
 1

Categorization of Images using Content-based

Features: A Data Mining Approach

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

OF

MASTERS OF TECHNOLOGY

IN

COMPUTER SCIENCE

BY

ADITYA N

(MTC0512)

Under the Guidance of

Prof. Aditya Bagchi
(Computer and Statistical Services Centre)

Dr. Pinakpani Pal

(Electronics and Communication Sciences Unit)

INDIAN STATISTICAL INSTITUTE

203, Barrackpore Trunck Road

KOLKATA – 700 035

 2

Acknowledgements

It gives me immense pleasure and satisfaction to express my heart-felt

gratitude and respect to my professor and supervisor, Prof. Aditya Bagchi, for his

invaluable guidance, supervision and encouragement throughout my project work.

I will be grateful to him forever, for his most timely suggestions, and help

regarding many aspects during this period. Working under him is a wonderful

experience.

I express deep regards and thanks to all my teachers who have given me

invaluable knowledge. I would like to express my special thanks to Dr. Pinakpani

Pal for his valuable suggestions during all stages of my dissertation and support in

Image Processing Lab. I thank all my colleagues and my classmates for their

support and maintaining an excellent work environment in the Lab.

Finally I express my heart-felt thanks to my parents who have

unconditionally encouraged and supported me from the beginning to end.

Date: ADITYA N

Indian Statistical Institute,

Kolkata – 700 035.

 3

Contents

Chapter 1

1.1 Introduction………………………………………………… 01

1.2 Brief introduction to CBIR…………………………………. 03

1.2.1 Fundamental Models of CBIR System……………... 04

1.2.2 Applications of CBIR Systems…………………….. 05

1.3 Objective…………………………………………………… 07

1.4 Overview of work………………………………………….. 07

Chapter 2

2.1 Problem Formulation………………………………………. 08

2.2 Feature Categories…………………………………………. 09

2.2.1 Shape Feature………………………………………. 10

2.2.2 Texture Feature…………………………………….. 11

2.2.3 Color Feature………………………………………. 12

2.3 Related Concepts…………………………………………... 12

2.3.1 Data Mining………………………………………... 12

2.4 Different Matching Procedures of Classification………....... 14

2.4.1 Exact match……………………………………......... 15

2.4.2 Perfect match………………………………………... 16

Chapter 3

3.1 Implementation Details……………………………………… 17

 3.1.1 Basic Class Structure……………………………….. 18

3.2 Preliminary Algorithmic Details……………………………. 19

3.3 Enhanced Algorithmic Details……………………………… 26

3.4 Observations………………………………………………… 33

 4

Chapter 4

4.1 Experimental Results……………………………………… 34

4.2 Training Data……………………………………………… 35

4.3 Class Hierarchy……………………………………………. 41

4.4 Evaluation of Miss Classification rate ……………………. 48

Chapter 5

5.1 Conclusion………………………………………………… 49

5.2 Scope of Future work……………………………………… 50

References………………………………………………………… 51

 1

Synopsis: Categorization of Images using Content-based Features:

A Data Mining Approach

Aditya N (MTC0512)

Under the supervision of

Prof. Aditya Bagchi

Dr. Pinakpani Pal

Objective:

 The basic objective of this project is to classify the images based on the

extracted visual contents or features from a collection of large set of images

present in the image database. It also aims at continuously restructuring the class

hierarchy dynamically upon the arrival of new instances into the existing structure.

In our present algorithm we used shape, texture and color features for the purpose

of classification.

Over View of Work:

In the context of our algorithm shape, texture and color features are

combined to form 57-dimensional feature vector. These features have values in the

range of (0 to 8) or (0 to16). The absence of a particular feature is marked by 0

and the presence is indicated by a value in the range of (1 to 8) or (1 to 16),

signifying the strength of that feature. Each of these feature values is converted

into respective binary strings of 8-bit or16-bits where, if the feature value is i, then

the i
th
bit is set to 1 and rest of the bits to 0 in the corresponding 8-bit/16-bit vector.

This reduces the given problem into a single level processing. Based on these

features a classification tree has been constructed that performs continuous

 2

restructuring of a class hierarchy. The class hierarchy represents relationship

among different items of the database.

The system starts with an initial class hierarchy consisting of a global root

and its children as the representatives of each class of images under consideration.

The class representatives are obtained by the initial training. In the training phase,

for each class we find out the corresponding identifying features from the training

data. This identifying feature becomes the feature vector for the root node

corresponding to that class (representative). The system keeps on modifying the

class hierarchy as new instances are considered. These new instances are either

taken from the underlying database or inserted afresh. When a new instance

(transaction) arrives in the database, the system tries to place it in the existing

hierarchy. However, if it fails to classify the instance exactly, it adds the instance

as an exception to the class found to be closest. The present system initiates

restructuring only when the number of exceptions to a class exceeds a predefined

threshold value. The threshold value is related to support and confidence of an

association rule in the context of data mining.

Evaluation of rate of Miss Classification:

Our test set consists of 312 images comprising of the images from each of

the cars, fishes, flowers, deer, elephants and planes classes.

The no. of images considered from each of the classes is shown in the

flowing table:

CAR AIRPLANE FLOWER DEER ELEPHANT FISH

99 39 36 20 21 97

 3

The error rate corresponding to each of the classes is described below:

Percentage of misclassification with cars = 08.08%

Percentage of misclassification with Planes = 30.07%

Percentage of misclassification with Flowers = 22.22%

Percentage of misclassification with Deers = 30.00%

Percentage of misclassification with Elephants = 09.52%

Percentage of misclassification with Fishes = 31.95%

The average percentage of misclassification =21.47%

Conclusion:

The system is tested with a collection of images in our database consisting

images of cars, planes, flowers, animals and fishes. It has been established that

along with shape features, successive inclusion of texture and color features

improves the system performance. In our present work shape features are given

more weightage against color and texture. So the shape feature predominantly

separates among the different classes.

It has been observed that, as the precision of the features is increased to

higher values (e.g. from 8-bit to 16-bit), the algorithm yields better separation

between feature values and hence better results. It has also been observed that

subdivision of the classes into more sub classes reduces the error rate.

From the figures showing misclassification rates from the previous section

it is apparent that some classes show higher percentage of misclassification. This

higher rates of misclassifications are observed because; the objects present in the

corresponding classes are of different shapes than those which are used for

 4

training (e.g. Deers in sitting posture are misclassified against the training set

which was fed to recognize the deers in the normal standing posture).

In case of fishes, by subdividing Fish class into two sub classes consisting

of Normal Fishes and Circular shaped fishes, it has been observed that the

misclassification rate has reduced considerably.

The percentage of misclassification with respect to Fishes after sub

classification is observed to have reduced to 14.43%.

Hence the average error rate i.e., the avg. percentage of misclassification

(with respect to the total images taken together after sub classification of fishes)

has been reduced to 16.02%.

So finally, it has been concluded that similar sub classification of other data

items could reduce the overall misclassification rate to a great extent.

References

[1] Subhamoy Maitra & Aditya Bagchi. Dynamic Restructuring of

Classification Hierarchy towards Data Mining.

[2] Sanjoy Kumar Saha. Intelligent Image Retrieval Using Visual Features and

Relevance Feedback. PhD thesis, Bengal Engineering. & Science

University.

[3] Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules and

Sequential Patterns. PhD thesis, University of Wisconsin Madison.

[4] Han Jiawei, Kamber Micheline. Data mining: concepts and techniques,

Morgan Kaufmann, 2001.

[5] Mitra Sushmita, Acharya Tinku. Data mining -

multimedia, soft computing, and bioinformatics, John Wiley, 2003.

[6] RaghuRam Krishnan.Database Management System, McGraw-Hill, 1998.

 5

Chapter 1

1.1 Introduction

Images are being extensively used in every sphere of our life. Apart from

overwhelming influence of television, common people look for images in

newspapers, advertisements, item catalogues, entertainment, education,

architecture, painting and many others. Professionals use image in criminology

(e.g., fingerprint identification, face recognition), medicine (e.g., case-based

diagnosis from radiographs or scan data), education (e.g., searching for material in

Library), fashion design, historical archiving, fine arts and so on. Most of the cases

the problem is to find a desired image from a large collection or, in other words,

retrieve images similar to the image at hand from large number available in some

collections. Image search and retrieval is a field of very active research since the

1970’s. However, the field has observed a steady exponential growth in recent

years as a result of unparalleled increase in the volume of digital images.

Thousands of images are generated everyday for different applications. These

images are either stored in a local database or are available from remote ones.

Thus a huge amount of information is out there and can easily be accessed through

world-wide web. Professionals of various fields intend to access and utilize these

images for their purpose. However, we cannot access to or make use of the

information unless it is properly organized for efficient browsing and retrieval,

because searching and locating a desired piece of image from varied and large

collection usually result in a total frustration. Two major research communities,

namely Database Management and Computer Vision, are putting considerable

effort towards the solution of this problem. Accordingly two major approaches

have emerged: one being text based and the other visual based respectively.

 6

 Early systems of image retrieval exploited the capabilities of text based

Database management Systems. Images are first manually annotated using a set of

keywords that describe the content of the image best. Images are indexed and

arranged using these keywords, finally images are retrieved based on text based

query. Major research in this direction includes Data Modeling, Indexing

Structure, Multi-dimensional Indexing, Efficient Searching and Query Design and

Evaluation. However, these text-based image retrieval techniques face two major

problems: labor intensiveness and annotation impreciseness. When image

collection is large, enormous amount of man-hour is required to annotate those

images manually. Problem became more and more acute since early 1990’s when

world-wide web allow access remotely placed image databases. The second

problem is more crucial and is due to semantic of image content. Because of rich

content in the images and the subjectivity of human perception, same image may

be perceived differently by different persons. As a result, same image may be

annotated by different set of keywords by different persons. Thus image

annotation in general is neither unique nor adequate; hence affects the

performance of image retrieval system to a large extent. This leads to development

and flourishing the alternate approach, namely Content Based Image Retrieval

(CBIR) system.

 7

1.2 What is CBIR?

Content-based image retrieval (CBIR), also known as query by image

content (QBIC) and content-based visual information retrieval (CBVIR) is the

application of computer vision to the image retrieval problem, that is, the problem

of searching for digital images in large databases. The term CBIR seems to have

originated in 1992, when it was used by T. Kato to describe experiments into

automatic retrieval of images from a database, based on the colors and shapes

present. Since then, the term has been used to describe the process of retrieving

desired images from a large collection on the basis of syntactical image features.

The techniques, tools and algorithms that are used originate from fields such as

statistics, pattern recognition, signal processing, and computer vision.

In CBIR systems the term “content-based” means that the search will

analyze the actual contents of the image. The term 'content' in this context might

refer colors, shapes, textures, or any other information that can be derived from the

image itself. Without the ability to examine image content, searches must rely on

metadata such as captions or keywords, which may be laborious or expensive to

produce. There is growing interest in CBIR because of the limitations inherent in

metadata-based systems, as well as the large range of possible uses for efficient

image retrieval. Textual information about images can be easily searched using

existing technology, but requires humans to personally describe every image in the

database. This is impractical for very large databases, or for images that are

generated automatically, e.g. from surveillance cameras. It is also possible to miss

images that use different synonyms in their descriptions. Systems based on

categorizing images in semantic classes like "cat" as a subclass of "animal" avoid

this problem but still face the same scaling issues.

 8

In case of classical information retrieval system, the data in the text

databases are logically structured. But in CBIR system, the image database is

essentially unstructured. The digitized image consists of an array of pixel

intensities without any inherent meaning. Thus, like any kind of image processing,

in CBIR system also one of the key issues is to extract useful information from the

raw data. Subsequently, the issue like storage of data and efficient scheme for

retrieval of desired images come into picture. Thus the major issues of CBIR are

as follows:

a. Identification of suitable ways of describing the image content

b. Extracting such features from raw image.

c. Providing compact storage for large database.

d. Matching query and stored images in a way that reflects human

similarity judgment.

e. Efficient accessing of stored images by content.

The CBIR system architecture is essentially divided into two parts.

i. In the first part images from the image database are processed off-

line and indexing and meta-data construction is done.

ii. In the second part , the query image goes through the same

process and compared with the metadata info to find out the

similar images

1.2.1 Fundamental modules of CBIR system:

Generally the CBIR system can be grouped into three fundamental modules:

1. Visual content or feature extraction :

Visual contents or features such as color, texture, pattern, image,

topology, shape of objects and their layouts and locations within the image

 9

etc., are extracted from the images of an image database by applying various

image processing algorithms.

2. Multidimensional indexing :

An image can be represented by a multidimensional vector of the

extracted features. The feature vector actually acts as the signature of the

image. These extracted image features are stored as meta-data, and images are

indexed based on these meta-data information. This feature can be assumed to

be associated to a point in the multidimensional space.

3. Retrieval:

In this step the query image is posed and asked to find the images

similar to the given image. Retrieving similar images to the query image then

boils down to finding the indices of those images in the N- dimensional search

space, whose feature vectors are within some threshold of proximity to the

point representing the query image.

1.2.2 Applications of CBIR Systems:

 CBIR system can be used in a wide range of applications. Some of them are

described as follows:

Crime Prevention:

Law enforcement agencies maintain a database of facial photographs of

past suspects, fingerprints etc. In case of crime, they can compare evidence with

the database images for identify matching.

 10

Intellectual property:

In case of trademark registration, the new mark is to be checked with the

existing marks to ensure that it will not create any confusion. It has been

recognized as a prime application area of CBIR.

Architectural and engineering design:

The designer can search and find out similar designs from the design

archives and those can be adapted to the current problem.

Medical diagnosis:

Modern medical Science relies heavily on diagnostic techniques like

radiology, histopathology, computerized tomography etc. By comparing these

medical images CBIR techniques can identify the similar past cases and thereby

can aid diagnosis.

Geographical Information and remote sensing systems:

CBIR techniques can be used to aid the GIS. Searching by spatial attributes

(finding target of interest in the close vicinity), analyzing the images to locate the

regions of interest (area growing crops, flooded regions etc.) may be few such

applications.

Journalism and advertising:

 News paper agencies maintain archives of photographs illustrate articles or

advertising copy, it is expensive to maintain detailed keyword. In this case CBIR

has an important role to access the desired photographs.

 11

1.3 Objective:

 The basic objective of this project is to classify the images based on the

extracted visual contents or features from a collection of large set of images

present in the image database. It also aims at continuously restructuring the class

hierarchy dynamically upon the arrival of new instances into the existing structure.

In our present algorithm we used shape, texture and color features for the purpose

of classification.

1.4 Over View of Work:

In the context of our algorithm shape, texture and color features are

combined to form 57-dimensional feature vector. Based on these features a

classification tree has been constructed that performs continuous restructuring of a

class hierarchy. The class hierarchy represents relationship among different

attributes (items of the database). When a new instance (transaction) arrives in the

database, the system tries to place it in the existing hierarchy. However, if it fails

to classify the instance exactly, it adds the instance as an exception to the class

found to be closest. The proposed system initiates restructuring only when number

of exceptions to a class exceeds a predefined threshold value. The threshold value

is related to support and confidence of an association rule in the context of data

mining. The system starts with an initial class hierarchy and class descriptions

obtained from the initial training and keeps on modifying them as new instances

are considered. These new instances are either taken from the underlying database

or inserted afresh.

The system is tested with a collection of images in our database consisting

images of cars, planes, flowers, animals and fishes. It has been established that

along with shape features, successive inclusion of texture and color features

improves the system performance.

 12

Chapter 2

This Chapter deals with the description of basic terminology and definitions

required for the understanding of the algorithms and implementation details which

are described in the next chapter. Here we give introduction to basics of data

mining and various types of features considered in our implementation.

2.1 Problem Formulation

 The proposed algorithm works for a certain class of images. So, first we

define the how the images are classified.

 Depending on the contents, images may be grouped into following three

classes:

1. Class of images containing a single dominant object (Class-1).

2. Class of images containing many objects of more or less equal significance

(Class-2).

3. Class of images containing no objects of specific interest, but their

combination appears very picturesque (Class-3).

The Class-3 is exemplified by outdoor scenery consisting mostly of sky,

water bodies (like sea, river, Lake etc), grass field, beach etc. none of which is

particularly important, but surely the combination is.

 Images of a group of people, cluttered objects, busy area (e.g., railway

station, market, city streets etc), business meeting etc. belong to the Class-2.

 13

Finally, Class-1 contains images of our friend, relative, home, car, pet,

object of our interest (e.g., ancient building, monument, sculpture and statue,

biomedical mage, animal, bird etc), famous personality and so on. These objects,

in the image, occupy the major area mostly at the centre and are sharply focused.

There could be other objects too in the image, but those are given usually less

emphasis while photographed and are treated as background. Hence, we say that

Class-1 is by far large than that of Class-2 and Class-3 together.

Now, based on the background, the images of Class-1 can further be divided

into two groups consisting of:

1. Images with non-textures or smooth textured background.

2. Images with highly textured background.

First group is most common, because when photos are taken usually

uniform backdrop (such as curtain or wall in the studio or in the hall or even

sky in case of outdoor object) is used as much as possible to assign more

prominence of object of interest. However, in some cases it is not possible to

have such controlled background (e.g., while photographing a wild animal,

bird on a tree, a building surrounded by trees etc.) and we have dealt with

most of the photos of the second group. However, it is more apparent that the

images of first group are more common.

2.2 Feature Categories:

In our present algorithm the features used for the classification are broadly

divided into three categories namely,

i. Shape Features.

ii. Texture Features.

iii. Color Features.

 14

2.2.1 Shape Feature:

 Major information content of an image is the shape of the objects present in

it and their relative arrangement. Infant, there is considerable evidence that natural

objects are primarily recognized by their shape. Shape can roughly be defined as

the description of an object minus its position, orientation and size. Therefore, the

shape features used for the object identification or matching should be invariant to

translation, rotation and scale. In short, shape features are those properties of

objects or of its parts that are same for visually similar type of objects and are

different for visually dissimilar objects. The shape features are computed by

measuring some geometrical attributes of the regions corresponding to the objects.

Shape features may be calculated for the whole image or for each individual

objects. In the former case we have mainly topological attributes like, number of

objects, Euler number etc. In latter case features like area, perimeter, convexity,

aspect ratio, circularity, elongated ness etc are computed. It should be noted that

the design of a feature extraction algorithm depends on scheme of shape

representation. Shape representation schemes can be divided into two categories:

i. Boundary based.

ii. Region based.

The former uses the outer contour of a region, whereas the latter uses the

whole of it.

Some basic definitions of most commonly used shape features are described

below.

Linear Symmetry: This visual property indicates, when an axis passing through

the centre of gravity divides the object into two parts, how well the mirror

reflection of one part about that axis matches with the other part. The axis for

which the best match occurs is called the axis of symmetry and the error in

matching provides a measure of symmetry.

 15

Circularity: For a perfectly circular object, all the contour points are equidistant

from the centre of gravity and the centre of gravity coincides with the center of the

smallest circle encompassing the object.

Aspect ratio: Aspect ratio of an object signifies overall shape structure like some

kind of elongated ness etc. It can be measured in terms of the ratio between height

and width or length of major axis and minor axis etc. If the minimal bounding box

of an object is square then aspect ratio is 1.

Concavity: Conventionally objects are concave or convex. Thus a measure of

concavity (convexity) is a strong feature for describing the shape. Contour of an

object consists of a collection of inward and outward curve segments, i.e., curve

segments with positive or negative curvature. Some segments have zero curvature

indicating straight line segment. In place of concavity, the curve segment is inward

with respect to center of gravity. As a result, any arbitrary contour can be thought

of as a segment of circular arc indicating concavity or convexity.

2.2.2 Texture Feature:

 Texture is another feature that has been extensively explored by various

research groups. Texture is an innate property of virtually all object surfaces,

including fabric, bark, water ripple, brick, skin etc. In satellite images texture of a

region can distinguish among grass land, beach, water body, urban area, etc.

 The term texture is used to specify the roughness or coarseness of object

surface. In an intensity image texture puts its signature as the variation in intensity

from pixel to pixel. Texture measures look for visual patterns in images and how

they are spatially defined. Textures are represented by texels which are then

placed into a number of sets, depending on how many textures are detected in the

 16

image. These sets not only define the texture, but also where in the image the

texture is located.

2.2.3 Color Feature:

 Another widely used visual feature for CBIR is color. Main advantage of

this feature is its invariance to size, position, orientation and arrangements of the

objects. On the other hand, disadvantage is its immense variation within a single

image. Several methods of color representation and estimating similarity measures

are present in the literature. Color searches will usually involve comparing color

histograms, though this is not the only technique in practice

2.3 Related Concepts

This section would discuss about some background materials to be used in

the proposed system. Basic ideas about data mining have been covered.

2.3.1 Data Mining

Data mining covers the methods for finding interesting trends or patterns in

large datasets. These discovered patterns help and guide the appropriate authority

in taking future decisions. Generally data mining tools are expected to identify

interesting patterns in the data with minimal user intervention. Since data mining

efforts usually assume a very large volume of data, efficiency and scalability are

two very important criteria for data mining algorithms.

The pattern discovered by data mining should properly portray the contents

of the dataset and the nature of the application under consideration. The

imperfectness should be expressed by approximate rules and should also be

quantifiable. Discovering or mining association among different features present in

an application domain has recently attracted a lot of attention.

 17

Definition:

An association rule is of the form LHS ⇒ RHS, where both LHS and RHS

are sets of items.

This identifies that if every item of LHS is present in a transaction, then it is

likely that the items in RHS will also be present. There exists two important

measures for an association rule, one is support and another is confidence.

Definition:

The support for a set of items is the percentage of transactions that contain

all of these items.

Remark:

The support for a rule LHS ⇒RHS is support for the set of items

LHS∪RHS

Low support may imply that a rule has arisen purely by chance, whereas

high support value may identify some relational pattern among the items.

Definition:

 The confidence for a rule LHS ⇒ RHS is
(LHS)Support

RHS) (LHSSupport ⇒
.

Remark:

 Out of the transactions that have LHS, the percentage of transactions that

have RHS as well, is the measure of confidence of the rule LHS ⇒RHS

It indicates the degree of correlation between presences of these set of

items.

 18

2.4 Different Matching Procedures of Classification:

Definition:

The universal attribute set U, U = n is the set of all the attributes that will

be considered for the application domain.

Here we are interested to find out relevant relationships among the items in

U. Once the universal attribute set is identified, the attributes are considered in a

specific a0, a1,…, an-1 for convenience of representation. Since ai ∈ {0, 1} i∀ , the

i
th
 bit of an n bit string represents presence and absence of an attribute.

Definition:

 An instance (transaction) I is considered as a string of length n containing

0-1 values (I ∈ {0, 1}
n
) implying the presence (1) and absence (0) of the items in

the transaction.

Definition:

 A class C consists of a set of attributes C
A
 ⊆ U. A class hierarchy consists

of a set of classes, with a parent-child relationship among them.

Remark:

A class may be identified by a 0-1 bit string vectors of length n, where the

i
th
 vector is 0 if ai∉ C

A
, and corresponding feature value otherwise. C

A
 represents

the set of attributes belonging to class C only and not the attributes inherited from

the parent classes. The root class has no parent. The intermediate classes have one

parent and one or more children. The leaf classes have one parent and no child.

 19

2.4.1 Exact match

When the system considers a new instance, it is compared against the leaf

level classes for exact match. If it fails, top-down search is done from the root for

approximate classification. In this case matching may be possible only up to some

class at intermediate level. Since further matching down the hierarchy fail, the new

instance is flagged as an exception to the class corresponding to the intermediate

node. In this method a lot of exceptions may get accumulated in each class. If the

count of exceptions for a class exceeds the application specific threshold values

the class hierarchy needs to be restructured. The different matching procedures for

inserting an instance into the system are discussed below.

Definition:

The total attribute set C
tA
 attached to a class C is the union of all the

attribute sets of the classes lying on the path from root to that class. Corresponding

to total attribute set an n bit binary number is formed, with 1 at the i
th
 position if

the attribute ai ∈ C
tA
and 0 otherwise. This is called the path identification number

of the class.

Definition:

 An instance I is an exact match with a leaf level class C, if the binary

number corresponding to I is equal to the path identification number of C.

Remark:

 Here equality means the similarity of the bit patterns of the two n bit

strings, one the instance I and another the path identification number of the class.

Remark:

Once an instance becomes exact match with one leaf class C, the respective

count increases for all the classes on the path from the leaf class C to the root.

 20

2.4.2 Perfect match

An instance I will be a perfect match with root class if all the attributes of

root class are present in that instance. In case of Perfect match the system

can classify an instance up to some depth in the tree. For all the classes,

from the root downwards up to which the perfect match is found the match

count is incremented by 1 for those classes.

 For the class beyond which perfect match cannot be found an

exception is flagged and corresponding exception value is stored and its

count is incremented.

Let Fr(C) =U
A

iC , where Ci’s are the peer classes of C, excluding C.

Definition:

 An instance I will be a perfect match with a class C at depth i ≥ 1 if

1. It is a perfect match to a class Cp at depth i-1.

2. Cp is the parent of C.

3. All the attributes of C are present in the instance I i.e., C
A
 ⊆ I.

4. Let A
’
 = Fr(C) - C

A
. In all the attributes of A

’
 the instance I

should contain 0 value.

Remark:

 For all the classes, from the root downwards up to which the perfect

match is found the match count is incremented by 1.For those classes, if the

threshold value with respect to no. of exceptions is crossed, a new class is

created as a child to the corresponding class. The child class consists of the

features with maximum exception count, ties are resolved arbitrarily.

 21

Chapter 3

This Chapter deals with the description of various algorithms used in the

implementation. The details of algorithms are described in the following sections.

Here we describe different versions of each algorithm, their short comings and the

enhancements in the successive versions.

3.1 Implementation Details:

The actual implementation process proceeds in two steps:

1. In the first step, the input features having feature values in the range

(0 to 8) or (0 to16) are given. We convert each feature values into a

binary string of 8-bit or16-bits. This reduces the given problem into a

single level processing. The conversion is done as follows:

 Given a feature whose value is ‘i’ we make i
th
 bit to be 1 and rest

all bits to be 0s in the corresponding 8-bit/16-bit vector. Details of the

algorithm are described in the following section.

NOTE: Here the feature values represent the strength corresponding to a

feature i.e., we are not only considering the presence or absence of

an item in a transaction, but also the exact quantity of it. Higher the

feature, value higher is the strength.

2. In the second step, once the input in the binary format is available, we

proceed to apply our algorithms on the modified input. We describe the

details of the algorithms used in the rest of the sections.

 22

3.1.1 Basic Class Structure:

 The structure of main class, along with the description of each field in the

comments is shown below:

struct class_node

{

 BYTE features [MAX_BYTE]; // feature vector corresponding to class //

 Char *class_name; // Represents the name of the class //

 class_node *child [MAX_FEATURES]; // link to child nodes //

 int no_child; // no. of children available //

 BYTE path_id [MAX_BYTE]; // path identification no. of class //

 int match_count; // counts the no. of perfect matches //

 int no_ex; // no. of exceptions initially -1 //

 struct exception_list *ex_list [THRESHOLD];

 // exception list with its count //

 struct class_node *parent; // points to parent node //

 class_node *next; // this points to next node of leaf//

}

This structure is designed to handle the exceptions:

struct exception_list

{

 BYTE exception [MAX_BYTE]; // actual exception //

 int count; // no. of occurrences of exception //

 }

 23

3.2 Preliminary Algorithmic Details:

3.2.1 Algorithm for converting Feature values into binary format:

Algorithm 1:

Input: File containing ordered features values

Output: File containing binary ordered feature values

Begin Algorithm

Open the input file to read data

Open the output file to write data

While (! EOF) // Read word by word

Do begin

 Read ‘ch’ from the input file

 For i = 8 to 0 // In case of 16-bit replace 8 by 16

 Do begin

 j = i-ch

 If (j=0)

 Print 1 on output file

 Else

 Print 0 on output file

 End for

End while

Close input file

Close output file

End Algorithm

 24

Description:

In case of input features, the absence of a particular feature is marked

by value 0. The feature presence is indicated by a value in the range of (1-

8) or (1-16) signifying the strength of the feature.

The above two level feature presence/absence value is mapped into a

single level representation by converting it into 8-bit/16-bit binary string for

each feature.

The features used in our problem are given below.

1-8 foldreg_len []

9 regslope

10 regerror

11 regconcavity

12 regasp_ratio

13 regsymmetry

14 circarea

15 circlen

16 circmin

17 asp_ratio

18 asp_ratio_median

19 symmetry_1

20 symmetry_2

21 concavity_len

22-49 texture []

50-57 color []

 Here the number against each feature name indicates the position(s)

corresponding to that feature in the given order.

 25

3.2.2 Algorithm for Building Class hierarchy:

Algorithm2 V 1.0:

Input: Modified binary input feature file

Output: Class hierarchy

/* This is the first version of building dynamic class hierarchy. */

Begin Algorithm

 Call init_build ()

 For i = 0 to no_items

 Do begin

 Call exact_match (identifying_feature)

If there doesn’t exist an exact match with any of leaf nodes

Then

 Call Perfect_match (identifying_feature)

 End for

End Algorithm

3.2.2.1 Algorithm init_build V 1.0:

 Input: File containing ordered binary feature values of training data

 Output: Finds the identifying features w.r.t given data & creates

 Corresponding root Class

 /* Here we consider 100% support for finding identifying features */

 Begin Algorithm

 While (! EOF)

 Do begin

 Read values row wise from the file into an array features

 End while

 For i=0 to Max_Columns

 26

 For k=0 to Max_Rows

 Do begin

 identifying_feature [i] = identifying_feature [i] & features[k][i]

 End for

 End for

 Update Root with identifier and node information

 End Algorithm

 Description:

 Here init_build () will take file containing training set as input and

finds identifying features with respect to that class. This identifying feature

becomes the feature vector for the root corresponding to that class.

 Root node is updated with the information corresponding to that node.

 Note: Identifying Feature in this version is identified as the feature with

100% support.

 3.2.2.2 Algorithm exact_match V 1.0:

 Input: Key vector corresponding to test data

 Output: Return status corresponding to match

 Begin Algorithm

 Temp = leaf_list

 While (Temp)

 Do begin

 For I = 0 to Max_Columns

Do begin

Result = Temp ^ Key_vector

If Result ! = 0

Then

 27

Next (Temp)

 End for

 If there exists a Temp with Result 0 for all columns

 Then

 Update Temp

 return 1

 Otherwise

 return 0

 End while

 End Algorithm

 Description:

 Here exact_match () will search all the leaf nodes in the leaf list and

tries to find whether the features corresponding to any node has exact

match with the query features i.e. key features.

 If there is an exact match then the match count of that class is

incremented and the information corresponding to that node is updated,

otherwise perfect match method is invoked.

3.2.2.3 Algorithm perfect_match V 1.0:

 Input: Key vector corresponding to test data.

 Output: Flags an exception at the class where perfect match fails,

 Creates a new child class, if no. of exceptions cross threshold

 Begin Algorithm

Temp = root

If key_vector is not perfect match for root

 Then

 return 0

 28

While (True)

Do begin

 If key_vector is perfect match for Temp

 Then

 Update match_count

 Remove matched attributes from the instance of key_vector

 For all children (Temp)

 Do begin

 Check if key_vector is perfect match to child (Temp)

 End for

 If no. of perfect match is 1 with i
th
 child

 Then

 Temp = childi (Temp)

 Continue the loop from beginning

 Else

 If (no_exception (Temp) < Threshold)

 Then

 Flag exception at Temp

 Update the Temp

 Else

 Find the exception j with max count

 Create child Cj for the Temp

 Update Cj

Update Temp

Update leaf_list

End while

End Algorithm

 29

 Description:

 In case of Perfect_match () the system can classify an instance up to

some depth in the tree. For all the classes, from the root downwards up to

which the perfect match is found the match count is incremented by 1 for

those classes.

 For the class beyond which perfect match cannot be found an

exception is flagged and corresponding exception value is stored and its

count is incremented.

If the threshold value with respect to no. of exceptions is crossed, a

new class is created as a child to the corresponding class. The child class

consists of the features with maximum exception count, ties are resolved

arbitrarily.

Remarks:

� This version deals with only one class at a time, so it is difficult

to verify the distinguishing power of the algorithm to separate

the elements of different classes.

� In this version we deal with 8-bit data which have some

limitations such as precision insufficiency in certain cases.

� It fails to properly classify / prevent features belonging to other

classes to enter into current class because of the following

reasons:

a) Considering 100% support acts as a bottle neck because,

the training data may not always represent complete real

time dynamic data. So same flexibility must be provided.

b) This support consideration may lead to selection of

minimal identifying features which, in most of the cases

may not exactly represent the total identifying feature set of

 30

that class. Hence it results in the objects of other classes to

enter the query class.

c) The values corresponding to an identifying feature may not

be same for all the elements of that class, so the є-

neighborhood must be considered at the time of classifying

and finding the identifying features for the better results.

In order to overcome the short comings mentioned above we make

following modifications / additions to the previous version.

Here we describe the algorithms where modifications / additions are

made in the previous version.

 3.3 Enhanced Algorithmic Details

Here we describe the full fledged algorithm with all the required

changes and/or additions to the previously mentioned algorithms.

3.3.1 Algorithm for Building Class hierarchy:

Algorithm3 V 1.1:

Input: Modified binary input feature file

Output: Class hierarchy

Begin Algorithm

 Call build_root ()

 For i = 0 to no. of training classes

 Do begin

 Call init_build ()

 End for

 31

 While (! EOF)

 Do begin

 Read the Test data from file into array features

 End while

 For i = 0 to no_items

 Do begin

 Call exact_match (feature)

 If there doesn’t exist an exact match with any of leaf nodes

 Then

 Call Perfect_match (feature)

 End for

End Algorithm

3.3.2 Algorithm build_root V 1.1:

Input: Global root information

Output: Creates a Global root node

Begin Algorithm

 Create a root node

 Update root

End Algorithm

Description:

Creates a node corresponding to global root and updates

corresponding information.

3.3.3 Algorithm init_build V 1.1:

 Input: File containing ordered binary feature values of training data

 Output: Finds the identifying features w.r.t given data & creates

 Corresponding root Class as a child to global root

 32

 //** Here we consider neighborhood values and variable two level

 Support (T1, T2) for finding Identifying features. **//

 Begin Algorithm

 While (! EOF)

 Do begin

 Read training data from the file into an array features

 End while

 Store = Ø /* store is an array which maps a value with its count */

 For i=0 to Max_Columns

 For k=0 to Max_Rows

 Do begin

 If feature[i] [k] exists in Store

 Then

 Increment corresponding count value

 Else

 Insert feature[i] [k] into Store

 Initialize corresponding count as 1

 End for

 Find countj > T2

 If there exists such j

Then

For all є-neighborhood (featurej) taken together

If count (featurej) = T1

 Then

 identifying_feature [i] = featurej

 Else

 identifying_feature [i] = 0

 33

 End for

Update Root with identifier and node information

 End Algorithm

 Description:

 In case of finding the identifying features, a two level processing is

done where two separate thresholds are set say T1, T2. Here T1 is taken as

100% and T2 value has been set according to experimental results based on

inputs.

Initially, to consider є-neighborhood for a particular feature, we

check for all the features whose count value satisfies T2 to qualify as a

candidate. Once the candidate has been identified, we take the є-

neighborhood to verify whether the features with neighborhood taken

together has 100% support (here є = 2). If both T1 and T2 constraints are

met then the corresponding features becomes identifying features.

 The advantage of above method is that it may increase the

identifying feature set which means better separability.

Here the n
th
 call of init_build procedure will assign the created class

as n
th
 child to the global root.

Note: The Algorithm for evaluating exact match is similar to the one

described in previous version.

3.3.4 Algorithm perfect_match V 1.1:

 Input: Key vector corresponding to test data

 Output: Flags an exception at the class where perfect match fails,

 Creates a new child class if no. of exceptions cross threshold

 34

 Begin Algorithm

Temp = root

If key_vector is not perfect match for root

 Then

 return 0

While (True)

Do begin

 If key_vector is perfect match for Temp

 Then

 Update match_count

 Remove matched attributes from the instance of key_vector

 Else

 If key_vector is perfect match for є-neighborhood (Temp)

 Then

 Update match_count

 Remove matched attributes from the instance of key_vector

 For all children (Temp)

 Do begin

Check if key_vector is perfect match to child (Temp)

or є-neighborhood (child (Temp))

 End for

If temp = root

Then

If root has more than 1 match

 Then

 Choose the class with max matches

 If there exists a tie with no. of max matches

 35

 Then

 Choose the class with max direct match

Else

 If no. of perfect matches is 1 with i
th
 child

 Then

 Temp = childi (Temp)

 Continue the loop from beginning

 Else

 If (no_exception (Temp) < Threshold)

 Then

 Flag exception at Temp

 Update the Temp

 Else

 Find the exception j with max count

 Create child Cj for the Temp

 Update Cj

Update Temp

Update leaf_list

End while

End Algorithm

Description:

Here a global root with roots of different classes as children is

considered. This helps to properly differentiate within the classes based on

maximum match of feature vector.

 36

If tie is observed in the max match while classifying a feature from

root to its children, the feature having max direct match is chosen as the

candidate.

 In this version an additional check is made while comparing for the

perfect match i.e., if the key vector fails to have a perfect match directly

with a node in question then, the є-neighborhood is considered to check for

the perfect match.

The rest of the algorithm for handling exceptions and creating child

nodes works similarly as described in the previous version corresponding to

this algorithm.

Remarks:

1. In this version we deal with 8-bit data which have some

limitations such as precision insufficiency i.e., incase of

differentiating elements of different classes having close

feature properties, it fails to give good results.

2. Here proper prioritization of the features is missing i.e.,

identification of the key (important) features corresponding to a

specific class is necessary for better results while classification.

Finally the above version has been modified slightly to work

with normalized 16-bit feature values. It has been observed that the

results produced were good due to better separation among the

features because of the extension of precision value.

 37

3.4 Observations:

The following observations were made while working with 16-bit feature values:

1. It provided better separation among the closely related classes.

Here we tested on classifying different animals .It provided better

results compared to that of the 8-bit feature values.

2. It has given the results with an accuracy up to 90% with some

classes while classification.

In the next chapter we show the images corresponding to the training data

and the respective results. The results are shown as a classification tree depicting

the input images that entered the corresponding classes, exceptions, miss

classifications as well as correct classifications.

 38

Chapter 4

4.1 Experimental Results:

The feature classification methods with the dynamic restructuring

capability presented in Chapter 3 are applied and tested on a collection of

images in our database containing the images of cars, planes, flowers, deer,

elephants and fishes.

The classification model is built on the initial tree which is

constructed from the training data. First we show the images used as the

training data from each of the classes, followed by the classification tree.

The notation followed in the construction of the classification tree is

described in the next section.

With each class we show the images that entered corresponding

class and depict how they are classified i.e., we indicate if the image is

classified correctly or misclassified or gone as an exception to some

existing class in the hierarchy.

Finally we show the table representing the no. of items taken from

each of the classes as the test set and the rate of misclassification

corresponding to each of the classes as well as the average rate of

misclassification.

 39

4.2 Training Data

The following images are taken as training data for flowers:

 40

The following images are taken as training data for Elephant:

 41

The following images are taken as training data for Deers:

 42

The following images are taken as training data for Fish:

 43

The following images are taken as training data for Cars:

 44

The following images are taken as training data for Aero Planes:

 45

Root

1 2 3 4 5 6

4.3 Class Structure

CLASS – HIERARCHY

The labels corresponding to the figure are described as follows:

 1. CAR

 2. PLANE

 3. FLOWER

 4. ELEPHANT

 5. DEER

 6. FISH

The following table describes the notations used in the tree

construction.

Correct

Classification

Misclassification Exception Exact Match

 46

The following are the set of images which entered Car class

CAR

 47

The following are the set of images which entered Airplane class

PLANE

 48

 The following are the set of images which entered Flower class

FLOWER

 49

The following are the set of images which entered Elephant class

ELAPHANT

 50

 The following are the set of images which entered Deer class

DEER

 51

The following are the set of images which entered Fish class

Fish

 52

4.4 Evaluation of rate of Miss Classification:

Our test set consists of 312 images comprising of the images from each of

the cars, planes, flowers, animals and fishes classes.

The no. of images considered from each of the classes is shown in the

flowing table:

CAR AIRPLANE FLOWER DEER ELEPHANT FISH

99 39 36 20 21 97

The error rate corresponding to each of the classes is described below:

Percentage of misclassification with cars = 08.08%

Percentage of misclassification with Planes = 30.07%

Percentage of misclassification with Flowers = 22.22%

Percentage of misclassification with Deers = 30.00%

Percentage of misclassification with Elephants = 09.52%

Percentage of misclassification with Fishes = 31.95%

The average percentage of misclassification =21.47%

 53

Chapter 5

5.1 Conclusion:

The system is tested with a collection of images in our database

consisting images of cars, planes, flowers, animals and fishes. It has been

established that along with shape features, successive inclusion of texture

and color features improves the system performance. In our present work

shape features are given more weightage against color and texture. So the

shape feature predominantly separates among the different classes.

It has been observed that, as the precision of the features is increased

to higher values, the algorithm yields better separation of feature values and

hence better results. It has also been observed that subdivision of the

classes into more classes reduces the error rate.

From the figures showing misclassification from the previous

section it is apparent that some classes show higher percentage of

misclassification. This higher rates of misclassifications are observed

because; the objects present in the corresponding classes are of different

shapes than those are used for training (e.g. Deers in sitting posture are

present against the training set which was fed to recognize the deers in the

normal standing posture). In case of fishes, by subdividing Fish class into

two sub classes consisting of Normal Fishes and Circular shaped fishes, it

has been observed that the misclassification rate has reduced considerably.

Percentage of misclassification with Fishes (after sub classification)

is observed to be 14.43%.

 54

Hence the average error i.e., the avg percentage of misclassification

(with respect to the total images taken together) has been considerably

reduced to 16.02%.

5.2 Scope of Future work:

The following future possibilities can be explored towards the improvement

and extension of the above mentioned algorithms.

1. The results corresponding to 32-bit and higher dimensional feature

values may be explored and can be compared with the present

results.

2. Subdivision of Classes and their (annotations) labeling can be done

for providing better semantics to each of the sub classes and improve

the rate of misclassification.

3. The results can be studied by varying the weightage corresponding

to each of the feature types, (i.e. each of the shape, texture and color

features can be assigned different priorities) at the time of

classification.

4. Addressing the issues corresponding to queries can be handled and

the strategies corresponding to reduction of search and retrieval time

can be explored.

 55

References

[1] Subhamoy Maitra & Aditya Bagchi. Dynamic Restructuring of

Classification Hierarchy towards Data Mining.

[2] Sanjoy Kumar Saha. Intelligent Image Retrieval Using Visual Features

and Relevance Feedback. PhD thesis, Bengal Engineering. & Science

University.

[3] Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules

and Sequential Patterns. PhD thesis, University of Wisconsin Madison.

[4] Han Jiawei, Kamber Micheline. Data mining: concepts and techniques,

Morgan Kaufmann, 2001.

[5] Mitra Sushmita, Acharya Tinku. Data mining -

multimedia, soft computing, and bioinformatics, John Wiley, 2003.

[6] RaghuRam Krishnan. Database Management System, McGraw-Hill,

1998.

[7] Adamo Jean-Marc. Data mining for association rules

and sequential patterns, Springer-Verlag, 2001.

[8] Albert A J, Wayne Niblack. Image storage and retrieval systems,

SPIE Publisher, 1992.

[9] Gonzalez Rafael C, Woods RichardE. Digital image processing,

Addison-Wesley, 1999.

[10] A. Blaser, Database Techniques for Pictorial Applications, Lecture

Notes in Computer Science, Springer Verlag, 1989.

[11] C. Faloutsos et al, “Efficient and effective querying by image content”,

Journal of intelligent information system, Vol.3, pp.231-262, 1994.

 56

