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Abstract

In this thesis we report some new properties, observations, and algorithms on a digital circle, and
their applications to the analysis of geometric information embedded in a digital image. In particular,
we develop a new method of detecting the centre, radius and area of a digital circle, based on its
number-theoretic interpretation in the digital space. As a sequel, this also leads to a new, efficient
and superior method of approximating the value of π, compare to the existing area-based approaches.
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Chapter 1

Introduction

1.1 Digital Geometry

Digital Geometry is a new branch of Computer Science. It deals with the geometric features embedded
in the digital picture of an object.

Definition 1 Digital Geometry is the study of geometric or topologic properties of sets of pixels or
voxels. It often attempts to obtain quantitative information about objects by analyzing digitized (2D
or 3D) pictures in which the objects are represented by such sets [3].

1.2 Why Digital Geometry?

Consider the problem of drawing an object on computer screen. All real objects lie in Euclidean space,
and are spatially continuous. But a computer screen with a rectangular array of pixels is discrete as
it is a finite subset of Z2. Thus, for digital imaging, we have to map the real continuous objects in
the Euclidean space to finite discrete sets in the digital space so that screen image appears to be
visually same as the real object. On the other hand, given a digital image, one may want to know
whether or not some curves (say circle, ellipse etc.) are present in the digital image, and if so, what
the features are. In other words, we may need to extract the underlying geometric information from
the digital image. Thus for computer graphics, computer vision, and for image processing, we require
the knowledge of the geometry of real objects in digital space.

1.3 Main Aspects of Study

(i) Constructing digitized representation of real objects, with emphasis on precision and efficiency.
(ii) Study the properties concerning digital straightness, digital curves, digital convexity, digital pla-
narity, etc.
(iii) Recognition of real objects and extraction of their features (area, length, curvature, surface area,
volume, etc.) from a given digital image.
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1.4 Applications

The knowledge of digital geometry applies in the area of computer graphics, pattern recognition, image
analysis, medical imaging, robot vision, video game, animation etc., to name a few.
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Chapter 2

Grids and Digitization

Definition 2 A colour digital picture can be thought as an array of triples (R,G,B) of integers ranging
from 0 to GMax.

Fig. 2.1: An RGB picture

An RGB picture is composed of three single-valued channels, which can be shown as gray-level
pictures.

Fig. 2.2: 3 components of a color in RGB space.

Where gray level = integer between 0 and Gmax

Defaults: Gmax = 255 (one byte), 0 = black, Gmax =white
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2.1 Grid points and grid cells

In 2D, the grid point set is Z2, and in 3D, the grid point set is Z3. A grid vertex is shifted by (0.5, 0.5)
with respect to a grid point in 2D and by (0.5, 0.5, 0.5) in 3D. A pair of adjacent grid vertices defines
a grid edge. A grid square is defined by four grid edges that form a square, and a grid cube in 3D is
defined by six grid squares that form a cube.

Fig. 2.3: A regular orthogonal grid in the plane.

Definition 3 A grid cube is also called a 3-cell; a grid square is a 2-cell; a grid edge is a 1-cell; and
a grid vertex is

Fig. 2.4: A digital image and its digitized grid structure.
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Chapter 3

Digital Straight Line

3.1 Digital Straightness

Definition 4 A digital arc is called ’straight’ if it is the digitization of a straight line segment [3].

Definition 5 A set S of grid points is called digitally straight if there is a continuous line whose
digitized set contains S.

Definition 6 A DSL is the digitized set of an Euclidean straight line.

Definition 7 A DSS is the digitized set of an Euclidean straight line segment.

Fig. 3.1: Digital straight line segment or DSS.

Consider the digitization of rays

γα,β = {(x, αx + β) : 0 ≤ x < +∞}

in the set N2 = (i, j) : i, j ∈ N for all grid points with non-negative integer coordinates in the plane.
As a simplification we assume that 0 ≤ α ≤ 1; this is possible due to the symmetry of grid. Such a ray
generates a sequence of intersection points p0, p1, p2, · · · of γα,β with the vertical grid lines at n ≥ 0.
Let (n, In) ∈ Z2 be the grid point nearest to pn. (If there are two nearest grid points, we take the
upper one.) The floor function b.c specifies the largest integer not exceeding a given real. Formally,

Iα,β = {(n, In) : n ≥ 0 ∧ In = bαn + β + 0.5c},
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and iα,β = iα,β(0)iα,β(1)iα,β(2) · · · is a digital ray with slop α and intercept β, where differences
between successive In’s define chain codes:

iα,β(n) = In+1 − In = 0ifIn = In+1, 1ifIn = In+1 − 1, (3.1)

Code 0 interpreted as a horizontal grid increment and 1 specifies a diagonal increment in the grid N2;
see Figure 3.2

Fig. 3.2: Segment of a digital ray, defined by grid-intersection digitization (as calculated by the Bresenham
algorithm).

Definition 8 Tow digital line segments are called digitally collinear if there exits a common Euclidean
straight line whose digitized set contains the sets of digital line segments.

Fig. 3.3: Digitally collinear straight line segments.

Definition 9 Two digital line segments S1 and S2 are called digitally parallel if there exits two parallel
Euclidean straight lines A1 and A2 such that digitized set of Ai for i = 1, 2 contains Si.

Fig. 3.4: Digitally parallel straight line segments.
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Chapter 4

Digital Circle

Drawing circle, ellipse and free-form curves are quite frequent in most CAD packages. For drawing
a circle, two parameters; the coordinates of the center and the radius of the circle are required as
inputs. In this chapter, we explore the Bresenham scan conversion technique, which is widely used in
the CAD graphics packages [6]. A new technique based on a number-theoretic concept as described
in [1] is introduced for generating a digital circle of large radius efficiently.

4.1 Bresenham’s Digital Circle Drawing Algorithm

The scan conversion technique for circle drawing has some advantages. A circle itself has eight-way
symmetry. Consider the Figure 4.1 where a point P on the boundary is reflected seven times. As

Fig. 4.1: The eight-way symmetry of a circle(the point P is reflected seven times).

a result, scan conversion of one-eight of the circle is enough to generate its remaining seven octants.
Bresenham has implemented the line scan conversion algorithm using midpoints to generate the circle.
For a circle with radius r and origin at (0, 0), the equation is given by

f(x, y) = x2 + y2 − r2 (4.1)
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Referring to Figure 4.2 for the current midpoint Mc

f(Mc) = f

(
x + 1, y − 1

2

)
= (x + 1)2 +

(
y − 1

2

)2

− r2 (4.2)

if f(Mc) < 0, E is chosen, else SE is selected. Let us consider these two cases separately. If E is

Fig. 4.2: The pixel grid to select the next scan converted point on the circle (from the point P (x, y), the next se-
lectable point is E or SE. The current and the next two possible midpoints are Mc and ME

n ,MSE
n , respectively).

chosen, for the next midpoint ME
n ,

f(ME
n ) = f

(
x + 2, y − 1

2

)
= (x + 2)2 +

(
y − 1

2

)2

− r2 (4.3)

Therefore, in this case, the increment is

4E = f(ME
n )− f(Mc) = 2x + 3 (4.4)

If SE is chosen, again for the next midpoint MSE
n ,

f(MSE
n ) = f

(
x + 2, y − 3

2

)
= (x + 2)2 +

(
y − 3

2

)2

− r2 (4.5)

Therefore, the increment in this case is

4SE = f(MSE
n )− f(Mc) = 2x− 2y + 5 (4.6)

Now the problem remain to detect the first midpoint which should be at (1, r− 1
2) for a circle of radius

r and with the at center (0, 0). Then

f

(
1, r − 1

2

)
= 1 + r2 − r +

1
4
− r2 =

5
4
− r (4.7)

Therefore, the complete pseudocode for drawing a circle is given as follows: Note that the scan
conversion is done only for the upper octant of the first quadrant. The remaining portion of the circle
is drawn using its property of eight-way symmetry.
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The routine OnCirclePoint(x, y, colour) selects seven more points corresponding to the eight-way
reflection of the point (x,y). The following pseudocode explains this:

4.2 Number-theoretic Construction of Digital Circle

This method is an alternative way of constructing digital circle developed by Bhowmick and Bhat-
tacharya [1]. Like the Bresenham’s algorithm, this is also an integer domain algorithm. But to draw a
circle of large radius this is more suitable and take less computation time than Bresenham,s algorithm.
The first octant of a digital circle consists of grid points arranged in consecutive horizontal rows as
shown in Figure 4.3. This method uses a number-theoretic property of digital circle that describes the
sequence of the number of grid points appearing consecutively. Starting from first row recursively, it
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Fig. 4.3: Number-theoretic interpretation of a digital circle.

calculates the length of the next row by the following relation,

l0 = r − 1 (4.8)

and
lk = 2r − 2k (4.9)

where r is the radius of the digital circle, and k is the number of horizontal row, k ≥ 1.
The pseudocode of the algorithm DCS (digital circle using square numbers) is described in Figure 4.4
[1].

Fig. 4.4: Algorithm DCS.
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Chapter 5

Tangent to a Digital Circle

5.1 Basic Concepts

In this chapter we investigate the intersection properties of a digital circle with a digital straight line,
and then explore certain properties of a tangent to a digital circle. Some of these properties observed
here also hold for any digital curve. The digital representation of a curve is different from Euclidean
representation though visually they are more or less the same. But from a mathematical point of view,
there are significant differences between them. We introduce two new theorems and some definitions
of digital curves.

Theorem 5.1.1 For any curve in Euclidean space there is a unique curve in Digital space.

Proof. Let the round function be given by [4]:
round(x) = b(x + 0.5)c − − − (1)
Let f(x, y) = 0 be the curve in the Euclidean space. Let corresponding to x = x1(integer), the value
of y be y1(real). So we have to use round function to get an integer value.
Now the round function (1) returns a unique value for y1, say yr. So for each point (x, y) for integer x

there exists a unique grid point (x, yr). As all the grid points corresponding to the curve f(x, y) = 0
in Euclidean space are unique, the digital representation of f is unique.
�

Fig. 5.1: Digitization of a curve.

Theorem 5.1.2 For a digital curve there exits more than one (actually infinite number of) curves in
the Euclidean space of same type (i.e. if the curve is a circle then circles of different radii etc.) whose
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digital representations are same as the given digital curve, i.e., for any digital curve in the Digital
space its Euclidean representation is not unique.

Proof. Let S be the set of grid points of a digital curve and f(x, y) = 0 be a curve of the same type
in Euclidean space whose digital representation is S. So we have to show f is not unique.
(i) Lower wall case

(a) Let for x = X(integer) the value y be (Y + 0.5) i.e. f passes through (X, Y + 0.5); then the
corresponding grid point is (X, Y + 1) and the lower wall contains (X, Y + 0.5) shown in Figure 5.2.
So there is no curve between f and the lower wall i.e. there is no lower envelope.

(b) Let for x = X(integer), the value y ∈ (Y + 0.5, Y + 1.5); then the corresponding grid point
is (X, Y + 1) and the lower wall contains (X, Y + 0.5). So any point (x1, y1) such that x1 = X and
y1 ∈ [Y + 0.5, y] has the same digital representation i.e. f can pass through any of those points
(x1, y1). So the lower envelope exists with non zero width.

(ii) Upper wall case (the curve can never touch the upper wall)
(a) Let for x = X(integer), the value y be (Y +0.5); then the corresponding grid point is (X, Y +

1) and the upper wall contains (X, Y + 1.5). So any point (x1, y1) such that x1 = X and y1 ∈
[Y + 0.5, Y + 1.5) has the same digital representation, i.e., f can pass through any of those points
(x1, y1). So the upper envelope of width (Y + 1.5)− (Y + 0.5) = 1 exists.

(b) Let for x = X(integer), the value y ∈ (Y + 0.5, Y + 1.5); then the corresponding grid point
is (X, Y + 1) and the upper wall contains (X, Y + 1.5). So any point (x1, y1) such that x1 = X and
y1 ∈ [y, Y + 1.5) has the same digital representation, i.e., f can pass through any of those points
(x1, y1). So the upper envelope of width (Y + 1.5)− y > 0 exists (always happen as a consequence of
the density property of real numbers which states that for any two distinct real numbers, say x and
y, there exits a rational number, say r, such that x < r < y).

Fig. 5.2: Illustration of lower and upper walls.

So whether the lower envelope exists or not we always get upper envelope of positive width and
we can fit more than one curves of same type in the envelope. �
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Corollary 1: Corresponding to a straight line segment in digital space, there exists a region as
shown in Figure 5.3, in the Euclidean space bounded by a polygonal curve with the left side (the
vertical grid line on which the left-most grid point of the digital straight line segment lies) and right
side (the vertical grid line on which other end points lies). Every straight line segment that lies within
this region with the end points on the left and the right sides, has the same digital representation.

Fig. 5.3: Polygonal region with non-zero area correspond to a DSS or DSL.
For any straight line segment or a straight line this region has an area greater than zero, i.e., the

region never collapses with on the straight line segment or the straight line, since it is impossible to
have the straight line segment or straight line to touch the upper and lower walls.

For an infinite ray or a straight line this region is a pipe with a non-zero and finite diameter , but
with infinite length. The sides of the pipe will be parallel to the ray or the straight line as shown in
Figure 5.4. In other words all the infinite rays or lines whose digital representations are the same will
be parallel to each other and lie within a pipe. This region may be called corridor of the straight line
segment or the straight line.

Corollary 2: For a digital circle, the enveloping region will be an annular ring as shown in Figure
5.5.

5.2 Tangent to a Digital Circle

Definition 10 A digital straight line segment (DSS) is said to be a tangent to a digital curve if there
exists a (more than one is also possible) straight line segment and a curve of the same type in Euclidean
space such that their digital representations are same as the given DSS and the digital curve, and the
line segment is a tangent to the curve in the Euclidean space.

This definition applies to any digital curve including a digital circle.
Example: Let l be a DSS and C be a digital circle as shown in Figure 5.6. Let l1 be a line segment

in Euclidean space in the corridor of l. If l1 is tangent to a circle lying in the annular corridor of C,
then the DSS is a tangent to the digital circle C.
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Fig. 5.4: Pipe corridor for a DSL.

Fig. 5.5: Annular corridor for a digital circle.

Conversely, let a line segment l1 be tangent to a circle in the Euclidean space. Then the digital
representation of l1 is also tangent to the corresponding digital circle.

5.3 Intersection of a Digital Circle with a Digital Straight Line

Definition 11 Two curves in the digital space are said to intersect if each Euclidean curve in one
corridor corresponding to one digital curve, intersects all the Euclidean curves in other corridor cor-
responding to other digital curve.

Example: Let l be a DSS and C be a digital circle as shown in Figure 5.7. Let l1 be a line segment
in Euclidean space in the corridor of l. If l1 intersects each circle lying in the annular corridor of C,
then the DSS intersects the digital circle C.

Conversely, let a line segment l1 intersect a circle C1 in the Euclidean space. Then the digital
representation of l1 also intersects the corresponding digital circle.
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Fig. 5.6: Tangent of a digital curve.

Fig. 5.7: Illustration of intersection.

From the above definitions, we can conclude that if the corridors of two digital curves are inter-
secting then,

(i) if there exists at least one pair of Euclidean curves one from each of the two corridors, such
that they touch each other, then the two digital curves also touch each other.

(ii) if no such pair exists, then the two digital curves intersect each other.

In Figure 5.8 we show that for the digital circle C and the DSS l there exists two curves C1 and
l1 in Euclidean space in the corridors of C and l respectively such that l1 touch C1. So l is a tangent
to the digital circle C. But there also exists another circle in the Euclidean space in the corridor of C

which intersects l1.

Fig. 5.8: Illustrating the distinction between touch and intersection.
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Chapter 6

Properties of a Digital Circle

6.1 Recognition of a Digital Circle

In this section, we present a new method for detecting digital circles in a digital image. The method
is based on a property of digital circle, which we call “symmetric property” of three points in digital
space. By using this method, we extract the circle with its center and radius. The method consists of
two steps: (i) edge detection and (ii) circle extraction. The edge detection procedure produces a binary
image with the edges as foreground. Next, we apply circle extraction algorithm on the binary image
to identify the circle, and if successful, determine the center and radius of circle. To demonstrate
the capability and efficacy of the proposed method, one simple algorithm for detecting the center
and radius of a digital circle, based on simple properties of a digital circle, has been reported. Some
experimental results have been furnished to elucidate the analytical power and algorithmic efficiency
of the proposed approach.

For many years, procedures for image segmentation have been a main research focus in the area of
image analysis. Many different approaches have been developed. These may broadly be classified into
boundary-based, region-based, and hybrid strategies [7]. There is also a method known for extracting
circular wheels based on geometrical transformation [5].

Boundary-based approaches focus on delineating the interface between the object and the sur-
rounding co-objects in the image. Region-based approaches concentrate on delineating the region
occupied by the object in the image. Hybrid approaches attempt to combine the strengths of both
boundary-based and region-based approaches. The geometrical transformation approach use some
transformation e.g., Hough transform to create a distinction between the object and background.

All these methods described above, basically produce a segmented image containing the edges as
foreground object. In this section, we introduce a hybrid image segmentation technique, which can
automatically find the center and radius of a circle in the digital image. It is also noticed that our
method is applicable to an image containing more than one overlapping circles, and once identified,
can be used to find centres and radii of the circles.

For a given circle in the Euclidean space, one can easily find its center and radius by taking any
three points on the circle, and drawing the perpendicular bisectors of the line segments obtained by
joining two pairs of points. But in the digital space, this approach may not hold in general. If we
draw two perpendicular bisectors of line segments joining two pairs of points on a digital circle, most
of the time, they will meet at a point which is not the center of the digital circle. So we must have
additional conditions to be fulfilled by the three points to find the center and radius of the digital
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circle. In Section 6.1.1, we present one such technique of finding the center and radius of a digital
circle, using three special class of points on it.

6.1.1 Symmetric Property of Three Digital Points

Let p1, p2, p3 be three points in digital space. Let the perpendicular bisectors of p1p2 and p2p3

intersect at c.
Let r = round(Euclidean distance between c and p1), where round(x) is round function defined

as, round(x) = b(x + 0.5)c [3].
Let S = q1, q2, q3, q4, q5, q6, q7, q8 be the set of points genrated by the reflection of point p1 taking

c as center and r as radius.
If p2, p3 are in S then the three points p1, p2, p3 are said to satisfy the symmetric property.

Definition 12 The radius of a digital circle is the Euclidean distance between center and a grid point
on the vertical or the horizontal grid line passing through center (the centre of the digital circle lies on
a grid point).

Fig. 6.1: Radius of a digital circle.

Theorem 1 Any three points in the digital space satisfying the symmetric property can determine a
Bresenhum circle passing through the three points.

Proof. Let p1 be any grid point defining the circle in first octant, and p2, p3, p4, p5, p6, p7, p8 be the 7
symmetric points of p1 in the other 7 octants as shown in Figure 6.2.

These 8 points lie on a Euclidean circle whose center can be determined by three points out of
these 8 points and due to symmetry of the 8 points this center must be same as the center of the
digital circle.

Now we have to find the radius from three grid points and the center. Assume that the radius of
a digital circle is always an integer.

According to a lemma by Bhowmick et al. [1], an Euclidean circle of integer radius with the
centre at integer coordinates, can never pass through the point (x, y + 0.5) where x and y are integers
(x2 + y2 = r2 ⇒ y2 = r2 − x2, which implies that a fraction is equal to an integer).

Let d be the distance between the point of intersection of Euclidean circle to the vertical grid line
and the corresponding grid point (called isothetic distance). Then d < 0.5.
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Fig. 6.2: Eight symmetric points.

Let r (integer) be the actual radius of the digital circle and r′ be the distance between the center
and one of the three grid points. Let e be the error. Then e ≤ d < 0.5.

Thereforer = r′ ± e ⇒ r′ = r ∓ e

Now b(r′ + 0.5)c = b(r∓ e + 0.5)c = r, because r is an integer and e < 0.5 and (∓e + 0.5) < 1. �

6.1.2 Algorithm for Recognizing a Digital Circle

Input : A digital image.
Output : Centers and radii of the circles present in the input image.

Step 1: Use the Canny edge detection algorithm [2] to find the edges of the given image.

Step 2: Store foreground, i.e., edge pixels in an array A (say).

Step 3: Take three points p1, p2, p3 from A and check whether they satisfy the symmetric property.

Step 4: If yes, generate the corresponding Bresenham circle and match with the image pixels stored
in A.

In general a real image may not contain an exact digital circle. So we have to add some tolerance
in Step 4, depending on the image.

6.1.3 Reduction in Calculation

The above algorithm take a significant amount of time as it checks all combinations of 3 pixels out of
all foreground pixels. But we can reduce the time by the following technique:

(i) Let p1, p2, p3 be three points. Consider the line segments p1p2 or p2p3 or p3p1. Let any one
of them be horizontal or vertical, i.e., it coincides with the grid line. Let pipj be such a line
segment. If the Euclidean distance between pi and pj is even, i.e, if there is an odd number of
pixels between pi and pj then they may satisfy the symmetric property otherwise not. In other
words the above condition is a necessary condition for a digital circle to exists.
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(ii) First, we find different components of the foreground pixels. Then we apply the algorithm on
each component.

6.1.4 Experiment and Results

The proposed algorithm has been implemented on various synthetic images. Some such images in
which the proposed method can recognize circle are shown below.

Fig. 6.3: Synthetic circle of radius 12.

Fig. 6.4: Synthetic circles of radius 10.

6.2 Problem of Tangent Recognition

Given a digital circle C in Digital space and a DSS, consider the problem of ascertaining whether or
not the DSS is a tangent to C.

The following two algorithms may be used for this purpose.
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Fig. 6.5: Synthetic circles of radii 6.

Algorithm 1
(1) Find the annular region of the digital circle i.e. the internal radius and external radius of the

region.
(2) Find the polygonal corridor corresponding to the DSS.
(3) Then check whether there exits an Euclidean circle in the annular region and a Euclidean line

segment in the corridor of DSS such that line segment is a tangent to the circle.
Algorithm 2

(1) Find the center and radius of the digital circle.
(2) Find the polygonal corridor corresponding to the DSS.
(3) Check whether there exits two Euclidean line segments such that the radius of the digital circle

lies in the close interval of the distances of two line segments from the center of the digital circle.

6.3 Some Experimental Result on Digital Circle and its Tangent

Some interesting properties have been reported here.
1. The number of common points between a digital circle of radius 1 and its tangent is only one.
2. The number of common points between a digital circle and its tangent is greater than equal to

one.
3. The set of common points between a digital circle of radius greater than 1 and its tangent may

be a single or more 8-connected components.

Examples:
(i) The set of common points of a digital circle of Radius = 3, and its tangent at (0, 3) is an

8-connected components.
(ii) The set of common points of a digital circle of Radius = 4, and its tangent at (1,

√
(42− 12))

contains two 8-connected components.
4. It is possible that there are common points on one side of the tangent point, but no common

point exists on the other side.
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Example: Radius = 6; the tangent at (3,
√

(62 − 32))

The above observations leads to the following open problem.

6.4 Open Problem

Given a digital circle C, with radius r and a point p on C. The set of common grid points between C

and its tangent at p may be
(i) a single point, or
(ii) a single connected component, or
(iii) more than one connected components.

Determine a mathematical relation that characterizes the above three cases.
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Chapter 7

Computation of Area of Circle and
hence π

Computation of the area of a circle is a difficult task and quite impossible to find a good approxima-
tions. There are different methods for calculating the area of a circle, some of which are described
in this chapter. These methods generally calculate approximate area of one quarter of the circle by
dividing the portion into several parts and then one calculates the area of each part separately and
adds them. In these methods, if larger number of divisions are considered, a better approximation is
obtained and the computed value of π also becomes more accurate. The method proposed here is is
based on certain digital geometric properties of digital circle. This yields much better accuracy and
speed of convergence.

7.1 History of π [11]

π, which is denoted by the Greek letter , is the most famous ratio in mathematics, and is one of the
most ancient numbers known to humanity. π is approximately 3.14 - the number of times that a circle’s
diameter will fit around the circle. π goes on forever, and can’t be calculated to perfect precision:
3.1415926535897932384626433832795028841971693993751.... This is known as the decimal expansion
of π. No apparent pattern emerges in the succession of digits - a predestined yet unfathomable code.
They do not repeat periodically, seemingly to pop up by blind chance, lacking any perceivable order,
rule, reason, or design - ”random” integers, infinitely.

In 1991, the Chudnovsky brothers in New York, using their computer, m zero, calculated π to two
billion two hundred sixty million three hundred twenty one thousand three hundred sixty three digits
(2,260,321,363). They halted the program that summer.

π has had various names through the ages, and all of them are either words or abstract symbols,
since π is a number that can’t be shown completely and exactly in any finite form of representation.
π is a transcendental number. A transcendental number is a number but can’t be expressed in any
finite series of either arithmetical or algebraic operations. π slips away from all rational methods to
locate it. It is indescribable and can’t be found. Ferdinand Lindemann, a German mathematician,
proved the transcendence of π in 1882.

π possibly first entered human consciousness in Egypt. The earliest known reference to π occurs
in a Middle Kingdom papyrus scroll, written around 1650 BCE by a scribe named Ahmes. He began
scroll with the words: ”The Entrance Into the Knowledge of All Existing Things” and remarks in
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passing that he composed the scroll ”in likeness to writings made of old.” Towards the end of the
scroll, which is composed of various mathematical problems and their solutions, the area of a circle is
found using a rough sort of π.

Around 200 BCE, Archimedes of Syracuse found that π is somewhere about 3.14 (in fractions,
Greeks did not have decimals). Knowledge of π then bogged down until the 17th century. π was then
called the Ludolphian number, after Ludolph van Ceulen, a German mathematician. The first person
to use the Greek letter for the number was William Jones, a Welsh mathematician, who coined it in
1706.

Physicists have noted the ubiquity of π in nature. π is obvious in the disks of the moon and the
sun. The double helix of DNA revolves around π. π hides in the rainbow, and sits in the pupil of the
eye, and when a raindrop falls into water π emerges in the spreading rings. π can be found in waves
and ripples and spectra of all kinds, and therefore π occurs in colours and music. π has lately turned
up in superstrings.

π occurs naturally in tables of death, in what is known as a Gaussian distribution of deaths in
a population; that is, when a person dies, the event ”feels” π. It is one of the great mysteries why
nature seems to know mathematics.

7.2 Methods for Computation of Circle Area and hence π

Now we describe some methods in detail for computation of area of a circle and hence the value of π.

7.2.1 Archimedes Method [10]

Archimedes (approximately 285—212 B.C.) was the most famous ancient Greek mathematician and
inventor. He invented the Screw of Archimedes, a device to lift water, and played a major role in the
defense of Syracuse against a Roman Siege, inventing many war machines that were so effective that
they long delayed the final sacking of the city.

Archimedes’ mathematical work exhibits great boldness and originality in thought, as well as
extreme rigor. Among his mathematical accomplishments is the computation of pi, which is the ratio
of the circumference of a circle to its diameter. His approach consisted of inscribing and circumscribing
regular polygons with many sides in and around the circle, and computing the perimeter of these
polygons as shown in Figure 7.1. This provided him with an upper and a lower bound for π.

In this method as the number of sides of the polygons increases we get better approximation for
pi.

7.2.2 Mid Point Method [9]

In this method, the circle divide into no. of parts selected and height of the rectangle is considered as
the mid point of the both end of the rectangle. This method gives better approximation than other
methods.

7.2.3 Left End Point Method [9]

In Left end point method, the height of the rectangle is calculated at the left point of the rectangle.
It gives less approximation than Mid point method but gives better approximation than Right end
point method.
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Fig. 7.1: Archimedes’ method.

7.2.4 Right End Point Method [9]

In Right end point method, the height of the rectangle is calculated as the right end point of the circle.
This methods gives less approximate method.

7.2.5 Simpson Method [9]

This method is given by Simpson. In this method, we have to draw arc instead of rectangle, which
require at least three points. So after dividing the circle we will draw the arc and calculate the area
using Simpson method. Simpson’s Rule for calculating area is given as :∫ b

a f(x)dx = h/3[y0 + 4y1 + 2y2 + 4y3 + 2y4 + ........... + 2yn−2 + 4yn−1 + yn], where h = (a− b)/n.

7.2.6 Trapezoidal Method [9]

In this Trapezoidal method, we join the top of the rectangle by straight lines instead of curves and
calculate the area using Trapezoidal method. Trapezoidal method is given below :∫ b

a f(x)dx = h/2[y0 + 2y1 + 2y2 + 2y3 + 2y4 + ........... + 2yn−1 + yn], where h = (b− a)/2n.

7.2.7 A New Approach to Computation of area of a Digital Circle and the value
of π based Digital Geometry

In this subsection, we introduce a new method for finding the area of a digital circle based on its
number-theoretic interpretation [1]. This method is much faster than those based on the simple
counting of the number of pixels in the digital circle. The proposed algorithm for computation of π is
described in Figure 7.7.
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Fig. 7.2: Mid point method.

Fig. 7.3: Left end point method.

In our algorithm, we use a novel idea to get more accurate approximation of the actual area of the
circle. In the first octant, the digital circle consists of pixels of grids points arranged along consecutive
horizontal grid line. For each grid point on the digital circle, we count the number of full squares
(cells) and half squares and add an extra half square when we go down to the next grid line by one
grid point. Following this concept, the bounded region shown in Figure 7.9 is ab approximation of the
area in the first octant. The overall approach is shown in Figure 7.8.

Experimental Results

Experimental results shows that as the radius increases, the relative error in calculating area of the
circle decreases significantly, and consequently, we get better approximate value of π. This shown in
Figure 7.10.

The proposed method can also be used for calculating area of a digital circle.

7.3 Comparison

All the methods described above calculate area by dividing the region into several parts. As the
number of parts increases, calculated area tends to be more close to the actual area. But in digital

31



Fig. 7.4: Right end point method.

Fig. 7.5: Simpson method.

space, the unit of length is pixel width. Our method calculates the area dividing the region in pixel-
width rectangles. Thus in the digital space, our method compares favorably in calculating the nearly
accurate value among the methods described above. The accuracy comparison between proposed
method and the method of Archimedes is shown in Figure 7.11.
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Fig. 7.6: Trapezoidal method.

Fig. 7.7: Proposed algorithm for computation of area of digital circle.
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Fig. 7.8: Simple approach counting unit square inside the digital circle.

Fig. 7.9: Better approximation according to our approach.

Fig. 7.10: Radius vs. relative error graph.
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Fig. 7.10: Distinction between the proposed method and the method of Archimedes.
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Chapter 8

Conclusion

Several new theoretical interpretations and related applications of digital curves, such as digital line
segments and digital circles, have been studied in this report.

In Chapter 6, we have proposed an automatic circle recognition algorithm. Our approach in-
tegrates boundary-based image segmentation techniques and certain properties of digital circle. It
applies the symmetric property of three points on the edge pixels to find the centers and radii of
the existing circles. Our method concentrates on digital geometric features of a digital circle. This
approach will be useful in real situations like medical imaging, for example iris contour analysis, wheel
detection in a vehicle convoy, and in various nano-science imaging.

In Chapter 7 we have proposed a new and efficient technique for computing the area of digital
circle and hence for computing value of π. This method can be useful for digital image analysis in many
practical applications such as determination of pore sizes of porous silicon and monitoring prognosis
of drugs on biological samples
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