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Synopsis: Categorization of Images using Content-based Features: 

A Data Mining Approach 

Aditya N (MTC0512) 

 
Under the supervision of 

Prof. Aditya Bagchi 

Dr. Pinakpani Pal 

 

   

Objective: 

 
 The basic objective of this project is to classify the images based on the 

extracted visual contents or features from a collection of large set of images 

present in the image database. It also aims at continuously restructuring the class 

hierarchy dynamically upon the arrival of new instances into the existing structure. 

In our present algorithm we used shape, texture and color features for the purpose 

of classification.  

 

Over View of Work: 

 
In the context of our algorithm shape, texture and color features are 

combined to form 57-dimensional feature vector. These features have values in the 

range of (0 to 8) or (0 to16). The absence of a particular feature is marked by 0 

and the presence is indicated by a value in the range of (1 to 8) or (1 to 16), 

signifying the strength of that feature. Each of these feature values is converted 

into respective binary strings of 8-bit or16-bits where, if the feature value is i, then 

the i
th 
bit is set to 1 and rest of the bits to 0 in the corresponding 8-bit/16-bit vector. 

This reduces the given problem into a single level processing. Based on these 

features a classification tree has been constructed that performs continuous 
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restructuring of a class hierarchy. The class hierarchy represents relationship 

among different items of the database.  

 

The system starts with an initial class hierarchy consisting of a global root 

and its children as the representatives of each class of images under consideration. 

The class representatives are obtained by the initial training. In the training phase, 

for each class we find out the corresponding identifying features from the training 

data. This identifying feature becomes the feature vector for the root node 

corresponding to that class (representative). The system keeps on modifying the 

class hierarchy as new instances are considered. These new instances are either 

taken from the underlying database or inserted afresh. When a new instance 

(transaction) arrives in the database, the system tries to place it in the existing 

hierarchy. However, if it fails to classify the instance exactly, it adds the instance 

as an exception to the class found to be closest. The present system initiates 

restructuring only when the number of exceptions to a class exceeds a predefined 

threshold value. The threshold value is related to support and confidence of an 

association rule in the context of data mining.  

 

Evaluation of rate of Miss Classification: 

 

Our test set consists of 312 images comprising of the images from each of 

the cars, fishes, flowers, deer, elephants and planes classes. 

The no. of images considered from each of the classes is shown in the 

flowing table: 

 

 

 

CAR AIRPLANE FLOWER DEER ELEPHANT FISH 

99 39 36 20 21 97 
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The error rate corresponding to each of the classes is described below: 

 

Percentage of misclassification with cars    = 08.08% 

Percentage of misclassification with Planes   = 30.07% 

Percentage of misclassification with Flowers  = 22.22% 

Percentage of misclassification with Deers    = 30.00% 

Percentage of misclassification with Elephants  = 09.52% 

Percentage of misclassification with Fishes    = 31.95% 

 

The average percentage of misclassification   =21.47% 

 

Conclusion: 

 
The system is tested with a collection of images in our database consisting 

images of cars, planes, flowers, animals and fishes. It has been established that 

along with shape features, successive inclusion of texture and color features 

improves the system performance. In our present work shape features are given 

more weightage against color and texture. So the shape feature predominantly 

separates among the different classes.  

 

It has been observed that, as the precision of the features is increased to 

higher values (e.g. from 8-bit to 16-bit), the algorithm yields better separation 

between feature values and hence better results. It has also been observed that 

subdivision of the classes into more sub classes reduces the error rate. 

 

From the figures showing misclassification rates from the previous section 

it is apparent that some classes show higher percentage of misclassification. This 

higher rates of misclassifications are observed because; the objects present in the 

corresponding classes are of different shapes than those which are used for 
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training (e.g. Deers in sitting posture are misclassified against the training set 

which was fed to recognize the deers in the normal standing posture).  

In case of fishes, by subdividing Fish class into two sub classes consisting 

of Normal Fishes and Circular shaped fishes, it has been observed that the 

misclassification rate has reduced considerably. 

 

The percentage of misclassification with respect to Fishes after sub 

classification is observed to have reduced to 14.43%. 

Hence the average error rate i.e., the avg. percentage of misclassification 

(with respect to the total images taken together after sub classification of fishes) 

has been reduced to 16.02%. 

 

So finally, it has been concluded that similar sub classification of other data 

items could reduce the overall misclassification rate to a great extent.  
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Chapter 1 

 

 

1.1 Introduction 
  

Images are being extensively used in every sphere of our life. Apart from 

overwhelming influence of television, common people look for images in 

newspapers, advertisements, item catalogues, entertainment, education, 

architecture, painting and many others. Professionals use image in criminology 

(e.g., fingerprint identification, face recognition), medicine (e.g., case-based 

diagnosis from radiographs or scan data), education (e.g., searching for material in 

Library), fashion design, historical archiving, fine arts and so on. Most of the cases 

the problem is to find a desired image from a large collection or, in other words, 

retrieve images similar to the image at hand from large number available in some 

collections. Image search and retrieval is a field of very active research since the 

1970’s. However, the field has observed a steady exponential growth in recent 

years as a result of unparalleled increase in the volume of digital images. 

Thousands of images are generated everyday for different applications. These 

images are either stored in a local database or are available from remote ones. 

Thus a huge amount of information is out there and can easily be accessed through 

world-wide web.  Professionals of various fields intend to access and utilize these 

images for their purpose. However, we cannot access to or make use of the 

information unless it is properly organized for efficient browsing and retrieval, 

because searching and locating a desired piece of image from varied and large 

collection usually result in a total frustration. Two major research communities, 

namely Database Management and Computer Vision, are putting considerable 

effort towards the solution of this problem. Accordingly two major approaches 

have emerged: one being text based and the other visual based respectively. 
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 Early systems of image retrieval exploited the capabilities of text based 

Database management Systems. Images are first manually annotated using a set of 

keywords that describe the content of the image best. Images are indexed and 

arranged using these keywords, finally images are retrieved based on text based 

query. Major research in this direction includes Data Modeling, Indexing 

Structure, Multi-dimensional Indexing, Efficient Searching and Query Design and 

Evaluation. However, these text-based image retrieval techniques face two major 

problems: labor intensiveness and annotation impreciseness. When image 

collection is large, enormous amount of man-hour is required to annotate those 

images manually. Problem became more and more acute since early 1990’s when 

world-wide web allow access remotely placed image databases. The second 

problem is more crucial and is due to semantic of image content. Because of rich 

content in the images and the subjectivity of human perception, same image may 

be perceived differently by different persons. As a result, same image may be 

annotated by different set of keywords by different persons. Thus image 

annotation in general is neither unique nor adequate; hence affects the 

performance of image retrieval system to a large extent. This leads to development 

and flourishing the alternate approach, namely Content Based Image Retrieval 

(CBIR) system. 
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1.2 What is CBIR? 
 

Content-based image retrieval (CBIR), also known as query by image 

content (QBIC) and content-based visual information retrieval (CBVIR) is the 

application of computer vision to the image retrieval problem, that is, the problem 

of searching for digital images in large databases. The term CBIR seems to have 

originated in 1992, when it was used by T. Kato to describe experiments into 

automatic retrieval of images from a database, based on the colors and shapes 

present. Since then, the term has been used to describe the process of retrieving 

desired images from a large collection on the basis of syntactical image features. 

The techniques, tools and algorithms that are used originate from fields such as 

statistics, pattern recognition, signal processing, and computer vision. 

 

In CBIR systems the term “content-based” means that the search will 

analyze the actual contents of the image. The term 'content' in this context might 

refer colors, shapes, textures, or any other information that can be derived from the 

image itself. Without the ability to examine image content, searches must rely on 

metadata such as captions or keywords, which may be laborious or expensive to 

produce. There is growing interest in CBIR because of the limitations inherent in 

metadata-based systems, as well as the large range of possible uses for efficient 

image retrieval. Textual information about images can be easily searched using 

existing technology, but requires humans to personally describe every image in the 

database. This is impractical for very large databases, or for images that are 

generated automatically, e.g. from surveillance cameras. It is also possible to miss 

images that use different synonyms in their descriptions. Systems based on 

categorizing images in semantic classes like "cat" as a subclass of "animal" avoid 

this problem but still face the same scaling issues. 
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In case of classical information retrieval system, the data in the text 

databases are logically structured. But in CBIR system, the image database is 

essentially unstructured. The digitized image consists of an array of pixel 

intensities without any inherent meaning. Thus, like any kind of image processing, 

in CBIR system also one of the key issues is to extract useful information from the 

raw data. Subsequently, the issue like storage of data and efficient scheme for 

retrieval of desired images come into picture. Thus the major issues of CBIR are 

as follows: 

a. Identification of suitable ways of describing the image content 

b. Extracting such features from raw image. 

c. Providing compact storage for large database. 

d. Matching query and stored images in a way that reflects human 

similarity judgment. 

e. Efficient accessing of stored images by content. 

 

The CBIR system architecture is essentially divided into two parts.  

i. In the first part images from the image database are processed off-

line and indexing and meta-data construction is done.  

ii. In the second part , the query image goes through the same 

process and compared with the metadata info to find out the 

similar images  

 

1.2.1 Fundamental modules of CBIR system: 

Generally the CBIR system can be grouped into three fundamental modules: 

 

1. Visual content or feature extraction : 

Visual contents or features such as color, texture, pattern, image, 

topology, shape of objects and their layouts and locations within the image 
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etc., are extracted from the images of an image database by applying various 

image processing algorithms. 

 

2. Multidimensional indexing : 

An image can be represented by a multidimensional vector of the 

extracted features. The feature vector actually acts as the signature of the 

image. These extracted image features are stored as meta-data, and images are 

indexed based on these meta-data information. This feature can be assumed to 

be associated to a point in the multidimensional space.  

 

3. Retrieval: 

In this step the query image is posed and asked to find the images 

similar to the given image. Retrieving similar images to the query image then 

boils down to finding the indices of those images in the N- dimensional search 

space, whose feature vectors are within some threshold of proximity to the 

point representing the query image. 

 

1.2.2 Applications of CBIR Systems: 

 

 CBIR system can be used in a wide range of applications. Some of them are 

described as follows: 

 

Crime Prevention:  

Law enforcement agencies maintain a database of facial photographs of 

past suspects, fingerprints etc. In case of crime, they can compare evidence with 

the database images for identify matching. 
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Intellectual property:  

In case of trademark registration, the new mark is to be checked with the 

existing marks to ensure that it will not create any confusion. It has been 

recognized as a prime application area of CBIR. 

 

Architectural and engineering design:  

The designer can search and find out similar designs from the design 

archives and those can be adapted to the current problem. 

 

Medical diagnosis:  

Modern medical Science relies heavily on diagnostic techniques like 

radiology, histopathology, computerized tomography etc. By comparing these 

medical images CBIR techniques can identify the similar past cases and thereby 

can aid diagnosis. 

 

Geographical Information and remote sensing systems:  

CBIR techniques can be used to aid the GIS. Searching by spatial attributes 

(finding target of interest in the close vicinity), analyzing the images to locate the 

regions of interest (area growing crops, flooded regions etc.) may be few such 

applications. 

 

Journalism and advertising: 

 News paper agencies maintain archives of photographs illustrate articles or 

advertising copy, it is expensive to maintain detailed keyword. In this case CBIR 

has an important role to access the desired photographs. 
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1.3 Objective: 

 
 The basic objective of this project is to classify the images based on the 

extracted visual contents or features from a collection of large set of images 

present in the image database. It also aims at continuously restructuring the class 

hierarchy dynamically upon the arrival of new instances into the existing structure. 

In our present algorithm we used shape, texture and color features for the purpose 

of classification.  

 

1.4 Over View of Work: 

 
In the context of our algorithm shape, texture and color features are 

combined to form 57-dimensional feature vector. Based on these features a 

classification tree has been constructed that performs continuous restructuring of a 

class hierarchy. The class hierarchy represents relationship among different 

attributes (items of the database). When a new instance (transaction) arrives in the 

database, the system tries to place it in the existing hierarchy. However, if it fails 

to classify the instance exactly, it adds the instance as an exception to the class 

found to be closest. The proposed system initiates restructuring only when number 

of exceptions to a class exceeds a predefined threshold value. The threshold value 

is related to support and confidence of an association rule in the context of data 

mining. The system starts with an initial class hierarchy and class descriptions 

obtained from the initial training and keeps on modifying them as new instances 

are considered. These new instances are either taken from the underlying database 

or inserted afresh.  

The system is tested with a collection of images in our database consisting 

images of cars, planes, flowers, animals and fishes. It has been established that 

along with shape features, successive inclusion of texture and color features 

improves the system performance. 
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Chapter 2 

  

 

This Chapter deals with the description of basic terminology and definitions 

required for the understanding of the algorithms and implementation details which 

are described in the next chapter. Here we give introduction to basics of data 

mining and various types of features considered in our implementation. 

 

2.1 Problem Formulation 

 
 The proposed algorithm works for a certain class of images. So, first we 

define the how the images are classified. 

 

 Depending on the contents, images may be grouped into following three 

classes: 

1. Class of images containing a single dominant object (Class-1). 

 

2. Class of images containing many objects of more or less equal significance 

(Class-2). 

 

3. Class of images containing no objects of specific interest, but their 

combination appears very picturesque (Class-3). 

 

The Class-3 is exemplified by outdoor scenery consisting mostly of sky, 

water bodies (like sea, river, Lake etc), grass field, beach etc. none of which is 

particularly important, but surely the combination is. 

 

 Images of a group of people, cluttered objects, busy area (e.g., railway 

station, market, city streets etc), business meeting etc. belong to the Class-2. 
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Finally, Class-1 contains images of our friend, relative, home, car, pet, 

object of our interest (e.g., ancient building, monument, sculpture and statue, 

biomedical mage, animal, bird etc), famous personality and so on. These objects, 

in the image, occupy the major area mostly at the centre and are sharply focused. 

There could be other objects too in the image, but those are given usually less 

emphasis while photographed and are treated as background. Hence, we say that 

Class-1 is by far large than that of Class-2 and Class-3 together. 

 

Now, based on the background, the images of Class-1 can further be divided 

into two groups consisting of: 

1. Images with non-textures or smooth textured background. 

2. Images with highly textured background. 

First group is most common, because when photos are taken usually 

uniform backdrop (such as curtain or wall in the studio or in the hall or even 

sky in case of outdoor object) is used as much as possible to assign more 

prominence of object of interest. However, in some cases it is not possible to 

have such controlled background (e.g., while photographing a wild animal, 

bird on a tree, a building surrounded by trees etc.)  and we have dealt with 

most of the photos of the second group.  However, it is more apparent that the 

images of first group are more common. 

 

2.2 Feature Categories: 

In our present algorithm the features used for the classification are broadly 

divided into three categories namely,  

i. Shape Features. 

ii. Texture Features. 

iii. Color Features.                             
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2.2.1 Shape Feature: 

 Major information content of an image is the shape of the objects present in 

it and their relative arrangement. Infant, there is considerable evidence that natural 

objects are primarily recognized by their shape. Shape can roughly be defined as 

the description of an object minus its position, orientation and size. Therefore, the 

shape features used for the object identification or matching should be invariant to 

translation, rotation and scale. In short, shape features are those properties of 

objects or of its parts that are same for visually similar type of objects and are 

different for visually dissimilar objects. The shape features are computed by 

measuring some geometrical attributes of the regions corresponding to the objects. 

Shape features may be calculated for the whole image or for each individual 

objects. In the former case we have mainly topological attributes like, number of 

objects, Euler number etc. In latter case features like area, perimeter, convexity, 

aspect ratio, circularity, elongated ness etc are computed. It should be noted that 

the design of a feature extraction algorithm depends on scheme of shape 

representation. Shape representation schemes can be divided into two categories: 

i. Boundary based. 

ii. Region based. 

The former uses the outer contour of a region, whereas the latter uses the 

whole of it. 

 

Some basic definitions of most commonly used shape features are described 

below. 

 

Linear Symmetry: This visual property indicates, when an axis passing through 

the centre of gravity divides the object into two parts, how well the mirror 

reflection of one part about that axis matches with the other part. The axis for 

which the best match occurs is called the axis of symmetry and the error in 

matching provides a measure of symmetry. 
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Circularity: For a perfectly circular object, all the contour points are equidistant 

from the centre of gravity and the centre of gravity coincides with the center of the 

smallest circle encompassing the object. 

 

Aspect ratio: Aspect ratio of an object signifies overall shape structure like some 

kind of elongated ness etc. It can be measured in terms of the ratio between height 

and width or length of major axis and minor axis etc. If the minimal bounding box 

of an object is square then aspect ratio is 1. 

 

Concavity: Conventionally objects are concave or convex. Thus a measure of 

concavity (convexity) is a strong feature for describing the shape. Contour of an 

object consists of a collection of inward and outward curve segments, i.e., curve 

segments with positive or negative curvature. Some segments have zero curvature 

indicating straight line segment. In place of concavity, the curve segment is inward 

with respect to center of gravity. As a result, any arbitrary contour can be thought 

of as a segment of circular arc indicating concavity or convexity. 

 

2.2.2 Texture Feature: 

 Texture is another feature that has been extensively explored by various 

research groups. Texture is an innate property of virtually all object surfaces, 

including fabric, bark, water ripple, brick, skin etc. In satellite images texture of a 

region can distinguish among grass land, beach, water body, urban area, etc. 

 The term texture is used to specify the roughness or coarseness of object 

surface. In an intensity image texture puts its signature as the variation in intensity 

from pixel to pixel. Texture measures look for visual patterns in images and how 

they are spatially defined. Textures are represented by texels which are then 

placed into a number of sets, depending on how many textures are detected in the 
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image. These sets not only define the texture, but also where in the image the 

texture is located. 

 

2.2.3 Color Feature: 

 Another widely used visual feature for CBIR is color. Main advantage of 

this feature is its invariance to size, position, orientation and arrangements of the 

objects. On the other hand, disadvantage is its immense variation within a single 

image. Several methods of color representation and estimating similarity measures 

are present in the literature. Color searches will usually involve comparing color 

histograms, though this is not the only technique in practice  

 

2.3 Related Concepts 

This section would discuss about some background materials to be used in 

the proposed system. Basic ideas about data mining have been covered. 

 

2.3.1 Data Mining 

Data mining covers the methods for finding interesting trends or patterns in 

large datasets. These discovered patterns help and guide the appropriate authority 

in taking future decisions. Generally data mining tools are expected to identify 

interesting patterns in the data with minimal user intervention. Since data mining 

efforts usually assume a very large volume of data, efficiency and scalability are 

two very important criteria for data mining algorithms. 

The pattern discovered by data mining should properly portray the contents 

of the dataset and the nature of the application under consideration. The 

imperfectness should be expressed by approximate rules and should also be 

quantifiable. Discovering or mining association among different features present in 

an application domain has recently attracted a lot of attention. 
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Definition:  

An association rule is of the form LHS ⇒  RHS, where both LHS and RHS 

are sets of items. 

 

This identifies that if every item of LHS is present in a transaction, then it is 

likely that the items in RHS will also be present. There exists two important 

measures for an association rule, one is support and another is confidence. 

 

Definition:  

The support for a set of items is the percentage of transactions that contain 

all of these items. 

 

Remark:   

The support for a rule LHS ⇒RHS is support for the set of items 

LHS∪RHS 

Low support may imply that a rule has arisen purely by chance, whereas 

high support value may identify some relational pattern among the items. 

 

Definition:  

 The confidence for a rule LHS ⇒  RHS is
(LHS)Support 

RHS) (LHSSupport ⇒
. 

                              

Remark: 

 Out of the transactions that have LHS, the percentage of transactions that 

have RHS as well, is the measure of confidence of the rule LHS ⇒RHS 

It indicates the degree of correlation between presences of these set of 

items.  
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2.4 Different Matching Procedures of Classification: 

 

Definition:  

The universal attribute set U,  U  = n is the set of all the attributes that will 

be considered for the application domain. 

 

Here we are interested to find out relevant relationships among the items in 

U. Once the universal attribute set is identified, the attributes are considered in a 

specific a0, a1,…, an-1 for convenience of representation. Since ai ∈  {0, 1} i∀ , the 

i
th
 bit of an n bit string represents presence and absence of an attribute. 

 

Definition: 

 An instance (transaction) I is considered as a string of length n containing 

0-1 values (I ∈  {0, 1}
n
) implying the presence (1) and absence (0) of the items in 

the transaction. 

 

Definition: 

 A class C consists of a set of attributes C
A
 ⊆  U. A class hierarchy consists 

of a set of classes, with a parent-child relationship among them. 

 

Remark: 

A class may be identified by a 0-1 bit string vectors of length n, where the 

i
th
 vector is 0 if ai∉  C

A
, and corresponding feature value otherwise. C

A
 represents 

the set of attributes belonging to class C only and not the attributes inherited from 

the parent classes. The root class has no parent. The intermediate classes have one 

parent and one or more children. The leaf classes have one parent and no child. 
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2.4.1 Exact match 

When the system considers a new instance, it is compared against the leaf 

level classes for exact match. If it fails, top-down search is done from the root for 

approximate classification. In this case matching may be possible only up to some 

class at intermediate level. Since further matching down the hierarchy fail, the new 

instance is flagged as an exception to the class corresponding to the intermediate 

node. In this method a lot of exceptions may get accumulated in each class. If the 

count of exceptions for a class exceeds the application specific threshold values 

the class hierarchy needs to be restructured. The different matching procedures for 

inserting an instance into the system are discussed below. 

 

Definition:  

The total attribute set C
tA
 attached to a class C is the union of all the 

attribute sets of the classes lying on the path from root to that class. Corresponding 

to total attribute set an n bit binary number is formed, with 1 at the i
th
 position if 

the attribute ai ∈  C
tA 
and 0 otherwise. This is called the path identification number 

of the class. 

 

Definition: 

 An instance I is an exact match with a leaf level class C, if the binary 

number corresponding to I is equal to the path identification number of C. 

 

Remark: 

 Here equality means the similarity of the bit patterns of the two n bit 

strings, one the instance I and another the path identification number of the class. 

 

Remark: 

Once an instance becomes exact match with one leaf class C, the respective 

count increases for all the classes on the path from the leaf class C to the root. 
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2.4.2 Perfect match 

An instance I will be a perfect match with root class if all the attributes of 

root class are present in that instance. In case of Perfect match the system 

can classify an instance up to some depth in the tree. For all the classes, 

from the root downwards up to which the perfect match is found the match 

count is incremented by 1 for those classes. 

          For the class beyond which perfect match cannot be found an 

exception is flagged and corresponding exception value is stored and its 

count is incremented. 

 

Let Fr(C) =U
A

iC , where Ci’s are the peer classes of C, excluding C. 

 

Definition: 

 An instance I will be a perfect match with a class C at depth i ≥  1 if 

1. It is a perfect match to a class Cp at depth i-1. 

2. Cp is the parent of C. 

3.   All the attributes of C are present in the instance I i.e., C
A
 ⊆  I. 

4.    Let A
’
 = Fr(C) - C

A
. In all the attributes of A

’
 the instance I 

should contain 0 value.    

 

Remark: 

 For all the classes, from the root downwards up to which the perfect 

match is found the match count is incremented by 1.For those classes, if the 

threshold value with respect to no. of exceptions is crossed, a new class is 

created as a child to the corresponding class. The child class consists of the 

features with maximum exception count, ties are resolved arbitrarily.  
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Chapter 3 

 

This Chapter deals with the description of various algorithms used in the 

implementation. The details of algorithms are described in the following sections. 

Here we describe different versions of each algorithm, their short comings and the 

enhancements in the successive versions. 

 

3.1 Implementation Details: 

The actual implementation process proceeds in two steps:  

 

1. In the first step, the input features having feature values in the range     

(0 to 8) or (0 to16) are given. We convert each feature values into a 

binary string of 8-bit or16-bits. This reduces the given problem into a 

single level processing. The conversion is done as follows: 

         Given a feature whose value is ‘i’ we make i
th
 bit to be 1 and rest 

all bits to be 0s in the corresponding 8-bit/16-bit vector. Details of the 

algorithm are described in the following section. 

 

NOTE:  Here the feature values represent the strength corresponding to a 

feature i.e., we are not only considering the presence or absence of 

an item in a transaction, but also the exact quantity of it. Higher the 

feature, value higher is the strength. 

 

2. In the second step, once the input in the binary format is available, we 

proceed to apply our algorithms on the modified input. We describe the 

details of the algorithms used in the rest of the sections. 
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3.1.1 Basic Class Structure: 

 

 The structure of main class, along with the description of each field in the 

comments is shown below:  

 

struct class_node  

{  

  BYTE features [MAX_BYTE];   // feature vector corresponding to class // 

  Char *class_name;                             //  Represents the name of the class //    

  class_node *child [MAX_FEATURES];                  // link to child nodes // 

  int no_child;                                                     // no. of children available //  

  BYTE path_id [MAX_BYTE];              // path identification no. of class // 

  int match_count;                                 // counts the no. of perfect matches // 

  int no_ex;                                                  // no. of exceptions initially -1 // 

  struct exception_list *ex_list [THRESHOLD];   

                                                                     // exception list with its count // 

  struct class_node *parent;                                  // points to parent node //  

  class_node *next;                                 // this points to next node of leaf// 

} 

 

This structure is designed to handle the exceptions: 

struct exception_list 

{ 

 BYTE exception [MAX_BYTE];                        // actual exception // 

 int count;                                      // no. of occurrences of exception // 

             } 
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3.2 Preliminary Algorithmic Details: 

 

3.2.1 Algorithm for converting Feature values into binary format:  

Algorithm 1: 

Input:      File containing ordered features values 

Output:   File containing binary ordered feature values 

 

Begin Algorithm 

Open the input file to read data 

Open the output file to write data 

While (! EOF)                               // Read word by word 

Do begin 

         Read ‘ch’ from the input file 

                      For i = 8 to 0                     // In case of 16-bit replace 8 by 16 

      Do begin 

       j = i-ch  

       If (j=0) 

             Print 1 on output file 

       Else 

     Print 0 on output file   

                End for  

 

End while 

Close input file 

Close output file  

 

End Algorithm 
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Description: 

In case of input features, the absence of a particular feature is marked 

by value 0. The feature presence is indicated by a value in the range of (1-

8) or (1-16) signifying the strength of the feature. 

The above two level feature presence/absence value is mapped into a 

single level representation by converting it into 8-bit/16-bit binary string for 

each feature. 

The features used in our problem are given below.  

 

1-8  foldreg_len [] 

9    regslope 

10   regerror 

11   regconcavity 

12   regasp_ratio 

13   regsymmetry 

14   circarea 

15   circlen 

16   circmin 

17  asp_ratio 

18   asp_ratio_median 

19   symmetry_1 

20   symmetry_2 

21   concavity_len 

22-49  texture [] 

50-57  color [] 

 

  Here the number against each feature name indicates the position(s) 

corresponding to that feature in the given order. 
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3.2.2 Algorithm for Building Class hierarchy: 

   

Algorithm2 V 1.0: 

Input:       Modified binary input feature file 

Output:    Class hierarchy  

/* This is the first version of building dynamic class hierarchy. */ 

 

Begin Algorithm  

       Call init_build ()    

       For i = 0 to no_items  

       Do begin 

         Call exact_match (identifying_feature) 

If there doesn’t exist an exact match with any of leaf nodes 

Then 

        Call Perfect_match (identifying_feature) 

      End for   

End Algorithm 

  

3.2.2.1 Algorithm init_build V 1.0: 

            Input:       File containing ordered binary feature values of training data 

           Output:    Finds the identifying features w.r.t given data & creates  

                           Corresponding root Class 

          /* Here we consider 100% support for finding identifying features */ 

 Begin Algorithm 

              While (! EOF)  

     Do begin 

             Read values row wise from the file into an array features 

              End while 

                For i=0 to Max_Columns 
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                     For k=0 to Max_Rows 

     Do begin 

                               identifying_feature [i] = identifying_feature [i] & features[k][i] 

                         End for 

               End for 

   Update Root with identifier and node information 

      End Algorithm 

 

 Description: 

 Here init_build () will take file containing training set as input and 

finds identifying features  with respect to that class. This identifying feature 

becomes the feature vector for the root corresponding to that class. 

         Root node is updated with the information corresponding to that node. 

  Note: Identifying Feature in this version is identified as the feature with                 

100% support. 

   

           3.2.2.2 Algorithm exact_match V 1.0: 

 Input:     Key vector corresponding to test data 

 Output:  Return status corresponding to match 

 

 Begin Algorithm 

      Temp = leaf_list 

       While (Temp) 

                 Do begin 

  For I = 0 to Max_Columns 

Do begin 

Result = Temp ^ Key_vector 

If Result ! = 0  

Then 
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Next (Temp) 

  End for  

         If there exists a Temp with Result 0 for all columns 

                      Then 

   Update Temp 

   return 1 

                      Otherwise 

   return 0 

        End while   

 End Algorithm 

 

 Description: 

 Here exact_match () will search all the leaf nodes in the leaf list and 

tries to find whether the features corresponding to any node has exact 

match with the query features i.e. key features. 

         If there is an exact match then the match count of that class is 

incremented and the information corresponding to that node is updated, 

otherwise perfect match method is invoked. 

 

3.2.2.3 Algorithm perfect_match V 1.0:  

 Input:      Key vector corresponding to test data.   

 Output:  Flags an exception at the class where perfect match fails, 

                          Creates a new child class, if no. of exceptions cross threshold   

 

  Begin Algorithm 

Temp = root  

If key_vector is not perfect match for root 

    Then 

       return 0 
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While (True) 

Do begin 

    If key_vector is perfect match for Temp 

    Then 

 Update match_count 

             Remove matched attributes from the instance of key_vector    

 

 For all children (Temp)  

 Do begin 

  Check if key_vector is perfect match to child (Temp) 

 End for 

  

 If no. of perfect match is 1 with i
th
 child  

 Then  

  Temp = childi  (Temp) 

  Continue the loop from beginning 

          Else  

  If ( no_exception (Temp) < Threshold )  

  Then 

    Flag exception at Temp  

   Update the Temp 

  Else 

   Find the exception j with max count 

   Create child Cj   for the Temp 

   Update Cj 

Update Temp 

Update leaf_list 

End while 

End Algorithm 
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 Description: 

 In case of Perfect_match () the system can classify an instance up to 

some depth in the tree. For all the classes, from the root downwards up to 

which the perfect match is found the match count is incremented by 1 for 

those classes. 

          For the class beyond which perfect match cannot be found an 

exception is flagged and corresponding exception value is stored and its 

count is incremented. 

If the threshold value with respect to no. of exceptions is crossed, a 

new class is created as a child to the corresponding class. The child class 

consists of the features with maximum exception count, ties are resolved 

arbitrarily. 

 

Remarks:  

 

� This version deals with only one class at a time, so it is difficult 

to verify the distinguishing power of the algorithm to separate 

the elements of different classes. 

� In this version we deal with 8-bit data which have some 

limitations such as precision insufficiency in certain cases. 

� It fails to properly classify / prevent features belonging to other 

classes to enter into current class because of the following 

reasons:  

a) Considering 100% support acts as a bottle neck because, 

the training data may not always represent complete real 

time dynamic data. So same flexibility must be provided. 

b) This support consideration may lead to selection of 

minimal identifying features which, in most of the cases 

may not exactly represent the total identifying feature set of 
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that class. Hence it results in the objects of other classes to 

enter the query class. 

c) The values corresponding to an identifying feature may not 

be same for all the elements of that class, so the є-

neighborhood must be considered at the time of classifying 

and finding the identifying features for the better results. 

 

In order to overcome the short comings mentioned above we make 

following modifications / additions to the previous version. 

Here we describe the algorithms where modifications / additions are 

made in the previous version. 

 

     3.3 Enhanced Algorithmic Details 

Here we describe the full fledged algorithm with all the required 

changes and/or additions to the previously mentioned algorithms. 

 

3.3.1 Algorithm for Building Class hierarchy: 

   

Algorithm3 V 1.1: 

Input:       Modified binary input feature file 

Output:    Class hierarchy  

Begin Algorithm  

       Call build_root () 

       For i = 0 to no. of training classes 

       Do begin 

       Call init_build ()    

       End for 
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       While ( ! EOF ) 

        Do begin 

  Read the Test data from file into array features 

        End while 

       For i = 0 to no_items  

       Do begin 

       Call exact_match (feature) 

                  If there doesn’t exist an exact match with any of leaf nodes 

                  Then 

        Call Perfect_match (feature) 

   End for 

End Algorithm 

 

3.3.2 Algorithm build_root V 1.1: 

Input:   Global root information 

Output: Creates a Global root node 

Begin Algorithm 

 Create a root node 

 Update root 

End Algorithm 

 

Description: 

Creates a node corresponding to global root and updates 

corresponding information. 

 

3.3.3 Algorithm init_build V 1.1: 

          Input:       File containing ordered binary feature values of training data 

           Output:    Finds the identifying features w.r.t given data & creates  

                           Corresponding root Class as a child to global root 
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         //** Here we consider neighborhood values and variable two level  

     Support (T1, T2) for finding Identifying features.            **// 

 

 Begin Algorithm 

              While (! EOF)  

     Do begin 

  Read training data from the file into an array features 

              End while 

   Store = Ø   /* store is an array which maps a value with its count */ 

               For i=0 to Max_Columns 

                     For k=0 to Max_Rows 

     Do begin 

                             If feature[i] [k] exists in Store 

          Then  

                           Increment corresponding count value 

        Else 

       Insert feature[i] [k] into Store 

       Initialize corresponding count as 1  

  End for 

                   Find countj > T2 

  If there exists such j 

Then 

For all є-neighborhood ( featurej ) taken together 

If count ( featurej  ) = T1 

 Then 

   identifying_feature [i] = featurej 

   Else 

    identifying_feature [i] = 0   
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    End for  

Update Root with identifier and node information 

 

       End Algorithm 

 

 Description: 

  In case of finding the identifying features, a two level processing is 

done where two separate thresholds are set say T1, T2.  Here T1 is taken as 

100% and T2 value has been set according to experimental results based on 

inputs. 

Initially, to consider є-neighborhood for a particular feature, we 

check for all the features whose count value satisfies T2 to qualify as a 

candidate. Once the candidate has been identified, we take the є-

neighborhood to verify whether the features with neighborhood taken 

together has 100% support (here є = 2). If both T1 and T2 constraints are 

met then the corresponding features becomes identifying features. 

       The advantage of above method is that it may increase the 

identifying feature set which means better separability. 

Here the n
th
 call of init_build procedure will assign the created class 

as n
th
 child to the global root. 

 

Note: The Algorithm for evaluating exact match is similar to the one 

described in previous version.  

 

3.3.4 Algorithm perfect_match V 1.1: 

 Input:      Key vector corresponding to test data   

 Output:   Flags an exception at the class where perfect match fails, 

                          Creates a new child class if no. of exceptions cross threshold   
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  Begin Algorithm 

Temp = root  

If key_vector is not perfect match for root 

    Then 

       return 0 

While (True) 

Do begin 

    If key_vector is perfect match for Temp 

    Then 

 Update match_count 

             Remove matched attributes from the instance of key_vector    

      Else 

   If key_vector is perfect match for є-neighborhood (Temp) 

   Then 

        Update match_count 

             Remove matched attributes from the instance of key_vector    

 

                       For all children (Temp)  

 Do begin 

Check if key_vector is perfect match to child (Temp) 

or є-neighborhood (child (Temp)) 

 End for 

 

If temp = root 

Then  

If root has more than 1 match 

 Then 

          Choose the class with max matches 

 If there exists a tie with no. of max matches 
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 Then 

     Choose the class with max direct match  

 

Else 

  If no. of perfect matches is 1 with i
th
 child  

 Then  

  Temp = childi  (Temp) 

  Continue the loop from beginning 

          Else  

  If ( no_exception (Temp) < Threshold )  

  Then 

    Flag exception at Temp  

   Update the Temp 

  Else 

   Find the exception j with max count 

   Create child Cj   for the Temp 

   Update Cj 

Update Temp 

Update leaf_list 

End while 

 

End Algorithm 

 

Description: 

Here a global root with roots of different classes as children is 

considered. This helps to properly differentiate within the classes based on 

maximum match of feature vector. 
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If tie is observed in the max match while classifying a feature from 

root to its children, the feature having max direct match is chosen as the 

candidate. 

 In this version an additional check is made while comparing for the 

perfect match i.e., if the key vector fails to have a perfect match directly 

with a node in question then, the є-neighborhood is considered to check for 

the perfect match.  

 

The rest of the algorithm for handling exceptions and creating child 

nodes works similarly as described in the previous version corresponding to 

this algorithm.  

 

Remarks:  

1. In this version we deal with 8-bit data which have some    

limitations such as precision insufficiency i.e., incase of 

differentiating elements of different classes having close 

feature properties, it fails to give good results. 

 

2. Here proper prioritization of the features is missing i.e., 

identification of the key (important) features corresponding to a 

specific class is necessary for better results while classification. 

 

Finally the above version has been modified slightly to work 

with normalized 16-bit feature values. It has been observed that the 

results produced were good due to better separation among the 

features because of the extension of precision value. 

 

 

 



 37 

3.4 Observations: 

 

The following observations were made while working with 16-bit feature values: 

 

1. It provided better separation among the closely related classes. 

Here we tested on classifying different animals .It provided better 

results compared to that of the 8-bit feature values. 

 

2. It has given the results with an accuracy up to 90% with some 

classes while classification. 

 

In the next chapter we show the images corresponding to the training data 

and the respective results.  The results are shown as a classification tree depicting 

the input images that entered the corresponding classes, exceptions, miss 

classifications as well as correct classifications. 
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Chapter 4 

 

4.1 Experimental Results: 

 

The feature classification methods with the dynamic restructuring 

capability presented in Chapter 3 are applied and tested on a collection of 

images in our database containing the images of cars, planes, flowers, deer, 

elephants and fishes.  

 

The classification model is built on the initial tree which is 

constructed from the training data. First we show the images used as the 

training data from each of the classes, followed by the classification tree. 

The notation followed in the construction of the classification tree is 

described in the next section.  

 

With each class we show the images that entered corresponding 

class and depict how they are classified i.e., we indicate if the image is 

classified correctly or misclassified or gone as an exception to some 

existing class in the hierarchy.  

 

Finally we show the table representing the no. of items taken from 

each of the classes as the test set and the rate of misclassification 

corresponding to each of the classes as well as the average rate of 

misclassification. 
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4.2 Training Data 

 

The following images are taken as training data for flowers: 
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The following images are taken as training data for Elephant: 
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The following images are taken as training data for Deers: 
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The following images are taken as training data for Fish: 
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The following images are taken as training data for Cars: 
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The following images are taken as training data for Aero Planes: 
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Root 

1 2 3 4 5 6 

 

4.3 Class Structure 

 

CLASS – HIERARCHY 

 

 

 

 

  

 

 

 

 

 

The labels corresponding to the figure are described as follows: 

 1.  CAR    

    2.  PLANE  

 3.  FLOWER  

 4.  ELEPHANT      

    5.  DEER               

    6.  FISH 

 

The following table describes the notations used in the tree 

construction. 

 

Correct 

Classification 

Misclassification Exception Exact Match 
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The following are the set of images which entered Car class 

 

 

 

 

CAR 
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The following are the set of images which entered Airplane class 

 

 

 

PLANE 
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 The following are the set of images which entered Flower class 

 

 

 

 

FLOWER 
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The following are the set of images which entered Elephant class 

 

 

 

 

 

ELAPHANT 
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 The following are the set of images which entered Deer class 

 

 

 

 

DEER 
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The following are the set of images which entered Fish class 

 

 

 

 

 

Fish 
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4.4 Evaluation of rate of Miss Classification: 

 

Our test set consists of 312 images comprising of the images from each of 

the cars, planes, flowers, animals and fishes classes. 

 

The no. of images considered from each of the classes is shown in the 

flowing table: 

 

CAR AIRPLANE FLOWER DEER ELEPHANT FISH 

99 39 36 20 21 97 

 

 

The error rate corresponding to each of the classes is described below: 

 

Percentage of misclassification with cars    = 08.08% 

Percentage of misclassification with Planes   = 30.07% 

Percentage of misclassification with Flowers  = 22.22% 

Percentage of misclassification with Deers    = 30.00% 

Percentage of misclassification with Elephants  = 09.52% 

Percentage of misclassification with Fishes    = 31.95% 

 

The average percentage of misclassification   =21.47% 
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Chapter 5 

 

 

5.1 Conclusion: 

 
The system is tested with a collection of images in our database 

consisting images of cars, planes, flowers, animals and fishes. It has been 

established that along with shape features, successive inclusion of texture 

and color features improves the system performance. In our present work 

shape features are given more weightage against color and texture. So the 

shape feature predominantly separates among the different classes.  

 

It has been observed that, as the precision of the features is increased 

to higher values, the algorithm yields better separation of feature values and 

hence better results. It has also been observed that subdivision of the 

classes into more classes reduces the error rate. 

 

From the figures showing misclassification from the previous 

section it is apparent that some classes show higher percentage of 

misclassification. This higher rates of misclassifications are observed 

because; the objects present in the corresponding classes are of different 

shapes than those are used for training (e.g. Deers in sitting posture are 

present against the training set which was fed to recognize the deers in the 

normal standing posture). In case of fishes, by subdividing Fish class into 

two sub classes consisting of Normal Fishes and Circular shaped fishes, it 

has been observed that the misclassification rate has reduced considerably. 

 

Percentage of misclassification with Fishes (after sub classification) 

is observed to be 14.43%. 
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Hence the average error i.e., the avg percentage of misclassification 

(with respect to the total images taken together) has been considerably 

reduced to 16.02%. 

 

5.2 Scope of Future work: 
 

The following future possibilities can be explored towards the improvement 

and extension of the above mentioned algorithms. 

 

1. The results corresponding to 32-bit and higher dimensional feature 

values may be explored and can be compared with the present 

results. 

 

2. Subdivision of Classes and their (annotations) labeling can be done 

for providing better semantics to each of the sub classes and improve 

the rate of misclassification. 

 

3. The results can be studied by varying the weightage corresponding 

to each of the feature types, (i.e. each of the shape, texture and color 

features can be assigned different priorities) at the time of 

classification.  

 

4. Addressing the issues corresponding to queries can be handled and 

the strategies corresponding to reduction of search and retrieval time 

can be explored. 
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