
1

M.Tech. (Computer Science) Dissertation Series

A general recursive staircase bipartition scheme for VLSI floorplan layout with

simultaneous minimization of net crossovers

A dissertation submitted in partial fulfillment of the requirements for the M.Tech.

(Computer Science) degree of the Indian Statistical Institute

By

Amlan Bag

Under the supervision of

Prof. Bhargab B. Bhattacharya

INDIAN STATISTICAL INSTITUTE

203, B. T. Road

Kolkata - 700108

Synopsis

A general recursive staircase bipartition scheme for VLSI floorplan layout with simultaneous

minimization of net crossovers.

Submitted by

Amlan Bag

Motivation:

 In DSM (deep submicron) VLSI, interconnect delay plays a major role in determining

system performance, reliability and cost. To ensure timing closure of designs, impacts of

interconnect should be incorporated as early as possible in the design flow. There are several

approaches to mitigate the interconnect delays. Repeater insertion is widely accepted approach to

minimize delay.

 Our work is primarily a recursive bi-partitioning of a floorplan layout with

staircase channels which is aware of repeater overlap and congestion. This scheme doesn’t

directly deals with repeater placement but it reveal a global interconnect planning which will

facilitate repeater placement in routing stage. The basic bi-partition algorithm is primarily based

on stair-case bipartition scheme proposed by Dasgupta et.all. Some modification is incorporated

to meet our requirement. This is a top-down approach. The algorithm recursively divides the

floorplan into two equal halves with a monotone staircase path or staircase channel. At each level

of the hierarchical channel, using a simple channel scan based heuristic, cross over is minimized.

Reason is to reduce the overlap of repeater form different nets that are to be inserted in the

channel. It is observed that pins on both side of channel which is in the deepest level of

partitioning (it is those channel which separates only two adjacent blocks) are to be connected

individually. And going higher up the channel order it is sufficient to connect any two pins of

same net form either side of the channel. This considerably reduces routing overhead. It is also

worth mentioning, this is a general bipartition scheme as it works equally well for both slicing

and non-slicing floorplan.

Problem formulation:

Definition: A monotone staircase path P= {l1, l2, l3, l4 ….ln} is a set of line segments such

that (i) two line segment li, li+1 share a common end and they are either horizontal or vertical to

each other. (ii) let ai=(xi,yi) and ai+1=(xi+1,yi+1) be two point belonging to line segment li, li+1

respectively , then i either (1). xi ≤ xi+1 and yi ≤ yi+1

 or (2) xi ≤ xi+1 and yi ≥ yi+1

Problem formulation : Given a rectangular floorplan F={R1,R2,R3…..Rm} find a set of

hierarchical monotone staircase path PF= {(p1),(p11,p12),(p111,p112,p121,p122)….} such that

i) p1 divides F into two half say FP11 and FP12 with either equal number of blocks or one

extra in any one of the half (equal if even number of blocks in the floorplan) and the next level of

path p11,p12 divides FP11 and FP12 further maintaining the equality condition. This partitioning

continues until the given floorplan is disintegrated to individual rectangles.

ii) The cross-over of nets in each hierarchical path is minimized.

Overview of the work:

 In total there are four steps: i) parsing of the input file. ii) Floorplan graph generation

from the parsed data. iii) Generation of slicing tree with staircase channels– this main part of

the procedure. iv)Minimization of crossing of nets in each channel. Three procedures (ii, iii &

iv) are used simultaneously and recursively to divide the floorplan individual rectangular blocks

and a complete staircases slicing tree is generated. The leaf nodes of this tree are the rectangle

blocks of the floorplan.

A brief explanation of the individual steps:

i) Floorplan graph generation: finds out the adjacency (both horizontal and vertical)

between rectangular blocks of the floorplan with some prefixed ordering of the

rectangular blocks.

ii) Slicing tree generation: which consist of several sub-procedures –sequentially they

are ii.a) block labeling – which is a modified version labeling algorithm proposed by

Dasgupta et. all ii.b) euipartioning the floorplan into two halves based on labeling.

ii.c) finding the staircase channel. ii.d) extracting those nets which falls in to the

staircase channel from the connection netlist to apply next procedure.

iii) Crossing minimization of nets: a channel scan based heuristic that tries to minimize

the crossover of different nets.

Algorithmically overall process is:

Input: i) floorplan i.e. individual rectangle blocks with coordinates of left-bottom corner point

and heights and widths.

 ii) Connection net list.

Output: A staircase slicing tree with minimized crossovers in each individual staircase channel.

Procedure:

1. Parse the input file and store the data into a floorplan data-structure.

2. While(complete slicing tree is not achieved){

3. Generate slicing tree {

// This consist of several steps

i) generate floorplan graph with respect to a predefined direction

ii) label the floorplan graph.

iii) find the staircase channel that divides the floorplan

iv) extract the net information for the channel .

v) do the crossover minimization.

vi) keep the two half of the divided part in separated floorplan data structure

 and apply step2 to both half.

4. }End while.

Result :

The algorithm has been tested on some MCNC floorplan benchmarks and some randomly

generated nonslicing floorplan. The tabulated result shows the circuits and the number of

channel that it finds while portioning and the overall computation time.

Name of the floorplan

(MCNC/ Randomly

generated)

Number of staircase channels Number of CPU cycle

Xerox

9

of Level 0 channel -1

of Level 1 channel -2

of Level 2 channel -4

of Level 4 channel -2

281

hp Same as Xerox 357

n10 do 320

Randomly generated

nonslicing floorplan

nsl1

5

of Level 0 channel -1

of Level 1 channel -2

of Level 2 channel -1

156

Randomly generated

nonslicing floorplan

nsl2

8

of Level 0 channel -1

of Level 1 channel -2

of Level 2 channel -4

of Level 4 channel -1

250

Conclusion:

 Here we presented an approach for recursive partitioning of floorplan and simultaneous

minimization of crossover of nets. A simple heuristics for minimizing the net crossover is

proposed here. The proposed approach has certain advantages (i) a safe routing order is always

achieved for both nonslicing and slicing floorplan. (ii) Staircase path is targeted to partition a

floorplan in almost equal halves with respect to the number of blocks in each level of recursion;

the depth of hierarchy tends to be smallest. (iii) Since at level of hierarchical channel minimum

number of pin is connected that simplifies the routing. Though overall time complexity is on the

higher side we are investigating ways of reducing running time.

Key Words: VLSI, Bipartition, Staircase Channel,
Buffer insertion, Net cross over

2

Table of Contents

1. Chapter 1 3

Introduction ... 3

2. Chapter 2 5

 Problem Definition .. 5

3. Chapter 3 6

 Overview of overall work .. 6

4. Chapter 4 8

 Detail description of the work

 4.1. Input File parsing .. 8

 4.2. The Floorplan Data structure ... 10

 4.3. Floorplan Graph generation .. 11

 4.4. Adjacency of rectangular blocks .. 14

 4.5. Block labeling ... 16

 4.6. Staircase channel .. 18

 4.7. Minimization of cross-over between nets .. 22

 4.8 Slicing tree generation ... 24

5. Chapter 5 27

Result s

6. Chapter 6 31

 Conclusion

7. Reference 32

3

Chapter 1

Introduction:

Present day VLSI circuit dimensions are reduced to a deep submicron region.

Continued technology scaling has minimized intra circuit delays comprehensively. Whereas

due to inherent limitation of connecting wires, interconnect delays are considerably high.

These interconnect delays plays a major role in determining the system performance,

reliability, and cost. To ensure timing closure of designs, impacts of interconnect should be

incorporated as early as possible in the design flow. Several approaches such as – topology

construction, repeater insertion, wire sizing, device sizing has been studied. Repeater

insertion is widely accepted approach to optimize signal delay.

The lumped capacitance and resistance of the wires is the contributor to this delay.

For an interconnect of length l with resistance r Ω per unit length and capacitance c μF per

unit length, by Elmore delay calculation the delay is approximately r.c.l2 [1]. By appropriate

insertion of repeaters, which is a combination of inverting and non-inverting buffers, delay

becomes linear with the length [2]-[4]. A large scale integration design must have certain

objectives when it comes to repeater insertion. These design objectives are (i) to minimize

interconnect delay and (ii) limit transition times while limiting impact on (a) area and (d)

power. Previous work like [5] has considered random placement. However repeater

consumes silicon resources and there are certain circuit blocks such as cache where repeater

is not allowed. To mitigate this problem insertion of repeater in channels is also considered.

However the greedy clustering of repeaters may end up in increased buffer congestion. As

suggested in [6] that interconnect planning for global routing should be done in the

4

floorplanning stage. Floorplanning is the stage of design where blocks are positioned in the

layout surface; in such a fashion that no two blocks are overlapping and enough space is left

on the layout surface to complete the interconnection [8,sherwani- “Algorithms for VLSI

physical design automation”, 3rd edition]. Connection netlist is also available in this layer.

Our work is primarily a recursive bi-partitioning of a floorplan layout with staircase

channels which is aware of repeater overlap and congestion. This scheme doesn‟t directly

deals with repeater placement but it reveal a global interconnect planning which will

facilitate repeater placement in routing stage. The basic bi-partition algorithm is primarily

based on stair-case bipartition scheme proposed by Dasgupta et. all[7]. Some modification is

incorporated to meet our requirement. This is a top-down approach. The algorithm

recursively divides the floorplan into two equal halves with a monotone staircase path or

staircase channel. At each level of the hierarchical channel, using a simple channel scan

based heuristic, cross over is minimized. Reason is to reduce the overlap of repeater form

different nets that are to be inserted in the channel. It is observed that pins on both side of

channel which is in the deepest level of partitioning (it is those channel which separates only

two adjacent blocks) are to be connected individually. And going higher up the channel

order it is sufficient to connect any two pins of same net form either side of the channel.

This considerably reduces routing overhead. It is also worth mentioning, this is a general

bipartition scheme as it works equally well for both slicing and non-slicing floorplan.

5

Chapter 2

Problem definition:

Definition: A monotone staircase path P= {l1, l2, l3, l4 ….ln} is a set of line segments

such that (i) two line segment li, li+1 share a common end and they are either horizontal or

vertical to each other. (ii) let ai=(xi,yi) and ai+1=(xi+1,yi+1) be two point belonging to line

segment li, li+1 respectively , then i either (1). xi ≤ xi+1 and yi ≤ yi+1

 or (2) xi ≤ xi+1 and yi ≥ yi+1

y y

 x x

1.1(a) 1.2(b)

Fig 1.1: (a) is increasing monotone staircase path.

 (b) is decreasing monotone staircase path.

Problem formulation : Given a rectangular floorplan F={R1,R2,R3…..Rm} find a set of

hierarchical monotone staircase path PF= {(p1),(p11,p12),(p111,p112,p121,p122)….} such that

i) p1 divides F into two half say FP11 and FP12 with either equal number of blocks or

one extra in any one of the half (equal if even number of blocks in the floorplan) and the next

level of path p11,p12 divides FP11 and FP12 further maintaining the equality condition. This

partitioning continues until the given floorplan is disintegrated to individual rectangles.

ii) The cross-over of nets in each hierarchical path is minimized.

6

Chapter 3

Overview of the flow of work:

In this section an outline of the overall flow of work is given. Details of each steps and

algorithms are explained in the next section. In total there are four steps: i) parsing of the

input file. ii) Floorplan graph generation from the parsed data. iii) Generation of slicing tree

with staircase channels– this main part of the procedure. iv)Minimization of crossing of nets

in each channel. Three procedures (ii, iii & iv) are used simultaneously and recursively to

divide the floorplan individual rectangular blocks and a complete staircases slicing tree is

generated. The leaf nodes of this tree are the rectangle blocks of the floorplan.

A brief explanation of the individual steps:

i) Floorplan graph generation: finds out the adjacency (both horizontal and vertical)

between rectangular blocks of the floorplan with some prefixed ordering of the

rectangular blocks.

ii) Slicing tree generation: which consist of several sub-procedures –sequentially

they are ii.a) block labeling – which is a modified version labeling algorithm

proposed by Dasgupta et. all [7]. ii.b) euipartioning the floorplan into two halves

based on labeling. ii.c) finding the staircase channel. ii.d) extracting those nets

which falls in to the staircase channel from the connection netlist to apply next

procedure.

iii) Crossing minimization of nets: a channel scan based heuristic that tries to

minimize the crossover of different nets.

7

Algorithmically overall process is:

Input: i) floorplan i.e. individual rectangle blocks with coordinates of left-bottom corner

point and heights and widths.

 ii) Connection net list.

Output: A staircase slicing tree with minimized crossovers in each individual staircase

channel.

Procedure:

1. Parse the input file and store the data into a floorplan data-structure.

2. While(complete slicing tree is not achieved){

3. Generate slicing tree {

// This consist of several steps

i) generate floorplan graph with respect to a predefined direction

ii) label the floorplan graph.

iii) find the staircase channel that divides the floorplan

iv) extract the net information for the channel .

v) do the crossover minimization.

vi) keep the two half of the divided part in separated floorplan data structure

 and apply step2 to both half.

4. }End while.

8

Chapter 4

Detailed description of the work:

4.1 Input file parsing:

 The first step is parsing of the input file and storing the retrieved data into a suitable

data-structure which we call floorplan data-structure. The input file is written in a simplified

YAL format. The grammar of the file-format is given below:

< blocks>

< nets>

module

<module name> <x1> <y1> <height> <width>

pin

<pin_id> <side> <x1><y1> <net>

:

:

:

p_end

end

<blocks> := integer , specifying the number of individual blocks present in the file .

<nets> := integer , specifying the number of different nets.

module :

Definition: a module is definition of a circuit is being laid out or a constituent (or primitive

cell). The definition of each module starts with the key word “module” and ends with “end”.

A template of a module is as follows:

<module name> := is character string specifying id of the block.

9

<x1> <y1> := real numbers , is the coordinates of the left-most corner point.

<width> <height>:= real numbers, bears the usual meaning .

pin and p_end : marks the start and end of the pins or input/output terminals.

<pin_id>:= character string, specifying the id.

<side>:= single character. Specifies whether the pin is located on the left-side or right-side or

on top or in the bottom of a rectangular block.

<side>:=‟0‟|‟2‟|‟4‟|‟6‟.

„0‟=bottom.

„2‟ and „4‟-denotes left and right side respectively.

„6‟=top.

<x1><y1>:= real numbers. Denote location.

<net>:=integer. Define connectivity of the pin.

Procedure: input_file_reader

Input: floorplan and netlist information given in YAL format.

Output: storage of data in floorplan data-structure.

begin:

1. number_of_blocks <blocks>;

2. nets <nets>;

3. string s next input from the input-file.

4. if (s== “module”){

char c ‟m‟;}

5. while(!end of file){

switch(c){

case „m‟:

1. scan the input from the file and store the coordinates and height and width in

local variables.

2. Call procedure create-block (*floorplan, x1, y1, height, width) to create

individual blocks.

3. Scan next input and store it in s.

10

if(s==”pin”){

c p;}

 break;

 case „p‟:

1. Scan the inputs and store it in the netlist data-structure.

2. Scan next.

If(s==”p_end”) then c e;

else c p;

 break;

 case „e‟:

 if there is no more module we have reached the end of the file other-

 wise go to the first state i.e. „m‟.

 break;

 }end of switch.

} end of while.

6. End of procedure input_file_reader.

This procedure is simulating deterministic finite automata, where cases denote its states.

4.2 The floorplan data-structure:

Earlier we have mentioned a data-structure named floorplan. This is a simple array of

structure (structures and array bears the meaning as described in „C‟) where each array

element is a structure named block. A detail of the structure of the block is given below.

(Using „C‟ language notation):

Structure block {

char id[]; //name of the module;

point left_bottom; // point is also a structure which consist of two floating point number to store the coordinates.

point right_bottom;

point right_top;

11

point left_top;

*block left; // this is a pointer to the next block. These pointers will be used to capture the adjacency.

*block right; // left is for vertical and right is for horizontal adjacency.

int label // for block numbering scheme.

int is_lebeled.

int is_right, // if adjacent block is found then depending on priority it can 1,2,3 other wise 0. This is needed

 // for block numbering .

int is_left;

int netlist_indicator. // this denotes the location in the netlist where the pin information of this block is kept.

}

Using array of structure gives a constant time access to each individual rectangle blocks of

the floorplan.

4.3 Floorplan graph generation:

The second step is to generate a floorplan graph form the data that has been parsed earlier.

As mentioned before, rectangles are used to represent circuit blocks in a layout design. Note

that no two rectangles in plane are allowed to overlap. Rectangles may share edges i.e. two

rectangle may be adjacent to each other. Given a set of rectangles R= {R1, R2, R3… Rm}

corresponding to a layout in a plane, a floor plan graph is graph G= (V, E), where

 V= {vi| vi represents the rectangle block Ri }and

 E= {(vi, vj)| if Ri and Rj is either vertically or horizontally adjacent}

The construction of floorplan graph is the basis as all the subsequent procedure will be

applied on the floorplan graph.

12

Algorithm for generating floorplan graph is given next.

Procedure: gen_fp_graph /* for generating floorplan graph */

Input: i) a floorplan array // explained earlier.

 ii) A predefined direction – dir, according to which the adjacency will be traced.

 iii) number of blocks in a floorplan.

Output : a floorplan graph each node of the graph is the individual blocks.

begin

1. switch(dir){

 case „0‟:

1. Arrange the blocks according x-coordinates of their left- bottom corner points.

2. Find vertical adjacency of blocks, save the adjacency. (Procedure

search_block1)

 3. Arrange the blocks according y-coordinates of their left-bottom corner points.

 4. find horizontal adjacency of the blocks, save the adjacency. (Procedure

search_block2)

 case „2‟:

1. Arrange the blocks according y-coordinates of their left-top corner points.

2. Find vertical adjacency of blocks, save the adjacency. (Procedure

search_block2)

 3. Arrange the blocks according x-coordinates of their left-top corner points.

 4. Find horizontal adjacency of the blocks, save the adjacency. (Procedure

search_block1)

 case „4‟:

1. Arrange the blocks according x-coordinates of their right- bottom corner
points.

2. Find vertical adjacency of blocks, save the adjacency. (Procedure
search_block1)

 3. Arrange the blocks according y-coordinates of their left-bottom corner points.

 4. Find horizontal adjacency of the blocks, save the adjacency. (Procedure

search_block2)

13

 case „6‟:

1. Arrange the blocks according y-coordinates of their right-top corner points.

2. Find vertical adjacency of blocks, save the adjacency. (Procedure

search_block2)

 3. Arrange the blocks according x-coordinates of their right-top corner points.

 4. Find horizontal adjacency of the blocks, save the adjacency. (Procedure

search_block2)

} end switch.

2. end

The cases denote different direction .There is a reason to find out adjacency with respect to

some certain directions. The overall process is recursive bi-partitioning and the cut is being a

monotone staircase channel which runs from one corner point to the opposite corner point of

a floorplan. Once a channel is found the floorplan is subdivided in two and the next levels of

channels that would further divide these floorplans should be orthogonal to this channel. For

example if cut a is directed left-bottom corner point to right-top corner point then the next

level cuts (number of cuts is 2) will be directed form left-top to right-bottom corner point

and vice versa. And to find these channels which are coming in from different direction we

need to trace the adjacency with respect to different directions. Case „0‟-denotes left-bottom

to right- top, case ‟2‟- denotes left-top to right-bottom, case „4‟-denotes right-bottom to left-

top and case „6‟-denotes right-top to left-bottom. Throughout the report this convention has

been maintained. Interestingly enough the overall orientation of the cuts can be expressed

with help of a binary tree.

The adjacency information is kept in the floorplan data-structure. So the nodes of a floorplan

graph are the rectangular blocks itself.

14

4.4 Adjacency of rectangular blocks:

In the preceding algorithm two procedures named search_block1 and search_block2 have

been used interchangeably depending on the direction to find vertical and horizontal

adjacency.

 Two blocks can be vertically adjacent if it follows any one of the cases depicted in

figure 4.2.(a) The condition for which blocks in case „0‟ and case „6‟are vertically adjacent

is true for horizontal adjacency in case „2‟ and case „4‟. Similarly the conditions for

horizontal adjacency in „0‟, „6‟ are the conditions for vertical adjacency in „2‟and „4‟ (the

three possible cases of horizontal adjacency are depicted in the figure 4.2(b)). The procedure

search_block1 traces vertical adjacency for case „0‟and „6‟while the same procedure traces

the horizontal adjacency for case „2‟& „4‟. The second procedure, search_block2, dose

exactly opposite of the first one. Priority has been imposed to the horizontal adjacencies-

case I is of the highest priority next is case II and lowest III and the priority information is

captured in is_right which is an element of the structure block. This is to maintain the

monotonic property of the cut while numbering the blocks.

Fig. 4.1: a rectangular block

left_top corner ’2’

2“”‘’

right_top corner ’6’

2“”‘’

left_bottom corner ’0’

2“”‘’

right_bottom corner ’4’

2“”‘’

15

Vertical adjacency

Case I

Case II.

Case III.

For „0‟ block2 is vertical to block1
For „6‟ block1 is vertical to block2

For „4‟ block2 is horizontal to block1

For „2‟ block1 is horizontal to block2

Fig : 4.2(a)

 Horizontal adjacency

Case I

 Case II

Case III

 For „0‟ block2 is horizontal to block1

 For „6‟ block1 is horizontal to block2
 For „4‟ block1 is vertical to block2

 For „0‟ block2 to is vertical to block1

 Fig: 4.2(b)

Fig. 4.2 (a), (b): depicts the possible cases of adjacency

block2

block1

block2

block1

block1

block2

blk-1

blk-2

blk-1

blk-2

blk-1

blk-2

16

4.5 Block labeling:

Procedure : blk_label

Input : floorplan graph and an integer i.

Output : all nodes of the graph is labeled;

begin

1. if(root!=NULL){ /*root denotes a node in the floorplan graph*/

 blk_label(root left,0)

 if((i= = 0) &(root is not labeled)){

 root. label label;

 mark the node as labeled

 label++;}

 if(root right is not lowest in priority){

 blk_label(root right,0);}

}

If there are n number of blocks is present in the floorplan all the blocks will be numbered

form 1to n. Blocks whose label is (), where n is the number of blocks in the

floorplan , are in one half and the rest is in another half. Before applying the same

procedures once again to these newly formed floorplans, the dividing staircase channel is

traced out and simultaneously pins belonging to different nets which reside in either side of

the channel are extracted so that net-cross-over can be minimized.

17

An example of floorplan lay out with its corresponding floorplan graph if the staircase

channel moves form left-bottom corner point to right-top corner. Labeling of the floorplan

and the channel is also traced out.

Fig. 4.3 (a) rectangular floorplan.

Fig. 4.3(b) Floorplan graph.

18

Fig. 4.3(c). Floorplan graph with labels and the staircase channel.

4.6 Staircase channel:

Definition of a staircase channel is given in the chapter 2 where we formally defined the

problem. The algorithm is presented here. Basic principle is that it starts form the root of

the floorplan graph and if the label of a node is greater than Γ () (n is the number of

blocks the floor plan) then the channel moves vertically keeping the rectangular block in the

right side of the channel otherwise it moves horizontally keeping the block in left side.

Detail procedure to find a staircase channel which runs from left-bottom corner point

to right-top corner point, is given below.

Procedure: extract_net_sd0

Input : i) a labeled floorplan graph, to be specific root of the floorplan graph=fpg .

 ii) number of nodes in floorplan graph, which is equal to the number of blocks present in the

 floorplan=n.

Output: a staircase channel is traced out and the pins on either side of the channel is extracted for

 net- crossover minimization.

begin

19

1. root fpg;

2. previous null

3. point p fpg->left_bottom point;

4. if(root->label ≤ Γ())

 then movement h; // h stands for horizontal movement and v is for vertical movement

 else movement v;

5. while (finished!=1){

 switch(movement){

 case v :

 1. pins those are in between point p and root->left_top are in lower side of the

 channel.

 while(end!=1){

 if(previous!=null){

if(previous->right_bottom point ≥ root->left_top point) {

 pins on the right side of the pervious that are above point

 p are on the upper side of the channel.

 end=1; }

 else{

 pins on the right side of the pervious that are above point

 p are on the upper side of the channel.

 if(previous->left!=null) then

 previous previous->left;

 else end=1; }

 } else end=1;

 } end of while.

 if(root->left!=null)

20

 { if(root->left->label> Γ())

 { movement v;

 root root->left;

 p root->left_bot;

 end=0; }

 else { movement h;

 previous root;

 root root->left;

 p previous->left_top;

 end=0; }

 }

 else {

 pins located on the top side of rectangular blocks are on the lower

 side of the channel

 finish=1;}

 break;

case h:

pins, located on the bottom side of root, which are in between point p and

root->right_bottom point are on the upper side of the channel.

while(end!=1){

 if(previous!=null){

 if(previous->right_top point ≥ root->right_bottom point){

 pins located on top side of previous and are in between root->left_bottom

 and root->right_bottom point is in the lower side of the channel.

 end 1; }

 else {

21

 pins located on top side of previous and are in between root->left_bottom

 and root->right_bottom point is in the lower side of the channel.

 if(previous->right!=null){

 previous previous->right;

p previous->left_top; }

 else end 1; }

 } else end=1;

if(root->right!=null){

if(root->right->label Γ()){

 movement v;

 previous root;

root root->right;

 p previous->right_bottom;

 end 0;}

else{ movement h;

 root root->right;

 p previous->right_bottom;

 end 0;}

}

else {

 pins on the right side of the root are in the upper side of the channel.

 finish=1;}

break;

 }

 }

22

Next step is connecting the nets that falls in the channel in such a way that cross over

between different nets is minimized if not zero.

4.7 Minimization of cross-over between nets:

This is a heuristics. The distribution of nets over a channel is not previously known so

optimum result may not always be achieved. Basic principle is based on scanning of

channel. It consist of two pass in one pass it scans form left to right and in the next pass it

scans in opposite direction and whichever pass yields minimum result it finalizes those

connections.

Procedure: cross_detect_min

Input: pin information for either side of the channel.

Output: minimized net cross-over connectivity of pins.

begin

keep a indicator for each net . if pin belonging to same net is present on both side of the channel then only

connection is possible else those pin will remain floating.

pass 1 /*direction is left to right*/

1. for each not connected net on the upper side of the channel

 start finding corresponding pin belonging to same in the opposite side in such way that

 i) search always starts form the right-most connected pin.

 ii) if found then connect and mark as connected and update the right-most visited pin

 or else continue searching till it hits the end.

iii) after hitting the end if still required pin is not found then move backwards form the

right-most pin towards the left end till it finds the pin and every time it crosses a

connected pin updated the number of cross over.

2. if net is already connected then ignore it.

23

3. store the connectivity and number of cross-over.

4. end of pass1

Pass 2 /* direction is from right to left*/

5. exactly same procedure but in right to left direction.

6. compare the number of cross-over in each phase and select the minimum most and finalize the

 connection.

7. end .

An example: Consider the channel and the distribution of pin in the figure

Fig 4.4 (a): channel with nets on both sides.

Fig 4.4 (b): after first pass of the algorithm with crossover =1.

Fig 4.4(c): after second pass with 0 crossovers.

24

4.8 Slicing tree generation:

 All the previous mentioned procedures (section 4.3, 4.5, 4.6, 4.7) are embedded in the

procedure named gen_stair_tree and called recursively. Each node of the tree contains

information regarding channel and their orientation, next level of nodes, position of the

current node with respect to its parent node (i.e. left child or right channel). Several other

information like crossover minimized interconnections that are achieved, are needed to be

stored in each level of nodes that gives a hierarchical view of the overall routing.

Procedure: gen_stair_tree

Input: 1. Floorplan

 2. Number of blocks in the floorplan

 3. Direction as in the gen_fpgraph.

 4. An integer specifying the location of the tree node (0-denotes the root of the slicing tree,

1- node is the right child and -1denotes left child of its parent).

Output : a node of slicing tree.

begin

switch (dir){

 case‟0‟:

 if(n≥2){

 1. call gen_fpgraph(floorplan, number of block, „0‟);

 2. call blk_label (floorplan graph, number of blocks=n);

 3. call extract_net_sd0(floorplan ,number of blocks=n);

 4. call cross_detect_min;

 5. bi-partitioning of floorplan: Ri F if block label Γ() then

 Ri is in right _half and right = right+1;else Ri is in left_half and left=left+1;

25

 6. create a node of the staircase tree. Store the necessary information in the tree node.

 7. call gen_stair_tree(left_half, left,‟2‟, -1);

 8. call gen_stair_tree(right_half, right,‟4‟, 1);

 }

 break;

 case‟2‟:

 if(n≥2){

 1. call gen_fpgraph(floorplan, number of block, „2‟);

 2. call blk_label (floorplan graph, number of blocks=n);

 3. call extract_net_sd2(floorplan ,number of blocks=n);

 4. call cross_detect_min;

 5. bi-partitioning of floorplan: Ri F if block label Γ() then

 Ri is in right _half and right = right+1;else Ri is in left_half and left=left+1;

 6. create a node of the staircase tree. Store the necessary information in the tree node.

 7. call gen_stair_tree(left_half, left,‟6‟, -1);

 8. call gen_stair_tree(right_half, right,‟0‟, 1);

 }

 break;

 case‟4‟:

 if(n≥2){

 1. call gen_fpgraph(floorplan, number of block, „4‟);

 2. call blk_label (floorplan graph, number of blocks=n);

 3. call extract_net_sd4(floorplan ,number of blocks=n);

 4. call cross_detect_min;

 5. bi-partitioning of floorplan: Ri F if block label Γ() then

 Ri is in right _half and right = right+1;else Ri is in left_half and left=left+1;

26

 6. create a node of the staircase tree. Store the necessary information in the tree node.

 7. call gen_stair_tree(left_half, left,‟0‟, -1);

 8. call gen_stair_tree(right_half, right,‟6‟, 1);

 }

 break;

 case‟6‟:

 if(n≥2){

 1. call gen_fpgraph(floorplan, number of block, „6‟);

 2. call blk_label (floorplan graph, number of blocks=n);

 3. call extract_net_sd6(floorplan ,number of blocks=n);

 4. call cross_detect_min;

 5. bi-partitioning of floorplan: Ri F if block label Γ() then

 Ri is in right _half and right = right+1;else Ri is in left_half and left=left+1;

 6. create a node of the staircase tree. Store the necessary information in the tree node.

 7. call gen_stair_tree(left_half, left,‟4‟, -1);

 8. call gen_stair_tree(right_half, right,‟2‟, 1);

 }

 break;

} finish.

27

 Chapter 5

Results:

 The procedures are implemented using C on windows platform. (M/C specification

1.66 GHz core2duo processor with 1024 KB RAM).

 The algorithm has been tested on some MCNC floorplan benchmarks and some

randomly generated nonslicing floorplan. The tabulated result shows the circuits and

the number of channel that it finds while portioning and the overall computation time.

Name of the floorplan

(MCNC/ Randomly generated)

Number of staircase channels Number of CPU cycle

Xerox

9
of Level 0 channel -1

of Level 1 channel -2

of Level 2 channel -4
of Level 4 channel -2

281

hp Same as Xerox 357

n10 do 320

Randomly generated nonslicing

floorplan
nsl1

5

of Level 0 channel -1
of Level 1 channel -2

of Level 2 channel -1

156

Randomly generated nonslicing
floorplan

nsl2

8
of Level 0 channel -1

of Level 1 channel -2

of Level 2 channel -4
of Level 4 channel -1

250

 Exact timing analysis is not done here, so it would not be clear whether the nets

meeting their delay criterion.

28

 Time complexity: In the overall processes a considerable amount of time spent on

finding the floorplan graph. As this procedure involves sorting and exhaustive

searching. And all other are linear time procedure.

The recurrence relation that it follows is :

O(n2) is for exhaustive search of the floorplan.

O() is for sorting of rectangular blocks.

O(n) is for others.

 This gives a solution of t(n)=O(n()2 + n2).

 Scope of improvement:

 Solution to the recurrence relation has the term O(n2) terms appears because of the

exhaustive searching technique is used for finding adjacency of rectangular blocks. If we can

reduce the searching to O(n), the overall complexity will be reduced to O(n()2 +

n) ≈ O(n()2). Further improvement is possible provided floorplan graph can be

generated in O(n) then overall time complexity would reduced to O(n).

Future scope:

 The output of the procedure reveals an overall connectivity of terminals of different.

This information can be utilized to find the probable locations of repeaters for each net.

29

A worked out example of recursive staircase bipartitioning and the minimized cross-over

connectivity for each channel is given here: A small nonslicing floorplan with 5 different

nets is taken.

pins that are connected with their location :

cross over:0
connected

net 0 0.4 1.0 1.2 1.0

net 1 0.2 1.0 0.0 0.2

net 2 0.8 1.0 1.8 1.0
not connected

net 3

net 4

cross over:2

connected

net 0 1.0 1.6 0.4 3.0

net 1 1.0 1.2 1.0 1.6

net 2 1.0 2.8 0.6 3.0
net 3 1.0 1.4 1.0 2.0

net 4 1.0 1.8 1.0 2.8

not connected

cross over:1

connected
net 1 1.8 2.0 1.6 2.0

net 2 2.8 2.0 4.0 2.8

net 3 2.6 2.0 3.0 2.0

net 4 1.6 2.0 2.0 2.0

not connected

net 0

30

cross over:0

connected

net 1 3.0 0.4 3.0 0.40

net 2 3.0 0.2 3.2 0.0

net 3 3.0 0.8 3.0 0.8

not connected

net 4

Fig 5.1 shows different paths and the pins belonging to the nets that are connected.

31

Chapter 6

Conclusion:

Here we presented an approach for recursive partitioning of floorplan and simultaneous

minimization of crossover of nets. A simple heuristics for minimizing the net crossover is

proposed here. The proposed approach has certain advantages (i) a safe routing order is

always achieved for both nonslicing and slicing floorplan. (ii) Staircase path is targeted to

partition a floorplan in almost equal halves with respect to the number of blocks in each level

of recursion; the depth of hierarchy tends to be smallest. (iii) Since at level of hierarchical

channel minimum number of pin is connected that simplifies the routing. Though overall

time complexity is on the higher side we are investigating ways of reducing running time.

32

References

[1] W. C. Elmore, “The transient response of damped linear networks with particular regard

 to wide-band amplifiers,” J. Appl. Phys., vol. 19, pp.55–63, Jan. 1948.

[2] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Reading, MA:

 Addison-Wesley, 1990.

[3] R. Otten, “Global wires harmful?,” in Proc. Int. Symp. Physical Design, Apr. 1998, pp.

 104–109.

[4] J. Cong and D. Z. Pan, “Interconnect delay estimation models for synthesis and design

 planning,” in Proc. Asia South Pacific Design Automation Conf., Jan. 1999, pp. 97–100.

[5] M. Kang, W. W.-M. Dai, T. Dillinger, and D. LaPotin, “Delay bounded buffered tree for

 timing driven floorplanning,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1997, pp.

 707–712.

[6] H.-M. Chen, H. Zhou, F. Y. Young, D. F.Wong, H. H. Yang, and N. sherwani,

 “Integrated floorplanning and interconnect planning,” in Proc. Int. Conf. Computer-

 Aided Design, Nov. 1999, pp. 354–357.

[7] P.S. Dasgupta, P. Pan, S.C. Nandy, B. B. Bhattacharya, “Monotone bipartitioning

 problem in a planner point set with application to VLSI” in ACM Transaction on

 Design of Electronic System, April 2002, vol. 7, issue 2,pp. 231-248.

[8] SHERWANI, N. 1999. Algorithms for VLSI Physical Design Automation, 3rd ed. Kluwer

 Academic Publishers, Boston, MA.

33

34

