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Chapter 1

Introduction

Elliptic curve cryptography has a wide application in public key cryptography and has received

a lot of attention because of its small key size (the equivalent key sizes for ECC are 173 and

313 bits as compared to the key sizes 1024 and 4096 bits for RSA) and increased theoretical

robustness (there is no subexponential algorithm to solve elliptic curve discrete logarithm

problem, ECDLP). The efficiency of an ECC mainly depends upon the scalar multiplication,

i.e., the computation of the point [n]P = P + ... + P (n times), for a given point on an

elliptic curve E. An extensive amount of research has been done and being done to efficiently

compute and accelarate and secure the scalar multiplication.

Several representations of the scalar n (binary, ternary, non-adjacent form (NAF), window

methods (w-NAF)...) and various efficient methods for point addition (P +Q, [2]P , [2]P ±Q,

[2w]P ) have been proposed in both affine and projective coordinates. In recent years, a new

representation scheme using Double-base number system (DBNS) and Multi-base number

system (MBNS) has gained much popularity due to shorter length representation and sparse-

ness. Introduction of new point additions like [3]P , [3]P ± Q, [3w]P , [5]P have given new

dimensions to calculate scalar multiplication and its results are overwhelming.

In this report, we propose a new window based scalar multiplication algorithm which has

advantage over earlier proposed methods that it requires to search for a better window length

for bases than searching for maximum bound on bases, which results a smaller size of static

table and much faster search. Although it keeps a table of relatively large size of precomputed

points, it has overall less storage requirement. Besides it, computation of scalar multiplication

using this method has shown an almost equal complexity as earlier proposed methods.
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Chapter 2

Elliptic Curve Cryptography

2.1 What is Elliptic Curve?

Elliptic curves are described by the set of solutions to certain equations in two variables.

Elliptic curves defined modulo a prime p are of central importance in public-key cryptography.

We begin by looking briefly at elliptic curves defined over the real numbers.

2.1.1 Elliptic Curves over the Reals

Definition : Let a, b ∈ R be constants such that 4a3 + 27b2 6= 0. A non-singular elliptic

curve is the set E of solutions (x, y) ∈ R× R to the equation

y2 = x3 + ax + b (2.1)

(known as Weierstrass equation) together with special point O called the point at point at

infinity

If the roots of the cubic are r1, r2, r3, then it can be shown that the discriminant of the

cubic is

((r1 − r2)(r2 − r3)(r3 − r1))
2 = −(4A3 + 27B2) (2.2)

The condition 4a3+27b2 6= 0 is both necessary and sufficient condition to ensure that the equa-

tion x3 +ax+b = 0 has three distinct roots (which may be real or complex). If 4a3 +27b2 = 0,

then the corresponding curve is called a singular elliptic curve.
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In order to have little more flexibility, we also allow somewhat more general equations

of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.3)

where a1, ..., a6 are constants. This more general form (generalized Weierstrass equation)

is useful when working with fields of characteristic 2 and characteristic 3. If the characteristic

of the field is not 2, then we can divide by 2 and complete the square:

(

y +
a1x

2
+

a3

2

)2

= x3 +

(

a2 +
a1

2

4

)

x2 + a4x +

(

a3
2

4
+ a6

)

, (2.4)

which can be written as

y1
2 = x3 + a2

′x2 + a4
′x + a6

′, (2.5)

with y1 = y + a1x/2 + a3/2 and with some constants a2
′, a4

′, a6
′. If the characteristic is also

not 3, then we can let x1 = x + a2
′/3 and obtain

y1
2 = x1

3 + Ax1 + B, (2.6)

for some constants A, B.

2.1.2 Group Law

Suppose E is a non-singular elliptic curve. We will define a binary operation over E which

makes E into an abelian group. This operation is usually denoted by addition. The point at

infinity, O, will be the identity element so, P + O = O + P = P for all P ∈ E.

Suppose P, Q ∈ E, where P = (x1, y1) and Q = (x2, y2). We consider three cases:

1. x1 6= x2

2. x1 = x2 and y1 = −y2

3. x1 = x2 and y1 = y2

In case 1, we define L to be the line through P and Q. L intersects E in the two points

P and Q, and it is easy to see that L will intersect E in one further point, which we call

R′. If we reflect R′ in the x-axis, then we get a point which we name R. We define P +Q = R.
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Let’s work out an algebraic formula to compute R. First, the equation of L is y = λx+y,

where the slope of L is

λ =
y2 − y1

x2 − x1

,

and

ν = y1 − λx1 = y2 − λx2.

In order to find the points in E ∩ L, we substitute y = λx + ν into the equation for E,

obtaining the following:

(λx + ν)2 = x3 + ax + b,

which is same as

x3 − λ2x2 + (a− 2λν)x + b− ν2 = 0. (2.7)

The roots of equation (2.7) are the x-co-ordinates of the points in E ∩ L. We already know

two points in E ∩ L, namely, P and Q. Hence x1 and x2 are two roots of equation (2.7).

Since equation (2.7) is a cubic equation over the reals having two real roots, the third

root, say x3, must also be real. The sum of the three roots must be the negative of the

coefficient of the quadratic term, or λ2. Therefore

x3 = λ2 − x1 − x2.

x3 is the x-co-ordinate of the point R′. We will denote the y-co-ordinate of R′ by −y3, so the

y-co-ordinate of R will be y3. An easy way to compute y3 is to use the fact that the slope of

L, namely λ, is determined by any two points on L. If we use the points (x1, y1) and (x3,−y3)

to compute this slope, we get

λ =
−y3 − y1

x3 − x1
,

or

y3 = λ(x1 − x3)− y1.
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Therefore we have derived a formula for P + Q in case 1: if x1 6= x2, then (x1, y1) +

(x2, y2) = (x3, y3), where

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

and

λ =
y2 − y1

x2 − x1

Case 2, where x1 = x2 and y1 = −y2, is simple: we define (x, y) + (x,−y) = O for all

(x, y) ∈ E. Therefore (x, y) and (x,−y) are inverses with respect to the elliptic curve addition

operation.

Case 3 remains to be considered. Here we are adding a point P = (x1, y1) to itself. We

can assume that y1 6= 0, for then we would be in case 2. case 3 is handled much like Case 1,

except that we define L to be the tangent to E at the point P . A little of claculus makes the

computation quite simple. The slope of L can be computed using implicit differentiation of

the equation of E:

2y
dy

dx
= 3x2 + a,

Substituting x = x1, y = y1, we see that the slope of the tangent is

λ =
3x1

2 + a

2y1
.

The rest of the analysis in this case is the same as in case 1. The formula obtained is identical,

except that λ is computed differently.

At this point, it can be shown that the addition of ponts on an elliptic curve E satisfies

the following properties:

1. (commutativity) P1 + P2 = P2 + P1 for all P1, P2 on E.
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2. (existence of identity) P + O = P for all points P on E.

3. (existence of inverses) given P on E, there exists P ′ on E with P +P ′ = O. This point

P ′ will be denoted by −P .

4. (associativity) (P1 + P2) + P3 = P1 + (P2 + P3) for all P1, P2, P3 on E.

In other words, the points on E form an additive abelian group with O as the identity

element.

2.1.3 Elliptic Curves over Fields

In Weierstrass equation for an elliptic curve, we specified that a, b, x and y belong to real

numbers R, but usually they are taken to elements os a field, for example, the real numbers

R, the complex numbers C, the rational numbers Q, one of the finite fields Fp for a prime p,

or one of the finite fields Fq, where q = pk with k ≥ 1. If K is a field with a, b ∈ K, then we

say that E is defined over K. In this report, E and K will implicitly assumed to denote an

elliptic curve and a field over which E is defined.

If we want to consider points with coordinates in some field L ⊇ K, we write E(L).

Hence,

Definition : Elliptic curve over field L is defined as

E(L) = {O} ∪ {(x, y) ∈ L× L|y2 = x3 + ax + b}

where O is the point at infinity.

The addition operation on E is defined as follows: Suppose

P = (x1, y1)

and,

Q = (x2, y2)

are points on E. If x2 = x1 and y2 = −y1, then P + Q = O; otherwise P + Q = (x3, y3),
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where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1,

and

λ =











(y1 − y2)(x2 − x1)
−1, if P 6= Q

(3x1
2 + a)(2y1)

−1, if P = Q.

Finally, define

P + 0 = O + P = P

for all P ∈ E.

Although the addition of points on an elliptic curve over Fp or Fq, where q = pk and

k ≥ 1, does not have nice geometric interpretation that it does on an elliptic curve over the

reals, the same formula can be used to define addition, and the resulting pair (E, +) still

forms an abelian group.

2.2 Elliptic Curves in Cryptography

In this section, we’ll discuss some cryptosystem based on eliptic curves, especially on the

discrete logarithm problem for elliptic curves. The reason for using elliptic curves in cryp-

tography is that it provies security equivalent to classical system while using fewer bits. For

example, it is estimated that a key size of 4096 bits for RSA gives the same level of security as

313 bits in an elliptic curve system. This means that implementations of elliptic curve cryp-

tosystem require smaller chip size, less power consumtion etc. Though certain procedures,

such as signature verifications, were slightly faster for RSA, the elliptic curve methodssuch as

ECC-DSA clearly offer great increases in speed in many situations.

2.2.1 The Discrete Logarithm Problem

Let p be a prime and let a, b be integers that are nonzero mod p. suppose we know that there

exists an integer k such that

ak ≡ b(modp)
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The classical discrete logarithm problem is to find k. Since k + (p− 1) is also a solution,

the answer k should be rregarded as being defined modp − 1, or mod a divisor d of p − 1 if

ad ≡ 1(modp).

More generally, let G be any group, written multiplicately for the moment, and let

a, b ∈ G. Suppose we know that ak ≡ b for some integer k. In this context, the discrete

logarithm problem is to find k. For example, G could be the multiplicative group Fq
× of a

finite field. Also G could be E(Fq) for some elliptic curves, in which case a and b are points

on E and we are trying to find an integer k with ka = b.

2.2.2 Public Key Cryptography

Public key cryptography, also known as asymmetric cryptography, is a form of cryptog-

raphy in which a user has a pair of cryptographic keys - a public key and a private key.

The private key is kept secret, while the public key may be widely distributed. The keys

are related mathematically, but the private key cannot be practically derived from the public

key. A message encrypted with the public key can be decrypted only with the corresponding

private key.

Conversely, Secret key cryptography, also known as symmetric cryptography uses

a single secret key for both encryption and decryption.

The two main branches of public key cryptography are:

1. Public key encryption a message encrypted with a recipient’s public key cannot be

decrypted by anyone except the recipient possessing the corresponding private key.

This is used to ensure confidentiality.

2. Digital signatures a message signed with a sender’s private key can be verified by any-

one who has access to the sender’s public key, thereby proving that the sender signed

it and that the message has not been tampered with. This is used to ensure authenticity.

Modern cryptography, as applied in the commercial world, is concerned with a number

of problems. The most important of these are:

1. Confidentiality: A message sent from sender to receiver cannot be read by anyone

else.
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2. Autenticity: Receiver knows that only sender could have sent the message he/she has

just received.

3. Integrity: Receiver knows that the message from sender has not been tampered with

in transit.

4. Non-repudation: It is impossible for sender to turn around later and say he/she did

not send the message.

It is common in literature to introduce public key techniques in the area of confi-

dentiality protection. Public key techniques are, however, usually infeasible to use directly

in the context, being orders of magnitude slower than symmetric techniques. Their use in

confidentiality is often limited to the transmission of symmetric cipher keys. On the other

hand digital signatures, which give the user the authentication, integrity and non-repudiation

properties required in electronic commerce, seem to require the use of public key cryptography.

2.2.3 Cryptography Based on Groups

In this section, some of the standard protocols of public key cryptography are surveyed. The

protocols discussed here only require the use of a finite abelian group G, of order #G, which

is assumed to be cyclic. The group of interest in this work is the additive group of points on

an elliptic curve. However, it is convenient for the remainder of this section to assume the

group is multiplicative, with generator g, and the order #G, is a prime. If this not the case,

we can always take a prime order subgroup of G as our group, with no loss of security.

Diffie-Hellman key exchange.

Sender and receiver wish to agree on a secret random element in the group, which could be of

use as a key for a higher speed symmetric algorithm like the Data Encryption Standard(DES).

They wish to make this agreement over an insecure channel, without having exchanged any

information previously. The only public items, which can be shared amongst a group of users,

are the group G and an element g ∈ G of large known order.

1. Sender generates a random integer xA ∈ {1, ..., #G− 1}. He/She sends to receiver the

element.

gxA.
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2. Receiver generates a random integer xB ∈ 1, ..., #G− 1. He/She sends to receiver the

element.

gxB .

3. Receiver can then compute

gxAxB = (gxB
)xA.

4. Likewise, receiver can then compute

gxAxB = (gxA
)xB .

The only information that eavesdropper knows is G, g, gxA and gxB . If eavesdropper can re-

cover gxAxB from this data then he/she is said to have solved a Diffie−Hellmanproblem(DHP).

It is easy to see that if eavesdropper can find discrete logarithms in G then he/she can solve

the DHP.

ElGamal encryption.

Sender wishes to send a message to receiver. His/Her message, m, is assumed to be encoded

as an element in the group. Receiver has a public key consisting of g and h = gx, where x is

the private key.

1. Sender generates a random integer k ∈ {1, ..., #G− 1} and computes

a = gk, b = hkm.

2. Sender sends the cipher text (a, b) to receiver.

3. Receiver can recover the message from the equation

ba−x = hkmg−kx = gxk−xkm = m.

ElGamal digital signature.

Here, Receiver wants to sign a message m ∈ (Z/(#G)Z). He/She can use the same public

and private key pair, h and x, as he/she used for the encryption scheme. We will need a

bijection f from G to Z/(#G)Z).
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1. Sender generates a random integer k ∈ 1, ..., #G− 1, and computes

a = gk.

2. Sender computes a solution, b ∈ Z/(#G)Z, to the congruence

m ≡ xf(a) + bk(mod#G).

3. Sender sends the signature, (a, b), and the message, m, to receiver.

4. Receiver verifies the signature by checking that the following equation holds:

hf(a)ab = gxf(a)+kb = gm.

Digital Signature Algorithm.

A version of Digital Signature Algorithm(DSA), is the basis of the Digital Signature standard.

The signature procedure is almost identical to the ElGamal scheme abve. Sender wants

to sign a message m ∈ Z/(#G)Z. He/She uses the same public and private key pair h and

x as before, and both he/she and receiver use a common bijective mapping, f , from G to

Z/(#G)Z.

1. Sender generates a random integer k ∈ {1, ..., #G− 1}, and computes

a = gk.

2. He/She computes the solutiion, b, to the congruence

m ≡ −xf(a) + kb(mod#G).

3. He/She sends the signature, (a, b), and the message, m, to receiver.

4. Receiver computes

u = mb−1(mod#G), v = f(a)b−1(mod#G).

5. He/She then computes

w = guhv.

12



and verifies that

w = guhv = gmb−1

gvx = gmb−1+xf(a)b−1

= g(m+xf(a))b−1

= gkbb−1

= gk

= a.

2.3 Point additions in elliptic curves

The efficiency of an ECC mainly depends upon the scalar multiplication, i.e., the computation

of the point [n]P = P + ... + P (n times), for a given point on an elliptic curve E. Several

representations of the scalar n (binary, ternary, non-adjacent form (NAF), window methods

(w-NAF)...) has been proposed earlier[1]. In recent years, a new representation scheme us-

ing Double-base number system (DBNS)[5] and Multi-base number system (MBNS)[6] has

gained much popularity due to shorter length representation and sparseness. Introduction of

algorithms of new point additions, 3P in both affine [2] and jacobian coordinates [?], 3wP in

jacobian coordinates [5], 5P in both affine and jacobian coordinates [6], 2wP in both affine

[4] and jacobian coordinates [7] and mixed addition m − (P + Q) in projective coordinates

[3] has made computaion much faster. Table 2.3 summarizes the cost of operation required

in different point addition algorithm along with their references.

Operation affine jacobian
proposed cost proposed cost

[2]P - 1[I] + 2[M ] - 6[S] + 4[M ]
P + Q - 1[I] + 2[M ] - 4[S] + 12[M ]

m− (P + Q) - - [3] 3[S] + 8[M ]
[2w]P [4] 1[I] + (4w − 2)[M ] [7] (4w + 2)[S] + 4w[M ]
[3]P [2] 1[I] + 7[M ] [5] 6[S] + 10[M ]
[3w]P - - [5] (4w + 2)[S] + (11w − 1)[M ]
[5]P [6] 1[I] + 13[M ] [6] 9[S] + 15[M ]
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Chapter 3

Scalar multiplication using Multi-base

number system

In this chapter, we propose an efficient and secure point multiplicaton algorithm based on

multi-base chains. This is achieved by taking advantage of the sparseness and the ternary

nature of the so-called multi-base number system (MBNS). The speed-ups are the results of

fewer point additions and improved formulae for point triplings and quintuplings in both even

and odd characteristic.

3.1 Multi-base Number System

Let k be an integer and let B = {b1, ..., bl} be a set of small integers. A representation of k as

a sum of powers of elements of B (
∑m

j=1 sjb
ej1

1 ...b
ejl

l , where sj is a sign) is called a multibase

representation of n using the base B. The integer m is the length of the representation. In the

current chapter we are particularly interested in multibase representation with B = {2, 3, 5}.

The multibase representations are short and highly redundant. The number of representations

of n grows very fast in the number of base elements. This is clearly evident from Table 3.1.

The multibase representations are very sparse too. One can represent a 160 bit integer using

around 23 terms using B = {2, 3} and around 15 terms using B = {2, 3, 5}.

In this chapter, by a multibase representation of n, we mean a representation of the form

n =

m
∑

i=1

si2
bi3ti5qi, with si ∈ {−1, 1}, and bi, ti, qi ≥ 0 (3.1)

A general multibase representation, although very short, is not suitable for a scalar multipli-

14



Table 3.1: number of multibase representations of small numbers using various bases.

n B = {2, 3} B = {2, 5} B = {2, 3, 5} B = {2, 3, 5, 7}
10 5 3 8 10
20 12 5 32 48
50 72 18 489 1266
100 402 55 8425 43777
150 1296 119 63446 586862
200 3027 223 316557 4827147
300 11820 569 4016749 142196718

cation algorithm. So, we are interested in a special representation with restricted exponents.

Definition. A multibase representation n =
∑

i 2
bi3ti5qi using the bases B = {2, 3, 5} is

called a step multibase representation (SMBR) if the exponents {bi}, {ti} and {qi} form three

seperate monotonic sequences.

An integer n has several SMBR, the simplest one being the binary representation. If n is

represented in SMBR, then we can write using Horner’s rule and an addition chain for sclar

multiplication can easily be developed.

Some approaches and modifications have been proposed [6] to yield a better and efficient

computation of scalar multiplication, however, there are some drawbacks of earlier methods

of scalar multiplication.

1. Large Search Space : Large value of maximum bounds on exponents of 2, 3 and 5 makes

the search space too large in conversion from integer to multi-base chain.

2. Large Table Size : There is a static table which keeps max2×max3×max5 entries. For

n = 160 bit integer, there will be almost O(10, 000) entries.

3. Monotonicity in SMBR: Monotonicity puts an unwanted restriction on exponents of

bases. Sometimes, a better representation can be found without taking consideration

of monotonicity. For example,

159 = 150 + 10− 1

= 213152 + 213051 − 203050
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but,

159 = 150 + 9

= 213152 + 203250

To overcome above problems partially, we propose an alternative method, window-based

method, for scalar multiplication.

3.2 Proposed Window-based method for scalar multi-

plication

In this section, We will focus on (a) bounds on maximum exponents of bases, namely 2, 3 and

5, and (b) criteria for suitable window length which gives less computation and less memory

size.

3.2.1 Maximum bounds

In earlier proposed methods, search space was too large to find a representation of an integer

to multibase-chain. For example, for 160-bit integer, maximum exponent for 2, 3 and 5 is 160,

103 and 69 respectively. Although it gives a better candidate for the nearest integer to n, but

at the sake of large searching. There are other bounds also proposed which are significantly

much less and work better, but all these are hueristic. We propose a reasonable bound, say

max2, max3 and max5 for 2, 3 and 5 respectively. let n be an r-bit integer, then maximum

value of n will be 2r+1 − 1. So,

b2max23max35max5c ≥ 2r+1, assuming 2r+1 − 1 ≈ 2r+1

or,

max2 + max3log23 + max5log25 ≥ r + 1 (3.2)

We need to find the smallest value of max2 +max3log23+max5log25 which satisfies equation

(3.2). This reduces the search space extensively.
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3.2.2 Window selection

Reducing the maximum bound is yet not sufficient. We break the entire range into ρ parts,

called window. Let window length for base 2, 3 and 5 be w2, w3 and w5 respectively. Then,

max2 = ρw2 (3.3)

max3 = ρw3 (3.4)

max5 = ρw5 (3.5)

Substituting equation (3.3), (3.4) and (3.5) in equation (3.2), we get

ρ(w2 + w3log23 + w5log25) ≥ r + 1 (3.6)

Equation (3.6) diverts the search criteria from maximum bound to no. of partitions and

window length w2, w3 and w5.

Algorithm 1: To compute no. of partitons for a given window

Input : window lengths w2, w3, w5 for 2, 3 and 5 resp. and bit length r.
Output : no. of partitions, ρ.
1: s← bw2 + w3log23 + w5log25c.
2: ρ← (r + 1)/s.
3: return ρ.

3.3 Representation of n.

Before proceeding to the modified greedy algorithm for representation of n, we need to observe

that how n looks?

Lemma 3.3.1. Let 1 ≤ n < 2w23w35w5 and the nearest integer to n be 2b3t5q, where 0 ≤ b ≤

w2, 0 ≤ t ≤ w3, 0 ≤ q ≤ w5, then k = |n− 2b3t5q| < n.

Proof. Case 1: If 2b3t5q = 203050 = 1, then k = |n− 1| < n.

Case 2: Let k = |n − 2b3t5q| ≥ n. Take k′ = |n − 1| < n, then 2b3t5q won’t be the nearest

integer to n, a contradiction.

Corollary 3.3.2. Every integer 0 ≤ n < 2w23w35w5 can be represented as
∑

j sj2
bj3tj5qj ,

where sj ∈ {−1, 0, 1} and 0 ≤ bj ≤ w2, 0 ≤ tj ≤ w3, 0 ≤ qj ≤ w5.
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Proof. Case 1: If n = 0, put j = 1 and sj = 0.

Case 2: If 1 ≤ n < 2w23w35w5, then by lemma 3.3.1, there exists an integer 2b3t5q s.t.

k = |n− 2b3t5q| < n− 1, where 0 ≤ b ≤ w2, 0 ≤ t ≤ w3, and 0 ≤ q ≤ w5.

Put s = 1, if n − 2b3t5q ≥ 0 else s = −1, if n − 2b3t5q < 0. Apply same procedure for k till

we get 0 (Note that least value for 2b3t5q is 1.) Hence, the corollary.

It may be easily observed that there can be at most 2 integers which are nearest to some

integer n, say n−d and n+d. In that case we will choose the nearest integer which is smaller

than n.

Lemma 3.3.3. Every integer 0 ≤ n < 2ρw23ρw35ρw5 can be uniquely represented as n =

(2w23w35w5)ρ−1Mρ−1+(2w23w35w5)ρ−2Mρ−2+......+M0 s.t. 0 ≤Mρ−1, Mρ−2, ..., M0 < 2w23w35w5.

Proof. We divide the proof into two parts, (a) existence and (b) uniqueness.

(a) Existence: Let n = Mρ−1(2
w23w35w5)ρ−1 + Rρ−1, where 0 ≤ Rρ−1 < (2w23w35w5)ρ−1.

Mρ−1 should be strictly less than 2w23w35w5 , i.e., 0 ≤ Mρ−1 < 2w23w35w5, otherwise n ≥

(2w23w35w5)ρ. Similarly

Rρ−1 = Mρ−2(2
w23w35w5)ρ−2 + Rρ−2, s.t. 0 ≤ Rρ−2 < (2w23w35w5)ρ−2, 0 ≤Mρ−2 < 2w23w35w5

...

R2 = M1(2
w23w35w5)1 + R1, s.t. 0 ≤ R1 < (2w23w35w5), 0 ≤M1 < 2w23w35w5.

R1 = M0, s.t. , 0 ≤M0 < 2w23w35w5.

After summing up, we get the desired representation.

(b) Uniqueness: Let n = (2w23w35w5)ρ−1Mρ−1 + (2w23w35w5)ρ−2Mρ−2 + ...... + M0 and n =

(2w23w35w5)ρ−1M ′

ρ−1 + (2w23w35w5)ρ−2M ′

ρ−2 + ...... + M ′

0 be two different representations of n,

i.e., there exist at least one Mi 6= M ′

i for some 0 ≤ i ≤ ρ− 1. Thus,

(2w23w35w5)ρ−1(Mρ−1 −M ′

ρ−1) + ...... + (M0 −M ′

0) = 0

which implies that 2w23w35w5 is the root of the equation

(Mρ−1 −M ′

ρ−1)X
ρ−1 + (Mρ−2 −M ′

ρ−2)X
ρ−2 + ..... + (M0 −M ′

0) = 0 (3.7)

Let l be the degree of the polynomial (Mρ−1−M ′

ρ−1)X
ρ−1 +(Mρ−2−M ′

ρ−2)X
ρ−2 + .....+(M0−
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M ′

0) , i.e, (Mi −M ′

i) = 0 for all i > l. The integral roots of the above equation (3.7) are in

the form of ± some factor of (M0 −M ′

0) if (M0 −M ′

0) 6= 0, but −2w23w35w5 < (M0 −M ′

0) <

2w23w35w5, so 2w23w35w5 can’t be the root of equation (3.7). If (M0 −M ′

0) = 0, then equation

(3.7) reduces to

(Mρ−1 −M ′

ρ−1)X
ρ−2 + (Mρ−2 −M ′

ρ−2)X
ρ−3 + ..... + (M1 −M ′

1) = 0 (3.8)

Applying same reasoning as above, we get that Mj = M ′

j for all 0 ≤ j ≤ ρ − 1. Hence the

lemma.

We can verify Lemma (3.3.3) alternatively; there are 2w23w35w5 choices for each Mj where

0 ≤ j ≤ (ρ− 1). So, there will be (2w23w35w5)ρ different combinations, yielding numbers from

0 to (2w23w35w5)ρ − 1.

Lemma (3.3.3) gives a nice representation of n and suggests that finding Mρ−1, Mρ−2, ..., M0

is sufficient to represent n. Since 0 ≤ Mj < 2w23w35w5 for all 0 ≤ j ≤ ρ− 1, only search in a

given window will give the desired representation. Consequently, search will be much faster

and static table size will be much smaller.

3.4 Average number of inverse, square and multiplica-

tion

Let 0 ≤ m < 2w23w35w5 and t be the average number of terms for representing m. Then for

0 ≤ n < 2ρw23ρw35ρw5,

n = 2w23w35w5(...(2w23w35w5(Mρ−1) + Mρ−2) + ...) + M0 (Horner’s rule)

there will be an average of (ρ − 1)w2 doublings, (ρ − 1)w3 triplings, (ρ − 1)w5 quintuplings

and ρt− 1 additions.

If there are doi, tri, qui, adi no. of inverses, dom, trm, qum, adm no. of multiplications and

dos, trs, qus, ads no. of squares in doubling, tripling, quintupling and addition respectively,

then

1. Average no. of inverses (Ai) = (ρ− 1){w2(doi) + w3(tri) + w5(qui)}+ (ρt− 1)(adi)

2. Average no. of squares (As) = (ρ− 1){w2(dos) + w3(trs) + w5(qus)}+ (ρt− 1)(ads)
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3. Average no. of multiplications (Am) = (ρ− 1){w2(dom) + w3(trm) + w5(qum)}+ (ρt−

1)(adm)

If all values of Mjs are stored, i.e, from 1 to 2w23w35w5−1, then we need less computation since

we can save computation for calculating MjP . In that case, there will be (ρ− 1)w2 doublings,

(ρ− 1)w3 triplings, (ρ− 1)w5 multiplications and (ρ− 1) additions. The probability of having

non-zero Mj is (2w23w35w5 − 1)/2w23w35w5. Hence

1. Average no. of inverses (Ai) =

(ρ− 1){w2(doi) + w3(tri) + w5(qui) + ((2w23w35w5 − 1)/2w23w35w5)(adi)}

2. Average no. of squares (As) =

(ρ− 1){w2(dos) + w3(trs) + w5(qus) + ((2w23w35w5 − 1)/2w23w35w5)(ads)}

3. Average no. of multiplications (Am) =

(ρ− 1){w2(dom) + w3(trm) + w5(qum) + ((2w23w35w5 − 1)/2w23w35w5)(adm)}

Table (3.2) shows the average number of terms and partitons for different values of

w2, w3, w5.

3.5 To find [n]P .

In the proposed window based scalar multiplication algorithm, we need to form two tables,

namely T P and T P
pr. Table T P contains the values of different 2b3t5q, 0 ≤ b ≤ w2, 0 ≤ t ≤ w3

and 0 ≤ q ≤ w5 such that T P (b, t, q) = 2b3t5q. On the other hand T P
pr(b, t, q) = [2b3t5q]P ,

where P is the point on an elliptic curve E. Although we will store much precomputed points

than any earlier proposed method for scalar multipication, the total storage size will be much

smaller. In earlier proposed methods, we need to form a static table, i.e, T P whose size were

max2 × max3 × max5 that will be almost equal to O(ρ3w2w3w5) but in proposed window

based method, total storage size for both tables T P and T P
pr will be 2(w2 +1)(w3 +1)(w5 +1),

which is almost 1/(ρ)3 times less than tables formed by earlier proposed methods.

To reduce computation of scalar multipication, we can use another table by help of T P
pr′.

We can form a table which contains all prcomputed points within window. There will be

2w23w35w5 − 1 no. of points from [203050]P to [2w23w35w5 − 1]P ; there is no need to compute

[2w23w35w5 ]P , but it was already precomputed (while forming T P
pr), hence we can assume that

T P
pr′ contains 2w23w35w5 no. of precomputed points. We form T P

pr′ with the help of T P
pr in the
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same way as it is done to calculate an MBNS representation of some number m using greedy

approach. It requires addition of points only.

Computation of precomputed points in T P
pr may be higher (depending upon window

length), but it may be reduced if 2b3t5q could be computed recursively. It is easily noti-

cable that (a) [2b+13t5q]P = [2[2b3t5q]]P , (b) [2b3t+15q]P = [3[2b3t5q]]P and (c) [2b3t5q+1]P =

[5[2b3t5q]]P . Algorithm 2 uses recursive method to form T P
pr.

After having both tables T P and T P
pr or T P and T P

pr′, we can calculate [n]P using following

steps:

1. First, we calculate Mjs, where n =
∑ρ

j=1 Mρ−j(2
w23w35w5)ρ−j and ρ is the number of

partitons. (Algorithm 4).

2. Now, we find out the [Mj]P , (Algorithm 5). To obtain this we first need to represent Mj

in MBNS which can be done by using greedy approach, (Algorithm 3). In Algorithm 3

we use table T P by which we can get MBNS representation of Mj quickly. After getting

the representation, we can evalute [Mj]P by looking at the precomputed points stored

in table T P
pr and adding them.

3. After getting the value of all [Mj]P , we can evaluate [n]P by quintupling, tripling,

doubling and addition of points, (Algorithm 6).

3.6 Cost of operations in computation of precomputed

points

Computation of [2b3t5q]P has been suggested to do recursively i.e., (a) [2b+13t5q]P = [2[2b3t5q]]P ,

(b) [2b3t+15q]P = [3[2b3t5q]]P and (c) [2b3t5q+1]P = [5[2b3t5q]]P . There will be w5 quintu-

plings, w3(w5 + 1) triplings and w2(w3 + 1)(w5 + 1) doublings in formation of T P
pr (Algorithm

2), hence

1. Total no. of inverse (TT P
pri) = w5(qui) + w3(w5 + 1)(tri) + w2(w3 + 1)(w5 + 1)(doi).

2. Total no. of square (TT P
prs) = w5(qus) + w3(w5 + 1)(trs) + w2(w3 + 1)(w5 + 1)(dos).

3. Total no. of mult. (TT P
prm) = w5(qum) + w3(w5 + 1)(trm) + w2(w3 + 1)(w5 + 1)(dom).

We form T P
pr′ with the help of T P

pr in the same way as it is done to calculate an MBNS

representation of some number m using greedy approach. It requires addition of points only.
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Hence total no additons will be (total no. of points in a window) × (average no. of terms in

the representation using T P
pr). Since calculation of [m]P using T P

pr needs to find a representaion

which is same as finding an MBNS representation of m, average no. of terms will be t. So,

total cost of formation of table T P
pr′ will be sum of total cost of formation of T P

pr and total

cost of additions. Hence,

1. Total no. of inverse (T ′

T P
pri

) = TT P
pri + 2w23w55w5 × t(adi).

2. Total no. of square (T ′

T P
prs

) = TT P
prs + 2w23w55w5 × t(ads).

3. Total no. of mult (T ′

T P
prm

) = TT P
prm + 2w23w55w5 × t(adm).

3.7 Comparison

Let us compare the performance of the proposed window based scalar multiplication scheme

to other schemes in literature. We have compared results with [6]. In [6], authors have

proposed an efficient method to calculate [5]P and they used it to develop a different scalar

multiplication algorithm using MBNS with bases 2, 3 and 5. They compared their results

with several other methods and their result was better than that of other proposed methods.

We have computed cost of [n]P using existing algorithm for [2w]P ([4]), [3]P ([2]) and

[5]P ([6]) in affine coordinates for curves over characterisic 2. Since square is almost free

in affine coordinates, we have not taken the cost of squaring in this coordinate system. We

have done numerical tests on window length (0,0,0) to (5,3,2). Our proposed method for

160-bit integer with (w2 + 1) × (w3 + 1) × (w5 + 1) precomputed points requires almost

1513 multiplications for window length (w2, w3, w5) = (5, 0, 0) with 6 precomputed points,

whereas same with 2w23w35w5 precomputed points requires almost 1142 multiplications with

32 precomputed points as compared to the best result obatined in [6] with 1469 multiplications

and 5 precomputed points (taking [I]/[M ] = 8). Table 3.3 and Table 3.4 shows cost of

inverse, multiplication and their equivalent multplication cost for different window lengths

with (w2 + 1)× (w3 + 1)× (w5 + 1) and 2w23w35w5 no. of precomputed points respectively.

For curves over prime characteristic not equal to 2 , we have used algorithm for computing

[2w]P ([7]), [3w]P ([5]), [5]P ([6]) and mixed addition ([3]) in jacobian coordinates. We have

done numerical tests on window length from (0,0,0) to (5,3,2). Our proposed method for

160-bit integer with (w2 + 1) × (w3 + 1) × (w5 + 1) precomputed points requires almost

1748 multiplications for window length (w2, w3, w5) = (3, 3, 2) with 48 precomputed points,

whereas same with 2w23w35w5 precomputed points requires almost 1454 multiplications with
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5400 precomputed points as compared to the best result obatined in [6] with almost 1502

multiplications with 5 precomputed points (taking [S]/[M ] = 0.8). Table 3.5 and Table

3.6 shows cost of inverse, multiplication and their equivalent multplication cost for different

window lengths with (w2 +1)× (w3 + 1)× (w5 + 1) and 2w23w35w5 no. of precomputed points

respectively.
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Algorithm 2: Table construction for precomputed points.

Input : window length w2, w3, w5 for 2, 3 and 5 resp. and a point P
on an elliptic curve E.

Output : An array T P
pr(i, j, k) such that T P

pr(i, j, k) = [2i3j5k]P
where 0 ≤ i ≤ w2, 0 ≤ j ≤ w3 and 0 ≤ k ≤ w5.

1: T P
pr[0, 0, 0] = P

2: i← 0
3: j ← 0
4: k ← 0
5: while k < w5 do

6: T P
pr(i, j, k + 1) = [5]T P

pr(i, j, k)
7: k ← k + 1
8: i← 0
9: j ← 0
10: k ← 0
11: while k < w5 + 1 do

12: while j < w3 do

13: T P
pr(i, j + 1, k) = [3](T P

pri, j, k)
14: j ← j + 1
15: k ← k + 1
16: i← 0
17: j ← 0
18: k ← 0
19: while k < w5 + 1 do

20: while j < w3 + 1 do

21: while i < w2 do

22: T P
pr(i + 1, j, k) = [2]T P

pr(i, j, k)
23: i← i + 1
24: j ← j + 1
25: k ← k + 1
26: return T P

pr
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Algorithm 3: Conversion to MBNS

Input : m, an integer, such that 0 ≤ m < 2w23w35w5 for a given
window length w1, w2, w3 for 2, 3 and 5 and T P

Output : The sequence (si, bi, ti, qi)i>0 such that m =
∑l

i=1 si2
bi3ti.

1: i← 1
2: si ← 1
3: while m > 0 do

4: define X = 2bi3ti5qi, the best approximation of m with
0 ≤ bi ≤ w2, 0 ≤ ti ≤ w3 and 0 ≤ qi ≤ w5. if there are

two choices, choose nearest integer smaller to m.
5: let A[i]← (si, bi, ti, qi)
6: if m < X then

7: si+1 ← −si.
8: m← |m−X|.
9: i← i + 1.
10: return A.

Algorithm 4: To find M ′

js.

Input : an integer n such that 0 ≤ n < (2w23w35w5)ρ for a given
window length w2, w3, w5 for 2, 3 and 5 resp. and no. of
partition ρ.

Output : a seq. of (Mi)i>0 such that n =
∑ρ−1

i=1 Mρ−i(2
w23w35w5)ρ−i,

where 0 ≤Mi < 2w23w35w5 for all 0 ≤ i < ρ− 1.
1: i← 1
2: R← n
3: X ← (2w23w35w5)ρ−1

4: while i ≤ ρ do

5: Mρ−i ← bR/Xc
6: R′ ← R−Mρ−iX
7: X ← X/2w23w35w5

8: R← R′

9: i← i + 1
10: A[ρ− i]←Mρ−i

11: return A
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Algorithm 5: calculation of [m]P
Input : an integer m such that 0 ≤ m < 2w23w35w5, a point P

on an elliptic curve E and T P
pr.

Output : [m]P .
1: A← Algorithm 3(m, w2, w3, w5)
2: L← length(A)
3: P ← O (point at infinity on elliptic curve E)
4: i← 1
5: while i ≤ L do

6: (si, bi, pi, qi)← A[i]
7: P ← P + siT

P
pr(bi, pi, qi)

8: i← i + 1
9: return P

Algorithm 6: calculation of [n]P
Input : an integer n such that 0 ≤ n < (2w23w35w5)ρ, a point P

on an elliptic curve E, no. of partitions ρ and T P
pr.

Output : [n]P
1: A← Algorithm 4(n, w2, w3, w5, ρ)
2: P ← O (point at infinity on elliptic curve E)
3: i← 1
4: while i ≤ (ρ− 1) do

5: Q← Algorithm 5(A[ρ− i], w2, w3, w5, P, T P
pr)

6: P ← P + Q
7: P ← [5w5]P
8: P ← [3w3]P
9: P ← [2w2]P
10: i← i + 1
11: return P
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Table 3.2: Average number of terms in a given window and partions for different values of
w2, w3, w5.

w2 w3 w5 Average no. of terms no. of partitions
0 0 0 0.000000 ∞
0 0 1 1.600000 70
0 0 2 2.880000 35
0 1 0 1.000000 102
0 1 1 1.933333 42
0 1 2 2.760000 26
0 2 0 1.777778 51
0 2 1 2.488889 30
0 2 2 3.164444 21
0 3 0 2.481482 34
0 3 1 2.940741 23
0 3 2 3.583704 18
1 0 0 0.500000 161
1 0 1 1.500000 49
1 0 2 2.340000 29
1 1 0 1.166667 63
1 1 1 1.833333 33
1 1 2 2.486667 23
1 2 0 1.722222 39
1 2 1 2.233333 25
1 2 2 2.775556 19
1 3 0 2.240741 28
1 3 1 2.640741 20
1 3 2 3.123704 16
2 0 0 1.000000 81
2 0 1 1.750000 38
2 0 2 2.460000 25
2 1 0 1.416667 45
2 1 1 1.983333 28
2 1 2 2.536667 20
2 2 0 1.888889 32
2 2 1 2.294445 22
2 2 2 2.786667 17
2 3 0 2.268518 24
2 3 1 2.642593 18
2 3 2 3.084074 15
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w2 w3 w5 Average no. of terms no. of partitions
3 0 0 1.375000 54
3 0 1 2.025000 31
3 0 2 2.675000 22
3 1 0 1.708333 36
3 1 1 2.175000 24
3 1 2 2.651667 18
3 2 0 2.097222 27
3 2 1 2.452778 19
3 2 2 2.893889 15
3 3 0 2.458333 21
3 3 1 2.758333 16
3 3 2 3.167963 13
4 0 0 1.750000 41
4 0 1 2.300000 26
4 0 2 2.905000 19
4 1 0 1.979167 29
4 1 1 2.354167 21
4 1 2 2.842500 16
4 2 0 2.333333 23
4 2 1 2.620833 17
4 2 2 3.043333 14
4 3 0 2.668982 19
4 3 1 2.915278 15
4 3 2 3.297500 13
5 0 0 2.093750 33
5 0 1 2.568750 22
5 0 2 3.137500 17
5 1 0 2.218750 25
5 1 1 2.568750 19
5 1 2 3.030417 15
5 2 0 2.552083 20
5 2 1 2.811805 16
5 2 2 3.207083 13
5 3 0 2.878472 17
5 3 1 3.077546 14
5 3 2 3.439306 12
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Table 3.3: Costs of elliptic curve scalar multiplication for 160-bit multipliers using affine
coordinates (F2m − cost) taking (w2 +1)(w3 +1)(w5 +1) number of storage points. [I]/[M ] =
8(assuming square is free).

w2 w3 w5 # storage inverse [I] multiplication [M ] ≈ [M ]
0 0 0 0 - - -
0 0 1 2 180.000000 1119.000000 2559.000000
0 0 2 3 167.800003 1083.599976 2426.000000
0 1 0 2 202.000000 909.000000 2525.000000
0 1 1 4 162.199982 980.399963 2277.999756
0 1 2 6 145.759995 966.520020 2132.600098
0 2 0 3 189.666687 879.333374 2396.666992
0 2 1 6 160.666672 930.333313 2215.666748
0 2 2 9 145.453323 930.906616 2094.533203
0 3 0 4 182.370392 859.740784 2318.703857
0 3 1 8 154.637039 881.274109 2118.370361
0 3 2 12 148.506668 926.013367 2114.066650
1 0 0 2 239.500000 479.000000 2395.000000
1 0 1 4 168.500000 865.000000 2213.000000
1 0 2 6 150.860001 917.719971 2124.600098
1 1 0 4 196.500015 703.000061 2275.000244
1 1 1 8 155.499985 823.000000 2067.000000
1 1 2 12 144.193344 882.386658 2035.933350
1 2 0 6 180.166656 740.333313 2181.666504
1 2 1 12 150.833328 805.666626 2012.333252
1 2 2 18 141.735565 859.471130 1993.355713
1 3 0 8 169.740753 744.481506 2102.407471
1 3 1 16 146.814819 787.629639 1962.148193
1 3 2 24 138.979263 832.958496 1944.792603
2 0 0 3 160.000000 640.000000 1920.000000
2 0 1 6 139.500000 834.000000 1950.000000
2 0 2 9 132.500000 889.000000 1949.000000
2 1 0 6 150.750015 697.500000 1903.500122
2 1 1 12 135.533325 811.066650 1895.333252
2 1 2 18 125.733345 840.466675 1846.333496
2 2 0 9 152.444443 738.888916 1958.444458
2 2 1 18 133.477783 791.955566 1859.777832
2 2 2 27 126.373344 828.746704 1839.733398
2 3 0 12 145.444427 727.888855 1891.444336
2 3 1 24 131.566666 773.133362 1825.666748
2 3 2 36 129.261108 832.522217 1866.611084

29



w2 w3 w5 # storage inverse [I] multiplication [M ] ≈ [M ]
3 0 0 4 126.250000 676.500000 1686.500000
3 0 1 8 121.775002 813.549988 1787.750000
3 0 2 12 120.849998 871.700012 1838.500000
3 1 0 8 130.499985 716.000000 1759.999878
3 1 1 16 120.199997 792.400024 1754.000000
3 1 2 24 114.730011 824.460022 1742.300049
3 2 0 12 133.625000 735.250000 1804.250000
3 2 1 24 117.602783 757.205566 1698.027832
3 2 2 36 112.408333 784.816650 1684.083252
3 3 0 16 130.625000 721.250000 1766.250000
3 3 1 32 118.133331 746.266663 1691.333252
3 3 2 48 112.183517 764.367065 1661.835205
4 0 0 5 110.750000 701.500000 1587.500000
4 0 1 10 108.799995 792.599976 1663.000000
4 0 2 15 108.195000 828.390015 1693.949951
4 1 0 10 112.395844 700.791687 1599.958496
4 1 1 20 108.437508 776.875000 1644.375000
4 1 2 30 104.479996 793.960022 1629.800049
4 2 0 15 118.666656 721.333313 1670.666504
4 2 1 30 107.554161 743.108337 1603.541626
4 2 2 45 106.606659 785.213318 1638.066650
4 3 0 20 121.710655 729.421326 1703.106567
4 3 1 40 112.729172 757.458313 1659.291748
4 3 2 60 113.867500 815.734985 1726.675049
5 0 0 6 100.093750 712.187500 1512.937500
5 0 1 12 97.512497 762.025024 1542.125000
5 0 2 18 100.337502 808.674988 1611.375000
5 1 0 12 102.468750 708.937500 1528.687500
5 1 1 24 101.806252 779.612488 1594.062500
5 1 2 36 100.456253 802.912537 1606.562500
5 2 0 18 107.041656 708.083313 1564.416504
5 2 1 36 103.988876 762.977783 1594.888794
5 2 2 54 100.692078 777.384155 1582.920776
5 3 0 24 111.934029 719.868042 1615.340332
5 3 1 48 107.085640 760.171265 1616.856445
5 3 2 72 106.271675 795.543335 1645.716797
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Table 3.4: Costs of elliptic curve scalar multiplication for 160-bit multipliers using affine
coordinates (F2m − cost) taking 2w23w35w5 number of storage points. [I]/[M ] = 8(assuming
square is free).

w2 w3 w5 # storage inverse [I] multiplication [M ] ≈ [M ]
0 0 0 0 - - -
0 0 1 5 124.199997 1007.400024 2001.000000
0 0 2 25 100.639999 949.280029 1754.400024
0 1 0 3 168.333328 841.666687 2188.333252
0 1 1 15 120.266670 896.533325 1858.666748
0 1 2 75 99.666664 874.333313 1671.666626
0 2 0 9 144.444443 788.888916 1944.444458
0 2 1 45 115.355553 839.711121 1762.555542
0 2 2 225 99.911110 839.822205 1639.111084
0 3 0 27 130.777771 756.555542 1802.777710
0 3 1 135 109.837036 791.674072 1670.370361
0 3 2 675 101.974815 832.949646 1648.748169
1 0 0 2 240.000000 480.000000 2400.000000
1 0 1 10 139.199997 806.400024 1920.000000
1 0 2 50 111.440002 838.880005 1730.400024
1 1 0 6 175.666672 661.333313 2066.666748
1 1 1 30 126.933334 765.866638 1781.333252
1 1 2 150 109.853333 813.706665 1692.533325
1 2 0 18 149.888885 679.777771 1878.888916
1 2 1 90 119.733330 743.466675 1701.333252
1 2 2 450 107.959999 791.919983 1655.599976
1 3 0 54 134.500000 674.000000 1750.000000
1 3 1 270 113.929626 721.859253 1633.296265
1 3 2 1350 104.988892 764.977783 1604.888916
2 0 0 4 140.000000 600.000000 1720.000000
2 0 1 20 109.150002 773.299988 1646.500000
2 0 2 100 95.760002 815.520020 1581.600098
2 1 0 12 128.333328 652.666687 1679.333252
2 1 1 60 107.550003 755.099976 1615.500000
2 1 2 300 94.936668 778.873352 1538.366699
2 2 0 36 123.138885 680.277771 1665.388916
2 2 1 180 104.883331 734.766663 1573.833252
2 2 2 900 95.982224 767.964417 1535.822266
2 3 0 108 114.787041 666.574097 1584.870361
2 3 1 540 101.968521 713.937012 1529.685181
2 3 2 2700 97.994812 769.989624 1553.948120
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w2 w3 w5 # storage inverse [I] multiplication [M ] ≈ [M ]
3 0 0 8 99.375000 622.750000 1417.750000
3 0 1 40 89.250000 748.500000 1462.500000
3 0 2 200 83.894997 797.789978 1468.949951
3 1 0 24 103.541664 662.083313 1490.416626
3 1 1 120 91.808334 735.616638 1470.083252
3 1 2 600 84.971664 764.943359 1444.716675
3 2 0 72 103.638885 675.277771 1504.388916
3 2 1 360 89.949997 701.900024 1421.500000
3 2 2 1800 83.992226 727.984436 1399.922241
3 3 0 216 99.907410 659.814819 1459.074097
3 3 1 1080 89.986115 689.972229 1409.861084
3 3 2 5400 83.997780 707.995544 1379.977783
4 0 0 16 77.500000 635.000000 1255.000000
4 0 1 80 74.687500 724.375000 1321.875000
4 0 2 400 71.955002 755.909973 1331.550049
4 1 0 48 83.416664 642.833313 1310.166626
4 1 1 240 79.916664 719.833313 1359.166626
4 1 2 1200 74.987503 734.974976 1334.875000
4 2 0 144 87.847221 659.694458 1362.472168
4 2 1 720 79.977776 687.955566 1327.777832
4 2 2 3600 77.996391 727.992798 1351.963867
4 3 0 432 89.958336 665.916687 1385.583374
4 3 1 2160 83.993515 699.987061 1371.935181
4 3 2 10800 83.998886 755.997803 1427.988892
5 0 0 32 63.000000 638.000000 1142.000000
5 0 1 160 62.868752 692.737488 1195.687500
5 0 2 800 63.980000 735.960022 1247.800049
5 1 0 96 71.750000 647.500000 1221.500000
5 1 1 480 71.962502 719.924988 1295.625000
5 1 2 2400 69.994164 741.988342 1301.941650
5 2 0 288 75.934029 645.868042 1253.340332
5 2 1 1440 74.989586 704.979187 1304.895874
5 2 2 7200 71.998337 719.996643 1295.983398
5 3 0 864 79.981483 655.962952 1295.814819
5 3 1 4320 77.996994 701.993958 1325.969971
5 3 2 21600 76.999489 736.998962 1352.994873
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Table 3.5: Costs of elliptic curve scalar multiplication for 160-bit multipliers using jacobian
coordinates (Fpm−cost) taking (w2+1)(w3+1)(w5+1) number of storage points. [S]/[M ] = 0.8

w2 w3 w5 # storage square [S] multiplication [M ] ≈ [M ]
0 0 0 0 - - -
0 0 1 2 954.000000 1923.000000 2686.199951
0 0 2 3 911.400024 1818.400024 2547.520020
0 1 0 2 909.000000 1818.000000 2545.199951
0 1 1 4 855.599976 1666.599854 2351.079834
0 1 2 6 812.280029 1566.079956 2215.904053
0 2 0 3 769.000061 1767.333496 2382.533447
0 2 1 6 772.000000 1633.333374 2250.933350
0 2 2 9 756.359985 1543.626587 2148.714600
0 3 0 4 712.111145 1722.963135 2292.652100
0 3 1 8 705.911133 1567.096313 2131.825195
0 3 2 12 734.520020 1562.053345 2149.669434
1 0 0 2 1198.500000 1276.000000 2234.800049
1 0 1 4 937.500000 1492.000000 2242.000000
1 0 2 6 872.580017 1486.880005 2184.944092
1 1 0 4 961.500061 1448.000122 2217.200195
1 1 1 8 850.499939 1403.999878 2084.399902
1 1 2 12 828.580017 1417.546753 2080.410889
1 2 0 6 806.500000 1479.333252 2124.533203
1 2 1 12 764.500000 1398.666626 2010.266602
1 2 2 18 767.206726 1403.884521 2017.649902
1 3 0 8 725.222229 1465.926025 2046.103760
1 3 1 16 706.444458 1383.518555 1948.674072
1 3 2 24 716.937805 1381.834106 1955.384399
2 0 0 3 1040.000000 1280.000000 2112.000000
2 0 1 6 899.500000 1375.000000 2094.600098
2 0 2 9 853.500000 1396.000000 2078.800049
2 1 0 6 892.250061 1294.000122 2007.800171
2 1 1 12 838.599976 1327.266602 1998.146606
2 1 2 18 795.200012 1309.866699 1946.026733
2 2 0 9 798.333313 1374.555542 2013.222168
2 2 1 18 757.433350 1319.822266 1925.768921
2 2 2 27 747.119995 1314.986694 1912.682739
2 3 0 12 712.333313 1347.555420 1917.422119
2 3 1 24 700.700012 1307.533325 1868.093384
2 3 2 36 723.783325 1342.088867 1921.115479
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w2 w3 w5 # storage square [S] multiplication [M ] ≈ [M ]
3 0 0 4 961.750000 1222.000000 1991.400024
3 0 1 8 875.325012 1304.200073 2004.460083
3 0 2 12 845.549988 1344.800049 2021.239990
3 1 0 8 881.499939 1253.999878 1959.199829
3 1 1 16 820.599976 1260.599976 1917.079956
3 1 2 24 786.190002 1257.840088 1886.792114
3 2 0 12 790.875000 1303.000000 1935.699951
3 2 1 24 730.808350 1228.822266 1813.468994
3 2 2 36 715.224976 1221.266724 1793.446655
3 3 0 16 711.875000 1285.000000 1854.500000
3 3 1 32 684.399963 1230.066650 1777.586670
3 3 2 48 672.550537 1209.468140 1747.508545
4 0 0 5 932.250000 1206.000000 1951.800049
4 0 1 10 851.400024 1245.400024 1926.520020
4 0 2 15 810.585022 1261.559937 1910.027954
4 1 0 10 841.187500 1179.166748 1852.116699
4 1 1 20 805.312500 1207.500000 1851.750000
4 1 2 30 763.440002 1195.839966 1806.591919
4 2 0 15 774.000000 1235.333252 1854.533203
4 2 1 30 722.662476 1180.433228 1758.563232
4 2 2 45 722.820007 1203.853271 1782.109253
4 3 0 20 725.131958 1261.685303 1841.790894
4 3 1 40 702.187500 1223.833374 1785.583374
4 3 2 60 725.602478 1270.939941 1851.421875
5 0 0 6 908.281250 1184.750000 1911.375000
5 0 1 12 817.537476 1179.099976 1833.130005
5 0 2 18 797.012512 1218.699951 1856.309937
5 1 0 12 835.406250 1155.750000 1824.074951
5 1 1 24 809.418762 1192.449951 1839.984985
5 1 2 36 777.368774 1195.650024 1817.545044
5 2 0 18 758.125000 1179.333252 1785.833252
5 2 1 36 746.966614 1191.911011 1789.484253
5 2 2 54 722.076233 1177.536621 1755.197632
5 3 0 24 719.802063 1215.472168 1791.313843
5 3 1 48 711.256897 1207.685181 1776.690674
5 3 2 72 714.815002 1224.173340 1796.025391
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Table 3.6: Costs of elliptic curve scalar multiplication for 160-bit multipliers using jacobian
coordinates (Fpm − cost) taking 2w23w35w5 number of storage points. [S]/[M ] = 0.8

w2 w3 w5 # storage square [S] multiplication [M ] ≈ [M ]
0 0 0 0 - - -
0 0 1 5 786.599976 1476.599976 2105.879883
0 0 2 25 709.919983 1281.119995 1849.056030
0 1 0 3 808.000000 1548.666626 2195.066650
0 1 1 15 729.799988 1331.133301 1914.973267
0 1 2 75 674.000000 1197.333374 1736.533325
0 2 0 9 633.333313 1405.555542 1912.222168
0 2 1 45 636.066650 1270.844482 1779.697754
0 2 2 225 619.733337 1179.288940 1675.075562
0 3 0 27 557.333313 1310.222168 1756.088867
0 3 1 135 571.511108 1208.696289 1665.905151
0 3 2 675 594.924438 1189.798462 1665.738037
1 0 0 2 1200.000000 1280.000000 2240.000000
1 0 1 10 849.599976 1257.599976 1937.279907
1 0 2 50 754.320007 1171.520020 1774.976074
1 1 0 6 899.000000 1281.333374 2000.533325
1 1 1 30 764.799988 1175.466675 1787.306641
1 1 2 150 725.559998 1142.826660 1723.274658
1 2 0 18 715.666687 1237.111084 1809.644409
1 2 1 90 671.200012 1149.866699 1686.826660
1 2 2 450 665.880005 1133.680054 1666.384033
1 3 0 54 619.500000 1184.000000 1679.599976
1 3 1 270 607.788879 1120.437012 1606.668091
1 3 2 1350 614.966675 1109.911133 1601.884521
2 0 0 4 980.000000 1120.000000 1904.000000
2 0 1 20 808.450012 1132.199951 1778.959961
2 0 2 100 743.280029 1102.079956 1696.703979
2 1 0 12 825.000000 1114.666626 1774.666626
2 1 1 60 754.650024 1103.400024 1707.119995
2 1 2 300 702.809998 1063.493286 1625.741333
2 2 0 36 710.416687 1140.111084 1708.444458
2 2 1 180 671.650024 1091.066650 1628.386719
2 2 2 900 655.946655 1071.857788 1596.615112
2 3 0 108 620.361084 1102.296265 1598.585083
2 3 1 540 611.905579 1070.748169 1560.272583
2 3 2 2700 629.984436 1091.958496 1595.946045
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w2 w3 w5 # storage square [S] multiplication [M ] ≈ [M ]
3 0 0 8 881.125000 1007.000000 1711.900024
3 0 1 40 777.750000 1044.000000 1666.199951
3 0 2 200 734.684998 1049.160034 1636.908081
3 1 0 24 800.625000 1038.333374 1678.833374
3 1 1 120 735.424988 1033.466675 1621.806641
3 1 2 600 696.914978 1019.773315 1577.305298
3 2 0 72 700.916687 1063.111084 1623.844482
3 2 1 360 647.849976 1007.599976 1525.880005
3 2 2 1800 629.976685 993.937805 1497.919189
3 3 0 216 619.722229 1039.259277 1535.037109
3 3 1 1080 599.958313 1004.888916 1484.855591
3 3 2 5400 587.993347 983.982239 1454.376953
4 0 0 16 832.500000 940.000000 1606.000000
4 0 1 80 749.062500 972.500000 1571.750000
4 0 2 400 701.864990 971.640015 1533.131958
4 1 0 48 754.250000 947.333313 1550.733276
4 1 1 240 719.750000 979.333313 1555.133301
4 1 2 1200 674.962524 959.900024 1499.869995
4 2 0 144 681.541687 988.777771 1534.011108
4 2 1 720 639.933350 959.822205 1471.768921
4 2 2 3600 636.989197 974.971130 1484.562500
4 3 0 432 629.875000 1007.666687 1511.566650
4 3 1 2160 615.980530 993.948120 1486.732544
4 3 2 10800 635.996643 1031.991089 1540.788452
5 0 0 32 797.000000 888.000000 1525.599976
5 0 1 160 713.606262 901.950012 1472.835083
5 0 2 800 687.940002 927.840027 1478.192017
5 1 0 96 743.250000 910.000000 1504.599976
5 1 1 480 719.887512 953.700012 1529.609985
5 1 2 2400 685.982483 951.953308 1500.739258
5 2 0 288 664.802063 930.472229 1462.313843
5 2 1 1440 659.968750 959.916687 1487.891724
5 2 2 7200 635.994995 947.986694 1456.782715
5 3 0 864 623.944458 959.851868 1459.007446
5 3 1 4320 623.990967 974.975952 1474.168701
5 3 2 21600 626.998474 989.995911 1491.594727
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Chapter 4

Conclusion and Future scope

In this report, we have presented a new method called window based scalar multiplication

method for computing scalar multiplication using MBNS representation of the scalar. We are

using greedy algorithm to find an MBNS representation of a scalar m, but there is a slight

modification from previous algorithms; it is sufficient to find the representation in a window

due to suggested representation of n which results in a much smaller static table size. If some

precomputed points are allowed to store then the complexity turns out to be almost equal to

earlier proposed best methods, and more storage of precomputed points give better than all.

If we look at table 3.3 and table 3.4, we conclude that single base representaion per-

forms better (at (w2, w3, w5) = (5, 0, 0)) than DBNS and MBNS, while table 3.5and table 3.6

gives better computation results (at (w2, w3, w5) = (3, 3, 2))in MBNS. The reason is obvious;

existing method for efficient calculation of [2w]P in affine cordinates gives better result in

single base representation, i.e., with base 2, while in jacobian coordinates, efficient algoritm

for computing [2w]P , [3w]P and [5]P gives better result. It clearly suggests that if there be

an efficient algorithm for computing [2w]P , [3w]P and [5w]P in both affine and projective

coordinates, compuational complexity will be much reduced in scalar multiplication.

Calculation of average no. of inverse, square and multiplication requires ρ (no. of parti-

tions), t (average no. of terms using MBNS for a given m lying in a window) and window

length (w2, w3, w5). For a given r no of bits, equation (3.6) gives a relation between ρ and

w2, w3, w3, but there doesn’t exist any mathematical way which gives a perfect relation be-

tween ρ and t or w2, w3, w5 and t. Any such relation will help in finding an optimal window

length which takes less computation and requires less storage of precomputed points.
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