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Abstract 

 

The eXtensible Markup Language (XML) is the emerging standard for representing knowledge 

for many applications. XML retrieval is thus becoming increasingly important. A number of 

research groups from all over the world are actively working in this area.  

HyREX is an XML retrieval engine designed by Norbert Govert, University of Dortmund, 

Germany. In this thesis we have made a detail study of the HyREX system and finally improved 

the search performance by implementing relevance feedback. Here the assessments were done 

manually using the queries and assessment files provided by INEX 2002. 
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Chapter 1 

XML Retrieval 

 

 

1.1 Introduction 
 

There are two types of information retrieval problems that are intermediate between text 
retrieval and search over relational data. The second type, XML retrieval, is the subject of this 
chapter. We will view XML documents as trees that have leaf nodes containing text and labeled 
internal nodes that define the roles of the leaf nodes in the document. We call this type of text 
semistructured and retrieval over it semistructured retrieval. Semistructured retrieval has 
become increasingly important in recent years because of the growing use of Extensible 
Markup Language or XML. XML is used for web content, for documents produced by office 
productivity suites, for the import and export of text content in general, and many other 
applications. These days, most semistructured data are encoded in XML. 

 
1.2 Basic XML concepts 

An XML document is an ordered, labeled tree. The nodes of the tree are XML elements and are 
written with an opening and closing tag. An element can have one or more XML attributes. One 
of the elements in the example XML document in Figure 1.1 is scene, which is enclosed by the 
two tags <scene ...> and </scene>. The element has an attribute number with value VII and two 
child elements, title and verse. 

<play> 
   <author>Shakespeare</author> 
   <title>Macbeth</title> 
   <act number="I"> 
       <scene number="VII"> 
           <title>Macbeth’s castle</title> 
           <verse>Will I with wine and wassail ...</verse> 
       </scene> 
   </act> 
</play> 
 Figure 1.1 An XML document. 



 

 

There is a standard way of accessing and processing XML documents,viz the XML Document 

Object Model or DOM. DOM represents elements, attributes and text within elements as nodes 

in a tree. XPath is the standard for paths in XML. We also need the concept of XML schema.  A 

schema puts constraints on the structure of allowable XML documents for a particular 

application. Two standards for schemas for XML documents are XML DTD (document type 

definition) and XML Schema. The purpose of a DTD is to define the legal building blocks of an 

XML document. Using DTDs , each XML file can carry a description of its own format with it. 

With a DTD, independent groups of people can agree to use a common DTD for interchanging 

data. XML schema is a XML based alternative to DTD. 

 

1.3 Why XML? 

Relational database systems cannot meet all the demands of electronic business because they 

process data independently of its context. Traditional databases may be well suited for data 

that fits into rows and columns, but cannot adequately handle rich data such as audio, video, 

nested data structures or complex documents, which are characteristic of typical Web content. 

To deal with XML, traditional databases are typically retrofitted with external conversion layers 

that mimic XML storage by translating it between XML and some other data format. This 

conversion is error-prone and results in a great deal of overhead, particularly with increasing 

transaction rates and document complexity. 

XML databases, on the other hand, store XML data natively in its structured, hierarchical form. 

Queries can be resolved much faster because there is no need to map the XML data tree 

structure to tables. This preserves the hierarchy of the data and increases performance. XML 

documents can contain any imaginable data type - from classical data like text and numbers, or 

multimedia objects such as sounds, to active formats like Java applets or ActiveX components. 

The look and feel of documents or even entire websites can be changed with XSL Style Sheets 

without manipulating the data itself. XML documents can consist of data from many different 

databases distributed over multiple servers. In other words: With XML the entire World Wide 

Web is being transformed into a single all-encompassing database. 

 Internationalization is of utmost importance for electronic business applications. XML supports 

multilingual documents and the Unicode standard. XML’s one-of-a-kind open structure allows 

the addition of other state-of-the-art elements when needed. This means that a system can 

always be adapted to embrace industry-specific vocabulary. 

In future Web development, it is most likely that XML will be used to describe the data, while 
HTML will be used to format and display the same data. Since XML data is stored in plain text 



 

 

format, XML provides a software and hardware independent way of sharing data. Users can 
write structural queries for an XML retrieval system if they have some minimal knowledge 
about the schema of the underlying collection. 
 

 
 
1.4 Challenges in semi structured retrieval 
 
We need to choose a document unit for indexing and retrieval. In unstructured retrieval, it is 

usually clear what the right document unit is. A traditional Unix (mbox-format) email file stores 

a sequence of email messages (a folder) in one file, but one might wish to regard each email 

message as a separate document. Many email messages now contain attached documents, and 

you might then want to regard the email message and each contained attachment as separate 

documents. Sometimes people index each paragraph of a document as a separate pseudo-

document, because they believe it will be more helpful for retrieval to be returning small pieces 

of text so that the user can find the relevant sentences of a document more easily. The first 

challenge in semi structured retrieval is that we don’t have such a natural document unit or 

indexing unit. There are at least three different approaches to defining the indexing unit in XML 

retrieval. One is to index all components that are eligible to be returned in a search result. All 

subtrees in Figure 1.1 meet this criterion. This scheme has the disadvantage that search results 

will contain overlapping units that have to be filtered out in a post processing step to reduce 

redundancy. Another approach is to group nodes into non-overlapping pseudo documents as 

shown in Figure 1.2. This avoids the overlap problem, but pseudo documents may not make 

intuitive sense to the user. And they have to be fixed at indexing time, leaving no flexibility to 

answer queries at a more specific or more general level. The third approach is to designate one 

XML element as the substitute for the document unit.  

If we query Shakespeare’s plays for Macbeth’s castle, should we return the scene, the act or the 

whole play in Figure 1.1? In this case, the user is probably looking for the scene. On the other 

hand, an otherwise unspecified search for Macbeth should return the play of this name, not a 

subunit. One decision criterion that has been proposed for selecting the most appropriate part 

of a document is the structured document retrieval principle: 

Structured document retrieval principle. A system should always retrieve the most specific 
part of a document answering the query. This principle motivates a retrieval strategy that 
returns the smallest unit that contains the information sought, but does not go below this level. 
However, it can be hard to implement this principle algorithmically. 
The user interface should expose the tree structure of the collection and allow users to specify 
the nodes they are querying. As a consequence the query interface is more complex than a 



 

 

search box for keyword queries in unstructured retrieval. This is one of the challenges currently 
being addressed by the research community. 

 

Figure 1.2 Indexing units in XML retrieval. Unlike conventional retrieval, XML retrieval does not have a natural 
indexing unit. In this example, books, chapters and sections have been designated to be indexing units, but without 
overlap. For example, the leftmost dashed indexing unit contains only those parts of the tree dominated by book 
that are not already part of other indexing units results. 
 

 
 

Another challenge is how we store the structure information of the whole document collection 
in main memory at the retrieval time. One solution to this is the XML structure tree or XS-tree 
data structure. It is highly compressed so that the XS-tree of the whole document collection can 
be kept in main memory. Consider the XML document in figure 1.3 
 

We can assign a path handle to each element, attribute and text part sequentially as follows: 
Attribute class is assigned handle number 1, the element title handle number 2, then the text 
part ‘John Smith’ a handle number 3, <title> a handle number 4 , ‘XML Retrieval’ a handle number 5 
and so on. Given this position there is a resolution method that yields the corresponding path. 
For creating a linear representation of the XS-tree the following design is chosen. 
Enumerate nodes top-down (in preorder): By choosing a top-down sequence, we can apply 
context-specific compression methods. Given the DTD, there is only a small set of elements that 
can occur as children of a specific element, so we only need a few bits for coding each of these 
alternatives.  
Parent-child relationship via level numbers: Level numbers are compact. For compressing level 
numbers, we use run length encoding, thus only the relative differences between the level 
numbers are stored.  
 
 
 
 
 



 

 

<book class="H.3.3"> 
<author>John Smith</author> 
<title>XML Retrieval</title> 
<chapter> 
<heading>Introduction</heading> 
This text explains all about XML and IR. 
</chapter><chapter> 
<heading> 
XML Query Language XQL 
</heading> 
<section> 
<heading>Examples</heading> 
</section> 
<section> 
<heading>Syntax</heading> 
Now we describe the XQL syntax. 
</section> 
</chapter> 
</book> 

Figure 1.3  

 

 
Positions as element numbers: Element numbers are compact, and therefore efficient 
encoding for use as path handles in the inverted lists is possible. 
Element and sequence indexes implicit: Each element in a path has an element index and a 
sequence index that denote its relative position among the children of the parent node. These 
indexes could be encoded explicitly, but would require additional storage space; in contrast, by 
scanning the representation linearly, the indexes of each element can be computed 
on the fly. 

Universal codes are used for compression of the level numbers. In order to encode the element 
names given for each node of an XML tree, we use Huffman coding. 
A part of the XS tree of the above document is shown below: 

 

 
The xs tree of the above doc is basically two linear arrays, 



 

 

Array1=(Books,@value,author,#PCDATA,title,#PCDATA,Chapter,heading,#PCDATA,#PCDATA,…)  
Array2=(1,2,2,3,2,3,2,3,4,3,…). 
 

1.5 An introduction to XPath and XIRQL 
 
XPath is a language for addressing parts of an XML document. XPath models an XML document 
as a tree of nodes. There are different types of nodes, including element nodes, attribute nodes 
and text nodes. XPath defines a way to compute a string-value for each type of node. XPath 
retrieves elements (i.e., subtrees) of the XML document fulfilling the specified condition. The 
simplest kind of query specifies elements by giving their names, for instance, the query heading 
retrieves the four different heading elements from our example document 1.3. Attributes are 
specified with a preceding “@” (as in @class). Context can be considered by means of the child 
operator ‘/’ between two element names, so section/heading retrieves only headings occurring 
as children of sections, or by the descendant operator (“//”),so that book//heading finds 
headings which are descendants of a book element. Wildcards can be used for element names, 
as in chapter/*/heading. A “/” at the beginning of a query refers to the root node of documents 
(e.g., the query /book/title specifies that the book element should be the root element of the 
document). The filter operator (denoted with square brackets) filters the set of nodes to its left. 
For example, //chapter[heading] retrieves all chapters having a heading. (In contrast, 
//chapter/heading retrieves the heading elements of these chapters.) Explicit reference to the 
context node is possible by means of the dot (.): //chapter[.//heading] searches for a chapter 
containing a heading element as descendant. Square brackets also are used for subscripts 
indicating the position of children within an element, with separate counters for each element 
type; for example //chapter/section[2] refers to the second section in a chapter (which is the 
third child of the second chapter in our example document). Disjunctive conditions can be 
specified via the | operator, for example //(chapter|section) will find all chapter elements in 
addition to all section elements. In order to pose restrictions on the content of elements and 
the value of attributes, comparisons can be formulated. For example, /book [author = "John 
Smith"] refers to the value of the element author, whereas /book[@class ="H.3.3"] compares 
an attribute value with the specified string. Besides strings, XPath also supports numbers and 
dates as datatypes, along with additional comparison operators like > and <.Sub queries can be 
combined by means of Boolean operators and ‘and’ or ‘or’ be negated by means of not. For 
considering the sequence of elements, the operators before and after can be used, as in 
//chapter[section/heading = "Examples" before section/heading = "Syntax"]. These features of 
XPath allow for flexible formulation of conditions with respect to the structure and the content 
of XML documents. The result is always a set of elements from the original document(s). 
 
XIRQL Concepts: From an IR point of view, XML offers the following opportunities for 
enhancing IR functionality in comparison to plain text: 
—Queries referring to content only should retrieve relevant document parts according to the 
logical structure, thus overcoming some limitations of passage retrieval. The FERMI model 
[Chiaramella et al. 1996] suggests the following strategy for the retrieval of structured 
(multimedia) documents: A system should always retrieve the most specific part of a document 



 

 

answering the query.  As an example, consider a user searching for information about 
multimedia databases. If multimedia and databases are discussed in the same section, then 
surely that section should be returned as the query result. If the two concepts are covered in 
two distinct sections within the same chapter, then the chapter should be returned. 
—Based on the markup of specific elements, high-precision searches can be performed that 
look for content occurring in specific elements. Possible scenarios include distinguishing 
between the sender and the addressee of a letter, and finding the definition of a concept in 
mathematics textbook. 
—The concept of mixed content allows for the combination of high precision searches with 
plain text search. An element contains mixed content if both plain text (#PCDATA) and other 
elements may occur in it. Thus, it is possible to mark up specific items occurring in a text. For 
example, in an arts encyclopedia, names of artists, places they worked, and titles of pieces of 
art may be marked up (thus allowing, for example, to search for Picasso’s paintings of 
toreadors, avoiding passages mentioning Picasso’s frequent visits to bullfights). 
—For query conditions referring to the structure of documents, it should be possible to perform 
vague comparisons with the actual document structure, such as semantically related element 
names. 
With respect to these requirements, XPath seems to be a good starting point for IR on XML 
documents. However, the following features should be added to XPath and we get XIRQL: 
 
Weighting: IR research has shown that document term weighting as well as query term 
weighting are necessary tools for effective retrieval in textual documents. So comparisons in 
XPath referring to the text of elements should consider index term weights. Furthermore, query 
term weighting also should be possible, by introducing a weighted sum operator [e.g., WSUM ( 

0.6 ・ “XML” + 0.4 ・ “retrieval”)]. These weights should be used for computing an overall 
retrieval status value for the elements retrieved, thus resulting in a ranked list of elements. 
The query is decomposed into basic query conditions (leaf nodes of the XPath expression parse 
tree) and combining operators (inner nodes). The basic query conditions return weighted sets 
of results, which then are processed by the combining operators. Assuming probabilistic 
independence, the combination of weights according to the different Boolean operators is 
obvious, thus leading to an overall weight for any answer. However, there are two major 
problems: 
(1) How should terms in structured documents be weighted? 
(2) What are the probabilistic events, that is, which term occurrences are identical, and which 
are independent? 
At first, we need to define the “atomic” units (or hierarchic aggregations of those) in XML 
documents. Text is contained in the leaf nodes of the XML tree only. So these leaves would be 
an obvious choice as atomic units. But we can use the concept of index nodes as in figure 3.2 to 
construct atomic units. 
Given these units, we can separate indexing and retrieval methods. Thus, for indexing, we can 

start with a standard formula such as a kind of tf ・ idf (for details refer to chapter 2).We 
interpret a weight as the probability that the corresponding condition is true. For example the 
XML retrieval engine HyREX uses  the BM25 formula [Robertson et al. 1995] multiplied by a 



 

 

normalization constant, thus yielding values from the interval [0, 1] which can be interpreted as 
probabilities. 
Thus we have a method for computing term weights and we can do relevance-oriented search. 
For this, we must be able to retrieve index nodes at all levels. The indexing weights of terms 
within the most specific index nodes are given directly. For retrieval of the higher-level objects, 
we have to consider that their content is made up by the content of the index node under 
consideration plus the content of the descendent index nodes. Therefore, for a given index 
node its term weights have to be combined with the term weights of the descendant index 
nodes. For example, assume the following document structure, where we list the weighted 
terms instead of the original text: 
<chapter> 0.3 XQL 
<section> 0.5 example </section> 
<section> 0.8 XQL 0.7 syntax </section> 
</chapter> 
A straightforward possibility would be the OR-combination of the different weights for a single 
term. However, searching for the term ‘XQL’ in this example would retrieve the whole chapter 
in the top rank, whereas the second section would be given a lower weight. It can easily be 
shown that this strategy always assigns the highest weight to the most general element. This 
result contradicts the structured document retrieval principle mentioned before. For this 
purpose, index term weights are down weighted (multiplied by an augmentation factor) when 
they are propagated upwards to the next index node. In above example, using an augmentation 
factor of 0.6, the retrieval weight of the chapter w. r. t. to the query ‘XQL’ would be 0.3 + 0.6 · 
0.8 − 0.3 · 0.6 · 0.8 = 0.596, thus ranking the section ahead of the chapter. 

 

Datatypes and Vague Predicates: Since XML allows for a fine-grained markup of elements, there 
should be the possibility to use special search predicates for different elements of various data 
types (e. g. person names, dates, names of geographic regions). For each data type, the system 
must provide appropriate search predicates, most of which should be vague. For example, in an 
arts encyclopedia, it would be possible to mark artist’s names, locations or dates. Given this 
markup, one could imagine a query like “Give me information about an artist whose name is 
similar to Ulbricht and who worked around 1900 near Frankfort, Germany”, which also should 
retrieve an article mentioning Joseph Maria Olbrich’s work in Darmstadt, Germany, in 1901. 
Thus, we need vague predicates for different kinds of datatypes (e.g., person names, locations, 
dates). For supporting IR in XML documents, there should be a core set of appropriate 
datatypes and there should be a mechanism for adding application-specific datatypes. 
Candidates for the core set are texts in different languages, hierarchical classification schemes, 
thesauri(i.e, a precompiled list of important words in a given domain of knowledge and for each 
words in this list a set of related words is provided) and person names. In order to perform text 
searches, some knowledge about the kind of text is necessary. Truncation and adjacency 
operators available in many IR systems are suitable for western languages only (whereas XML in 
combination with Unicode allows for coding of most written languages). Therefore, language-
specific predicates, for dealing with stemming, noun phrases, and compound words and so on 
should be provided. 



 

 

Person names often pose problems in document search, as the first and middle names may 
sometimes be initials only (so, searching for “Jack Smith” should also retrieve “J. Smith”, with a 
reduced weight). A major problem is the correct spelling of names, especially when 
transliteration is involved (e.g., “Chebychef”); thus, phonetic similarity or spelling-tolerant 
search should be provided. For retrieval, the only operations to be applied are vague 
predicates, where even a few type errors can be tolerated: vague predicates are hardly always 
correct (e.g., equality based on stemming), so single incorrect values also won’t have significant 
effects on retrieval quality. 
 As a framework for dealing with these problems, we adopt the concept of datatypes in IR from 
[Fuhr 1999], where a datatype T is a pair consisting of a domain |T| and a set of (vague 
comparison) predicates PT = {c1, . . . , cn}.Like in other type systems, IR datatypes also should be 
organized in a type hierarchy (e.g., Text – Western Language – English), where the subtype 
restricts the domain and/or provides additional predicates (e.g., n-gram matching for general 
text, plus adjacency and truncation for western languages, plus stemming and noun phrase 
search for English). Through this mechanism, additional datatypes can be added to the system 
implementation by refining the appropriate datatype (e.g., introduce French as refinement of 
Western Language). 
 
Structural Vagueness: XIRQL supports four different types of structural vagueness, which are 
described in the following. 
 Elements vs. Attributes. The distinction between elements and attributes may not be relevant 
to many users. Thus, in XIRQL, author searches for elements,@author is for attributes, and 
=author is used for abstracting from this distinction. 
Datatypes as Generalization of Elements and Attributes. Further abstraction from the concrete 
XML syntax is possible by introducing datatypes. For example, a date value can be represented 
in various forms in an XML document, as illustrated by the following example: 
 
<date year="2001" month="12" day="11"/> 
<date>2001-12-11</date> 
<date><year>2001</year> 
<month>12</month> 
<day>11</day></date> 
 
With the ‘date’ datatype, users just specify the date in a standard format in their query (e.g., 
/article [pub-date>"2001-12-11"] and do not need to know how dates happen to be 
represented in the current document type. 
Besides abstracting from the concrete syntax, datatypes also can be used for generalizing from 
specific element or attribute names. For example, we may want to search for persons in 
documents, without specifying their role (e.g., author, editor, referenced author, subject of a 
biography) in these documents. Thus, we provide a mechanism for searching for certain 
datatypes, regardless of their name and their position in the XML document tree. For example, 
#persname searches for all elements and attributes of the datatype persname (for person 
names).  



 

 

Similarity of Element Names. The precise naming of elements (or attributes) may be a major 
problem when formulating structural conditions in a query. For this purpose, we provide a 
similarity operator for element names, which is expressed in XIRQL via the tilde as prefix of an 
element name: Whereas author searches for an element by specifying an element 
name,˜author searches for an element semantically similar to “author”; in the latter case, 
elements with different, but similar names will also match, but with a lower score than 
elements with the specified name. 
Generalizing Parent/Child Relationships. In the case of complex DTDs, most users will have 
problems in specifying the precise path to an element. However, instead of replacing all child 
operators in the query by descendant operators, they might want to prefer those matches that 
are close to the path specification in the query. For this purpose, we provide the vague 
extension of the child operator, which is written as \\. So chapter/title specifies a parent child 
relationship, chapter//title specifies an ancestor-descendant relationship, and chapter\\title 
specifies that a parent-child relationship should get a higher weight than a grandparent-
grandchild relationship and that the weight should decrease with the number of intervening 
levels of elements. 
 

Document Classes: In many applications, documents will belong to different schemas. For this 
reason, we assume that a document base may contain different document classes. All 
documents belonging to a single class conform to the same schema. When formulating a XIRQL 
query the name of the document class addressed has to be specified first, (e.g., class 
(book)//chapter [heading cw "XML"]).  

 
 
1.6 Evaluation of XML Retrieval 
 

A large part of academic research on XML retrieval is conducted within the INEX (INitiative for 
the Evaluation of XML retrieval) program, a collaborative effort that includes reference 
collections, sets of queries, relevance judgments and a yearly meeting to present and discuss 
research results. There are two types of queries, called topics, in INEX: content-only or CO 
topics and content-and-structure or CAS topics. CO topics are regular key word queries as in 
unstructured information retrieval. CAS topics have structural constraints in addition to 
keywords These two different components of CAS queries make relevance assessments more 
complicated than in unstructured retrieval. INEX defines component coverage and topical 
relevance as orthogonal dimensions of relevance. The component coverage dimension 
evaluates whether the element retrieved is “structurally” correct, i.e., neither too low nor too 
high in the tree.  
 

 



 

 

Chapter 2 

       Term Weighting-BM25 

 

 

2.1 Introduction 

In case of large document collections, the number of matching documents for a query can be 
far in excess of the number a human user could possibly sift through. Accordingly, it is essential 
for search engines to rank-order the documents matching a query. To do this, an engine 
computes, for each matching document, a score with respect to the query at hand. In this 
chapter we discuss methods of assigning a score to a (query, document) pair.  

 
2.2 Term frequency and weighting 
 
We assign to each term in a document a weight for that term in that document that depends 
on the number of occurrences of the term in the document. The simplest approach is to assign 
the weight to be equal to the number of occurrences of the term t in document d. This 
weighting scheme is referred to as term frequency and is denoted tft,d, with the subscripts 
denoting the term and the document in order. 
For a document d, the set of weights (determined by the tf weighting function above, or indeed 
any weighting function that maps the number of occurrences of t in d to a positive real value) 
may be viewed as a vector, with one component for each distinct term. In this view of a 
document, known in the literature as the bag of words model, the exact ordering of the terms 
in a document is ignored. The vector view only retains information on the number of 
occurrences. Thus, the document “Mary is quicker than John” is, in this view, identical to the 
document “John is quicker than Mary”. Nevertheless, it seems intuitive that two documents 
with similar vector representations are similar in content. 
 
 

2.3 Inverse document frequency 
 
Raw term frequency as above suffers from a critical problem: all terms are considered equally  
important when it comes to assessing relevance for a query. Certain terms have little or no 
discriminating power in determining relevance. For instance, a collection of documents on the 
insurance industry is likely to have the term insurance in almost every document. To this end, 



 

 

we introduce a mechanism for attenuating the effect of terms that occur too often in the 
collection to be meaningful for relevance determination. An immediate idea is to scale down 
the term weights of terms with high collection frequency, defined to be the total number of 
occurrences of a term in the corpus. The idea would be to reduce the tf weight of a term by a 
factor that grew with its collection frequency. 
Instead, it is more commonplace to use for this purpose the document frequency dft, defined to 
be the number of documents in the corpus that contain a term t.  
 
   

Word cf Df 

Ferrari 10422 17 

 Insurance 10440 3997 
   Figure 3.1 Collection frequency (cf) and document frequency (df) behave differently. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Example of idf values. Here we give the idf’s of terms with various 
frequencies in a corpus of 1,000,000 documents. 
 
 

The reason to prefer df to cf is illustrated in Figure 3.1, where a simple example shows that 
collection frequency (cf) and document frequency (df) can behave rather differently. In 
particular, the cf values for both Ferrari and insurance are roughly equal, but their df values 
differ significantly. This suggests that the few documents that do contain ferrari mention this 
term frequently, so that its cf is high but the df is not. Intuitively, we want such terms to be 
treated differently: the few documents that contain ferrari should get a significantly higher 
boost for a query on ferrari than the many documents containing insurance get from a query on 
insurance. Denoting as usual the total number of documents in a corpus by N, we define 
the inverse document frequency (idf) of a term t as follows: 
 

 

 
Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be low. Figure 
3.2 gives an example of idf’s in a corpus of 1,000,000 documents; in this example logarithms are 
to the base 10. 
 

Term df idf 
Calpurnia 1 6 
Animal 100 4 

Sunday 1000 3 

Fly 10000 2 

Under 100000 1 

The 1000000 0 



 

 

2.4 Tf-idf weighting  
 
We now combine the above expressions for term frequency and inverse document frequency, 
to produce a composite weight for each term in each document. The tf-idf weighting scheme 
assigns to term t a weight in document d given by: 

 
tf- idf t,d    tf t,d  id ft. 
 

In other words, tf-idft,d assigns to term t a weight in document d that is  
1. highest when t occurs many times within a small number of documents (thus lending high 
discriminating power to those documents); 
2. lower when the term occurs fewer times in a document, or occurs in many documents (thus 
offering a less pronounced relevance signal); 
3. lowest when the term occurs in virtually all documents. 
We may view each document as a vector with one component corresponding to each term, 
together with a weight for each component that is given by above equation. 
The score of a document d is the sum, over all query terms, of the number of times each of the 
query terms occurs in d. We can refine this idea so that we add up not the number of 
occurrences of each query term t in d, but instead the tf-idf weight of each term in d. 
 

   Score (q, d)  t in q tf- idf t,d 

 

 
2.5 Maximum tf normalization 
 
One well-studied technique is to normalize the individual tf weights for a document by the 
maximum tf in that document. For each document d, let Then, we compute a normalized term 
frequency for each term t in document d by 
 

ntft,d   = a + (1-a)  

 
where a is a value between 0 and 1 and is generally set to 0.5. The term a in is a smoothing 
term whose role is to damp the contribution of the second term – which may be viewed as a 
scaling down of tf by the largest tf value in the dictionary. The main idea of maximum tf 
normalization is to mitigate the following anomaly: we observe higher term frequencies in 
longer documents, merely because longer documents tend to repeat the same words over and 
over again. To appreciate this, consider the following extreme example: supposed we were to 
take a document d and create a new document d’ by simply appending a copy of d to itself. 
While d’  should be no more relevant to any query than d is, the use of would assign it twice as 
high a score as d. Replacing tf-idft,d in  by ntf-idft,d  eliminates the anomaly in this example. 
Maximum tf normalization does suffer from a couple of issues: 



 

 

1. A document may contain an outlier term with an unusually large number of occurrences 

of that term, not representative of the content of that document. 

2. More generally, a document in which the most frequent term appears roughly as often as 

many other terms should be treated differently from one with a more skewed distribution. 

 
 

2.6 The effect of document length 
 
 

The above discussion of weighting ignores the length of documents in computing term weights. 
However, document lengths are material to these weights, for several reasons. First, longer 
documents will – as a result of containing more terms – have higher tf values. Second, longer 
documents contain more distinct terms. These factors conspire to raise the scores of longer 
documents, which (at least for some information needs) is unnatural. Longer documents can 
broadly be lumped into two categories: (1) verbose documents that essentially repeat the same 
content – in these, the length of the document does not alter the relative weights of different 
terms; (2) documents covering multiple different topics, in which the search terms probably 
match small segments of the document but not all of it – in this case, the relative weights of 
terms are quite different from a single short document that matches the query terms. 
 

 

 

2.7 Relevance weights 
 
The relevance weighting model (Robertson and Sparck Jones, 1976), referred to as RSJ, shows 
that under some simple assumptions, the probability of relevance ordering can be achieved by 
assigning weights to query terms, and scoring each document by adding the weights of the 
query terms it contains. The term weight may be defined as follows. First we define two 
probabilities for term ti: 

pi = P(document contains ti|document is relevant) 
qi = P(document contains ti|document is not relevant) 

 

RSJ weight w(1)
i = log         (3.) 

If we have, as before, a total of N documents of which ni contain the terms, and further R out of 
the N are relevant and ri relevant documents contain the term, then the obvious estimates of pi 
and qi are: 

                                     (3.) 

 
However, because of the form of Equation of w(1)

I  a modification to these estimates is 
appropriate. Here 0.5 added to each of the components can be seen as a smoothing correction 
and we have: 

     



 

 

 

2.8 BM25 
 
The weighting function known as Okapi BM25 (it was developed as part of the Okapi 
experimental system (Robertson, 1997), and was one of a series of Best Match functions). The 
following is a brief account of the derivation of BM25: 
First, we assume that all documents are the same length – this assumption will be dropped 
below. Next we assume (this is the central assumption of the model) that each term (word) 
represents a concept; and that a given document is either ‘about’ the concept or not. This 
property is described as eliteness: the term is elite in the document or not. This terminology, as 
well as the statistical model described below, is taken from Bookstein and Swanson (1974) and 
Harter (1975). Eliteness is a hidden variable – we cannot observe it directly. However, we then 
assume that the text of the document is generated by a simple unigram language model, where 
the probabilities of any term being in any given position depend on the eliteness of this term in 
that document. 
If we take all the documents for which this particular term is elite, then we can infer the 
distribution of within-document frequencies we should observe. If all documents are the same 
length, then the distribution will be approximately Poisson. If we take instead all the documents 
for which this term is not elite, we will again see a Poisson distribution (presumably with a 
smaller mean). But of course we cannot know eliteness in advance; so if we consider the 
collection as a whole, we should observe a mixture of two Poisson distributions. This two-
Poisson mixture is the basic Bookstein/Swanson/Harter model for within-document term 
frequencies. 
Eliteness thus provides the bridge between the event-space of documents (or rather the cross-
product of documents in the collection and terms in the vocabulary) and the event-space of 
term positions, which gives us term frequencies. For each term, eliteness is a property of the 
document, but determines the properties of the term positions in the document. Finally, we 
have to make the connection with relevance. Relevance is a property at the document level, so 
the connection is with eliteness rather than with term occurrences; but now we have to make 
the bridge between query and document terms. But we know how to do that, having done it in 
the original relevance weighting model. So now we re-use the relevance weighting model, only 
applying it to query-term eliteness rather than to query-term presence or absence. 
From the above arguments, we can formulate a weighting scheme which involves the following 
five parameters for each query term: 
• the mean of the Poisson distribution of within-document term frequencies for elite 
documents; 
• ditto for non-elite documents; 
• the mixing proportion of elite and non-elite documents in the collection; 
• the probability of eliteness given relevance; and 
• the probability of eliteness given non-relevance. 
The BM25 weighting function is based on an analysis of the behavior of the full eliteness model 
under different values of the parameters. Essentially, each term would have a full eliteness 
weight, that is, a weight that a document would gain if we knew that the term was elite in that 



 

 

document. If we do not know that, but have a TF value which provides probabilistic evidence of 
eliteness, we should give partial credit to the document. This credit rises monotonically from 
zero if tf = 0 and approaches the full eliteness weight asymptotically as tf increases. In general 
the first occurrence of the term gives most evidence; successive occurrences give successively 
smaller increases. 
BM25 first estimates the full eliteness weight from the usual presence-only RSJ weight for the 
term, then approximates the TF behavior with a single global parameter k1 controlling the rate 
of approach. Finally it makes a correction for document length. 
 

   BM25 weight wi = f(tfi)  wi
(1) 

   wi
(1)  is the usual RSJ weight, 

   f(tf i) =  

   K = k1((1 − b) + b   

 
dl and avdl are the document length and average document length respectively k1 and b are 
global parameters which are in general unknown, but may be tuned on the basis of evaluation 
data. 
 

 
 
 

 

   
 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 3 

Relevance Feedback and Query 
Expansion 

 

 

3.1 Relevance feedback  
 

The idea of relevance feedback is to involve the user in the retrieval process so as to improve 
the final result set. In particular, the user gives feedback on the relevance of documents in an 
initial set of results. The basic procedure is: 
• The user issues a (short, simple) query. 
• The system returns an initial set of retrieval results. 
• The user marks some returned documents as relevant or not relevant. 
• The system computes a better representation of the information need based 
on the user feedback. 
• The system displays a revised set of retrieval results. 
Relevance feedback can go through one or more iterations of this sort. The process exploits the 
idea that it may be difficult to formulate a good query when you don’t know the collection well, 
but it is easy to judge particular documents, and so it makes sense to engage in iterative query 
refinement of this sort. In such a scenario, relevance feedback can also be effective in tracking a 
user’s evolving information need: seeing some documents may lead users to refine their 
understanding of the information they are seeking. Image search provides a good example of 
relevance feedback. Not only is it easy to see the results at work, but this is a domain where a 
user can easily have difficulty formulating what they want in words, but can easily indicate 
relevant or non-relevant images.  

 
 
3.2 The Rocchio Algorithm for relevance feedback 
 
The Rocchio Algorithm is the classic algorithm for implementing relevance feedback. It models a 
way of incorporating relevance feedback information into the vector space model. 
Underlying Theory: We want to find a query vector that maximizes similarity with relevant 
documents while minimizing similarity with non relevant documents. If Cr is the set of relevant 
documents and Cnr is the set of non-relevant documents. 



 

 

Consider first the unrealistic situation in which the complete set Cr of relevant documents to a 
given query is known in advance. In such a situation the best query vector for distinguishing the 
relevant document from the non-relevant documents is given by, 
 

qopt = (1/|Cr|)   dj            (1/|Cnr|)   dj   
  dj Cr               dj Cnr 

 

i.e, optimal query is the vector difference between the centroids of the relevant and non-
relevant documents. 
The Rocchio (1971) algorithm. This was the relevance feedback mechanism introduced in and 
popularized by Salton’s SMART system around 1970. In a real IR query context, we have a user 
query and partial knowledge of known relevant and irrelevant documents. The algorithm 
proposes using the modified query qm: 

qm = q0    +     (1/|Cr|)   dj            (1/|Cnr|)   dj. 
                                          dj Cr                        dj Cnr 

where q0 is the original query vector and , , and  are weights attached to each term. These 
control the balance between trusting the judged document set versus the query. Starting from 
q0, the new query moves some distance toward the centroid of the relevant documents and 
some distance away from the centroid of the non-relevant documents.  
 

 
Figure 3.1 An application of Rocchio’s algorithm. Some documents have been labeled as relevant and non-relevant 

and the initial query vector is moved in response to this feedback. 

 
This new query can be used for retrieval in the standard vector space model. We can easily 
leave the positive quadrant of the vector space by subtracting off a non-relevant document’s 
vector. In the Rocchio algorithm, negative term weights are ignored. That is, the term weight is 



 

 

set to 0. Figure 3.1 shows the effect of applying relevance feedback. Relevance feedback can 
improve both recall and precision. But, in practice, it has been shown to be most useful for 
increasing recall in situations where recall is important. This is partly because the technique 
expands the query, but it is also partly an effect of the use case: when they want high recall, 
users can be expected to take time to review results and to iterate on the search. Positive 
feedback also turns out to be much more valuable than negative feedback, and so most IR 

systems set  < . Reasonable values might be  = 1,  = 0.75, and  = 0.15. In fact, many 
systems, such as the image search system, allow only positive feedback, which is equivalent to 

setting  = 0. Another alternative is to use only the marked non-relevant document which 
received the highest ranking from the IR system as negative feedback 
 

 
3.3 Pseudo-relevance feedback 
 
Pseudo-relevance feedback, also known as blind relevance feedback, provides a method for 
automatic local analysis. It automates the manual part of relevance feedback, so that the user 
gets improved retrieval performance without an extended interaction. The method is to do 
normal retrieval to find an  initial set of most relevant documents, to then assume that the top 
k ranked documents are relevant, and finally to do relevance feedback as before under this 
assumption. This automatic technique mostly works. Evidence suggests that it tends to work 
better than global analysis. It has been found to improve performance in the TREC ad-hoc task. 
But it is not without the dangers of an automatic process. For example, if the query is about 
copper mines and the top several documents are all about mines in Chile, then there may be 
query drift in the direction of documents on Chile. 
 

 
3.4 Query expansion 
 
In relevance feedback, users give additional input on documents (by marking documents in the 
results set as relevant or not), and this input is used to reweight the terms in the query for 
documents. In query expansion on the other hand, users give additional input on query words 
or phrases, possibly suggesting additional query terms. Some search engines (especially on the 
web) suggest related queries in response to a query; the users then opt to use one of these 
alternative query suggestions. The central question in this form of query expansion is how to 
generate alternative or expanded queries for the user. The most common form of query 
expansion is global analysis, using some form of thesaurus. For each term, t, in a query, the 
query can be automatically expanded with synonyms and related words of t from the 
thesaurus. Use of a thesaurus can be combined with ideas of term weighting: for instance, one 
might weight added terms less than original query terms.  

 
 



 

 

Chapter 4 

HyREX – A XML Retrieval Engine 

 

 

4.1 Introduction 

HyREX is the Hyper-media Retrieval Engine for XML. Hyper because it offers explicit and implicit 
hyperlinks to the user. Media because it offers search facilities for text but also for other media 
than text, at least conceptually. Retrieval engine because it allows users to explore all kinds of 
information structures available through XML, not only plain document retrieval. XML because 
it allows retrieval under consideration of content and structure inherent in XML documents. 
HyREX is Open Source software. The current version allows for efficient retrieval of XML 
collections up to the gigabyte range. 
 
 

4.2 HyREX Architecture 
 
Figure 4.1 displays HyREX’s architecture. On the top-most level the user contacts HyREX by 
means of an arbitrary Web browser. 
Information needs issued through the Web browser are accepted by HyGate. It converts the 
user’s request into a XIRQL query and delegates the processing to the lower levels of HyREX; 
the results are properly presented to the user. 
On the conceptual level, XIRQL queries are accepted and processing. Whenever access paths 
are needed in order to further process a query, this request is handed to the physical level, 
which is named HyPath. On the physical level, there are a number of access paths for each 
datatype and predicate given in the XML documents. 
The task of the document base administrator can be described by means of HyREX’s different 
levels: 
HyGate Describe the layout for search results and documents. This is done by specifying XSL 
stylesheets (see also Section 4.6). 
XIRQL Specify data types of the various parts of documents by means of the DTD. This is done 
within a so-called document definition language (DDL) which is to be prepared for each 
document class. Section 4.2 describes how to do that. 
HyPath Specify access structures for predicates and the structure of documents. This is also 
done within a DDL instance. See Section 4.2. 



 

 

   
                       Figure 4.1       

 

 

 

4.3. Index Structure Overview 
 
We need to tell the system how to index the documents. For this, we have the so-called ‘data 
definition language’ (DDL). 
A document collection is called a “base”. Inside it, there may be several “classes”; a class 
corresponds to a set of documents all conforming to the same DTD. In a class, there are several 
“datatypes”, each datatype provides several search “predicates”. 
 
Document Definition Language: For indexing a given set of documents, we need the 
documents themselves, their respective DTDs (one for each of your document classes) and a 
DDL (data definition language) file for each of our documents classes. This DDL file tells the 
HyREX indexer how to index the documents. HyREX provides a DTD which describes the format 
of the DDL files (which are XML files).  
A DDL file looks like this: 
 
<? xml version="1.0" encoding="iso-8859-1”?> 
<!DOCTYPE hyrex SYSTEM ".../doc/hyrex.dtd"> 
<hyrex attributes > 
<access attributes > ... </access> 
<convert attributes > ... </convert> 
<summary attributes > ... </summary> 
<datatype attributes > ... </datatype> 



 

 

<inodes> ... </inodes> 
<structure> ... </structure> 
</hyrex> 
 
The attributes of the <hyrex> element are: 
directory This gives the directory where the index lives. In this directory, HyREX creates a 
directory named after the document base. 
base This string gives the name of the document base. It is also used as a name for the 
directory where the index files for your various document classes live. 
class The name of the document class to create within your document base. 
dtd All documents of a given class to be indexed must comply with a DTD. Its file name is given 
here. 
All attributes are required.  
 
Example: 
<hyrex directory="/tmp/hyrex"    base="example"    class="books"      dtd="/tmp/books.dtd"> 
... 
</hyrex> 
 
The <access> Element 
This element must be present exactly once in a DDL file. It tells HyREX where to find the 
documents of a document class. This element has one attribute, classname, which refers to a 
HyREX document access class implementing a method to access documents in a certain way. 
A few currently available classes: 
 
Example: 
HyREX::HyPath::Document::Access::XMLstream This document access class extracts subtrees of 
XML files. Each such subtree is considered to be a document in its own right. 
HyREX::HyPath::Document::Access::Tar This document access class extracts files from tarballs 
(*.tar and *.tar.gz files). 
 
 
The <convert> Element 
This optional element is allowed to be present exactly once in a DDL file. It tells HyREX that your 
documents must be converted to XML. This element has one attribute, classname, which refers 
to a HyREX document convert class implementing a method to convert documents in a certain 
way. 
The <summary> Element 
Internally in HyREX, a query result is a weighted list of paths, where each path describes a node 
(XML element or XML attribute, usually) in an XML document. Paths look like book [3]/chapter 
[1] (first chapter in third book document). A summary is supposed to contain information that 
helps the user to identify the document. Summaries are automatically extracted from the XML 
documents according to the rules given in the <summary> element in the DDL. For example, for 
book summaries the elements title, author, year, and perhaps publisher might be useful. 



 

 

The <datatype> Element 
A data type in HyREX specifies which search predicates can be used in a query. This has an 
impact on the kinds of queries that users can formulate. 
The <inodes> Element 
Within the optional <inode> element one can specify so called index nodes. Index nodes are 
such nodes are the roots of subtrees in XML documents which serve as valid answer w. r. t. 
relevance oriented retrieval requests. 
Index nodes (of course a document may have more than one index node, the root of a given 
document always is an index node) are specified by means of path expressions.  
In the following example all ’section’ nodes in the documents are treated as index nodes (in 
addition to the root node of the document): 
 
<inodes> 
<query query="//section"/> 
</inodes> 
 
The <structure> Element 
The class specified in the <datatype> elements says how to index the values stored in certain 
regions of the XML documents. The classes specified in the <structure> element, however, say 
how to index the structural information in the XML documents. Currently, HyREX supports only 
one class for indexing the structural information: 
 
Example: HyREX::HyPath::Structure::Tree  
<structure classname="HyREX::HyPath::Structure::Tree"> 
<parameter name="compress" value="10"/> 
</structure> 
 
This class builds an external access path where the structural information for each document is 
stored separately. This class knows one parameter compress which specifies the effort used to 
determine an optimal compression for the structural information. Unfortunately the value 
depends on the number of documents; the range of values is from 1 to the number of 
documents you want to index. (HyREX does not know this figure before being finished with 
indexing; therefore it is not possible to provide a relative value or a percentage.)  
The details of the DDL file structure is provided in the manual available with HyREX package. 
 
 

 
4.4 How Index Is Stored 
 

The elements, attributes and the text parts are assigned handle numbers (see section 1.3) while 
parsing the documents. A document id is assigned to each document of a particular class i.e., 
the documents are numbered according to the lexicographic order of their file names. In the 
DDL file if the access is so chosen that each such subtree of a document is considered to be a 



 

 

document in its own right then we need two keys [docid , handle] to identify a document of a 
class. The inverted list of each document class is stored separately. The words to be indexed are 
sorted ASCIIbetical order. The positions of occurances of the words are stored as follows: 
  

[Word1]  *docid   tf   list_of_hanldes+  *docid   tf   list_of_handles+  * … 
 [Word2]  [docid   tf   list_of_hanldes+  *docid   tf   list_of_handles+  * … 
 ……. 
 
here tf is the term frequency.   
The lists of all occurances are encoded according to some suitable encoding scheme to reduce 
storage space. Together with this the term frequency and inverted document frequency are 
stored separately such that once you get the docid from the inverted list the tf and idf are also 
known. The number of documents in a class, average document length, and the maximum term 
weight obtained in a document is also stored. All these are computed during the indexing stage. 

 
 
4.5 How Structure Is Stored 
 
XML structure tree or XS-tree data structure is used to store the structure of a xml document. It 
is highly compressed so that the XS-tree of the whole document collection can be kept in main 
memory. The XS-tree of each of the documents in constructed at the indexing phase (XS-tree is 
explained in section 1.3). From the index we can get the handle numbers and docid. So we take 
the document tree of the corresponding docid and output the exact path to the subtree in the 
document where the query terms occur. Consider the following XS-tree of the document in 
figure 1.4. 
Array1=(Books,@value,author,#PCDATA,title,#PCDATA,Chapter,heading,#PCDATA,#PCDATA,…)  
Array2=(1,2,2,3,2,3,2,3,4,3,…). 

 
 

4.6 The Query Form 

 

In an HTML query form, there can be a number of input fields. The question is, how to map this 
fairly flat structure onto the complex structure of XIRQL queries. This is done in a simple 
manner; only a fairly narrow class of XIRQL queries can be issued with HyGate. Here is an 
example of a XIRQL query that’s possible with HyGate: 

 
/book[title $stemen$ "retrieval" $or$ author $soundex$ "fuhr"] 
 

In general, such a query will consist of a prefix (here /book) followed by square brackets. Inside 
the square brackets there is a list of clauses separated by $or$. Here, there are two clauses, 
title $stemen$ "retrieval" and author $soundex$ "fuhr". 



 

 

Each clause is a triple consisting of a path condition, a search predicate, and a comparison value 
(the last one is enclosed in double quotes). For example, the clause title $stemen$ "retrieval" 
has title as the path condition, $stemen$ as the search predicate and retrieval as the 
comparison value. 
The above explanation is a bit simplified. Actually, it is possible for the user to enter several 
words into each search field. A word may begin with the + character, which indicates a 
mandatory condition, whereas the other conditions are optional. There are several methods for 
generating a query from the user input. 
 
wsum The “wsum” method constructs a weighted sum from the user input, for example: 
 

/book [wsum ( 1.0, title  $stemen$  "retrieval", 
          5.0, author  $soundex$  "fuhr"       ) ] 

 
Here, query conditions marked as mandatory by the user (via +) are given the weight 5.0 
whereas the normal query conditions are given the weight 1.0. (HyREX will then normalize the 
weights internally such that they sum up to one.) 
This method has the disadvantage that it might return documents for which none of the 
mandatory query conditions are fulfilled. However, if any mandatory query condition is fulfilled, 
then the corresponding document will appear near the top of the ranking list. 
 
strict_bool The “strict_bool” method constructs a nested Boolean expression from the user 
input, for example: 
 
/book [  ( title  $stemen$  "retrieval"  $and$  title  $stemen$  "information" ) 

$and$ (author    $soundex$  "fuhr"  $or$  author $soundex$ "smith" )   ] 
 
Here, mandatory query conditions are combined with $and$ and optional query conditions are 
combined with $or$, and the mandatory and optional parts of the query are combined with 
$and$. 
This method has the disadvantage that at least one of the optional query conditions must be 
fulfilled. In the extreme, if the user just types in +retrieval and fuhr, the two query conditions 
will be connected with $and$ which is clearly the wrong thing to do. (However, connecting the 
mandatory part and the optional part with $or$ has its own problems!)Thus, this method may 
return fewer documents than intended by the user. 
 
 

4.7 Overview Of HyREX Indexing Algorithm 
 
HyREX provides a program ‘hyrex_index’ to actually index the XML documents. For each of the 
document classes we need to write a separate DDL file and run this program with that DDL file 
supplied as command line argument. 
 



 

 

 
The algorithm for indexing is as follows: 
STEP 1: 
For each of the documents in the document class do the following: 

1:  Find the document name, size, base directory, class name. 
 
2:  XML::Parser is used to test whether the document is syntactically correct according 
to the supplied DTD and build the XS-tree to store the structure information. Also store 
the handle number and the corresponding element name or attribute name or the text 
parts. 
 
3:  Create the document summary if summary element is provided in the DDL file. 
 
4:  Consider each handle and its corresponding entry stored in step 2 and apply index 
filters (for example remove stop words, apply stemmer etc).The filtering rules are fixed 
by the datatype specified in the DDL files. 
 
5:   Insert the filtered words and the corresponding handles in a temporary file. 

 
STEP 2: 
Sort the index keys in ASCII order and encode their handles so obtained. 
 
STEP 3: 
Close the first indexing phase and initialize the multiway-merge sort to merge indices of the 
documents. 
 
STEP 4: 
Take a key value pair and decode it, compute df, idf, tf and compute BM25 term weight store 
the max weight of a term in a particular document. 
Also store triplets [$docid, $tf, $ list_of_hanldes] in encoded form in the new inverted list. 
 
 

4.8 Overview Of HyREX search algorithm 
 
HyREX provides a command line search tool ‘hyrex_search’ which is to be invoked with the DDL 
file name in command line. 
The algorithm for search is as follows: 
STEP 1: 
Break the query into the following components: 
[$predicate, $value, $pathexpr] 
i.e., [search predicate, the word or phrase to be searched, path expression in the search] 
 
STEP 2: 



 

 

Check if the predicate given in the query matches some predicate in the supplied datatype by 
the ddl file. 
 
STEP 3: 
Filter the query terms using the same filtering rules as in indexing. 
 
STEP 4: 
Check if the filtered query terms lie in the index of the documents. 
If not start from step 2 for the other query terms (in the wsum query). 
Else 
    Decode the information about the files from the inverted list. 
    for ( i = 1 ; i <= $document_ frequency ; i++) 
    { 
 decode [$tf,$docid,$handles ] 
 Compute BM25 term weight for all occurrences of the term in different documents. 
 store as results: 
 [appropriate section of doc where found the searched word, sum of term weights] 
    } 
 
STEP 5: 
Decode the exact result paths using the corresponding stored XS-tree for that doc. 
 
STEP 6: 
Report results in descending order of result weights. 
 
 

 
4.9 HyREX @ INEX 2002  
 
We tried to use the inex_eval executable 2003 for assessment of HyREX on 2002 IEEE collection 
, as they claim that this can also compute 2002 assessments when it is run with suitable 
parameters. But we found some problem in running the code. So we did the assessments 
manually on few queries and taking the top 20 retrieved results and checked with the available 
assessment files.    
Using the Evaluation metrics in INEX 2002 (refer to [2]) and using strict quantization function for 
relevance and coverage viz, 
 

fstrict(rel, cov) =  . 

 
The precision being computed by  
 

P(rel | retr)(x)   =   ,  



 

 

here, n is the total number of relevant document components with regard to the user request 

in the collection; x  [0, 1] denotes an arbitrary recall value. Given that the user stops viewing at 

the ranking after a given number of relevant document components NR. Let l denote the rank 
from which the NRth relevant component is drawn. Then j is the number of non-relevant 
document components within the ranks before rank l, s is the number of relevant components 
to be taken from rank l, and r and i are the numbers of relevant and non-relevant components 
in rank l, respectively. 
we computed precession-recall for few queries: 
 
INEX 2002 CO-query topic 32 

Recall Precession 

0.05 0.0614 

0.25 0.0587 

0.50 0.0319 

0.75 0.0239 

0.80 0.0122 

 
 
INEX 2002 CO-query topic 34 

Recall Precession 

0.05 0.0891 

0.25 0.0689 

0.50 0.0542 

0.75 0.0259 

0.80 0.0127 

 

 

 

 

 

 

 



 

 

Chapter 5 

Pseudo-Relevance Feedback  

With HyREX  

 

 

5.1 Pseudo-Relevance Feedback Algorithm 

Let Q0 denote the initial query as given by the user. Let , ,  denote the constants of Rocchio 

algorithm discussed  in section 3.2.In HyREX by a single document we mean a subtree that is 

identified by its docid and the handle number. Let’s assume that the top 10 retrieved 

documents by hyrex_search are really relevant. 

Now what should be the dimension of the vector in the Rocchio equation (section 3.2, page 18) 

.Conceptually, it’s the entire vocabulary in the inverted list of the document collection. But 

there is no need to consider all of them as a most of the terms are neither occurring in Q0 nor in 

any of the top 10 relevant terms. Considering all terms will unnecessarily increase running time 

of the query reformulation step. So we need to find some term selection criteria. We can take 

two approaches: 

(1). Pick terms with highest total weight in top 10 relevant documents. (2). Pick terms with 

highest document frequency in top 10 relevant documents. 

Secondly we have to find what the non-relevant documents are. Here again we can take two 

different strategies: 

(1).Assume all documents other than the top 10 as non-relevant. (2).Assume documents ranked 

more than K as non-relevant, where we may fix K=500 

Algorithm: 

Step1:  Run hyrex_search on Q0 and fin the top 10 relevant documents. We suppose that each 

of them is equally relevant. 



 

 

Step2: For each of the above documents find the text they contain i.e., take [docid , handle] 

and find the xml file represented by the docid, then find the subtree in the file represented by 

the handle. Store all the text parts so found in a string S. 

Step3: Filter the text in S using the same filtering algorithm as is done for both indexing and 

searching and get a set of words S’. 

Step4: Sort the set of words in ASCII order. 

Step5: For each of these sorted words find their inverted list entries. 

Step6: Compute BM25 term weights for each of these documents (i.e., [docid , handle] pairs). 

Also compute the document frequencies. 

Step7: Sort the terms according to one of the strategies i.e document frequency and BM25 

weight or only BM25 term weights. Select top ranked terms from the sorted list and make the 

list S’’. 

Step 8: Let d = |S’’|.Check if all the query terms lie in S’’.If not add them and let x be the 

number of terms added and S’’’ be the final list. So D=d+x is our required dimension. Consider 

three vectors of dimension D.(1) query Q (2) relevant_document_average R(3) 

Non_relevant_document_average N all initialized to zero. 

Step9:If the query is weighted normalize the weights and assign to the corresponding 

component in the vector Q. else assign equal weights 1/n to each component corresponding to 

query terms , n  being the number of initial query terms. 

Step10: Initialise Number_ of_ non-relevant documents = 0 

For (each terms in S’’’ find the inverted list entries E) { 

  For (each document in E check if it is relevant) { 

   If (Relevant) { 

 add its BM25 weight to the corresponding component in R 

 } 

   Else { 

     add its BM25 weight to the corresponding component in N 

     if(document is encountered first time) { 

++Number_ of_ non-relevant documents 

                }  

 }   

                            } 

} 



 

 

Step 11: Use  Rocchio formula to compute new query Q’. 

Q’ = = Q    +     (1/|Cr|)   dj            (1/|Cnr|)   dj. 
                                          dj Cr                        dj Cnr 

Where Cr , Cnr,dj have their usual meaning described in previous chapter. 

Step 12: Select terms occurring with positive weights in the reformulated query vector Q’ and 

generate a weighted query Q’’ with those terms. 

Step 13: Invoke hyrex_search with Q’’ as new query. 

 

5.1 Results 

We did the assessments manually on few queries and taking the top 20 retrieved results and 
checked with the available assessment files. We found some improvements.     
 
INEX 2002 CO-query topic 32 

Recall Precession 

0.05 0.0872 

0.25 0.0774 

0.50 0.0735 

0.75 0.0386 

0.80 0.0184 

 

INEX 2002 CO-query topic 34 

Recall Precession 

0.05 0.0891 

0.25 0.0801 

0.50 0.0648 

0.75 0.0212 

0.80 0.0112 
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