the modified query qm:

qm = q0 + (1/|Cr|) dj (1/|Cnr|) dj.
 dj Cr dj Cnr

where q0 is the original query vector and , , and are weights attached to each term. These
control the balance between trusting the judged document set versus the query. Starting from
q0, the new query moves some distance toward the centroid of the relevant documents and
some distance away from the centroid of the non-relevant documents.

Figure 3.1 An application of Rocchio’s algorithm. Some documents have been labeled as relevant and non-relevant

and the initial query vector is moved in response to this feedback.

This new query can be used for retrieval in the standard vector space model. We can easily
leave the positive quadrant of the vector space by subtracting off a non-relevant document’s
vector. In the Rocchio algorithm, negative term weights are ignored. That is, the term weight is

set to 0. Figure 3.1 shows the effect of applying relevance feedback. Relevance feedback can
improve both recall and precision. But, in practice, it has been shown to be most useful for
increasing recall in situations where recall is important. This is partly because the technique
expands the query, but it is also partly an effect of the use case: when they want high recall,
users can be expected to take time to review results and to iterate on the search. Positive
feedback also turns out to be much more valuable than negative feedback, and so most IR

systems set < . Reasonable values might be = 1, = 0.75, and = 0.15. In fact, many
systems, such as the image search system, allow only positive feedback, which is equivalent to

setting = 0. Another alternative is to use only the marked non-relevant document which
received the highest ranking from the IR system as negative feedback

3.3 Pseudo-relevance feedback

Pseudo-relevance feedback, also known as blind relevance feedback, provides a method for
automatic local analysis. It automates the manual part of relevance feedback, so that the user
gets improved retrieval performance without an extended interaction. The method is to do
normal retrieval to find an initial set of most relevant documents, to then assume that the top
k ranked documents are relevant, and finally to do relevance feedback as before under this
assumption. This automatic technique mostly works. Evidence suggests that it tends to work
better than global analysis. It has been found to improve performance in the TREC ad-hoc task.
But it is not without the dangers of an automatic process. For example, if the query is about
copper mines and the top several documents are all about mines in Chile, then there may be
query drift in the direction of documents on Chile.

3.4 Query expansion

In relevance feedback, users give additional input on documents (by marking documents in the
results set as relevant or not), and this input is used to reweight the terms in the query for
documents. In query expansion on the other hand, users give additional input on query words
or phrases, possibly suggesting additional query terms. Some search engines (especially on the
web) suggest related queries in response to a query; the users then opt to use one of these
alternative query suggestions. The central question in this form of query expansion is how to
generate alternative or expanded queries for the user. The most common form of query
expansion is global analysis, using some form of thesaurus. For each term, t, in a query, the
query can be automatically expanded with synonyms and related words of t from the
thesaurus. Use of a thesaurus can be combined with ideas of term weighting: for instance, one
might weight added terms less than original query terms.

Chapter 4

HyREX – A XML Retrieval Engine

4.1 Introduction

HyREX is the Hyper-media Retrieval Engine for XML. Hyper because it offers explicit and implicit
hyperlinks to the user. Media because it offers search facilities for text but also for other media
than text, at least conceptually. Retrieval engine because it allows users to explore all kinds of
information structures available through XML, not only plain document retrieval. XML because
it allows retrieval under consideration of content and structure inherent in XML documents.
HyREX is Open Source software. The current version allows for efficient retrieval of XML
collections up to the gigabyte range.

4.2 HyREX Architecture

Figure 4.1 displays HyREX’s architecture. On the top-most level the user contacts HyREX by
means of an arbitrary Web browser.
Information needs issued through the Web browser are accepted by HyGate. It converts the
user’s request into a XIRQL query and delegates the processing to the lower levels of HyREX;
the results are properly presented to the user.
On the conceptual level, XIRQL queries are accepted and processing. Whenever access paths
are needed in order to further process a query, this request is handed to the physical level,
which is named HyPath. On the physical level, there are a number of access paths for each
datatype and predicate given in the XML documents.
The task of the document base administrator can be described by means of HyREX’s different
levels:
HyGate Describe the layout for search results and documents. This is done by specifying XSL
stylesheets (see also Section 4.6).
XIRQL Specify data types of the various parts of documents by means of the DTD. This is done
within a so-called document definition language (DDL) which is to be prepared for each
document class. Section 4.2 describes how to do that.
HyPath Specify access structures for predicates and the structure of documents. This is also
done within a DDL instance. See Section 4.2.

 Figure 4.1

4.3. Index Structure Overview

We need to tell the system how to index the documents. For this, we have the so-called ‘data
definition language’ (DDL).
A document collection is called a “base”. Inside it, there may be several “classes”; a class
corresponds to a set of documents all conforming to the same DTD. In a class, there are several
“datatypes”, each datatype provides several search “predicates”.

Document Definition Language: For indexing a given set of documents, we need the
documents themselves, their respective DTDs (one for each of your document classes) and a
DDL (data definition language) file for each of our documents classes. This DDL file tells the
HyREX indexer how to index the documents. HyREX provides a DTD which describes the format
of the DDL files (which are XML files).
A DDL file looks like this:

<? xml version="1.0" encoding="iso-8859-1”?>
<!DOCTYPE hyrex SYSTEM ".../doc/hyrex.dtd">
<hyrex attributes >
<access attributes > ... </access>
<convert attributes > ... </convert>
<summary attributes > ... </summary>
<datatype attributes > ... </datatype>

<inodes> ... </inodes>
<structure> ... </structure>
</hyrex>

The attributes of the <hyrex> element are:
directory This gives the directory where the index lives. In this directory, HyREX creates a
directory named after the document base.
base This string gives the name of the document base. It is also used as a name for the
directory where the index files for your various document classes live.
class The name of the document class to create within your document base.
dtd All documents of a given class to be indexed must comply with a DTD. Its file name is given
here.
All attributes are required.

Example:
<hyrex directory="/tmp/hyrex" base="example" class="books" dtd="/tmp/books.dtd">
...
</hyrex>

The <access> Element
This element must be present exactly once in a DDL file. It tells HyREX where to find the
documents of a document class. This element has one attribute, classname, which refers to a
HyREX document access class implementing a method to access documents in a certain way.
A few currently available classes:

Example:
HyREX::HyPath::Document::Access::XMLstream This document access class extracts subtrees of
XML files. Each such subtree is considered to be a document in its own right.
HyREX::HyPath::Document::Access::Tar This document access class extracts files from tarballs
(*.tar and *.tar.gz files).

The <convert> Element
This optional element is allowed to be present exactly once in a DDL file. It tells HyREX that your
documents must be converted to XML. This element has one attribute, classname, which refers
to a HyREX document convert class implementing a method to convert documents in a certain
way.
The <summary> Element
Internally in HyREX, a query result is a weighted list of paths, where each path describes a node
(XML element or XML attribute, usually) in an XML document. Paths look like book [3]/chapter
[1] (first chapter in third book document). A summary is supposed to contain information that
helps the user to identify the document. Summaries are automatically extracted from the XML
documents according to the rules given in the <summary> element in the DDL. For example, for
book summaries the elements title, author, year, and perhaps publisher might be useful.

The <datatype> Element
A data type in HyREX specifies which search predicates can be used in a query. This has an
impact on the kinds of queries that users can formulate.
The <inodes> Element
Within the optional <inode> element one can specify so called index nodes. Index nodes are
such nodes are the roots of subtrees in XML documents which serve as valid answer w. r. t.
relevance oriented retrieval requests.
Index nodes (of course a document may have more than one index node, the root of a given
document always is an index node) are specified by means of path expressions.
In the following example all ’section’ nodes in the documents are treated as index nodes (in
addition to the root node of the document):

<inodes>
<query query="//section"/>
</inodes>

The <structure> Element
The class specified in the <datatype> elements says how to index the values stored in certain
regions of the XML documents. The classes specified in the <structure> element, however, say
how to index the structural information in the XML documents. Currently, HyREX supports only
one class for indexing the structural information:

Example: HyREX::HyPath::Structure::Tree
<structure classname="HyREX::HyPath::Structure::Tree">
<parameter name="compress" value="10"/>
</structure>

This class builds an external access path where the structural information for each document is
stored separately. This class knows one parameter compress which specifies the effort used to
determine an optimal compression for the structural information. Unfortunately the value
depends on the number of documents; the range of values is from 1 to the number of
documents you want to index. (HyREX does not know this figure before being finished with
indexing; therefore it is not possible to provide a relative value or a percentage.)
The details of the DDL file structure is provided in the manual available with HyREX package.

4.4 How Index Is Stored

The elements, attributes and the text parts are assigned handle numbers (see section 1.3) while
parsing the documents. A document id is assigned to each document of a particular class i.e.,
the documents are numbered according to the lexicographic order of their file names. In the
DDL file if the access is so chosen that each such subtree of a document is considered to be a

document in its own right then we need two keys [docid , handle] to identify a document of a
class. The inverted list of each document class is stored separately. The words to be indexed are
sorted ASCIIbetical order. The positions of occurances of the words are stored as follows:

[Word1] *docid tf list_of_hanldes+ *docid tf list_of_handles+ * …
 [Word2] [docid tf list_of_hanldes+ *docid tf list_of_handles+ * …
 …….

here tf is the term frequency.
The lists of all occurances are encoded according to some suitable encoding scheme to reduce
storage space. Together with this the term frequency and inverted document frequency are
stored separately such that once you get the docid from the inverted list the tf and idf are also
known. The number of documents in a class, average document length, and the maximum term
weight obtained in a document is also stored. All these are computed during the indexing stage.

4.5 How Structure Is Stored

XML structure tree or XS-tree data structure is used to store the structure of a xml document. It
is highly compressed so that the XS-tree of the whole document collection can be kept in main
memory. The XS-tree of each of the documents in constructed at the indexing phase (XS-tree is
explained in section 1.3). From the index we can get the handle numbers and docid. So we take
the document tree of the corresponding docid and output the exact path to the subtree in the
document where the query terms occur. Consider the following XS-tree of the document in
figure 1.4.
Array1=(Books,@value,author,#PCDATA,title,#PCDATA,Chapter,heading,#PCDATA,#PCDATA,…)
Array2=(1,2,2,3,2,3,2,3,4,3,…).

4.6 The Query Form

In an HTML query form, there can be a number of input fields. The question is, how to map this
fairly flat structure onto the complex structure of XIRQL queries. This is done in a simple
manner; only a fairly narrow class of XIRQL queries can be issued with HyGate. Here is an
example of a XIRQL query that’s possible with HyGate:

/book[title $stemen$ "retrieval" or author $soundex$ "fuhr"]

In general, such a query will consist of a prefix (here /book) followed by square brackets. Inside
the square brackets there is a list of clauses separated by or. Here, there are two clauses,
title $stemen$ "retrieval" and author $soundex$ "fuhr".

Each clause is a triple consisting of a path condition, a search predicate, and a comparison value
(the last one is enclosed in double quotes). For example, the clause title $stemen$ "retrieval"
has title as the path condition, $stemen$ as the search predicate and retrieval as the
comparison value.
The above explanation is a bit simplified. Actually, it is possible for the user to enter several
words into each search field. A word may begin with the + character, which indicates a
mandatory condition, whereas the other conditions are optional. There are several methods for
generating a query from the user input.

wsum The “wsum” method constructs a weighted sum from the user input, for example:

/book [wsum (1.0, title $stemen$ "retrieval",
 5.0, author $soundex$ "fuhr")]

Here, query conditions marked as mandatory by the user (via +) are given the weight 5.0
whereas the normal query conditions are given the weight 1.0. (HyREX will then normalize the
weights internally such that they sum up to one.)
This method has the disadvantage that it might return documents for which none of the
mandatory query conditions are fulfilled. However, if any mandatory query condition is fulfilled,
then the corresponding document will appear near the top of the ranking list.

strict_bool The “strict_bool” method constructs a nested Boolean expression from the user
input, for example:

/book [(title $stemen$ "retrieval" and title $stemen$ "information")

and (author $soundex$ "fuhr" or author $soundex$ "smith")]

Here, mandatory query conditions are combined with and and optional query conditions are
combined with or, and the mandatory and optional parts of the query are combined with
and.
This method has the disadvantage that at least one of the optional query conditions must be
fulfilled. In the extreme, if the user just types in +retrieval and fuhr, the two query conditions
will be connected with and which is clearly the wrong thing to do. (However, connecting the
mandatory part and the optional part with or has its own problems!)Thus, this method may
return fewer documents than intended by the user.

4.7 Overview Of HyREX Indexing Algorithm

HyREX provides a program ‘hyrex_index’ to actually index the XML documents. For each of the
document classes we need to write a separate DDL file and run this program with that DDL file
supplied as command line argument.

The algorithm for indexing is as follows:
STEP 1:
For each of the documents in the document class do the following:

1: Find the document name, size, base directory, class name.

2: XML::Parser is used to test whether the document is syntactically correct according
to the supplied DTD and build the XS-tree to store the structure information. Also store
the handle number and the corresponding element name or attribute name or the text
parts.

3: Create the document summary if summary element is provided in the DDL file.

4: Consider each handle and its corresponding entry stored in step 2 and apply index
filters (for example remove stop words, apply stemmer etc).The filtering rules are fixed
by the datatype specified in the DDL files.

5: Insert the filtered words and the corresponding handles in a temporary file.

STEP 2:
Sort the index keys in ASCII order and encode their handles so obtained.

STEP 3:
Close the first indexing phase and initialize the multiway-merge sort to merge indices of the
documents.

STEP 4:
Take a key value pair and decode it, compute df, idf, tf and compute BM25 term weight store
the max weight of a term in a particular document.
Also store triplets [$docid, $tf, $ list_of_hanldes] in encoded form in the new inverted list.

4.8 Overview Of HyREX search algorithm

HyREX provides a command line search tool ‘hyrex_search’ which is to be invoked with the DDL
file name in command line.
The algorithm for search is as follows:
STEP 1:
Break the query into the following components:
[$predicate, $value, $pathexpr]
i.e., [search predicate, the word or phrase to be searched, path expression in the search]

STEP 2:

Check if the predicate given in the query matches some predicate in the supplied datatype by
the ddl file.

STEP 3:
Filter the query terms using the same filtering rules as in indexing.

STEP 4:
Check if the filtered query terms lie in the index of the documents.
If not start from step 2 for the other query terms (in the wsum query).
Else
 Decode the information about the files from the inverted list.
 for (i = 1 ; i <= $document_ frequency ; i++)
 {
 decode [$tf,$docid,$handles]
 Compute BM25 term weight for all occurrences of the term in different documents.
 store as results:
 [appropriate section of doc where found the searched word, sum of term weights]
 }

STEP 5:
Decode the exact result paths using the corresponding stored XS-tree for that doc.

STEP 6:
Report results in descending order of result weights.

4.9 HyREX @ INEX 2002

We tried to use the inex_eval executable 2003 for assessment of HyREX on 2002 IEEE collection
, as they claim that this can also compute 2002 assessments when it is run with suitable
parameters. But we found some problem in running the code. So we did the assessments
manually on few queries and taking the top 20 retrieved results and checked with the available
assessment files.
Using the Evaluation metrics in INEX 2002 (refer to [2]) and using strict quantization function for
relevance and coverage viz,

fstrict(rel, cov) = .

The precision being computed by

P(rel | retr)(x) = ,

here, n is the total number of relevant document components with regard to the user request

in the collection; x [0, 1] denotes an arbitrary recall value. Given that the user stops viewing at

the ranking after a given number of relevant document components NR. Let l denote the rank
from which the NRth relevant component is drawn. Then j is the number of non-relevant
document components within the ranks before rank l, s is the number of relevant components
to be taken from rank l, and r and i are the numbers of relevant and non-relevant components
in rank l, respectively.
we computed precession-recall for few queries:

INEX 2002 CO-query topic 32

Recall Precession

0.05 0.0614

0.25 0.0587

0.50 0.0319

0.75 0.0239

0.80 0.0122

INEX 2002 CO-query topic 34

Recall Precession

0.05 0.0891

0.25 0.0689

0.50 0.0542

0.75 0.0259

0.80 0.0127

Chapter 5

Pseudo-Relevance Feedback

With HyREX

5.1 Pseudo-Relevance Feedback Algorithm

Let Q0 denote the initial query as given by the user. Let , , denote the constants of Rocchio

algorithm discussed in section 3.2.In HyREX by a single document we mean a subtree that is

identified by its docid and the handle number. Let’s assume that the top 10 retrieved

documents by hyrex_search are really relevant.

Now what should be the dimension of the vector in the Rocchio equation (section 3.2, page 18)

.Conceptually, it’s the entire vocabulary in the inverted list of the document collection. But

there is no need to consider all of them as a most of the terms are neither occurring in Q0 nor in

any of the top 10 relevant terms. Considering all terms will unnecessarily increase running time

of the query reformulation step. So we need to find some term selection criteria. We can take

two approaches:

(1). Pick terms with highest total weight in top 10 relevant documents. (2). Pick terms with

highest document frequency in top 10 relevant documents.

Secondly we have to find what the non-relevant documents are. Here again we can take two

different strategies:

(1).Assume all documents other than the top 10 as non-relevant. (2).Assume documents ranked

more than K as non-relevant, where we may fix K=500

Algorithm:

Step1: Run hyrex_search on Q0 and fin the top 10 relevant documents. We suppose that each

of them is equally relevant.

Step2: For each of the above documents find the text they contain i.e., take [docid , handle]

and find the xml file represented by the docid, then find the subtree in the file represented by

the handle. Store all the text parts so found in a string S.

Step3: Filter the text in S using the same filtering algorithm as is done for both indexing and

searching and get a set of words S’.

Step4: Sort the set of words in ASCII order.

Step5: For each of these sorted words find their inverted list entries.

Step6: Compute BM25 term weights for each of these documents (i.e., [docid , handle] pairs).

Also compute the document frequencies.

Step7: Sort the terms according to one of the strategies i.e document frequency and BM25

weight or only BM25 term weights. Select top ranked terms from the sorted list and make the

list S’’.

Step 8: Let d = |S’’|.Check if all the query terms lie in S’’.If not add them and let x be the

number of terms added and S’’’ be the final list. So D=d+x is our required dimension. Consider

three vectors of dimension D.(1) query Q (2) relevant_document_average R(3)

Non_relevant_document_average N all initialized to zero.

Step9:If the query is weighted normalize the weights and assign to the corresponding

component in the vector Q. else assign equal weights 1/n to each component corresponding to

query terms , n being the number of initial query terms.

Step10: Initialise Number_ of_ non-relevant documents = 0

For (each terms in S’’’ find the inverted list entries E) {

 For (each document in E check if it is relevant) {

 If (Relevant) {

 add its BM25 weight to the corresponding component in R

 }

 Else {

 add its BM25 weight to the corresponding component in N

 if(document is encountered first time) {

++Number_ of_ non-relevant documents

 }

 }

 }

}

Step 11: Use Rocchio formula to compute new query Q’.

Q’ = = Q + (1/|Cr|) dj (1/|Cnr|) dj.
 dj Cr dj Cnr

Where Cr , Cnr,dj have their usual meaning described in previous chapter.

Step 12: Select terms occurring with positive weights in the reformulated query vector Q’ and

generate a weighted query Q’’ with those terms.

Step 13: Invoke hyrex_search with Q’’ as new query.

5.1 Results

We did the assessments manually on few queries and taking the top 20 retrieved results and
checked with the available assessment files. We found some improvements.

INEX 2002 CO-query topic 32

Recall Precession

0.05 0.0872

0.25 0.0774

0.50 0.0735

0.75 0.0386

0.80 0.0184

INEX 2002 CO-query topic 34

Recall Precession

0.05 0.0891

0.25 0.0801

0.50 0.0648

0.75 0.0212

0.80 0.0112

References

[1]Content-oriented XML retrieval with HyREX Norbert Gövert ,University of Dortmund, Germany Mohammad
Abolhassani,Norbert Fuhr Kai Großjohann,University of Duisburg-Essen Germany

[2] FUHR, N., G¨OVERT, N., KAZAI, G., AND LALMAS, M. 2002. INEX: INitiative for the Evaluation of XML retrieval. In
Proceedings of the SIGIR 2002 Workshop on XML and Information Retrieval,R. Baeza-Yates, N. Fuhr, and Y. S.
Maarek, Eds. http://www.is.informatik.uni-duisburg.de/bib/xml/Fuhr_etal_02a.html.

[3] Understanding Inverse Document Frequency:On theoretical arguments for IDF. Stephen Robertson, Microsoft
Research 7 JJ Thomson Avenue Cambridge CB3 0FB UK, (and City University, London, UK)

[4] Abolhassani, M.; Fuhr, N.; Gövert, N.; Großjohann, K. (2002). HyREX: Hypermedia Retrieval Engine for XML.
Research report, University of Dortmund, Department of Computer Science, Dortmund, Germany.

[5] XIRQL: An XML Query Language Based on Information Retrieval Concepts NORBERT FUHR and KAI
GROßJOHANN University of Duisburg-Essen.

[6] Index Compression vs. Retrieval Time of Inverted Files for XML Documents , Norbert Fuhr Norbert Govert,
University of Dortmund, Germany ,http://ls6-www.cs.uni-dortmund.de/ir/projects/hyrex/.

Book reference:
Modern Information retrieval , Ricardo Baeza – Yates ,Berthier Riberiro-Neto

http://www.is.informatik.uni-duisburg.de/bib/xml/Fuhr_etal_02a.html

