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Abstract

Modern Field Programmable Gate Arrays (FPGA) with heterogeneous resources with millions

of gates, have been widely used for prototyping large design nowadays. However, large designs

might not fit in one FPGA chip. Since, all the modules of a given application might not be

active at the same time, the FPGA resources may remain unutilized during the execution of

the application. In such applications partial reconfigurability of FPGA helps, where a part of

the FPGA chip remains active and inactive part of FPGA could be replaced by another set of

modules. Given a schedule of instances with each instance having a set of active modules and

their connectivity, a global floorplanning method is essential to reduce the partial reconfigura-

tion overhead while optimizing the performance of the design. This can be done by fixing the

position and shapes of common modules across all instances at the same location, while the

rest of the temporary modules can be swapped in and out of the board. Modern FPGAs have

different types of resources like CLBs, RAMs and Multipliers. This heterogeneity in resources

makes floorplanning in FPGA difficult, especially when the design to be implemented is large.

In this dissertation we propose a unified global floorplan topology generation method to obtain

the fixed positions for the common modules across all instances such that resource requirement

of rest of the modules are still satisfied and the total wirelength of the floorplan is minimized.
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Chapter 1

Introduction

Field Programmable Gate Arrays (FPGAs) are programmable integrated circuits. It consists of

array of Configurable Logic Blocks (CLBs) with wires of different lengths layed out in horizontal

and vertical channels. CLBs consist of Look-up tables and flip flops which can be programmed

to implement a design. A given digital design is implemented as a netlist of CLBs and the

connectivity is implemented by connecting required wires on the vertical and horizontal channels

with the help of switchboxes present at every crosspoint of horizontal and vertical channels. An

FPGA is programmed using a configuration file which contains the place and route information

to implement the design. To reprogram an FPGA, i.e, to implement a different application,

all that is required is downloading of a new or different configuration file to the FPGA chip.

Applications are often mapped to FPGAs using a four step process: design entry, technology

mapping, physical placement and routing. Then a configuration file is downloaded to program

the FPGA. Recent advancements in fabrication technology and device architecture have resulted

in tremendous growth in FPGAs, both in terms of density and performance. Earlier FPGAs

used to have only CLBs for mapping the logic but modern FPGAs have other resources also

on the board like RAMs, Multipliers, DSPs, microprocessor cores along with array of CLBs.

Heterogeneity in resources makes the mapping of logic on FPGA board more difficult, which

requires additional steps in the mapping process.
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1.1 Partial Reconfiguration

The obvious benefit of FPGA is that the functionality on it can be changed and updated at

some time in the future. The FPGA can be completely reprogrammed with new logic. For

many users, this still is not’t enough. If one wants to change the logic within a part of an FPGA

without disrupting the entire system, it can be done by partially reconfiguring the application

on a device. Partial reconfiguration is a design process, which allows a limited, predefined

portion of an FPGA to be reconfigured while the remainder of the device continues to operate.

Using partial reconfiguration, the functionality of a single FPGA can be increased, allowing

for fewer, smaller devices than would otherwise be needed. Partial reconfiguration is useful

for systems with multiple functions that can time-share the same FPGA device resources. In

such systems, one section of the FPGA continues to operate, while other sections of the FPGA

are disabled and reconfigured to provide new functionality. This is analogous to the situation

where a microprocessor manages context switching between software processes. In the case of

partial reconfiguration of an FPGA, however, it is the hardware not the software that is being

switched.

1.2 FPGA Physical Design Cycle

First of all the design to be programmed on FPGA is defined in terms of design equations in

some high level language like VHDL. These design equations are mapped on to the resources

available on the FPGA board as a netlist of logic blocks in technology mapping phase. The

design is partitioned in components based on their connectivity and then the location of the

components are determined on the FPGA board in placement phase. After placement, routing

of the wires, which are connectivity between the components, is done by determining switch

boxes through which the wire should go. Finally, the design is programmed on the FPGA

board.

Earlier Floorplanning on FPGA was generally ignored in the physical design cycle as the

design were comparatively smaller and the resources on FPGA were homogeneous, namely

CLBs. With the advent of technology, modern FPGAs are capable of implementing large
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PlacementRoutingProgramming Unit

Figure 1.1: FPGA Design Cycle

designs with millions of gates. This has made floorplanning an important step in the design

flow. As shown in Figure 1.1 the floorplanning is done prior to the placement and route phase

in the FPGA physical design cycle. In the context of partial dynamic reconfiguration too,

floorplanning has become an essential step. Formally, it is the process of determining the

location of the modules on the chip such that no two modules overlap and there is enough

space left to complete the interconnections. The input for floorplanning is a set of modules and

a netlist describing the connectivity of the modules. At this stage the estimate for the required

areas for different modules are available, but their exact dimension can vary in a range. As the

result of floorplanning, we get a floorplan, which describes the exact location and size of each

module on the chip.

1.3 Scope of this thesis

In this thesis, an deterministic floorplan topology generation method is proposed for partial

reconfiguration of a set of designs at different instances which minimizes the partial reconfig-

uration overhead, while optimizing the performance of the designs. The rest of the thesis is

organized as follows.

In chapter 2, the floorplanning problem in the context of partial reconfiguration is in-

troduced. Chapter 3 describes the method proposed. The method is demonstrated with an

example in Chapter 4. The experimental results on a set of benchmarks are given in Chapter
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5. Concluding remarks and future work appear in Chapter 6.
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Chapter 2

Partial Reconfiguration on FPGA

Recent Field Programmable Gate Array (FPGA) architectures like Xilinx’ Virtex series allow

partial dynamic reconfiguration. This means, inactive parts of a design implemented on FPGA

hardware could be replaced by other designs while the remaining part of FPGA is still executing

some other operations. So, partial reconfiguration helps executing a large application to be

executed in the same piece of hardware by swapping in and out parts of the design, even if it

does not fit completely on the same chip. Alternatively, a set of independent application can run

on the same piece of FPGA hardware utilizing the FPGA resources effectively. This definitely,

incurs an additional partial reconfiguration overhead each time a new part is swapped in and

out of the FPGA hardware. Hence an appropriate scheduling of task/application/design is

necessary to reduce the partial reconfiguration overhead such that common tasks/designs need

not be swapped in and out again and again. Moreover, at any instance of time, the tasks should

be mapped onto the FPGA such that new tasks in the schedule can be fitted onto the board

contiguously. It may be possible that, some tasks are already mapped on the board in such a

way that, even though there are enough resources that satisfy the requirements of scheduled

tasks at that instance, they are not contiguous. As Modern FPGAs are heterogeneous in nature

with preplaced blocks like RAM, Multipliers along with sea of CLBs, the mapping of new tasks

at any instance becomes more complex. The whole chip may have to be reconfigured which

defeats the whole purpose of partial reconfigurability feature of FPGA. Even if it is possible

to map all the active tasks at any instance of time on to the FPGA satisfying its resource
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requirement contiguously, does this mapping meet the required performance specification? In

order to obtain a globally optimized floorplan of active tasks at different instance of time that

also minimizes partial reconfiguration overhead, the floorplanning problem is defined in the

context of partial reconfiguration.

2.1 Target Architecture

Modern FPGAs are heterogeneous with different kinds of resources like CLBs, RAMs, Multipli-

ers (MUL) etc., while earlier FPGAs used to have only CLBs. Fig. 2.1 shows a Xilinx Spatran-3

FPGA where the CLBs are arranged in columns interleaved with columns of RAM-MUL pair

at certain intervals. Each small square represents a CLB. A pair of shaded rectangular block

spanning 4 rows of CLBs represents a pair of RAM and MUL. We use this architecture, though

the described method is applicable on other architectures as well.

Definition 1 Let W and H be the width and height of a target FPGA architecture, where the

units are the width and height of a CLB respectively. A coordinate system (0, 0, W, H) with

top-left corner at (0, 0) and bottom-right corner at (W, H) is assumed for the given chip.

In Figure 2.1, it is (0, 0, 87, 103) Each resource on the architecture is identified by its

coordinate position (x, y), where 0 ≤ x ≤ W and 0 ≤ y ≤ H . Henceforth, the term target

FPGA architecture and target chip will be used synonymously.

2.2 Problem Formulation

First, the basic terminology is given below.

Definition 2 Modules and Signal nets: Let M = {m1, m2, . . ., mn} be a set of n distinct

modules. Let S = {s1, s2, . . ., sq} be a set of q signal nets. Each signal net si ∈ S is associated

with a set of distinct modules Msi
= {mj | mj ∈ M}, and the set S is called a netlist. If Msi

= Msj
, then the two distinct signal nets si and sj connect the same set of modules.

Definition 3 Resource Requirement Vector [?]: For a module m, a 3-tuple vector Rm = (mclb,

mram, mmul) represents the number of CLBs, RAMs and MULs required by module m.
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Figure 2.1: Spartan-3 XC3S5000 FPGA Architecture

2.2.1 Floorplanning Problem for heterogeneous FPGAs

Given a target architecture (0, 0, W, H) with its resource locations, a design consisting of (a) a

set of soft (flexible in shape) modules M , (b) the resource requirement vectors Rmi
for each

mi ∈ M , and (c) the netlist S,

find a floorplan by assigning a connected region (xmin, ymin, xmax, ymax) to each module on the

target architecture such that

(i) 0 ≤ xmin ≤ xmax ≤ W and 0 ≤ ymin ≤ ymax ≤ H ,

(ii) region for no two modules overlap with each other,

(iii) for each module mi, the resources in its region satisfies Rmi

(iv) a certain cost function is optimized.

A floorplan is said to be feasible if it satisfies all three conditions (i), (ii) and (iii). The

cost function to be optimized is typically the wirelength [7, 8]for which the popular metric

HPWL (half-perimeter wirelength), i.e.,the sum of the semi-perimeter of the bounding boxes

for each net, is used. In the absence of information at this stage, the net terminals on a soft

module are assumed to be at the center of the module. This bounding box cost has also been
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extensively used as a FPGA placement metric [6]. The problem formulation as stated above is

a generalization of that given in [9, 10] and as such is NP -hard. Like most of the prior works on

FPGA heterogeneous floorplanning [9, 11], we also consider HPWL as the objective function.

2.2.2 Partial Reconfiguration Problem

Definition 4 Static and Dynamic modules: Given a schedule of instances, modules which are

common and remains active in all instances are called static modules. The rest of the modules

which are swapped in and out of an instance, are called dynamic modules.

The floorplanning problem for partial reconfiguration is defined as follows: In a given

schedule, let there be k instances I1, I2, · · · Ik. Let s1, s2, · · · sm be m common modules that

remain active in all instances.. For each Ii, 1 ≤ i ≤ k, let there be ni modules di1, di2, · · ·dini
.

The connectivity of the modules in each instance is also given. The objective is to give a

floorplan of all modules across all instances such that

(i) the resource requirement of each module is satisfied in each instance,

(ii) the location and shape of each static module is same across all instances,

(iii) the half-perimeter wirelength (HPWL) of netlist for all instances is minimized.

As in any floorplanning problem, we consider sum of HPWL of each instance as the objective

function to be minimized in the context of partial reconfiguration.

2.3 Existing Approaches

There are only a few floorplanning approaches for FPGA. Most of them use probabilistic tech-

niques like simulated annealing with sequence pair representation of the floorplan. They start

with some initial floorplan topology and perform some perturbations like complement the cut

lines or swapping of modules to get a new floorplan and this floorplan is accepted only if it is

better than the previous floorplan, otherwise it is rejected with a probability which depends

on the number of iterations done so far. In this way the initial floorplan plays an important

role in this method and if the initial floorplan is not good then it may take large number of
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iterations to get the optimal floorplan. Singhal and Bozorgzadeh have introduced a new multi

layer sequence pair representation based floorplanner in their paper [3] which maximizes the

overlap of common components of multiple designs thereby reducing reconfiguration overhead

and guarantees a feasible floorplan with minimum area packing. The main drawback of this

method is the long execution time because of probabilistic nature of simulated annealing. The

commercial tool like Xilinx’ Planahead [15] requires manual placement of the common mod-

ules beforehand, and then the rest of the modules are placed. This method is also based on

simulated annealing.

To overcome the long execution time of simulated annealing based approach and yet arrive

at a global floorplan such that the partial reconfiguration is minimized and performance of

floorplan of each instance in optimized, a fast deterministic method is proposed. As in case

of [3], this method places the common modules with same shape across all instances at a

specific position on the chip so that they need not be reconfigured again and again, thereby

reducing reconfiguration overhead. Also the remaining modules are placed in such a way that

the wirelength (HPWL) is minimized globally. Unlike the method in [3], where sequence-

pair is used as floorplan representation under simulated annealing based moves, the proposed

method uses slicing tree [1] representation and node sizing for topology generation. Fekete

et. al have proposed an alogorithm for optimal free space management and routing conscious

dynamic placement for reconfigurable devices in their paper [12]. They find an optimal feasible

communication - conscious placement which minimizes the total weighted mahattan distance

between new module and already placed modules.
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Chapter 3

Proposed Method

The goal of the proposed method is to design a fast yet effective unified floorplan topology

such that static modules occupy same position at every instance and still the performance is

optimizes. Our method consists of three phases: (i) creating a linear arrangement of modules

for each instance with the fixed position of static modules, (ii) slicing tree topology generation

for floorplan and, (iii) realization of the floorplan using actual resource requirements of the

modules.

In the first phase, we obtain a linear arrangement of modules to minimize the sum of the

total wirelengths such that heavily connected modules come closer to each other.

In the second phase a list of global slicing tree topologies is generated for each instance with

the positions of static modules fixed at the bottom left and top right corners of the floorplan.

In the third phase, we group the set of slicing trees, obtained in the second phase, on the

basis of shapes of static modules. For each of the slicing tree in each group, a rectangular

region is assigned to every module, which respects the cut direction and the actual resource

requirement of the modules.

Finally, one floorplan from each instance is chosen such that the total wirelength is mini-

mum.

10



                               Phase I:
Generating a linear arrangement of modules by 
recursive min-cut  bi-partition of module netlist 
to minimize wirelength

                                           Phase II:
Unified topology generation and node sizing with
static modules placed at opposite corners of the
chip across all instances

               Phase III
Reallocation of cut lines to satisfy the resource
requirement of each module for each slicing tree

Choose a floorplan with minimum wirelength

Partition tree with module at leaf

Set of slicing trees for each instance

Netlist Hypergraph
V: Modules, wt: requirement
E: net (Set of Modules)

Figure 3.1: Flow of the Proposed Method

3.1 Preliminaries

For modules with homogeneous resource requirement, the area of a module could be consid-

ered for generation of shapes, which can be later used for node sizing in traditional topology

generation, when floorplans are represented as slicing trees [1]. For heterogeneous resource

requirements, where each resource type have specific location on the board, shapes can not be

generated from the resource requirement vector. Thus, basic tile, an uniform entity is defined to

compute the resource requirement of each module, which could be easily adapted for generation

of shapes during node sizing.

Definition 5 Basic Tile: A Basic FPGA Tile A = (aclb, aram, amul) is a 3 tuple vector com-

posing of the minimum number of CLBs, RAMs, MULs that constitute a basic unit which can

be repeated horizontally and vertically to cover all the rows and columns of a given FPGA

architecture.

The given architecture is thus composed of, say, Tw × Th basic tiles arranged in h rows and

w columns. In Fig. 3.2, The basic tile A = (80, 1, 1) consists of 20 × 4 CLBs , 1 RAM and 1
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Figure 3.2: Spartan-3 XC3S5000 FPGA Architecture, tessellated with a basic tile, indicated
by a rectangle of 4 rows and 20 columns of CLBs and 1 pair of RAM-MUL blocks

MUL. The entire architecture (Spartan-3) in Fig. 3.2 can be covered by 26 rows and 4 columns

of basic tile A.

3.2 PHASE I- Linear arrangement of Modules

To minimize the wire length of the feasible floorplan we obtain a linear arrangement of modules

such that heavily connected modules come closer to each other. Finding an optimal linear

arrangement of modules of a netlist is NP-hard. Thus we use a min-cut bi-partitioning heuristic

recursively till there is a single module in each partition. The recursive bi-partitioning generates

a binary tree at every step of recursion, which is called a decomposition or partition tree. The

left to right order of the modules at the leaves is considered to be a good linear arrangement

[5]. The partition tree generated in this phase is the baseline of slicing tree generation in the

next phase.

We use state-of-the-art bi-partitioning tool hMetis [13] for partitioning hypergraphs. The

netlist of modules is best represented by an hypergraph H = (V, E). Each vertex v ∈ V
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corresponds to a module mi, i = 1, 2, · · ·n. An hyperedge e = {v1, v2, · · · vp} ∈ E corresponds

to a signal net connecting the set of modules {v1, v2, · · · vp}. If there are more than one such

sets, then the total number of such set is considered to be the weight of that hyperedge e. The

minimum number of tiles required by a module m is computed from the size of the basic tile A

and the resource requirement vector Rm. This is given as the weight of the vertex corresponding

to module m. The tool hMetis produces a balanced min-cut partitioning of this hypergraph.

Static modules should have the same shape and location across all instances. It is beneficial

to place all the static modules to the extreme corners of the floorplan, so that, we get the largest

continuous space in the middle of the chip to place the rest of the dynamic modules contiguously.

We generate the slicing tree of the floorplan in the second phase from the partition tree obtained

in this phase. The objective of placing the static modules to the corners of a floorplan led to

the following observation.

Observation 1 In a slicing tree representation of a floorplan, the modules at left most and

right most leaves of the tree always correspond to the two opposite corners of the floorplan.

From Observation 1, if we can place the static modules at extreme ends of the partition

tree, the static modules will definitely be on the opposite corners on the floorplan. To generate

a partition tree with this constraint we do the following. First we extract the static modules

and the corresponding netlist from the given schedule. then we bi-partition the static modules

into two groups SL and SR and call each of them a super module. Now we have two static super

modules and some dynamic modules along with the netlist for each instance. This netlist of

modules is bi-partitioned recursively until each partition contains at most one module/super

module per partition. In the first level of recursive bi-partitioning, we force SL and SR to be

in different partitions, so that, they can be pushed to extreme left and right positions during

the further recursive partitioning. As swapping of left and right partition in a bi-partition do

not affect the min-cut, two partitions can interchange their position without affecting the cut.

During recursive bi-partitioning the left and right partitions are swapped in such a way that

partitions having static super modules are always pushed to the extreme left and extreme right

of the linear arrangement of the modules obtained at leaf level. The swapping of partitions

with static super modules to the leftmost and the rightmost leaf of the partition tree is shown

13
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Figure 3.3: Swapping of static super modules to extreme ends of the partition tree; the arrow
shows the partitions to be exchanged

in Fig. 3.3.

Thus we get one partition tree for each instance where the static modules are at the extreme

left and right leaves.

3.3 PHASE II- Unified floorplan topology generation

In this step a set of sliceable floorplan topologies is generated for each instance by appropriate

horizontal and vertical node sizing starting from a set of possible shapes (in terms of tiles) of

each module.
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3.3.1 Generation of Module Shapes

A listD = {(w1, h1), (w2, h2), · · · , (wt, ht)} of irredundant shapes of a module m, is a list of t

possible shapes of m, where (wi, hi) denotes the width and height of ith shape of m in terms of

basic tiles. D is said to be irredundant if each individual wi and hi are distinct.

By making individual wi and hi distinct, a shape with smaller height is chosen from two

implementations with same width. Thus the inferior shape is always gets eliminated. A set

of possible irredundant rectangular shapes for mi is generated by factorizing Tmi
. As we are

considering only rectangular shapes there may not be many choices such that width×height =

Tmi
. A few more shapes are generated by factorizing all integers from Tmi

to the smallest

composite integer which is greater than Tmi
.

3.3.2 Node Sizing

A subtree rooted at an internal node p corresponds to a sub floorplan. The sub floorplan at

p is generated by joining (wi, hi) ∈ Dl and (wj, hj) ∈ Dr vertically or horizontally, where Dl

and Dr are ith shape of left child (left sub floorplan) and jth shape of right child (right sub

floorplan) of p. If p is the parent of leaves then the left and right sub floorplans are the shapes

of the modules themselves.

Vertical Cut : We use the vertical node sizing algorithm of [1] to generate a sub floorplan

with vertical cut. Let Dl = {(wl1, hl1), (wl2, hl2), · · · , (wls, hls)}, with |Dl| = s and Dr =

{(wr1
, hr1

), (wr2
, hr2

), · · · , (wrt
, hrt

)}, with |Dr| = t, be the set of possible irredundant shapes

of the left sub floorplan/module and the right sub floorplan/module respectively, of a node in

partition tree. Dl is sorted such that, wl1 < wl2 < · · · < wls and hl1 > hl2 > · · · > hls.

Dr is also sorted as above. If (wli , hli) and (wrj
, hrj

) are merged vertically, the resultant

floorplan size becomes (wvk
, hvk

) = (wli + wrj
, max(hli , hrj

)). The number of resultant irredun-

dant shapes is at most s + t − 1 [1].

Horizontal cut: To merge sub floorplans using horizontal cut, we use the same irredundant

lists Dl and Dr as described above. The lists are sorted in increasing order of height and

decreasing order of width i.e. hl1 < hl2 < · · · < hls and wl1 > wl2 > · · · > wls

Merging (wli, hli) and (wrj
, hrj

) by a horizontal cut the resultant size of the floorplan be-
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comes (wvk
, hvk

) = (max(wli , wrj
), hli + hrj

). As in case of vertical cut the number of resultant

irredundant shapes is at most s + t − 1.

3.3.3 Generation of Slicing Trees

A set of slicing tree is generated for the decomposition or partition tree obtained in PHASE -

I by appropriate shape generation and node sizing as described above. Each leaf node of the

tree corresponding to a module contains a list of possible shapes, i.e., (width, height) pair in

terms of tiles. For all instances, the corresponding partition trees are traversed simultaneously

bottom-up, level by level, generating a set of irredundant sub-floorplans by combining the

available shapes of its left and right children with vertical or horizontal cut. Whenever a

static super module is combined with its neighbouring dynamic module by a particular cut,

the shape generated at parent must also be irredundant. To generate irredundant shapes at

the parent node, a particular shape of static super modules may be thrown out in some of the

instances when combined with its neighboring dynamic modules by a cut. We discard such

shapes of static modules from all the instances when a particular shape is eliminated from any

of the instances so that the list of shapes of static modules remain same for all the instances.

If at any level, we end up with an empty list of shapes for any of the static super modules

then we can directly report that floorplanning is not possible on the FPGA board for the

linear arrangement of modules/super modules obtained in the first phase, and may iterate with

another linear arrangement.

At the end of this phase we get a set of slicing trees for each of the instances with static

super modules at two opposite corners of the floorplan. The list of shapes (width, height)

generated at root may not fit the target FPGA chip when the shapes are considered in terms

of tiles. The target chip is 4 × 26 tiles. We consider only those slicing trees with root shape

of width between 3 and 6 as there is a high possibility of getting a feasible floorplan on this

target board in the third phase.
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3.4 PHASE III - Realization of Slicing Trees on the chip

For every slicing tree generated in the previous step, now we assign coordinate position to each

module. We allocate a rectangular region which satisfies the CLB requirements.

3.4.1 Allocation of Rectangular Region to a Module

Each slicing tree is traversed top down and a rectangular region (xmin
p, ymin

p, xmax
p, ymax

p) is

assigned to every node p using the cut direction and the number of CLBs required at p. Let

the region allocated to some node p contains rclb rows and cclb columns of CLBs. If the CLB

requirements at node p, its left child l and its right child r are pclb,lclb and rclb respectively. If

the p represents the vertical cut, the number of clb columns allocated to p is pcol and number

of clb rows allocated to p is prow then the rectangular box assignment for l and r is done by

the following equations : -

Let the rectangular assigned to l and r are (xmin
l, ymin

l, xmax
l, ymax

l) and (xmin
r, ymin

r, xmax
r, ymax

r)

respectively. Let the clb rows and columns allocated by l and r are lrow, lcol and rrow, rcol.

For a horizontal cut at p,

lcol = lclb/prow,

rcol = rclb/prow,

xmin
l = xmin

p, ymin
l = ymin

p,

xmax
l = xmin

p + lcol − 1, ymax
l = ymax

p,

xmin
r = xmax

p − rcol + 1, ymin
r = ymin

p,

xmax
r = xmin

p, ymax
r = ymax

p.

For a vertical cut at p,

lrow = lclb/pcol,

rrow = rclb/pcol,

xmin
l = xmin

p, ymin
l = ymin

p,

xmax
l = xmax

p, ymax
l = ymin

p + lrow − 1,

xmin
r = xmin

p, ymin
r = ymax

p − rrow + 1,

xmax
r = xmax

p, ymax
r = ymin

p.

As a convention, the vertical cut line is positioned by counting the columns from left to
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right for the left child and right to left for the right child. Silmilarly for horizontal cut, it is

positioned by counting the rows from bottom to top for the left child and top to bottom for

the right child. This may generate a overlapping rectangular region in the middle of the two

rectangles assigned to the left and right child. We allocate the CLBs required by a module

to the non overlapping region of the rectangles assigned to the corresponding module. The

remaining CLB requirement of each module, called deficit, has to be allocated either to the

overlapping rectangle or to the neighboring rectangles. By positioning the cutlines as described

above, free rectangular region might get generated too in the middle. Thus, three types of

rectangular region is created by positioning of cut lines. (i) non overlapping part of rectangle

assigned to a module either with no free CLBs within it or with some free CLBs in it (ii)

overlapping rectangle, where conflicts for CLB requirements of more than one module needs to

be resolved, (iii) free rectangles created at the middle due to the convention followed to assign

rectangles to a module. The deficit (if any) of each module is satisfied during post processing

described in Section 3.4.4

3.4.2 Pruning the Trees

While allocating the rectangular regions to modules in different instances,their RAM/MUL

requirements are not considered. So we cannot say anything about whether RAM/MUL re-

quirement of modules will be satisfied within rectangular region allocated.

Definition 6 Major Violation : If a module has RAM/MUL requirement and has been assigned

the rectangular box such that no RAM/MUL column going through it, then the module is said

to have the major violation.

We discard all the floorplans from each instance in which any module has major violation.

The intuition behind such floorplans is, if any module has been assigned such a rectangular box

through no RAM?MUL column is going through and it has RAM/MUL requirements, then it

would be difficult to borrow the RAM/MULT from neighboring modules if they have excess of

them and then adjusting the shape of the affected modules. This may make the shapes of the

modules very bad so we avoid such floorplans.
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Figure 3.4: Graph generated for selecting set of trees in a group

3.4.3 Grouping the floorplans

After getting the set of floorplans for each instance, the question arises which set of the trees to

be considered together for global floorplan so that the objective of the partial reconfiguration

can be achieved, i.e. the same shapes for the static modules across all instances.

For this purpose, we calculate the aspect ratios of static modules/supermodule in each

floorplan for each instance(after rectangular region allocation). We group the floorplans from

each instance on the basis of nearly equal aspect ratios of the static module/super module

such that a group contains at least one floorplan from each instance of the design. If there is

more than one floorplan for an instance in the group, we need to select a single floorplan for

that instance. For this, we define the following for the slicing topology corresponding to each

floorplan.

Definition 7 Hamming distance between two slicing trees: Let a and b be the strings repre-

senting the level order traversal of nodes from the root till one level above the leaves of the two

slicing trees respectively, with horizontal cut represented as 0 and vertical cut represented as 1.

Let l = min{length(a), length(b)} and the length of the longer string be truncated till l from

right. Then the hamming distance between these trees is the number of ones in aXORb.

This basically measure the closeness among two slicing trees in terms of slicing topology.

In the context of partial reconfiguration, a schedule implies the ordering of the instances on

19



sN tN

LN

RN

u1

u2

un

v1

v2

vm

Figure 3.5: Network flow graph for reallocation of resources

the time line. To have same shapes of static from one instance to the consecutive one, the

change in slicing tree must be minimum. Let, T1 < T2 < · · ·Tk be the k trees of k instances in

a given schedule, where Ti < Tj indicates that ith instance is executed prior to jth instance in

the schedule. So, T1 and Tk are the trees from the first and the last instances in the schedule.

We formulate a method for selecting slicing trees consecutively from each instance as follows.

Let G = (V, E) be a directed graph with v ∈ V corresponding to the trees in a group. There

exists a weighted edge e ∈ E, between u, v ∈ V , if uandv corresponds to the slicing trees in

consecutive instances. The weight is the hamming distance between u and v. If there are k

instances, we find a minimum weighted k-length path starting from the node corresponding to

T1 to Tk. The floorplans corresponding to the trees in the minimum weighted path is selected

as the final floorplans for a group.

3.4.4 Postprocessing for reallocation of resources

The set of floorplans chosen for each instance in a group have static modules with nearly equal

aspect ratios but not exactly the same shape. We consider all pair of shapes, taking one from

the list of SL and the other from SR and use this shape pair for static modules in all instances

and reallocate CLBs of those dynamic modules that are either generating overlap with the

shapes of static modules or they have some deficiency or excess CLBs within its rectangular
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region. To allocate the deficit of a module, if exists, we use a minimum cost maximum flow

(MCMF) formulation for each floorplan in the group.

For this, a network flow graph N = (VN , EN) is generated. Here, N is a bipartite graph

with a source node sN and a sink node tN . Let VN = LN ∪RN . Each v ∈ LN corresponds to a

module that is deficit of CLBs. Each v ∈ RN corresponds to the three types of rectangles with

only free CLBs, described in Section 3.4.1. Let EN = Es ∪ Euv ∪ Et. For each v ∈ LN there

exists an edge e ∈ Es, e = (sN , v) with capcity as deficit of CLBs in module corresponding to

v and cost as 1. For each v ∈ RN there exists an edge e ∈ Et, e = (v, tN) with capacity as free

CLBs in the rectangle corresponding to v and cost as 1. For the floorplan, a rectangular dual

graph RD ?? is generated from the adjacency relationship of rectangles. For each u ∈ LN , and

for each v ∈ RN , there exists an edge e ∈ Euv with capacity equal to the free CLBs in rectangle

corresponding to v and cost is the length of the shortest path in RD from the vertex in RD

corresponding to u to the vertex in RD corresponding to v. Figure 3.5 shows one such network

flow graph. By solving MCMF, if the amount of flow is equal to the total deficit of CLBs, then

these CLBs corresponding to each v ∈ LN is allocated by its neighboring rectangles. For each

edge e = (u, v) ∈ Euv having a positive flow f and cost c implies that module corresponding

to u borrows f CLBs from the rectangle corresponding to v following the c length path in RD

from the vertex in RD corresponding to u to the vertex in RD corresponding to v. This results

in rectilinear shape of a module. If MCMF does not give a solution for any one of the floorplan

in a group, this group is rejected as a candidate solution for the partial reconfiguration problem.

Finally, the RAM/MULs of each module are allocated by another MCMF formulation

described in [4]. This gives the final floorplans for each instance in partial reconfiguration

problem. We choose a group with feasible floorplans of all instances with minimum sum of

HPWL over all instances.

3.5 Time Complexity

Let k be the number of instances. Let h be the maximum number of signal nets in any instance.

The min-cut bipartitoner hMetis takes linear time in number of hyperedges i.e. signal nets in

our case. We run hMetis for all instances to get the linear arrangement in phase I. So, the
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total time spent in first phase is O(kh).

Let q be the maximum number of shapes generated for any module over all instances. Let

n be the maximum number of modules in any instance. Then the slicing tree generation for

any instance takes atmost O(qn2) time [4]. We generate slicing trees for k instances, so the

time taken for phase II is O(kqn2).

Time taken in rectangular region allocation is O(kn), while in pruning of floorplans takes

O(k) time. Grouping of floorplans takes O(klogk). Rectangular dual graph for all floorplans

is generated in O(kn2) and MCMF for floorplans in a group is solved in O(kn3). In this way

total time taken in phase III is O(kn3).

Thus, total time complexity of the proposed method is O(k(h + n3)).
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Chapter 4

An Example

The method proposed in previous chapter is illustrated through an example in this chapter.

We consider a synthetic benchmark that fits on a Spartan 3 Xilinf FPGA chip XC3S5000. This

benchmark has two instances 0 and 1 which have 26 and 20 modules respectively. It has 4

static modules numbered 0,1,2,3. Instance 0 has static modules 0,1,2,3 and dynamic modules

numbered from 4 to 25 while instance 1 has dynamic modules numbered from 26 to 41 with same

static modules. Instance 0 requires 8141 CLBs, 84 RAMs and 84 Multipliers while instance 1

requires 8226 CLBs, 83 RAMs and 83 Multipliers. After calculating the requirements of these

instances in terms of basic tiles, the instance 0 requires max{8141

80
, 84, 84} = 102 tiles , while

instance 1 requires max{8226

80
, 83, 83} = 103 tiles.

We partition the static modules in two groups with min-cut bi-partitioner hMetis. As a

result of this we get modules numbered 0 and 1 in one group and modules numbered 2 and

3 in other group. We treat them as two super modules. So, SR contains modules 0 and 1

while SL contains modules 2 and 3. We partition the dynamic modules of each instance by

the balanced min-cut bipartitioner hmetis recursively by fixing the static modules to their

respective partitions as described in section 3.2. The left to right order of the leaves of the

partition tree gives the linear arrangement of modules as shown in Figure 4.1.

First, we generate a set of shapes (width, height) for each of the module using the require-

ments in terms of basic tiles. Here both the static super modules require 5 tiles so the shapes

generated are 1 × 5, 5 × 1. Few other shapes are also generated to have more trees, so other
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irredundant shapes used for static modules are 2 × 3, 3 × 2. We build up the slicing trees for

both the instances as described in section 3.3. One such slicing tree for each instances is shown

in Figure 4.1. The internal nodes represents the cut used to join the child subtree at parent

node. The shapes, i.e. (width, height) pair, of the module/super module/internal node, are

shown beside the corresponding node in the slicing tree. The shape at root for both the trees

is 4 × 28. Since the width is equal to width of the target chip, these slicing trees are possible

feasible floorplans.

The realization of the two floorplans corresponding to the slicing trees of Figure 4.1, after

rectangular region allocation to each module, are shown in Figure 4.2 and 4.3. The rectangles

with module numbers shown in the figures, show the non overlapping regions, which may or

may not have free spaces and the rectangular strips without any module numbers shows the

overlapping or free regions. The shapes of SL and SR in instance 0 are 19 × 19 and 21 × 18,

while in instance 1, these are 21 × 18 and 19 × 20.

We choose the common shape for SL and SR to be 21 × 18 and 21 × 18 respectively. We

draw the rectangular dual graphs for both the instances, shown in Figure 4.4 and 4.5, where

numbered vertices corresponds to the modules with same number and vertices labeled with

albhabets corresponds to the free or overlapped region. From these graphs we draw a network

flow graph described in 3.4.4, for both the floorplans shown. After solving MCMF in section

3.4.4, we get the floorplans with all the CLB requirements satisfied by generation of rectilinear

shapes as shown in Figure 4.6 and 4.7.
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Figure 4.2: Floorplan for instance 0 after rectangular region allocation

Figure 4.3: Floorplan for instance 1 after rectangular region allocation
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Figure 4.6: Rectilinear shape generation for instance 0

Figure 4.7: Rectilinear shape generation for instance 1
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Chapter 5

Experimental Results

The method described is implementred using C on linux platform with hMetis[13] and LEDA

[14] library on Intel core 2 duo CPU. The method has been tested for 10 different synthetic

benchmarks. Table 5.1 shows the number of instances, number of static modules, maximum

number of modules and signal nets for any instance in each benchmark used for the experiment.

Table 5.1 Characteristics of 10 benchmark used for experiments

benchmark no of in-

stances

no of

static

modules

max #

modules

max #

signal

nets

bench1 5 4 31 660

bench2 5 2 31 527

bench3 6 3 33 510

bench4 6 4 29 486

bench5 6 2 31 450

bench6 7 3 30 510

bench7 8 3 34 500

bench8 9 5 30 420

bench9 10 3 29 544

bench10 10 5 31 680

29



As described in the method, we first partition the modules in each instance till there is one

module in each partition. Table 5.2 shows the number of modules and their CLB, RAM and

MUL requirement along with the number of signal nets in each instance of each benchmark.

with a comparison of the partitioning time (i) when static modules are fixed to specific partition

and (ii) otherwise.

Table 5.2 Comparison between the partitioning time with and without fixing the partitions of

static modules: C:CLB, R: RAM, M:MUL requirement

benchmark instance no # modules # nets partitioning time(in sec.)

(C,R,M)

(i) (ii)

bench1 0(8141, 84, 84) 24 260 0.176 0.092

1(8226, 83, 83) 18 360 0.124 0.096

2(7858, 83, 83) 23 500 0.196 0.124

3(7854, 89, 89) 16 252 0.104 0.064

4(8171, 78, 78) 31 660 0.348 0.152

bench2 0(7938, 78, 78) 18 144 0.092 .0.056

1(8078, 74, 74) 29 319 0.196 0.104

2(8011, 80, 80) 26 234 0.156 0.092

3(8126, 95, 95) 31 527 0.316 0.160

4(7519, 87, 87) 29 145 0.132 0.072

bench3 0(8143, 85, 85) 25 494 0.260 .0.184

1(8228, 82, 82) 19 400 0.152 0.124

2(7841, 83, 83) 21 374 0.148 0.124

3(7844, 87, 87) 15 208 0.100 0.060

4(8173, 79, 79) 33 510 0.284 0.152

5(7761, 74, 74) 19 280 0.156 0.096

bench4 0(7753, 67, 67) 23 250 0.128 .0.092

1(8087, 91, 91) 19 294 0.116 0.084

2(7932, 89, 89) 21 391 0.196 0.104

3(7832, 74, 74) 25 480 0.220 0.116

4(7627, 78, 78) 29 217 0.156 0.076

5(7627, 78, 78) 12 84 0.036 0.024
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bench5 0(7916, 77, 77) 17 272 0.108 .0.072

1(8092, 75, 75) 30 450 0.216 0.124

2(8031, 83, 83) 26 416 0.232 0.152

3(8126, 95, 95) 31 310 0.224 0.112

4(7529, 88, 88) 30 150 0.140 0.064

5(7675, 69, 69) 19 361 0.136 0.100

bench6 0(7911, 76, 76) 16 255 0.116 .0.060

1(8095, 76, 76) 29 480 0.236 0.132

2(8027, 81, 81) 26 243 0.180 0.088

3(8112, 93, 93) 29 510 0.240 0.144

4(7529, 88, 88) 30 372 0.192 0.108

5(7656, 69, 69) 18 361 0.128 0.092

6(7778, 84, 84) 13 196 0.076 0.048

bench7 0(8164, 87, 87) 27 206 0.160 .0.112

1(8246, 81, 81) 19 200 0.100 0.072

2(7856, 83, 83) 22 299 0.132 0.092

3(7854, 90, 90) 16 272 0.128 0.064

4(8180, 81, 81) 34 385 0.216 0.116

5(7762, 73, 73) 18 190 0.108 0.056

6(7719, 86, 86) 17 342 0.164 0.096

7(8147, 91, 91) 24 500 0.200 0.116

bench8 0(8171, 83, 83) 25 392 0.192 .0.120

1(8253, 83, 83) 20 414 0.148 0.100

2(7825, 83, 83) 21 120 0.100 0.052

3(7840, 88, 88) 14 306 0.096 0.060

4(8135, 78, 78) 30 264 0.176 0.088

5(7747, 72, 72) 18 420 0.152 0.116

6(7742, 88, 88) 18 420 0.180 0.108

7(8145, 91, 91) 23 312 0.144 0.088

8(7949, 80, 80) 23 234 0.160 0.100

bench9 0(7899, 74, 74) 16 306 0.116 .0.072

1(8080, 74, 74) 28 174 0.132 0.072

2(8028, 81, 81) 26 81 0.096 0.044

3(8119, 94, 94) 29 300 0.184 0.104

4(7528, 84, 84) 29 300 0.148 0.112
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5(7664, 69, 69) 18 209 0.108 0.052

6(7825, 84, 84) 14 120 0.072 0.040

7(8124, 80, 80) 18 361 0.144 0.100

8(7746, 80, 80) 31 544 0.284 0.156

9(7768, 81, 81) 23 192 0.116 0.080

bench10 0(8132, 83, 83) 23 286 0.148 .0.100

1(8231, 81, 81) 18 294 0.120 0.072

2(7830, 79, 79) 20 115 0.092 0.044

3(7839, 87, 87) 14 323 0.128 0.068

4(8185, 78, 78) 31 680 0.304 0.172

5(7770, 76, 76) 19 220 0.124 0.080

6(7744, 87, 87) 18 336 0.110 0.088

7(8151, 91, 91) 23 520 0.228 0.132

8(7980, 81, 81) 24 378 0.172 0.104

9(7980, 89, 89) 29 192 0.132 0.076

The details of the slicing trees obtained for each instance of a benchmark by the method

described in Section 3.3 is shown in Table 5.3. The columns 3 to 6 show the number of slicing

trees, range of aspect ratio of static modules for feasible floorplans and the number of floorplans

that are discarded because of major violation.

Table 5.3 Number of slicing trees, aspect ratio range of static modules, trees with major

violation

benchmark instance no no of slic-

ing trees

aspect ratio range in

feasible floorplans

no of floor-

plans with

Major vio-

lation

SL SR

bench1 0 21 0.51 − 1.80 1.21 − 6.50 3

1 21 1.27 − 6.37 0.55 − 1.62 2

2 20 0.42 − 5.11 0.90 − 6.50 2

3 20 0.75 − 17.60 0.48 − 1.86 1
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4 20 1.27 − 6.37 0.65 − 2.61 3

bench2 0 20 1.14 − 8.80 1.81 − 15.75 .2

1 22 1.14 − 8.20 1.30 − 5.83 3

2 21 1.72 − 8.40 2.55 − 8.40 3

3 22 1.72 − 8.80 1.30 − 8.40 2

4 20 0.76 − 4.57 1.14 − 4.71 3

bench3 0 22 0.68 − 2.91 0.87 − 8.40 2

1 21 0.32 − 2.53 1.50 − 6.00 2

2 20 0.95 − 6.37 0.87 − 8.80 1

3 20 0.59 − 6.62 0.30 − 2.10 1

4 22 1.27 − 6.37 0.87 − 3.25 2

5 20 0.86 − 4.10 2.10 − 8.40 3

bench4 0 21 1.10 − 17.60 1.15 − 8.28 3

1 22 1.68 − 6.62 1.15 − 6.37 1

2 21 0.90 − 17.60 2.21 − 8.85 1

3 21 0.41 − 2.06 0.68 − 2.53 3

4 21 0.48 − 4.40 0.86 − 4.20 3

5 19 0.57 − 6.62 0.51 − 1.80 2

bench5 0 20 2.10 − 8.40 1.81 − 29.33 3

1 21 0.87 − 3.50 1.14 − 3.87 3

2 20 2.20 − 9.40 1.00 − 3.50 3

3 21 1.72 − 8.40 1.14 − 6.33 2

4 21 0.72 − 2.55 1.30 − 4.85 3

5 20 1.30 − 6.33 2.20 − 6.00 2

bench6 0 20 1.38 − 29.33 0.90 − 6.62 2

1 22 0.93 − 3.50 1.33 − 6.62 3

2 21 0.57 − 14.00 0.50 − 1.86 3

3 21 0.68 − 2.30 0.62 − 2.28 2

4 22 0.82 − 3.50 0.65 − 2.61 3

5 20 6.83 − 29.33 0.57 − 2.28 2

6 19 0.68 − 6.83 0.57 − 17.60 1

bench7 0 20 0.68 − 2.69 1.72 − 13.25 3

1 20 0.51 − 1.62 0.33 − 8.4 2

2 21 0.82 − 5.33 3.25 − 29.33 0

3 20 0.75 − 3.00 6.16 − 29.33 2
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4 19 1.27 − 6.37 1.72 − 8.40 3

5 18 1.05 − 6.37 1.81 − 29.33 2

6 20 0.68 − 4.20 1.30 − 6.16 3

7 21 0.95 − 6.37 0.63 − 15.75 3

bench8 0 21 1.80 − 8.28 0.54 − 2.00 3

1 20 5.22 − 17.60 0.70 − 11.00 3

2 21 4.30 − 17.60 0.75 − 5.27 2

3 20 0.86 − 6.62 1.17 − 4.58 3

4 21 1.62 − 6.37 0.70 − 11.00 2

5 19 0.59 − 5.11 0.85 − 11.00 2

6 20 2.61 − 11.60 0.39 − 2.80 3

7 21 0.51 − 5.11 0.70 − 6.30 2

8 21 4.20 − 17.60 0.85 − 5.63 2

bench9 0 18 1.05 − 3.45 0.47 − 2.20 1

1 21 0.95 − 6.25 0.38 − 2.66 2

2 19 0.65 − 2.91 1.14 − 8.60 3

3 22 0.75 − 1.62 3.87 − 14.50 2

4 20 0.75 − 2.91 0.47 − 2.30 3

5 20 0.68 − 2.28 0.50 − 1.81 2

6 21 2.21 − 5.11 0.57 − 3.50 2

7 20 0.45 − 6.25 2.2 − 29.33 0

8 20 1.15 − 8.14 1.00 − 3.37 2

9 19 0.78 − 3.08 0.57 − 29.33 2

bench10 0 20 0.50 − 3.76 0.90 − 6.50 2

1 19 0.92 − 4.41 0.51 − 2.28 3

2 20 0.67 − 11.00 0.82 − 6.50 2

3 20 1.27 − 4.58 1.33 − 7.00 −

4 21 0.75 − 6.40 0.65 − 2.61 2

5 17 0.67 − 11.00 2.28 − 17.60 1

6 17 0.67 − 5.09 0.43 − 1.86 1

7 21 0.67 − 6.40 2.28 − 17.60 2

8 21 0.82 − 6.40 0.82 − 6.50 3

9 23 0.43 − 1.84 0.65 − 2.61 2
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We calculate the wirelengths (HPWL) for all floorplans in each group after phase three

either considering (i) the terminals at the center of the module or (ii) the terminals at the

periphery of the module. The HPWL thus obtained for each tree is shown in Table 5.4.

Table 5.4 Wirelengths for different floorplans for each benchmark

benchmark instance no Tree Wirelength

centre to

centre

boundary

to bound-

ary

bench1 0 T01 35515 45188

1 T11 40737 59138

T12 44453 58722

2 T21 65646 88755

T22 65004 86402

3 T31 28792 44188

T32 32184 42728

T33 29914 41951

4 T41 91028 113993

bench2 0 T01 18458 25142

T02 18408 24379

1 T11 44129 54079

2 T21 30328 38202

3 T31 73635 92601

T32 73733 91635

4 T41 19649 24137

bench3 0 T01 60969 81614

T02 63307 81870

1 T11 46771 64440

T12 48879 64115

2 T21 41099 61593

T22 44847 59131

T23 45596 59352

3 T31 23218 34066

T32 23852 34258
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T33 24290 34177

4 T41 67229 87126

T42 68677 86463

5 T51 36097 46386

bench4 0 T01 32725 42059

1 T11 37934 51198

T12 37125 49764

T13 37597 50478

2 T21 48079 69011

T22 50442 65531

T23 48144 65732

3 T31 62747 80276

4 T41 30318 37342

5 T51 9694 14305

T52 10285 14058

bench5 0 T01 35595 44853

1 T11 62944 76657

2 T21 57887 71338

3 T31 39421 52579

T32 40231 50181

4 T41 19408 23996

5 T51 47534 62750

T52 48243 61594

bench6 0 T01 32060 45951

T02 35337 45270

1 T11 65929 81783

2 T21 34594 42045

3 T31 66429 86260

T32 68763 85701

4 T41 51576 62824

5 T51 41377 64751

T52 49940 63295

6 T61 25652 34799

T62 26159 34324
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T63 26703 34444

bench7 0 T01 37523 48905

1 T11 22654 33453

T12 25545 32964

2 T21 29336 48312

T22 34916 47738

T23 36095 48038

T24 35188 48167

3 T31 31161 44694

T32 33415 44970

4 T41 51152 64457

5 T51 18714 30929

T52 21960 31139

6 T61 42210 55645

7 T71 59661 82217

bench8 0 T01 53395 68901

1 T11 55649 72491

2 T21 15888 21554

T22 16567 21268

3 T31 37418 53711

4 T41 33037 45567

T42 35523 44687

5 T51 53453 75047

T52 56455 73941

6 T61 54469 72621

7 T71 39094 56243

T72 40431 54552

8 T81 28334 41194

T82 31463 40476

bench9 0 T01 33967 50422

T02 35840 48668

T03 36523 49222

1 T11 21418 28784

T12 21829 27988

2 T21 10038 13029
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3 T31 36422 49298

T32 37649 48397

4 T41 38911 49313

5 T51 25783 33751

T52 24544 33380

6 T61 15022 20344

T62 15121 20843

7 T71 44152 63347

T72 45670 63056

T73 47510 62306

T74 45975 62716

8 T81 69127 92185

T82 72623 91076

9 T91 21931 31453

T92 23801 30822
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Chapter 6

Concluding Remarks and Future Work

In this thesis we have proposed a fast deterministic floorplanning method in the context of

partial reconfiguration on FPGA with heterogeneous resources consisting of CLBs, RAMs and

Mutlipliers. To reduce the configuration overhead the static modules are placed in a fixed

position in bottom left and top right corners of the board, while remaining contiguous space

is used for placing the dynamic modules of the instances. Our method generates global slicing

topology such that the exact physical location of each static module along with the shape,

remains same across all instances. We choose the set of floorplans with minimum total semi

perimeter wirelength over all instances. We show with an example how our method works for

two instances.

We plan to test our method for a set of realistic benchmarks to show that it is faster than

the simulated annealing based methods. As a future work, the constraint imposed on the

positions of the static modules will be relaxed to incorporate the general positions of the static

modules.
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