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Chapter 1 

 
1.1  Introduction 
 

Field Programmable Gate Arrays (FPGA) are specific 

integrated circuits that can be programmed by users easily. The 

FPGA contains versatile functions, configurable interconnects 

and input/output interface to adapt to the user specification. It 

has a bunch of simple, configurable logic blocks arranged in an 

array with interspersed switches that can rearrange the 

interconnections between the logic blocks. Each logic block is 

individually programmed to perform a logic function (such as 

AND, OR, XOR, etc.) and then the switches are programmed to 

connect the blocks so that the complete logic functions are 

implemented. FPGA allow rapid prototyping using custom logic 

structures, and are very popular for limited production products. 

Modern FPGA are extremely dense, with complexity of several 

millions of gates which enable the emulation of complex 

hardwares such as parallel microprocessors, mixture of processor 

and signal processing chips etc.  

 

One key advantage of FPGA is their ability to be 

reprogrammed, in order to create a completely different hardware 

by modifying the logic gate array. Now-a-days FPGA not only 

exists as simple component, but also as macro-blocks in system-

on-chip designs. In the case of communication systems, the 
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configurable logic may be dynamically changed to adapt to 

improved communication protocol. In the case of very low power 

systems, the configurable logic may handle several different tasks 

in series, rather than embedding all corresponding hardware that 

never works in parallel.  

 

 

1.2  Motivation 
 

As we have mentioned that in several cases we have a series 

of different tasks those never runs in parallel. In these cases 

what is usually done is reconfiguring the system totally whenever 

one task is finished and the next task is triggered.  

 

Configuration of logic for an FPGA is done by using 

dedicated CAD tools. The subsequent steps in the flow consist of 

partitioning the circuit, floor-planning on the board followed by 

placement and routing. The entire flow is handled by CAD tools 

meant for FPGAs. Now the main advantage of using FPGA in 

these kinds of applications is that we are utilizing the non 

parallel nature of the tasks in the process of reconfiguring the 

same hardware. This saves a huge cost in terms of hardware 

resource requirements. But one of the problems of this method is 

the reconfiguration time needed for transition between two tasks. 

Because for the subsequent task we have to load the new design 

to CAD tool, configure logic blocks by dumping the design to 

board followed by the floorplan, place and route stages. 
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To come up with a possible solution to this problem instead 

of going for a total reconfiguration of the FPGA device, the 

concept of partial reconfiguration is creeping in. This is possible 

because most of the applications are such that we will have some 

part of the designs similar between different tasks. So in 

consecutive stages we don’t need to configure the entire device if 

by some means we can keep the common part from the earlier 

instance unaffected. We have to configure rest portion of the 

device, not the entire one. This is the essence of Partial 

Reconfiguration. 

 

 

1.3  Scopes & Benefits 
 

Partial Reconfiguration in FPGA devices has a very wide 

scope of  practical purpose applications where some online 

application or communication is active. Partial reconfiguration 

offers countless benefits across multiple industries. It can be an 

important component to any design or application – allowing 

designers more capabilities and resources than meets the eye.  

 

Partial reconfiguration is the ability to reconfigure selected 

areas of an FPGA anytime after its initial configuration. We can 

do this while the design is operational and the device is active 

(known as active partial reconfiguration) or when the device is 

inactive in shutdown mode (known as static partial 

reconfiguration). 
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By taking advantage of partial reconfiguration, we gain the ability 

to: 

• Adapt hardware algorithms 

• Share hardware between various applications 

• Increase resource utilization 

• Provide continuous hardware servicing 

• Upgrade hardware remotely 

  

Using partial reconfiguration, we can dramatically increase 

the functionality of a single FPGA, allowing for fewer, smaller 

devices than would otherwise be needed. Important applications 

for this technology include reconfigurable communication and 

cryptographic systems. 

 

A portion of the design is being reconfigured, as the rest of 

the system can continue to operate, there is no loss of 

performance or functionality with unaffected portions of a design 

– no down time. It also allows for multiple applications on a 

single FPGA.  

We will highlight a few of the benefits of using partial 

reconfiguration. 

 

• The ability to change hardware – FPGA can be updated at any 

time, locally or remotely. Partial reconfiguration allows us to 

easily support, service, and update hardware in the field.  

 

• Hardware sharing – Because partial reconfiguration allows us to 

run multiple applications on a single FPGA, hardware sharing is 
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realized. Benefits include reduced device count, reduced power 

consumption, smaller boards, and overall lower costs. 

 

• Shorter reconfiguration times – Configuration time is directly 

proportional to the size of the configuration bitstream. Partial 

reconfiguration allows us to make small modifications without 

having to reconfigure the entire device. By changing only 

portions of the bitstream – as opposed to reconfiguring the 

entire device – the total reconfiguration time is shorter. 

 

 

1.4  Applications 
 

Partial reconfiguration is useful in a variety of applications 

across many industries. The aerospace and defense industries 

have certainly taken advantage of its capabilities. Partially 

reconfigurable devices have benefited the Joint Tactical Radio 

System (JTRS) Program by a significant amount. 

 
Partial reconfiguration is the cornerstone for power-efficient, 

cost-effective Software-Defined Radios (SDRs). Through the JTRS 

Program, SDRs are becoming a reality for the defense industries 

as an effective and necessary tool for communication. SDRs 

satisfy the JTRS standard by having both a software-

reprogrammable operating environment and the ability to support 

multiple channels and networks simultaneously. 
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With partial reconfiguration, the ability to implement an 

SDR modem using shared resources can be realized. A shared 

resources model enabled by partial reconfiguration of an FPGA to 

support multiple waveforms can be supported by the SCA as 

mandated by JTRS. FPGA implementations of SDR, with partial 

reconfiguration, results in effective use of resources, lower power 

consumption, and extensive cost savings. 

 

Another example is in mitigation and recovery from single-

event upsets (SEU). In-orbit, space-based, and extra-terrestrial 

applications have a high probability of experiencing SEUs. By 

performing partial reconfiguration, in conjunction with Readback, 

a system can detect and repair SEUs in the configuration 

memory without disrupting its operations or completely 

reconfiguring the FPGA. By the term Readback we mean, the 

process of reading the internal configuration memory data to 

verify that current configuration data is correct or not. 

 

In the modern days FPGAs are not only consisting of mere 

Configurable Logic Blocks (CLBs) or even RAM or Multiplier, but 

beside these there are integrated processor cores, DSP chips and 

other useful hardware on the same board. So the application area 

of FPGA is also widening up. As a matter of fact the need for 

reducing configuration time and cost and increasing efficiency, 

partial reconfiguration is the method that all FPGA designers 

need to concentrate. 
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Chapter 2 
  
2.1 Some Earlier Approaches to Partial 

Reconfiguration 
 
 Partial Reconfiguration as a research topic is fairly new in 

the field of VLSI physical design. Basically the idea has a few 

variations as far as the target is concerned. Some of the 

approaches involve finding a satisfactory schedule out of a series 

of tasks that would facilitate the implementation of partial 

reconfiguration. Other approach deals with the case when we do 

not have the flexibility to schedule the tasks. This is true for all 

online communication based applications. In these cases we need 

to maintain the order of the tasks and can not do the scheduling 

according to our own. We need to place the part which will not be 

reconfigured in such a way that it doesn’t affect the performance 

of the device by much in either of the tasks. 

 

 We will basically concentrate on the second class of the 

problem that is mentioned above. There are not too many 

researches done in this topic till date, either in the industries or 

in the institutes. As far as the industry research is concerned 

Xilinx Inc has come out with a CAD tool for its FPGA 

floorplanning, placement and routing that supports partial 

reconfiguration to some extent. We will discuss in details about 

their approach towards this problem. Other than industries there 
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are a few works that deals with this particular problem.  We will 

cite a few of them in the subsequent section. 

 

2.1.1  Partial Reconfiguration in PlanAhead – A 
Xilinx Approach [Ref.12] 

 

 

 Xilinx offers Partial Reconfiguration option in its CAD tool 

named PlanAhead which works with Xilinx-ISE software. This 

tool is compatible to whole Virtex family and Spartan-3 family of 

Xilinx FPGAs.  

 

 Instead of resetting the device and performing a complete 

reconfiguration, new data is loaded to reconfigure a specific area 

of a device, while the rest of the device is still in operation. For 

current FPGA devices, data is loaded on a column-basis, with the 

smallest load unit being a configuration bitstream "frame," which 

varies in size based on the target device. 

 

 PlanAhead supports two kinds of partial reconfiguration. 

Active partial reconfiguration is done when the device is active. 

Except during some interdesign communication, certain areas of 

the device can be reconfigured while other areas remain 

operational and unaffected by the reprogramming. In contrast, 

static Partial Reconfiguration is done before the device is fully 

active or when the device is inactive. This can be accomplished 

by de-asserting the chip select (CS) during configuration, for 

example, to load in special data. For Partial Reconfiguration to 
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take place, the rest of the device is in shutdown mode and is 

brought up again once the configuration is completed. 

 

 Active partial reconfiguration is mainly done in two different 

ways. 

 Module-based 

 Difference-based 

 

 Module Based Partial Reconfiguration – This is also done in 

two ways depending upon whether any communication is 

needed between the modules. 

 

Fig. Module based Design flow overview 
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If the modules are independent that means a 

reconfigurable (dynamic) module doesn’t interact with any 

other module (static/dynamic) then conventional Modular 

design flow is used. If a communication is needed between 

reconfigurable (dynamic) module and any other module 

(static/dynamic) then BUS MACRO is used at the boundary 

of two such modules. 

 

 Bus Macro is a pre-routed hard macro so doesn’t 

change from instance to instance. 

 Bus Macro provides a fixed BUS of Inter Design 

Communication. 

 Each time Partial Reconfiguration is performed, the 

Bus Macro is used to establish unchanging routing 

channels between modules. 

 The HDL code should ensure that any reconfigurable 

module signal that is used to communicate with 

another module does so only by first passing through a 

bus macro. 

 

 

 
Fig. Bus Macro used for Intermodule signal 
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 Difference-based Partial Reconfiguration – This is done by 

changing the design by a small amount (such as changing 

I/O standards, LUT equations and block RAM content). 

Two supported ways to make such design changes: at the 

front end or the back end. 

 

 Front-End: 

 This involves changes in HDL or Schematic. 

 The design must be re-sythesized and re-implemented 

to create a new ‘Place And Route’ NCD file. 

 

 Back-End: 

 Changes can be made directly in the NCD file. 

 Section of a design can be modified using FPGA editor 

tool. 

 BitGen switches then can produce custom bitstreams 

that only modify small sections of the device. 

 

The main drawback that this tool has is the restrictions in 

terms of a set of design rules to be followed while placing the 

modules in the board. Reconfigurable modules must have the 

following properties: 

 

1. The reconfigurable module height is always the full height of 

the device. 

2. The Reconfigurable module width ranges from a minimum of 

four slices to a maximum of the full-device width, in four-slice 

increments. 
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3. Horizontal placement must always be on a four-slice 

boundary; the leftmost placement being x = 0, 4, 8, … 

4. All logic resources encompassed by the width of the module 

are considered part of the reconfigurable module's bitstream 

"frame." This includes slices, TBUFs, block RAMs, multipliers, 

IOBs, and most importantly, all routing resources. 

5. Clocking logic (BUFGMUX, CLKIOBs) is always separate from 

the reconfigurable module. Clocks have separate bitstream 

frames. 

6. IOBs immediately above the top edge and below the bottom 

edge of a reconfigurable module are part of the specific 

reconfigurable module's resources. 

7. If a reconfigurable module occupies either the leftmost or 

rightmost slice column, all IOBs on the specific edge are part 

of the specific reconfigurable modules resources. 

8. To help minimize problems related to design complexity, the 

number of reconfigurable modules should be minimized 

(ideally, just a single reconfigurable module, if possible). 

 

This is said, the number of slice columns divided by four is 

the only real limit to the number of defined reconfigurable 

module regions. 

 

 12



 
Fig. Design Layout with Two Reconfigurable Modules 

 

 
2.1.2 Physically Aware HW-SW partitioning 

approach [Ref.3] 
 

A physically aware hardware-software (HW-SW) scheme is 

presented here for minimizing application execution time under 

HW resource constraints, where the HW is a reconfigurable 

architecture with partial dynamic reconfiguration capability. 

Such architectures impose strict placement constraints that lead 

to implementation infeasibility of even optimal scheduling 

formulations that ignore the nature of these constraints. An exact 

and a heuristic formulation are proposed that simultaneously 

partition, schedule, and do linear placement of tasks on such 
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architectures. With the exact formulation, it is proved that the 

critical nature of placement constraints. We demonstrate that our 

heuristic generates high-quality schedules by comparing the 

results with the exact formulation for small tests and a popular, 

but placement unaware scheduling heuristic for larger tests. 

This work makes several contributions: 

 

 It demonstrates that existing approaches that do not consider 

physical task layout can result in unrealizable (infeasible) 

designs. 

 It outlines an exact approach that incorporates physical 

layout. 

 It presents a KLFM heuristic (Kernighan-Lin / Fiduccia 

Matheyses) incorporating detailed linear placement that 

generates good results on a large set of benchmarks. 

 It shows applicability of our work to heterogeneous 

architectures. Modern FPGAs have heterogeneous 

architectures containing columns of dedicated resources like 

embedded multipliers, embedded memory blocks. Usage of 

such specialized resources usually leads to more area-efficient 

and faster implementations. 

 

There is a task graph with n tasks, where each task has 

multiple possible implementations. Each HW implementation of a 

task occupies a certain number of columns. We have one 

available SW processor, and a HW resource constraint of m HW 

columns for application mapping. The objective was to find an 

optimal schedule where each task is bound to HW or SW, the 
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task implementation is fixed, and, for HW tasks, the physical 

task location is determined. 

 

To understand the problem space and determine optimality, an 

Integer Linear Program is formulated. Then they used the concept 

of KLFM algorithm for scheduling the tasks in the task graph. 

The next step in the approach is the Earliest Starting Time (EST) 

computation. The goal was to find the earliest time slot when the 

task can be scheduled, subject to the various constraints. They 

proceeded first searching for the earliest instant when we can 

have a feasible task placement, i.e. enough adjacent columns are 

available for the task. Once they obtained a feasible placement, 

they tried to satisfy the other constraints. If the reconfiguration 

controller was available at the instant the space becomes 

available, then the reconfiguration component of the task can 

proceed immediately. Otherwise, the reconfiguration component 

of the task has to wait till the reconfiguration controller becomes 

free. Once the reconfiguration component is scheduled, it is 

checked if the execution component can be immediately 

scheduled subject to dependency constraints. The EST 

computation thus embeds the placement issues and resource 

constraints related to reconfiguration. 

 

1.3 Direct & Merge Dynamic Reconfiguration 
[Ref.4] 

 

Two methods for implementing modular reconfiguration in 

Virtex FPGAs are compared and contrasted. The first method is 
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the Direct Dynamic Reconfiguration which offers simplicity and 

fast reconfiguration times, but limits the geometry and 

connectivity of the system. The second method, developed 

recently is Merge Dynamic Reconfiguration which enables 

modules to be allocated arbitrary areas of the FPGA, bridging the 

gap between theory and reality and unlocking the latent potential 

of dynamic reconfiguration. The cost of this advancement is 

increased reconfiguration time. 

 

 In the direct dynamic reconfiguration process, 

reconfigurable modules are composed from complete frames of 

configuration memory. This implies that a module occupies the 

full height of the device, including the I/O at the top and bottom 

of the reconfiguration region. The module may be a variable 

number of CLB columns in width, and all logic and routing 

within the reconfiguration region are dedicated to the module. 

Using this scheme, a module may be replaced very simply by 

writing over the existing configuration for the frames that 

coincide with the module area, using a partial bitstream. 

 

 This is exactly the same method that is adopted by 

PlanAhead for the module based active partial reconfiguration. 

Hence this approach comprises with same drawbacks those have 

already been mentioned in earlier section. In order to come out of 

those loopholes another approach called Merge Dynamic 

Reconfiguration has been proposed. 
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 The merge dynamic reconfiguration method was created in 

order to circumvent the limitations of direct reconfiguration, and 

exploit the glitchless reconfiguration property of Virtex FPGAs. A 

statically routed signal can pass through a reconfigured region 

unperturbed provided the configuration bits associated with the 

route persist in the new configuration. However, as the module 

designs are placed and routed independently from the static part 

of the design, the resources allocated to a static route could also 

be used in one or more module implementations. This is avoided 

through the use of reserved routing – within a module region, 

certain routing resources are always reserved for static routing 

and modules must avoid using any of these resources, even if 

unused by the static design. Routing congestion and delay are 

reduced by routing through module regions, and module regions 

can be contiguous. The second major innovation in merge 

reconfiguration is in the way the partial bitstream is loaded. 

Rather than writing the bitstream directly to the configuration 

memory, the current configuration is read back from the device 

and modified with information from the partial bitstream before 

being written back. 
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Chapter 3 
 
 
3.1 Problem Definition 
 

The focus of the current work was a case where we have a 

series of tasks to be executed on an FPGA device at different time 

instances. We assume that designs for individual tasks are such 

that some part of the design is common for all the tasks. In terms 

of the modules we can say that some modules remain static for 

all the time instances. But their position may not be the same if 

we do the floorplan for individual time instances. This would lead 

to total reconfiguration of the device at every time instance 

leading to high reconfiguration time and cost. But there is a 

scope of partial reconfiguration here which would not alter the 

position of those static modules, yet gives a satisfactory floorplan 

in terms of total wire length, net delay in every time instance. The 

time instances of the individual tasks are fixed beforehand which 

says that we can not reshuffle the tasks. So we need to deal with 

all the instance designs and find some positions for the static 

modules and rest of  the space is occupied by other modules 

specific to instances (we call it as dynamic modules). So the 

problem sounds similar to a 3-D floorplan problem where the 

third dimension is the temporal axis. 
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3.2  Problem Statement 
 

• Suppose there are n time instances, denoted by – I1, I2,…., 

In 

• K modules are present in all the n-instances – they are 

called static modules {S1, S2,…Sk}. 

• All the instances have some modules other than static ones 

– called dynamic modules {M11, M12,…, Mmn}. 

• Static modules do not change their positions on the floor. 

• Dynamic modules are to be replaced on the fly in each 

subsequent instances. 

 

Goal is to achieve the following: 

 

• There is a feasible floorplan for every instance. All the 

modules are accommodated on the board. 

• Guarantees total hardware availability (CLB, BRAM, MULT) 

for all the modules in each of the instances.  

• Maintaining module integrity, i.e. all the modules are 

contiguous.  

• Guarantees total routability.  

• Minimizes total net length for all instances.  

• Minimizes delay for all instances.  

• Minimizes reconfiguration cost. 
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Chapter 4  
 
 
4.1  Approach  
  
 As of any physical design problem here also the first phase 

is partitioning phase where we partition the circuits of all the 

instances. After that comes floorplanning of a particular instance 

and mapping rest of the instance modules with that floorplan. In 

this section we will give an overview of the algorithm where as in 

the next section we will present the detail one. 

 

I . Partitioning phase :  

  

 In this phase we take the netlist (hypernets) of all the 

instances as inputs and generate slicing tree for each instance by 

recursively bi-partitioning the circuits of all instances together.  

 

During the bi-partitioning we move a module from one 

partition to another if it helps to improve the cut-cost of the 

bipartition. Moreover it should also satisfy the balance criteria to 

avoid all the modules coming into one partition.  

 

The move of a dynamic module is simple and specific to an 

instance but that of a static module involves all the instances i.e. 

the module is moved from one partition to the other in all the 

instances. 
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So we obtain finally the partition tree for all the instances 

with static modules taking similar places for all the instances. 

 

II . Instance Mapping Phase : 

 

 In this phase we first determine the instance which 

demands maximum resource requirements (in terms of CLB, 

RAM and MUL). We call it as guiding instance. 

 

 Next we map the nodes of partition trees for other instances 

with that of guiding instance. Static modules are holding similar 

places in all the trees. 

 

III . Floorplan Generation Phase : 

 

 Now we use a fast floorplan generation algorithm (Ref 8) to 

allocate the position of the modules on the board. Floorplanning 

in FPGA is different from that in ASIC as we have CLB, RAM & 

Multiplier placed in FPGA. So traditional ASIC approaches do not 

suffice here. So we have used an existing floorplanning algorithm 

for FPGA to do the job [Ref 8]. 

 

 At first the floorplan for the guiding instance is generated. 

Now without altering the positions of the static modules we place 

the dynamic modules in subsequent instances.  
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The dynamic modules of the other instances are 

accommodated in the space where the dynamic modules of the 

guiding instance resided. 

 

Since the floorplan of guiding instance (demanding 

maximum resource) is already generated, other instances will 

demand lesser resources and must be well accommodated in the 

board-space used by guiding instance. 

 

4.2  Detail Algorithm 
 

I . Partitioning Algorithm :  

 

Step 1 :  

 Mark all the modules with a Static or Dynamic tag to 

according to their natures. 

 

Step 2 : 

 Take only the dynamic modules and put those into two 

partitions arbitrarily keeping in mind that the balanced criteria 

satisfy. 

One of the method of doing this is 

 Sort the dynamic modules of an instance in 

descending order of CLB requirement. 

 Put the first one in list-1. 

 Put next two modules in list-2 and next two in list-1. 

 Repeat last step until all the modules are put into 

either of the lists. 
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Repeat it for all the instances. 

 

Step 3 : 

 Put the static modules arbitrarily into the two partitions 

such that the balance condition is not violated. We can use the 

previous algorithm again for initial partition of static modules. 

The only difference being that we will put those in list-1 & list-2 

of all the instances simultaneously. 

  

Steps 4 : 

 For all instances, calculate the K-L gain of all the modules 

present. Maintain the gain-bucket structure proposed by 

Fiduccia-Matheyses [Ref.1,2] for every instance. 

 

According to their gains put the modules in common gain-

list. Module from left partition of an instance goes to left common 

gain list and that from right partition goes to right common 

gainlist. 

 

For static modules among different values of gains obtained 

from different instances calculate the average of those and put it 

in the common gain list in the same way. 

 

Step 5 : 

 Sort the common list by their gain values. Construct the 

gain bucket structure proposed by Fiduccia-Matheyses 

partitioning algorithm[Ref. 1,2]. 
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Pick up the module from the bucket with highest gain and 

move it to the other partition. 

 

 Check the balance condition of that particular instance in 

which the moved chosen cell belong to.  If it is a static module, 

check all the instances. 

 

 If balance condition satisfied, Accept the move and Lock the 

module. Otherwise Reject it. Check the next available module in 

terms of gain and repeat the above procedures. 

 

Update the gains of the modules after the accepted move. 

Also update the gain buckets of the corresponding instance if the 

moduleis dynamic otherwise update that of all the instances. 

Update the gain bucket of the common list as well. 

 

Step 6 : 

  Repeat step 5 until all the modules are locked or no more module can be 

chosen for the move due to balance criteria. 

 

Step 7 : 

Among all the moves taken fix that many number of moves 

from the beginning for which the partial sum of the moves 

becomes maximum. 

 

Step 8 :  

 Repeat steps 3-7 recursively until all the leaf nodes of the 

slicing tree contain single module. 
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So we obtain finally the partition tree for all the instances with 

static modules taking similar places for all the instances. 

 

 

II . Module Mapping Algorithm : 

 

Step 1: 

 Get the slicing trees for all instances from the previous 

phase. Determine the maximum resource utilizing instance and 

set its slicing tree as Guiding Tree. 

 

Step 2 : 

 Calculate the number of tiles required by each modules of 

each instance. Tiles are nothing but an assumed building block 

consisting of a fixed number of CLB, RAM, MULT. 

 

Step 3: 

 In the guiding tree start from root node and match the root 

nodes of other instances. Then go top down fashion and match 

either node by node or node by subtree or subtree by node. 

 

Step 4 : 

 Put a tag for all the nodes of the other slicing trees about 

the correspondence with the guiding tree obtained from the 

previous step. 
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III . Floorplan Generating Algorithm : 

 

Step 1: 

 Use the floorplanning algorithm for FPGAs [Ref.8] to 

generate the floorplan of the guiding instance. In brief, the 

algorithm states that 

• For each module, generate 

– a set of irredundant (wi,hi) pair (in terms of basic tiles)  

• Post-order traversal of partition tree 

– Nodes are merged with respect to horizontal cut or 

vertical cut. 

• Vertically : V-list (wv,hv)  

• Horizontally: H-list (wh,hh)  

– Form combined list which is an irredundant 

implementations from V-list and H-list 

• M-list (wm,hm) :  

• A set of irredundant implementations formed at root – 

Slicing tree 

• Realization of slicing tree on FPGA 

– Allocation of Rectangular Region by calculating the co-

ordinates of rectangular blocks. 

– Allocation of RAM/MUL Formulated as a Minimum 

Weighted Bi-partite Matching (MWBM) 

 

Step 2: 

 Starting from root in a top down manner for other instance 

trees fix up the positions of static modules as they were in 

guiding instance floorplan. 
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Step 3: 

 For the rest of the floorplan get the correspondence tag 

obtained from previous phase and calculate the co-ordinates of 

rectangular regions again in top down manner. 

  

Hence get the floorplan of other instance as well.  
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Chapter 5 
 
5.1 Experimental Results 
 

For the problem of partial reconfiguration there is no 

standard existing benchmark available. So we have developed an 

example circuit and tested it with the mentioned partitioning 

algorithm and with the partitioning tool hMetis which follows 

Fiduccia-Matheyses algorithm in a slightly modified form. 

 

The format of our input netlist file would be like below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file format: test*.reconfig 
================================================ 
 
<FPGA architecture> 
 
.num_modules <Total no of modules over all the instances> <Number of 
static modules> 
 
.module <Module_id> <Module type : s (static) d (dynamic)> <CLB 
requirement> <RAM requirement> < MUL requirement> 
{repeat above line for all modules} 
 
.num_instance <Total number of time instances> 
 
--------------------------------------------------------------------------------------- 
 
.instance <instance_id> 
 
.module_list <list of module ids of this time instance> 
 
.hnet :<hnet_wt>:<hnet member modules> 
{repeat above line for all hnets for this particular instance} 
 
--------------------------------------------------------------------------------------- 
{repeat above block for the number of time instances present} 
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Example input netlist file :  

 

  

Test1.reconfig 
.num_modules 32 3 
.module 0 d 400 5 5 
.module 1 s 400 5 5 
.module 2 s 400 5 5 
.module 3 d 400 5 5 
.module 4 d 400 5 5 
.module 5 d 400 5 5 
.module 6 d 400 5 5 
.module 7 d 400 5 5 
.module 8 d 400 5 5 
.module 9 d 400 5 5 
.module 10 d 400 5 5 
.module 11 d 400 5 5 
.module 12 d 400 5 5 
.module 13 d 400 5 5 
.module 14 d 400 5 5 
.module 15 d 400 5 5 
.module 16 d 480 6 6 
.module 17 d 480 6 6 
.module 18 d 480 6 6 
.module 19 s 480 6 6 
.module 20 d 800 10 10 
.module 21 d 480 6 6 
.module 22 d 400 5 5 
.module 23 d 400 5 5 
.module 24 d 800 10 10 
.module 25 d 400 5 5 
.module 26 d 400 5 5 
.module 27 d 800 10 10 
.module 28 d 960 12 12 
.module 29 d 400 5 5 
.module 30 d 400 5 5 
.module 31 d 800 10 10 
 
 
 
Contd.. 
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.num_instance 2 
 
.instance 0  
.module_list 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
.hnet:1:13 4 
.hnet:1:13 4 15 18 19 12 
.hnet:1:15 18 19 12 
.hnet:1:15 18 
.hnet:1:19 12 
.hnet:1:11 2 
.hnet:1:13 15 11 
.hnet:1:6 14 
.hnet:1:4 18 12 2 6 14 
.hnet:1:9 10 
.hnet:1:7 1 
.hnet:1:9 7 
.hnet:1:8 0 
.hnet:1:10 1 0 
.hnet:1:5 3 
.hnet:1:9 7 8 5 
.hnet:1:17 16 
.hnet:1:1 8 5 17 
 
.instance 1 
.module_list 20 1 2 21 22 23 24 25 26 27 28 29 30 31 19 
.hnet:1:20 23 
.hnet:1:20 23 21 19 24 
.hnet:1:20 21 19 24 
.hnet:1:20 21 
.hnet:1:19 24 
.hnet:1:22 2 
.hnet:1:20 22 
.hnet:1:24 25 
.hnet:1:23 21 24 2 25 
.hnet:1:26 27 
.hnet:1:27 1 
.hnet:1:27 1 31 
.hnet:1:29 30 
.hnet:1:26 27 30 31 
.hnet:1:1 31 30 28 
.hnet:1:29 30 
 

 

After partitioning Instance-0 with hMetis that uses modified 

version of Fiduccia Matheyses algorithm, we get this partition. 
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Partitions with hMetis : 
9 
19 
1 
11 
1 
16 
7 
4 
7 
9 
19 
14 
11 
16 
12 
2 
2 
12 
14 
6 

 

The above result will lead to the following set of leaf nodes in a 

partition tree. 

 
B-(2,4)-(15,16)-B-7-B-19-(6,8)-B-(0,9)-B-(3,12)-(14,17)-B-(11,18)-B-(5,13)-

B-B-(1,10) 

 

For our calculation purpose we may eliminate blank partition 

and expand those which have more than one modules. 

 

2-4-15-16-7-19-6-8-0-9-3-12-14-17-11-18-5-13-1-10 

 

 After partitioning with our partitioner we get the output in a 

tree manner where the nodes are the set of modules. 
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Partitions with our partitioner. 

 

Set of nodes at each node of partition tree are shown below. 

 
0:  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
-------------------------------------------------------------- 
1:  1 5 3 4 17 18 11 10 12 6 
2:  2 8 14 9 15 7 16 0 13 19 
-------------------------------------------------------------- 
3:  1 5 10 11 18 
4:  3 6 12 4 17 
5:  2 7 15 9 19 
6:  8 14 16 0 13 
-------------------------------------------------------------- 
7:  1 18 
8:  10 11 5 
9:  3 17 
10: 4 6 12 
11: 2 7 9 
12: 15 19 
13: 8 14 0 
14: 16 13 
-------------------------------------------------------------- 
15: 18 
16: 1 
17: 10 11 
18: 5 
19: 3  
20: 17 
21: 4 12 
22: 6 
23: 2 9 
24: 7 
25: 15 
26: 19 
27: 8 0 
28: 14 
29: 16 
30:13 
--------------------------------------------------------------- 
  

  
So one of the possible leaf node set will be as below 
 
18-1-10-11-5-3-17-4-12-6-2-9-7-15-19-8-0-14-16-13 

 

Now similar partitions are done in Instance-1 as well. After 
calculating the CLB requirement of both the instance, we found 
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#CLB in Instance-0 : 7920 
#CLB in Instance-1 : 7440 
 
So the Guiding Instance will be Instance-0 as it requires 
maximum no of CLBs. 
 
So we run the floorplanning algorithm on the partition tree of 
Instance-0 and finally we get a bunch of floorplans out of which 
we select the below as the best in terms of integrity of modules. 
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Chapter 6 
 
 

6.1 Implementation Details 
 

While implementing the mentioned algorithm we used Xilinx 

Spartan3 device architecture. 

The partitioning phase is written in scripting language – 

Perl. 

To compare with a standard partitioner we used hMetis tool 

which is a modified version of Fiduccia Matheyses algorithm, 

The floorplanner that we used was written in C language.  

 

 

6.1.1 Data Structure 
 

The main data structure that has been used looks like 

following. Most of the input information as well as the generated 

data are stored in this structure. The structure basically a hash 

defined in Perl language. 

 
@module[ ] { 

Inst_id => <-1 for static module, otherwise it is 
equal to the instance number where 
this module is present> 

   Module_type => <static or dynamic> 
   Clb_req => <CLB requirement of module> 
   RAM_req => <RAM requirement of module> 

MULT_req => <MULT requirement of module> 
@pin_counter => <pin count in different instances> 
@hnet_member => <this module present in these 

hnets> 
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Partition_side => <side in which this module belong 
after partition> 

} 
 
 
@instance[ ] { 
  Hnet_size => <no of hnets in this instance> 
  %Hnet0 => { 
     Hnet_weight => <wt of hnet> 

@Hnet_edge => <hnet modules> 
l_index => <no of hnet modules in left 

partition> 
r_index => <no of hnet modules in right 

partition> 
      } 
    . 

   . 
  %Hnet<n-1> => <field keys are same for all> 

@Module_list => <list of modules present in this instance> 
%treenode => { 

<node_id> => <set of modules in that 
particular node> 

} 
   %gain => { 
     <module_id> => <gain of the module> 
     } 

@Arr1 => <list 1 for using in the time of partitioning> 
@Arr2 => <list 2 for using in the time of partitioning> 
%bucket => { 

<gain_value> => <list of modules having that 
gain value> 

} 
 
  
 %commhash = { 
    
   %hash1 => {one the list of common gain bucket} 
   %hash2 => {other list of common gain bucket} 

} 
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6.1.2 Flow of Function Calls for the Partitioner 

 

 
 

Main function  

 

 Read input file 

 

 

 

 

Common 
functions: 
1.Sort 

elements. 
2.ExistArray 

1. Sort module 
2. Load Zigzag 

Initial Partition 
(Called repetitively until 

partition completes) 

Final Partition 

1. CalcHnetBalance 
2. CalcGain 
3. ConstructBucket 
4. MakeCommlist 
5. DivideCommlist 
6. MoveCell 
7. CheckWtBalance 
8. UpdateGain 

LoadTreeNodes 

Iterate through the 
gain bucket till empty 

 

 

 

 

 

 

 

 

 
Repeat until all the leaf 
nodes contain single cell 

 

 

 
OUTPUT TREE
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Chapter 7 
 
 
7.1 Conclusion 
 

The problem of Partial Reconfiguration is a tricky one to 

handle. The focus of the dissertation was firstly to judge what the 

present situation is, in terms of checking existing CAD tools in 

the domain. If any tools presently support this methodology or 

not, even if it supports to what extent. After that survey work the 

attempt was to build up a new algorithm which would do away 

with the drawbacks that existing CAD tools or algorithms have 

and to provide more flexibility to the user. 

 

The work that has been done is successfully partitioning the 

circuits and offering fairly good result as compared to others. 

Although the implementation may be a bit tricky the algorithm is 

simple enough and uses some ideas of Fiduccia Matheyses 

algorithm. But it has been extended to this 3D floorplanning 

problem successfully. Again the floorplan generating module that 

has been used is quite elegant and gives fairly good results. 

 

 

 

 

 

 

 37



 38

References 
 

[1] C. M. Fiduccia, R. M. Mattheyes, ”A Linear-time heuristic for improving 
network partitions”, DAC, 1982. 

 
[2] B Kernighan, S Lin, ”An efficient heuristic procedure for partitioning 

graphs”, The Bell System Technical Journal, V-29, 1970. 
 
[3] S Banerjee, E Bozorgzadeh, N Dutt, ”HW-SW partitioning for 

architectures with partial dynamic reconfiguration”, Technical Report 
CECS-TR-05-02, UC Irvine. 

 
[4] P. Sedcole, B. Blodget, T. Becker, J. Anderson and P. Lysaght, “Modular 

dynamic reconfiguration in Virtex FPGAs”, IEE Proc.-Comput. Digit. 
Tech., Vol. 153, No. 3, May 2006 

 
[5] Xilinx Inc. ‘Virtex-4 user guide’, UG 290, v1.2, 2005 
 
[6] Cindy Kao,  Xilinx, Inc “Benefits of Partial Reconfiguration”, 2005. 
 
[7] Nij Dorairaj, Xilinx, Inc. “PlanAhead Software as a Platform for Partial 

Reconfiguration”, 2005. 
 
[8] Pritha Banerjee, Susmita Sur-Kolay & Arijit Bishnu, “Floorplanning in 

Modern FPGAs", in proc International Conference on VLSI Design 2007.  
 
[9] Xilinx Inc : “Development System Reference Guide”. 
 
[10] Xilinx Inc : “PlanAhead Methodology Guide”. 
 
[11] Love Singhal and Elaheh Bozorgzadeh, “Multi-layer Floorplanning on a 

Sequence of Reconfigurable Designs”, 
 
[12] Xilinx Inc : “Two Flows for Partial Reconfiguration: Module Based or 

Difference Based” , 2004. 
 
[13] “Basics of FPGA”, http://www.wikipedia.org/. 
 
[14] George Karypis and Vipin Kumar,  “hMETIS - A Hypergraph Partitioning 

Package Version 1.5.3 Manual”, 1998. 
 

 

http://www.wikipedia.org/

	frontpage
	Ack
	Report

