

 Partial Reconfiguration of
Field Programmable Gate Array Devices

Using Xilinx Architecture

A dissertation submitted in partial fulfillment of the
requirements for the

Master of Technology in Computer Science degree in
Indian Statistical Institute, Kolkata

in the year of 2007.

By

Ayan Roy Chowdhury
(MTC0506)

Under The Supervision of

Dr. Susmita Sur-Kolay

Indian Statistical Institute

203, Barrackpore Trunk Road
Kolkata - 700035

Certificate of Approval

This is to certify that the thesis entitled “Partial
Reconfiguration of Field Programmable Gate Array
Devices Using Xilinx Architecture” submitted by Ayan
Roy Chowdhury towards partial fulfillment for the degree
of M.Tech in Computer Science at Indian Statistical
Institute, Kolkata, embodies the work done under my
supervision.

Dated:

Signed:
Dr. Susmita Sur-Kolay
Supervisor

Countersigned:
External Examiner

Acknowledgement

In the course of my dissertation work I came across some people
who have contributed directly or indirectly in imparting knowledge to
me. This project would be incomplete without me expressing my
hearty gratitude to them.

 I wish to convey my regards and sincere gratitude to Dr.
Susmita Sur-Kolay of Advanced Computing and Microelectronics
Unit, Indian Statistical Institute, Kolkata for her excellent guidance
and invaluable suggestions throughout my work

I am also indebted to Prof. Bhargab Bikram Bhattacharya of
the same unit for this continual support, valuable guidance and
inspirational motivations without which this project would not have
been possible.

I am thankful to Ms Pritha Banerjee, for providing constant

support and guidance throughout the tenure of my dissertation.

 Last but not the least, I am also grateful to my classmates who
have encouraged and helped me to carry out the project.

Ayan Roy Chowdhury
20th July, 2007

Chapter 1

1.1 Introduction

Field Programmable Gate Arrays (FPGA) are specific

integrated circuits that can be programmed by users easily. The

FPGA contains versatile functions, configurable interconnects

and input/output interface to adapt to the user specification. It

has a bunch of simple, configurable logic blocks arranged in an

array with interspersed switches that can rearrange the

interconnections between the logic blocks. Each logic block is

individually programmed to perform a logic function (such as

AND, OR, XOR, etc.) and then the switches are programmed to

connect the blocks so that the complete logic functions are

implemented. FPGA allow rapid prototyping using custom logic

structures, and are very popular for limited production products.

Modern FPGA are extremely dense, with complexity of several

millions of gates which enable the emulation of complex

hardwares such as parallel microprocessors, mixture of processor

and signal processing chips etc.

One key advantage of FPGA is their ability to be

reprogrammed, in order to create a completely different hardware

by modifying the logic gate array. Now-a-days FPGA not only

exists as simple component, but also as macro-blocks in system-

on-chip designs. In the case of communication systems, the

 1

configurable logic may be dynamically changed to adapt to

improved communication protocol. In the case of very low power

systems, the configurable logic may handle several different tasks

in series, rather than embedding all corresponding hardware that

never works in parallel.

1.2 Motivation

As we have mentioned that in several cases we have a series

of different tasks those never runs in parallel. In these cases

what is usually done is reconfiguring the system totally whenever

one task is finished and the next task is triggered.

Configuration of logic for an FPGA is done by using

dedicated CAD tools. The subsequent steps in the flow consist of

partitioning the circuit, floor-planning on the board followed by

placement and routing. The entire flow is handled by CAD tools

meant for FPGAs. Now the main advantage of using FPGA in

these kinds of applications is that we are utilizing the non

parallel nature of the tasks in the process of reconfiguring the

same hardware. This saves a huge cost in terms of hardware

resource requirements. But one of the problems of this method is

the reconfiguration time needed for transition between two tasks.

Because for the subsequent task we have to load the new design

to CAD tool, configure logic blocks by dumping the design to

board followed by the floorplan, place and route stages.

 2

To come up with a possible solution to this problem instead

of going for a total reconfiguration of the FPGA device, the

concept of partial reconfiguration is creeping in. This is possible

because most of the applications are such that we will have some

part of the designs similar between different tasks. So in

consecutive stages we don’t need to configure the entire device if

by some means we can keep the common part from the earlier

instance unaffected. We have to configure rest portion of the

device, not the entire one. This is the essence of Partial

Reconfiguration.

1.3 Scopes & Benefits

Partial Reconfiguration in FPGA devices has a very wide

scope of practical purpose applications where some online

application or communication is active. Partial reconfiguration

offers countless benefits across multiple industries. It can be an

important component to any design or application – allowing

designers more capabilities and resources than meets the eye.

Partial reconfiguration is the ability to reconfigure selected

areas of an FPGA anytime after its initial configuration. We can

do this while the design is operational and the device is active

(known as active partial reconfiguration) or when the device is

inactive in shutdown mode (known as static partial

reconfiguration).

 3

By taking advantage of partial reconfiguration, we gain the ability

to:

• Adapt hardware algorithms

• Share hardware between various applications

• Increase resource utilization

• Provide continuous hardware servicing

• Upgrade hardware remotely

Using partial reconfiguration, we can dramatically increase

the functionality of a single FPGA, allowing for fewer, smaller

devices than would otherwise be needed. Important applications

for this technology include reconfigurable communication and

cryptographic systems.

A portion of the design is being reconfigured, as the rest of

the system can continue to operate, there is no loss of

performance or functionality with unaffected portions of a design

– no down time. It also allows for multiple applications on a

single FPGA.

We will highlight a few of the benefits of using partial

reconfiguration.

• The ability to change hardware – FPGA can be updated at any

time, locally or remotely. Partial reconfiguration allows us to

easily support, service, and update hardware in the field.

• Hardware sharing – Because partial reconfiguration allows us to

run multiple applications on a single FPGA, hardware sharing is

 4

realized. Benefits include reduced device count, reduced power

consumption, smaller boards, and overall lower costs.

• Shorter reconfiguration times – Configuration time is directly

proportional to the size of the configuration bitstream. Partial

reconfiguration allows us to make small modifications without

having to reconfigure the entire device. By changing only

portions of the bitstream – as opposed to reconfiguring the

entire device – the total reconfiguration time is shorter.

1.4 Applications

Partial reconfiguration is useful in a variety of applications

across many industries. The aerospace and defense industries

have certainly taken advantage of its capabilities. Partially

reconfigurable devices have benefited the Joint Tactical Radio

System (JTRS) Program by a significant amount.

Partial reconfiguration is the cornerstone for power-efficient,

cost-effective Software-Defined Radios (SDRs). Through the JTRS

Program, SDRs are becoming a reality for the defense industries

as an effective and necessary tool for communication. SDRs

satisfy the JTRS standard by having both a software-

reprogrammable operating environment and the ability to support

multiple channels and networks simultaneously.

 5

With partial reconfiguration, the ability to implement an

SDR modem using shared resources can be realized. A shared

resources model enabled by partial reconfiguration of an FPGA to

support multiple waveforms can be supported by the SCA as

mandated by JTRS. FPGA implementations of SDR, with partial

reconfiguration, results in effective use of resources, lower power

consumption, and extensive cost savings.

Another example is in mitigation and recovery from single-

event upsets (SEU). In-orbit, space-based, and extra-terrestrial

applications have a high probability of experiencing SEUs. By

performing partial reconfiguration, in conjunction with Readback,

a system can detect and repair SEUs in the configuration

memory without disrupting its operations or completely

reconfiguring the FPGA. By the term Readback we mean, the

process of reading the internal configuration memory data to

verify that current configuration data is correct or not.

In the modern days FPGAs are not only consisting of mere

Configurable Logic Blocks (CLBs) or even RAM or Multiplier, but

beside these there are integrated processor cores, DSP chips and

other useful hardware on the same board. So the application area

of FPGA is also widening up. As a matter of fact the need for

reducing configuration time and cost and increasing efficiency,

partial reconfiguration is the method that all FPGA designers

need to concentrate.

 6

Chapter 2

2.1 Some Earlier Approaches to Partial

Reconfiguration

 Partial Reconfiguration as a research topic is fairly new in

the field of VLSI physical design. Basically the idea has a few

variations as far as the target is concerned. Some of the

approaches involve finding a satisfactory schedule out of a series

of tasks that would facilitate the implementation of partial

reconfiguration. Other approach deals with the case when we do

not have the flexibility to schedule the tasks. This is true for all

online communication based applications. In these cases we need

to maintain the order of the tasks and can not do the scheduling

according to our own. We need to place the part which will not be

reconfigured in such a way that it doesn’t affect the performance

of the device by much in either of the tasks.

 We will basically concentrate on the second class of the

problem that is mentioned above. There are not too many

researches done in this topic till date, either in the industries or

in the institutes. As far as the industry research is concerned

Xilinx Inc has come out with a CAD tool for its FPGA

floorplanning, placement and routing that supports partial

reconfiguration to some extent. We will discuss in details about

their approach towards this problem. Other than industries there

 7

are a few works that deals with this particular problem. We will

cite a few of them in the subsequent section.

2.1.1 Partial Reconfiguration in PlanAhead – A
Xilinx Approach [Ref.12]

 Xilinx offers Partial Reconfiguration option in its CAD tool

named PlanAhead which works with Xilinx-ISE software. This

tool is compatible to whole Virtex family and Spartan-3 family of

Xilinx FPGAs.

 Instead of resetting the device and performing a complete

reconfiguration, new data is loaded to reconfigure a specific area

of a device, while the rest of the device is still in operation. For

current FPGA devices, data is loaded on a column-basis, with the

smallest load unit being a configuration bitstream "frame," which

varies in size based on the target device.

 PlanAhead supports two kinds of partial reconfiguration.

Active partial reconfiguration is done when the device is active.

Except during some interdesign communication, certain areas of

the device can be reconfigured while other areas remain

operational and unaffected by the reprogramming. In contrast,

static Partial Reconfiguration is done before the device is fully

active or when the device is inactive. This can be accomplished

by de-asserting the chip select (CS) during configuration, for

example, to load in special data. For Partial Reconfiguration to

 8

take place, the rest of the device is in shutdown mode and is

brought up again once the configuration is completed.

 Active partial reconfiguration is mainly done in two different

ways.

 Module-based

 Difference-based

 Module Based Partial Reconfiguration – This is also done in

two ways depending upon whether any communication is

needed between the modules.

Fig. Module based Design flow overview

 9

If the modules are independent that means a

reconfigurable (dynamic) module doesn’t interact with any

other module (static/dynamic) then conventional Modular

design flow is used. If a communication is needed between

reconfigurable (dynamic) module and any other module

(static/dynamic) then BUS MACRO is used at the boundary

of two such modules.

 Bus Macro is a pre-routed hard macro so doesn’t

change from instance to instance.

 Bus Macro provides a fixed BUS of Inter Design

Communication.

 Each time Partial Reconfiguration is performed, the

Bus Macro is used to establish unchanging routing

channels between modules.

 The HDL code should ensure that any reconfigurable

module signal that is used to communicate with

another module does so only by first passing through a

bus macro.

Fig. Bus Macro used for Intermodule signal

 10

 Difference-based Partial Reconfiguration – This is done by

changing the design by a small amount (such as changing

I/O standards, LUT equations and block RAM content).

Two supported ways to make such design changes: at the

front end or the back end.

 Front-End:

 This involves changes in HDL or Schematic.

 The design must be re-sythesized and re-implemented

to create a new ‘Place And Route’ NCD file.

 Back-End:

 Changes can be made directly in the NCD file.

 Section of a design can be modified using FPGA editor

tool.

 BitGen switches then can produce custom bitstreams

that only modify small sections of the device.

The main drawback that this tool has is the restrictions in

terms of a set of design rules to be followed while placing the

modules in the board. Reconfigurable modules must have the

following properties:

1. The reconfigurable module height is always the full height of

the device.

2. The Reconfigurable module width ranges from a minimum of

four slices to a maximum of the full-device width, in four-slice

increments.

 11

3. Horizontal placement must always be on a four-slice

boundary; the leftmost placement being x = 0, 4, 8, …

4. All logic resources encompassed by the width of the module

are considered part of the reconfigurable module's bitstream

"frame." This includes slices, TBUFs, block RAMs, multipliers,

IOBs, and most importantly, all routing resources.

5. Clocking logic (BUFGMUX, CLKIOBs) is always separate from

the reconfigurable module. Clocks have separate bitstream

frames.

6. IOBs immediately above the top edge and below the bottom

edge of a reconfigurable module are part of the specific

reconfigurable module's resources.

7. If a reconfigurable module occupies either the leftmost or

rightmost slice column, all IOBs on the specific edge are part

of the specific reconfigurable modules resources.

8. To help minimize problems related to design complexity, the

number of reconfigurable modules should be minimized

(ideally, just a single reconfigurable module, if possible).

This is said, the number of slice columns divided by four is

the only real limit to the number of defined reconfigurable

module regions.

 12

Fig. Design Layout with Two Reconfigurable Modules

2.1.2 Physically Aware HW-SW partitioning

approach [Ref.3]

A physically aware hardware-software (HW-SW) scheme is

presented here for minimizing application execution time under

HW resource constraints, where the HW is a reconfigurable

architecture with partial dynamic reconfiguration capability.

Such architectures impose strict placement constraints that lead

to implementation infeasibility of even optimal scheduling

formulations that ignore the nature of these constraints. An exact

and a heuristic formulation are proposed that simultaneously

partition, schedule, and do linear placement of tasks on such

 13

architectures. With the exact formulation, it is proved that the

critical nature of placement constraints. We demonstrate that our

heuristic generates high-quality schedules by comparing the

results with the exact formulation for small tests and a popular,

but placement unaware scheduling heuristic for larger tests.

This work makes several contributions:

 It demonstrates that existing approaches that do not consider

physical task layout can result in unrealizable (infeasible)

designs.

 It outlines an exact approach that incorporates physical

layout.

 It presents a KLFM heuristic (Kernighan-Lin / Fiduccia

Matheyses) incorporating detailed linear placement that

generates good results on a large set of benchmarks.

 It shows applicability of our work to heterogeneous

architectures. Modern FPGAs have heterogeneous

architectures containing columns of dedicated resources like

embedded multipliers, embedded memory blocks. Usage of

such specialized resources usually leads to more area-efficient

and faster implementations.

There is a task graph with n tasks, where each task has

multiple possible implementations. Each HW implementation of a

task occupies a certain number of columns. We have one

available SW processor, and a HW resource constraint of m HW

columns for application mapping. The objective was to find an

optimal schedule where each task is bound to HW or SW, the

 14

task implementation is fixed, and, for HW tasks, the physical

task location is determined.

To understand the problem space and determine optimality, an

Integer Linear Program is formulated. Then they used the concept

of KLFM algorithm for scheduling the tasks in the task graph.

The next step in the approach is the Earliest Starting Time (EST)

computation. The goal was to find the earliest time slot when the

task can be scheduled, subject to the various constraints. They

proceeded first searching for the earliest instant when we can

have a feasible task placement, i.e. enough adjacent columns are

available for the task. Once they obtained a feasible placement,

they tried to satisfy the other constraints. If the reconfiguration

controller was available at the instant the space becomes

available, then the reconfiguration component of the task can

proceed immediately. Otherwise, the reconfiguration component

of the task has to wait till the reconfiguration controller becomes

free. Once the reconfiguration component is scheduled, it is

checked if the execution component can be immediately

scheduled subject to dependency constraints. The EST

computation thus embeds the placement issues and resource

constraints related to reconfiguration.

1.3 Direct & Merge Dynamic Reconfiguration
[Ref.4]

Two methods for implementing modular reconfiguration in

Virtex FPGAs are compared and contrasted. The first method is

 15

the Direct Dynamic Reconfiguration which offers simplicity and

fast reconfiguration times, but limits the geometry and

connectivity of the system. The second method, developed

recently is Merge Dynamic Reconfiguration which enables

modules to be allocated arbitrary areas of the FPGA, bridging the

gap between theory and reality and unlocking the latent potential

of dynamic reconfiguration. The cost of this advancement is

increased reconfiguration time.

 In the direct dynamic reconfiguration process,

reconfigurable modules are composed from complete frames of

configuration memory. This implies that a module occupies the

full height of the device, including the I/O at the top and bottom

of the reconfiguration region. The module may be a variable

number of CLB columns in width, and all logic and routing

within the reconfiguration region are dedicated to the module.

Using this scheme, a module may be replaced very simply by

writing over the existing configuration for the frames that

coincide with the module area, using a partial bitstream.

 This is exactly the same method that is adopted by

PlanAhead for the module based active partial reconfiguration.

Hence this approach comprises with same drawbacks those have

already been mentioned in earlier section. In order to come out of

those loopholes another approach called Merge Dynamic

Reconfiguration has been proposed.

 16

 The merge dynamic reconfiguration method was created in

order to circumvent the limitations of direct reconfiguration, and

exploit the glitchless reconfiguration property of Virtex FPGAs. A

statically routed signal can pass through a reconfigured region

unperturbed provided the configuration bits associated with the

route persist in the new configuration. However, as the module

designs are placed and routed independently from the static part

of the design, the resources allocated to a static route could also

be used in one or more module implementations. This is avoided

through the use of reserved routing – within a module region,

certain routing resources are always reserved for static routing

and modules must avoid using any of these resources, even if

unused by the static design. Routing congestion and delay are

reduced by routing through module regions, and module regions

can be contiguous. The second major innovation in merge

reconfiguration is in the way the partial bitstream is loaded.

Rather than writing the bitstream directly to the configuration

memory, the current configuration is read back from the device

and modified with information from the partial bitstream before

being written back.

 17

Chapter 3

3.1 Problem Definition

The focus of the current work was a case where we have a

series of tasks to be executed on an FPGA device at different time

instances. We assume that designs for individual tasks are such

that some part of the design is common for all the tasks. In terms

of the modules we can say that some modules remain static for

all the time instances. But their position may not be the same if

we do the floorplan for individual time instances. This would lead

to total reconfiguration of the device at every time instance

leading to high reconfiguration time and cost. But there is a

scope of partial reconfiguration here which would not alter the

position of those static modules, yet gives a satisfactory floorplan

in terms of total wire length, net delay in every time instance. The

time instances of the individual tasks are fixed beforehand which

says that we can not reshuffle the tasks. So we need to deal with

all the instance designs and find some positions for the static

modules and rest of the space is occupied by other modules

specific to instances (we call it as dynamic modules). So the

problem sounds similar to a 3-D floorplan problem where the

third dimension is the temporal axis.

 18

3.2 Problem Statement

• Suppose there are n time instances, denoted by – I1, I2,….,

In

• K modules are present in all the n-instances – they are

called static modules {S1, S2,…Sk}.

• All the instances have some modules other than static ones

– called dynamic modules {M11, M12,…, Mmn}.

• Static modules do not change their positions on the floor.

• Dynamic modules are to be replaced on the fly in each

subsequent instances.

Goal is to achieve the following:

• There is a feasible floorplan for every instance. All the

modules are accommodated on the board.

• Guarantees total hardware availability (CLB, BRAM, MULT)

for all the modules in each of the instances.

• Maintaining module integrity, i.e. all the modules are

contiguous.

• Guarantees total routability.

• Minimizes total net length for all instances.

• Minimizes delay for all instances.

• Minimizes reconfiguration cost.

 19

Chapter 4

4.1 Approach

 As of any physical design problem here also the first phase

is partitioning phase where we partition the circuits of all the

instances. After that comes floorplanning of a particular instance

and mapping rest of the instance modules with that floorplan. In

this section we will give an overview of the algorithm where as in

the next section we will present the detail one.

I . Partitioning phase :

 In this phase we take the netlist (hypernets) of all the

instances as inputs and generate slicing tree for each instance by

recursively bi-partitioning the circuits of all instances together.

During the bi-partitioning we move a module from one

partition to another if it helps to improve the cut-cost of the

bipartition. Moreover it should also satisfy the balance criteria to

avoid all the modules coming into one partition.

The move of a dynamic module is simple and specific to an

instance but that of a static module involves all the instances i.e.

the module is moved from one partition to the other in all the

instances.

 20

So we obtain finally the partition tree for all the instances

with static modules taking similar places for all the instances.

II . Instance Mapping Phase :

 In this phase we first determine the instance which

demands maximum resource requirements (in terms of CLB,

RAM and MUL). We call it as guiding instance.

 Next we map the nodes of partition trees for other instances

with that of guiding instance. Static modules are holding similar

places in all the trees.

III . Floorplan Generation Phase :

 Now we use a fast floorplan generation algorithm (Ref 8) to

allocate the position of the modules on the board. Floorplanning

in FPGA is different from that in ASIC as we have CLB, RAM &

Multiplier placed in FPGA. So traditional ASIC approaches do not

suffice here. So we have used an existing floorplanning algorithm

for FPGA to do the job [Ref 8].

 At first the floorplan for the guiding instance is generated.

Now without altering the positions of the static modules we place

the dynamic modules in subsequent instances.

 21

The dynamic modules of the other instances are

accommodated in the space where the dynamic modules of the

guiding instance resided.

Since the floorplan of guiding instance (demanding

maximum resource) is already generated, other instances will

demand lesser resources and must be well accommodated in the

board-space used by guiding instance.

4.2 Detail Algorithm

I . Partitioning Algorithm :

Step 1 :

 Mark all the modules with a Static or Dynamic tag to

according to their natures.

Step 2 :

 Take only the dynamic modules and put those into two

partitions arbitrarily keeping in mind that the balanced criteria

satisfy.

One of the method of doing this is

 Sort the dynamic modules of an instance in

descending order of CLB requirement.

 Put the first one in list-1.

 Put next two modules in list-2 and next two in list-1.

 Repeat last step until all the modules are put into

either of the lists.

 22

Repeat it for all the instances.

Step 3 :

 Put the static modules arbitrarily into the two partitions

such that the balance condition is not violated. We can use the

previous algorithm again for initial partition of static modules.

The only difference being that we will put those in list-1 & list-2

of all the instances simultaneously.

Steps 4 :

 For all instances, calculate the K-L gain of all the modules

present. Maintain the gain-bucket structure proposed by

Fiduccia-Matheyses [Ref.1,2] for every instance.

According to their gains put the modules in common gain-

list. Module from left partition of an instance goes to left common

gain list and that from right partition goes to right common

gainlist.

For static modules among different values of gains obtained

from different instances calculate the average of those and put it

in the common gain list in the same way.

Step 5 :

 Sort the common list by their gain values. Construct the

gain bucket structure proposed by Fiduccia-Matheyses

partitioning algorithm[Ref. 1,2].

 23

Pick up the module from the bucket with highest gain and

move it to the other partition.

 Check the balance condition of that particular instance in

which the moved chosen cell belong to. If it is a static module,

check all the instances.

 If balance condition satisfied, Accept the move and Lock the

module. Otherwise Reject it. Check the next available module in

terms of gain and repeat the above procedures.

Update the gains of the modules after the accepted move.

Also update the gain buckets of the corresponding instance if the

moduleis dynamic otherwise update that of all the instances.

Update the gain bucket of the common list as well.

Step 6 :

 Repeat step 5 until all the modules are locked or no more module can be

chosen for the move due to balance criteria.

Step 7 :

Among all the moves taken fix that many number of moves

from the beginning for which the partial sum of the moves

becomes maximum.

Step 8 :

 Repeat steps 3-7 recursively until all the leaf nodes of the

slicing tree contain single module.

 24

So we obtain finally the partition tree for all the instances with

static modules taking similar places for all the instances.

II . Module Mapping Algorithm :

Step 1:

 Get the slicing trees for all instances from the previous

phase. Determine the maximum resource utilizing instance and

set its slicing tree as Guiding Tree.

Step 2 :

 Calculate the number of tiles required by each modules of

each instance. Tiles are nothing but an assumed building block

consisting of a fixed number of CLB, RAM, MULT.

Step 3:

 In the guiding tree start from root node and match the root

nodes of other instances. Then go top down fashion and match

either node by node or node by subtree or subtree by node.

Step 4 :

 Put a tag for all the nodes of the other slicing trees about

the correspondence with the guiding tree obtained from the

previous step.

 25

III . Floorplan Generating Algorithm :

Step 1:

 Use the floorplanning algorithm for FPGAs [Ref.8] to

generate the floorplan of the guiding instance. In brief, the

algorithm states that

• For each module, generate

– a set of irredundant (wi,hi) pair (in terms of basic tiles)

• Post-order traversal of partition tree

– Nodes are merged with respect to horizontal cut or

vertical cut.

• Vertically : V-list (wv,hv)

• Horizontally: H-list (wh,hh)

– Form combined list which is an irredundant

implementations from V-list and H-list

• M-list (wm,hm) :

• A set of irredundant implementations formed at root –

Slicing tree

• Realization of slicing tree on FPGA

– Allocation of Rectangular Region by calculating the co-

ordinates of rectangular blocks.

– Allocation of RAM/MUL Formulated as a Minimum

Weighted Bi-partite Matching (MWBM)

Step 2:

 Starting from root in a top down manner for other instance

trees fix up the positions of static modules as they were in

guiding instance floorplan.

 26

Step 3:

 For the rest of the floorplan get the correspondence tag

obtained from previous phase and calculate the co-ordinates of

rectangular regions again in top down manner.

Hence get the floorplan of other instance as well.

 27

Chapter 5

5.1 Experimental Results

For the problem of partial reconfiguration there is no

standard existing benchmark available. So we have developed an

example circuit and tested it with the mentioned partitioning

algorithm and with the partitioning tool hMetis which follows

Fiduccia-Matheyses algorithm in a slightly modified form.

The format of our input netlist file would be like below

file format: test*.reconfig
==

<FPGA architecture>

.num_modules <Total no of modules over all the instances> <Number of
static modules>

.module <Module_id> <Module type : s (static) d (dynamic)> <CLB
requirement> <RAM requirement> < MUL requirement>
{repeat above line for all modules}

.num_instance <Total number of time instances>

.instance <instance_id>

.module_list <list of module ids of this time instance>

.hnet :<hnet_wt>:<hnet member modules>
{repeat above line for all hnets for this particular instance}

{repeat above block for the number of time instances present}

 28

Example input netlist file :

Test1.reconfig
.num_modules 32 3
.module 0 d 400 5 5
.module 1 s 400 5 5
.module 2 s 400 5 5
.module 3 d 400 5 5
.module 4 d 400 5 5
.module 5 d 400 5 5
.module 6 d 400 5 5
.module 7 d 400 5 5
.module 8 d 400 5 5
.module 9 d 400 5 5
.module 10 d 400 5 5
.module 11 d 400 5 5
.module 12 d 400 5 5
.module 13 d 400 5 5
.module 14 d 400 5 5
.module 15 d 400 5 5
.module 16 d 480 6 6
.module 17 d 480 6 6
.module 18 d 480 6 6
.module 19 s 480 6 6
.module 20 d 800 10 10
.module 21 d 480 6 6
.module 22 d 400 5 5
.module 23 d 400 5 5
.module 24 d 800 10 10
.module 25 d 400 5 5
.module 26 d 400 5 5
.module 27 d 800 10 10
.module 28 d 960 12 12
.module 29 d 400 5 5
.module 30 d 400 5 5
.module 31 d 800 10 10

Contd..

 29

.num_instance 2

.instance 0
.module_list 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
.hnet:1:13 4
.hnet:1:13 4 15 18 19 12
.hnet:1:15 18 19 12
.hnet:1:15 18
.hnet:1:19 12
.hnet:1:11 2
.hnet:1:13 15 11
.hnet:1:6 14
.hnet:1:4 18 12 2 6 14
.hnet:1:9 10
.hnet:1:7 1
.hnet:1:9 7
.hnet:1:8 0
.hnet:1:10 1 0
.hnet:1:5 3
.hnet:1:9 7 8 5
.hnet:1:17 16
.hnet:1:1 8 5 17

.instance 1
.module_list 20 1 2 21 22 23 24 25 26 27 28 29 30 31 19
.hnet:1:20 23
.hnet:1:20 23 21 19 24
.hnet:1:20 21 19 24
.hnet:1:20 21
.hnet:1:19 24
.hnet:1:22 2
.hnet:1:20 22
.hnet:1:24 25
.hnet:1:23 21 24 2 25
.hnet:1:26 27
.hnet:1:27 1
.hnet:1:27 1 31
.hnet:1:29 30
.hnet:1:26 27 30 31
.hnet:1:1 31 30 28
.hnet:1:29 30

After partitioning Instance-0 with hMetis that uses modified

version of Fiduccia Matheyses algorithm, we get this partition.

 30

Partitions with hMetis :
9
19
1
11
1
16
7
4
7
9
19
14
11
16
12
2
2
12
14
6

The above result will lead to the following set of leaf nodes in a

partition tree.

B-(2,4)-(15,16)-B-7-B-19-(6,8)-B-(0,9)-B-(3,12)-(14,17)-B-(11,18)-B-(5,13)-

B-B-(1,10)

For our calculation purpose we may eliminate blank partition

and expand those which have more than one modules.

2-4-15-16-7-19-6-8-0-9-3-12-14-17-11-18-5-13-1-10

 After partitioning with our partitioner we get the output in a

tree manner where the nodes are the set of modules.

 31

Partitions with our partitioner.

Set of nodes at each node of partition tree are shown below.

0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
--
1: 1 5 3 4 17 18 11 10 12 6
2: 2 8 14 9 15 7 16 0 13 19
--
3: 1 5 10 11 18
4: 3 6 12 4 17
5: 2 7 15 9 19
6: 8 14 16 0 13
--
7: 1 18
8: 10 11 5
9: 3 17
10: 4 6 12
11: 2 7 9
12: 15 19
13: 8 14 0
14: 16 13
--
15: 18
16: 1
17: 10 11
18: 5
19: 3
20: 17
21: 4 12
22: 6
23: 2 9
24: 7
25: 15
26: 19
27: 8 0
28: 14
29: 16
30:13

So one of the possible leaf node set will be as below

18-1-10-11-5-3-17-4-12-6-2-9-7-15-19-8-0-14-16-13

Now similar partitions are done in Instance-1 as well. After
calculating the CLB requirement of both the instance, we found

 32

#CLB in Instance-0 : 7920
#CLB in Instance-1 : 7440

So the Guiding Instance will be Instance-0 as it requires
maximum no of CLBs.

So we run the floorplanning algorithm on the partition tree of
Instance-0 and finally we get a bunch of floorplans out of which
we select the below as the best in terms of integrity of modules.

 33

Chapter 6

6.1 Implementation Details

While implementing the mentioned algorithm we used Xilinx

Spartan3 device architecture.

The partitioning phase is written in scripting language –

Perl.

To compare with a standard partitioner we used hMetis tool

which is a modified version of Fiduccia Matheyses algorithm,

The floorplanner that we used was written in C language.

6.1.1 Data Structure

The main data structure that has been used looks like

following. Most of the input information as well as the generated

data are stored in this structure. The structure basically a hash

defined in Perl language.

@module[] {

Inst_id => <-1 for static module, otherwise it is
equal to the instance number where
this module is present>

 Module_type => <static or dynamic>
 Clb_req => <CLB requirement of module>
 RAM_req => <RAM requirement of module>

MULT_req => <MULT requirement of module>
@pin_counter => <pin count in different instances>
@hnet_member => <this module present in these

hnets>

 34

Partition_side => <side in which this module belong
after partition>

}

@instance[] {
 Hnet_size => <no of hnets in this instance>
 %Hnet0 => {
 Hnet_weight => <wt of hnet>

@Hnet_edge => <hnet modules>
l_index => <no of hnet modules in left

partition>
r_index => <no of hnet modules in right

partition>
 }
 .

 .
 %Hnet<n-1> => <field keys are same for all>

@Module_list => <list of modules present in this instance>
%treenode => {

<node_id> => <set of modules in that
particular node>

}
 %gain => {
 <module_id> => <gain of the module>
 }

@Arr1 => <list 1 for using in the time of partitioning>
@Arr2 => <list 2 for using in the time of partitioning>
%bucket => {

<gain_value> => <list of modules having that
gain value>

}

 %commhash = {

 %hash1 => {one the list of common gain bucket}
 %hash2 => {other list of common gain bucket}

}

 35

6.1.2 Flow of Function Calls for the Partitioner

Main function

 Read input file

Common
functions:
1.Sort

elements.
2.ExistArray

1. Sort module
2. Load Zigzag

Initial Partition
(Called repetitively until

partition completes)

Final Partition

1. CalcHnetBalance
2. CalcGain
3. ConstructBucket
4. MakeCommlist
5. DivideCommlist
6. MoveCell
7. CheckWtBalance
8. UpdateGain

LoadTreeNodes

Iterate through the
gain bucket till empty

Repeat until all the leaf
nodes contain single cell

OUTPUT TREE

 36

Chapter 7

7.1 Conclusion

The problem of Partial Reconfiguration is a tricky one to

handle. The focus of the dissertation was firstly to judge what the

present situation is, in terms of checking existing CAD tools in

the domain. If any tools presently support this methodology or

not, even if it supports to what extent. After that survey work the

attempt was to build up a new algorithm which would do away

with the drawbacks that existing CAD tools or algorithms have

and to provide more flexibility to the user.

The work that has been done is successfully partitioning the

circuits and offering fairly good result as compared to others.

Although the implementation may be a bit tricky the algorithm is

simple enough and uses some ideas of Fiduccia Matheyses

algorithm. But it has been extended to this 3D floorplanning

problem successfully. Again the floorplan generating module that

has been used is quite elegant and gives fairly good results.

 37

 38

References

[1] C. M. Fiduccia, R. M. Mattheyes, ”A Linear-time heuristic for improving
network partitions”, DAC, 1982.

[2] B Kernighan, S Lin, ”An efficient heuristic procedure for partitioning

graphs”, The Bell System Technical Journal, V-29, 1970.

[3] S Banerjee, E Bozorgzadeh, N Dutt, ”HW-SW partitioning for

architectures with partial dynamic reconfiguration”, Technical Report
CECS-TR-05-02, UC Irvine.

[4] P. Sedcole, B. Blodget, T. Becker, J. Anderson and P. Lysaght, “Modular

dynamic reconfiguration in Virtex FPGAs”, IEE Proc.-Comput. Digit.
Tech., Vol. 153, No. 3, May 2006

[5] Xilinx Inc. ‘Virtex-4 user guide’, UG 290, v1.2, 2005

[6] Cindy Kao, Xilinx, Inc “Benefits of Partial Reconfiguration”, 2005.

[7] Nij Dorairaj, Xilinx, Inc. “PlanAhead Software as a Platform for Partial

Reconfiguration”, 2005.

[8] Pritha Banerjee, Susmita Sur-Kolay & Arijit Bishnu, “Floorplanning in

Modern FPGAs", in proc International Conference on VLSI Design 2007.

[9] Xilinx Inc : “Development System Reference Guide”.

[10] Xilinx Inc : “PlanAhead Methodology Guide”.

[11] Love Singhal and Elaheh Bozorgzadeh, “Multi-layer Floorplanning on a

Sequence of Reconfigurable Designs”,

[12] Xilinx Inc : “Two Flows for Partial Reconfiguration: Module Based or

Difference Based” , 2004.

[13] “Basics of FPGA”, http://www.wikipedia.org/.

[14] George Karypis and Vipin Kumar, “hMETIS - A Hypergraph Partitioning

Package Version 1.5.3 Manual”, 1998.

http://www.wikipedia.org/

	frontpage
	Ack
	Report

