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Abstract

Driven by Moore’s Law for more than four decades, the complexity and scale of VLSI

integration has reached unforeseeable heights today. The increased density of switching devices

and rising frequency has led to large power consumptions per unit area. Due to high frequency

of operation and inductive effects of the power grid lines, a noticeable power drop occurs when

logic gates within close physical proximity of each other switch simultaneously. This drop in

power, known as droop, propagates along the power supply lines, decaying exponentially with

spatial and temporal distance from its origin. This is manifest a few clock cycles later, in

the form of a reduced power drop at a neighboring via, giving rise to the possibility of timing

faults at some gates in that via. Such faults are known as multi cycle droop faults (MDF). In

this dissertation, a new approach is taken towards modeling of these faults in combinational

circuits, using the concepts of Boolean Satisfiability to provide more flexibility and efficiency

in test generation for detection of these faults. Finally, a prototype algorithm to generate test

vectors for multi-cycle droop faults in full-scan circuits is presented and discussed.
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Chapter 1

Introduction
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The scale of integration in very large scale integration ( VLSI) chips is soaring due to the

progress in technology. Today more than a billion transistors can be fabricated on a VLSI chip

with operating frequency nearly 10 GHz (and even this scale is increasing day by day) thereby

the power consumption per unit area and also per unit length of power supply lines is increasing

phenomenally. The increase in power consumption density in VLSI chips along with decreasing

threshold and power supply voltages has resulted in greater power supply noise and therefore

different types of faults in the operation of these chips , one of them being the Droop Fault.

Droop faults originate due to power supply noise termed as power supply droop or simply droop.

This dissertation report has addressed a more specific kind of droop called mid frequency power

droop (MFPD) and multi cycle droop fault (MDF) which originates from MFPD.
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1.1 Power Supply Droop

Today’s VLSI chips, having very large number of components and high frequency of operation,

tend to draw considerable amount of power during their operation. Therefore large transients

in supply current can happen while the chip is in operation. These transients specially happen

when there is a sudden activity in the chip. For example when chip is going from idle mode to

active mode. This flow of large transient current causes a temporal and spatial voltage variation

in the power supply grid (Fig. 1.1). Such a variation in voltage at some particular location of

power supply grid is termed as power supply droop or simply droop.

Figure 1.1: A typical 4 layer power supply grid with VDD rails (shaded) and ground rails (white).

Vias are the interconnect between two rails in consecutive layers. : courtesy [5]

Droop is broadly classified into three types according to their locality in both space and

time.

1. Low Frequency Power Droop (LFPD): This affects the whole grid after a few clock cycles.

2. Mid Frequency Power Droop (MFPD): Localized to a small portion of power supply grid

and effective for a few clock cycles.

3. High Frequency Power Droop (HFPD): Highly localized and effective in the same cycle in

which it is originated.

These types are discussed below.
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Figure 1.2: Circuit under test (CUT) connected to a voltage regulator model, including capac-

itance C and the interconnect’s parasitic inductance L. : courtesy [5]

1.1.1 Low frequency Power Droop (LFPD)

A schematic of power supply to the VLSI chips has been shown in Fig. 1.2. In deep sub-micron

regime large currents from voltage regulator module (VRM) flow through the power supply grid

of chips delivering current to the transistors which are connected to the grid through vias. Fig.

1.1 shows a typical 4 layer power supply grid in these chips with vias at the cross points of lines

in two consecutive layers.

Figure 1.3: Voltage on the circuit under test (CUT) after a dI/dt event, without capacitor

(dashed curve) and with capacitor (solid curve). : courtesy [5]

Fig. 1.2 illustrates the cause of LFPD. The circuit under test (CUT) is connected to the

VRM. L denotes the parasitic inductance of the interconnect. Let the CUT demands a high

current due to sudden increase in activity (as discussed before). Let us call this a dI/dt event.

dI/dt event denotes an increased demand of dI amount of current in dt amount of time. Thus

after a dI/dt event the power supply voltage VDD to CUT will decrease by an amount L(dI/dt).

This amount of decrease in voltage is very high even for moderate values of current demanded

(≈ 102A with VDD ≈ 1V ) in a few clock cycles (1-10) in a high frequency (≈ GHz) range of
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operation of a circuit with the value of L well below 1nH.

The effect of such a dI/dt event on voltage supplied by VRM is shown in Fig. 1.3. Dashed

curve shows the voltage difference between the connecting points of VRM and CUT in absence

of the capacitor C. We can see a sharp decrease in the voltage when dI/dt event happens. This

takes some time for VRM to recuperate and come to the original voltage level. The solid curve

shows the effect on the voltage in presence of C. This is the real situation. The capacitor is

charged during the power on of VRM. When a dI/dt event happens, the fully charged capacitor

C makes for the deficiency of current and in the process discharges itself. After several clock

periods there is a situation when capacitor is discharged but VRM is not yet ready to deliver

the full supply. This situation is shown as a dip albeit smaller in magnitude on the solid curve.

We can see that this dip occurs after several clock cycles from the dI/dt event. This reduction

in VDD, which is felt by entire device (CUT), can slow the switching time of the gates in CUT.

Such a transient reduction in power supply is known as LFPD.

When LFPD occurring in a circuit is sufficiently large in magnitude then it may be the case

that certain gates have large enough delay causing them to fail to switch their state properly

within one clock period. This gets revealed as a stuck-at-fault (STF). Such a fault is known as

low frequency droop fault (LDF).

1.1.2 Mid frequency Power Droop (MFPD)

In contrast to LFPD, which affects VDD over the entire package, MFPD is a localized phe-

nomenon. MFPD affects only a small area of the chip and its effect last a few clock cycles

only. We again see Fig. 1.1 in which a 4 layer power supply grid is shown with vias. Vias

are junctions which deliver power to gates fabricated on the chip. In deep sub-micron regime

typically 5-6 gates are connected to each via. We concentrate on a small segment of a power

supply line typically containing 1-3 vias. When gates drawing power from this segment (i.e

connected to the vias present in that segment) switch simultaneously in a considerable number

within a clock period, a sudden increase in demand of power happens. This situation produces

a negative spike in the supply current at that segment. Deficiency in current produced at

that segment quickly tries to dissipate in time drawing current from the nearby region of the
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power supply grid. However in the today’s VLSI chips where the transistor density is very high

along with the high frequency of operation the on-die inductive effects get excited with a quick

change in the current flowing through some segment of power supply grid as in this case of

a sudden decrease in current supply. On-die inductive effects are comparatively smaller and

highly localized in the deep sub-micron regime and decay very quickly. Such transient inductive

effects along with a background of RC (with resistance R and decoupling capacitance (decap)

C) behavior shown by the chip plays an important role in the decay process of the current

spike.

Figure 1.4: A fast current spike (a) injected into a power grid can excite localized inductive

effects (b), which quickly dissipates in time and space and becomes RC-only effects. (Vcc :

nominal supply voltage). : courtesy [3]

Fig. 1.4 shows dissipation and the locality of such a current spike injected into a power grid

segment. We can see an exponentially decreasing wave like phenomenon while the deficiency in

voltage dissipates. This dissipation of deficiency takes a few clock cycles and also travels out-

wards from the point at which the spike was introduced. This is because the current deficiency

is being quickly filled by the nearby power segments.

Transient inductive effects as discussed above are added by the action of decaps present in

the circuit. Decaps act both globally and locally. Globally they correspond to the main reso-
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Figure 1.5: Transient current response of the nonuniform decaps. Initially, there are various

frequencies greater than the global resonant frequency, but eventually all currents respond at

the main resonant global frequency. : courtesy [3]

nance frequency of excitation currents while at higher frequencies they produce more localized

effects. Fig. 1.5 shows the effect of such decaps. When a current spike (high frequency) is

introduced the local effects of decaps are more effective. This effect along with the on-die in-

ductive effect tries to slow down the recovery of current supply to the global resonant frequency

current for a few clock cycle. Thus a deficient current supply can be felt at the same segment

even after some clock cycles.

Fig. 1.6 shows the locality of mid frequency and low frequency currents on the chip when

a current spike is introduced to a power segment. This shows that the deficiency of current

supply is also felt by the nearby power segments though less in magnitude.

The above discussion shows that the droop produced by simultaneous switching of gates in

physical proximity travels along the power grid and can be felt at some nearby positions after

a few clock cycles but with less magnitude. Also the droop is felt at the same position for a

few clock cycles. Such a droop is termed as mid frequency power droop (MFPD)). Again, as

in the case of LFPD, MFPD also slows down the switching of the gates drawing power from

the via where it is present. If the delay in switching is large enough for a clock period, which
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Figure 1.6: Locality of mid frequency (a) and low frequency (b) currents present in the first

and second dips, respectively of the current amplitude curves in Fig. 1.5 : courtesy [3].

depends on the magnitude of the MFPD present at that via, then the gates may fail to switch

within that clock period. This results in the faulty operation of the circuit. This is known as

mid frequency droop fault or multi cycle droop fault (MDF). It can be noted that LDF is also a

multi cycle droop fault but for our purpose we denote mid frequency droop fault as multi cycle

droop fault (MDF).

Apart from this behavior there is also another difference between LFPD and MFPD. LFPD

has highest magnitude after some time from the time of sudden increase in current demand

(dI/dt event) i.e it increases and then decreases in time after the event as shown in Fig. 1.3.

While in case of MFPD the highest magnitude of droop happens just when the sudden increase

in demand of current happens. It decreases both spatially and temporally and eventually

disappears. This is also one of the reasons why we termed mid frequency droop fault as multi

cycle droop fault (MDF).

1.1.3 High frequency Power Droop (HFPD)

HFPD can be considered as a special case of MFPD. The cause of HFPD is same as MFPD.

This classification is done only to capture the effect of droop and fault caused by it within
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only one clock cycle and at the same via where the sudden activity happens.The magnitude

of MFPD within the first clock cycle and at the same location where it originates is highest.

Therefore in VLSI chips with moderate transistor density often MFPD is of only one clock

cycle length affecting the same locality where it originates. Thus notion of HFPD helps in

formulating the faults due to MFPD within the same clock cycle.

Fig. 1.4 also depicts how a current spike injected in a circuit typically dissipates in space

and time. If the injected current spike consists of only very high frequency components then it

dissipates very quickly (within one clock period) as depicted in Fig. 1.5. In this figure we can

see that the high frequency components present in the first dip quickly dissipate within a few

nano seconds. For VLSI chips with operating frequency of the order of GHz dissipation often

happens within one clock cycle. Also such a droop is highly localized. Such droop is termed as

High frequency Power Droop (HFPD).

The faulty operation of the circuit occurring due to HFPD is termed high frequency droop

fault (HDF) or single cycle droop fault (SDF). The reason for the origin of the fault is same as

that of fault due to MFPD or LFPD.

1.2 Previous Works

This field is still nascent, and this is largely due to the fact that droop faults are being seen in

chips with very high density of transistors with a very high frequency of operation. Advances

in fabrication techniques promise production of such chips in large scale in the near future. But

still we are on the verge of entering the domain where these chips will come into large scale

use. Present day chips are experiencing a little effect due to droop.

The problem of single cycle droop fault (SDF) in combinational circuits was addressed in

the work of Mitra et. al. in [4]. There SDF is modeled as slow to rise (STR) fault taking into

account the switching of gates 0→1. The other way transitions have a similar modeling. The

SDF gets revealed as stuck-at-0 (s-a-0) fault at the victim gates. A test vector pair is found

which excites the HFPD on some victim gates and then propagates the effect of s-a-0 fault on

every victim gate at some primary output.

SDF in full scan circuits also has been covered in [4] by Mitra et.al.. A similar modeling
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for full scan circuits as with combinatorial circuits has been done for it. A methodology for

test pattern generation in launch off capture (LOC) environment in full scan circuits has been

proposed and an automatic test pattern generator (ATPG) has been implemented for it.

While in [5] Ilia Polian et. al. have addressed the faults due to LFPD and HFPD both

but not MFPD per se. They propose a method for ATPG for exciting the worst case droop by

combining the effects of LFPD and HFPD both and detecting these faults.

The model for Mid-Frequency Power Droops in combinational chips was formulated by [2]

and solved using conventional ATPG based approach.

1.3 Scope of this thesis

This thesis concentrates on MFPD and presents a model for it in terms of Boolean Satisfiability,

for exciting and detecting the MDF. Using a public SAT solver, an efficient and robust ATPG

is created which generates MDF test vectors. A prototype algorithm has been presented for

detecting MDF in full-scan circuits .

1.4 Organization of this thesis

Chapter 2 builds the theoretical ground to understand MDF and the basic concepts of Boolean

Satisfiability. This chapter summarizes the cumulative model for MDF and how to convert

a circuit to its equivalent CNF , upon which additional constraints be imposed in terms of

clauses to solve for various desired features of the circuit. Chapter 3 presents the algorithm

to formulate clauses to model MFPD . The requirements of a test sequence to detect MDF

has been presented , and it has been demonstrated how to formulate clauses such that a

successful assignment represents a MDF test vector. Chapter 3 also presents the experiments

done using an implementation of the algorithm (Hydra) and a comparison between the ATPG

based approach and the SAT Solver based approach. Chapter 4 contains a prototype algorithm

to detect MDF vectors for full-scan circuits , explained with an example. Chapter 5 contains

the implementation details of the algorithm. Chapter 6 wraps up the thesis by concluding

remarks and discusses scope for future work.
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Chapter 2

Basic Concepts

Contents

2.1 Multi-Droop Fault Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 An Overview of the Boolean Satisfiability Method . . . . . . . . . 11

2.2.1 Formula Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Formula for Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Multi-Droop Fault Model

The Cumulative Model for Mid Frequency Power Droop was developed in [2] . We present a

brief summary of the model and its associated definitions for our understanding.

Target Via T : A via , on which effect of MFPD is to be observed.

Aggression : An event when a group of gates switch simultaneously 0 → 1 , causing power

droop to travel along the power grid in all directions ever decreasing in amplitude.

αi(T ): A gate in the vicinity of T which causes a droop at via T after i clock cycles , called

an aggressor.

D : The least amount of droop at the target via T , that will cause switching delay in gates

connected to T .
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δi(g, T ): The amount of droop causes at T by an aggressor αi(T ) , the latter being g.

ξi(g, T ): It is the amount of droop causes at T by an aggressor αi(T ) , divided by D. It is

known as the effectiveness of aggressor αi(T ).

λi(T ): It is a set of gates , all of which cause a droop at T after i clock cycles. Such a list of

gates is known as an aggressor list.

ξ(λi(T )): It is the worst case droop caused by simultaneous transition of all gates belonging

to λi(T ) i.e. it is the sum of individual effectiveness ξi(g, T ) for all gates g belonging to

λi(T ).

M Ag(T ): An M Aggression for a target via T consists of aggressor lists which have switched

during any of the previous M clock cycles. Thus , it is defined as

M Ag(T ) = {λi(T ) | 0 ≤ i ≤M and λM(T ) is not empty}

ξ(M Ag(T )): It is the sum of effectiveness of all the aggressor lists belonging to theM Aggression

M Ag(T ) i.e. it is the worst case droop at the target via T produced by the aggres-

sion(excitation) of each aggressor list λi(T ) belonging to it in their respective previous

clock cycle.

From the above model , we can deduce the following :

If an M Aggression for target via T has a total effectiveness greater than or equal to 1 , only

then it is a likely candidate to produce an MDF at any victim gate of T

2.2 An Overview of the Boolean Satisfiability Method

The Boolean Satisfiability is a method for modeling faults in combinational circuits , which is

neither a purely structural method ( like D-algorithm , PODEM , FAN ) nor an algebraic one

( e.g. the Boolean Difference method ). It generates a formula in Conjunctive Normal Form

(CNF) from the given circuit that defines the set of test patterns that detect the fault and then

use a Boolean Satisfiability algorithm to find a satisfiable assignment to the formula. We first

show how to extract the formula for detecting single stuck-at fault in combinational circuits ,
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which will be extended later to determining the formula for MDF faults in both combinational

and full-scan circuits.

2.2.1 Formula Extraction

The topological description of the circuit is represented using a Directed Acyclic Graph (DAG)

. Circuit inputs , outputs , gates and fan-out points constitute the vertices , while the edges

are circuit lines( wires ) . Each circuit output is a source , and each circuit input is a sink . An

example of a circuit and its corresponding DAG is shown in 2.1.

Figure 2.1: A circuit and its associated DAG for SAT Solver: courtesy [1]

For each edge , there is an unique variable assigned to it. For each node , there is a

corresponding formula , in terms of the variables for its incoming and outgoing edges , which

expresses the functionality of that node( gate or fan-out ) in the circuit. E.g. an inverter with

input X and output Y will have the formula Y = X . Similarly , an OR gate with inputs X

and Y and output Z will be represented by Z = X + Y .

In the next step , these formula would be converted into their respective CNF forms , as

most SAT Solvers accept the input as a CNF expression . Take , for example , a 2-input OR

gate. the formula assigned to it is

Z = X + Y

It is equivalent to

(Z → (X + Y )).((X + Y )→ Z)

Using the fact that P → Q is equivalent to P +Q , we convert all implications into disjunctions
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Logic Gate Boolean Expression CNF Formulae

AND Z = X.Y (Z +X).(Z + Y ).(Z +X + Y )

OR Z = X + Y (Z +X).(Z + Y ).(Z +X + Y )

NOT Y = X (X + Y ).(X + Y )

NOR Z = X + Y (Z +X).(Z + Y ).(Z +X + Y )

NAND Z = X.Y (Z +X).(Z + Y ).(Z +X + Y )

Table 2.1: Formulae for basic gates

to get

(Z +X + Y ).(Z +X).(Z + Y )

The above CNF expression is true iff the values of X , Y and Z are in accordance to the

truth-table of an OR gate. CNF expressions for all basic 2-input gates are given in table 2.1.

Note that the formulae for gates having more than 2 inputs is produced in the same manner .

2.2.2 Formula for Fault Detection

Once we have extracted the formula for each of the nodes , we can obtain the formula for the

entire circuit simply by concatenating the CNFs for all the nodes . As the formula for each node

is independently satisfiable , the concatenated formula must also be satisfiable if the variables

for the input nodes and output nodes match any entry of the circuit’s truth table.

A

B

C

D

E
A

B

C

D

E

Df

Ef

F

(a) (b)

Figure 2.2: (a) A fault-free circuit (b) XOR of the fault-free crcuit and the faulty circuit with

D s-a-1
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The formula for the circuit in figure 2.2(a) is as follows:

(B +D).(C +D).(B + C +D)(A+ E).(D + E).(A+D + E)

The first three clauses are due to the AND gate and the next three are due to the OR

gate. Suppose , now we want to find a test vector (TV) that would detect a s-a-1 fault in D.

This can be done by making a copy of the circuit , renaming the the variables associated with

wires that lie on a path between the fault site and a circuit output , and inserting new nodes in

the DAG to denote the implied discontinuity caused by the stuck-at fault. This is to represent

the fact that in a faulty circuit , one value is generated at the fault site but another value is

propagated on to the rest of the circuit. Unary clauses are tagged to the added nodes to model

the above behavior i.e. we add the clause Df to the formula for the faulty circuit as the wire D

is stuck-at 1 . The formula for the faulty circuit is derived the same way by walking the DAG

starting from the faulted output , and taking conjunction of the formulae of all encountered

nodes . The formula for the faulted circuit in figure 2.2 is

(A+ Ef ).(Df + Ef ).(A+Df + Ef )(Df )

Any input combination that causes the faulted output to differ from the unfaulted output

, constitutes a test for the given fault . In order to find such a test , we take the conjunction

of the two extracted formula and add a clause depicting the XOR of the corresponding circuit

outputs of the faulted and unfaulted circuit. Thus the clauses in the formula for when solved

gives a test for D s-a-1 is :

(B +D).(C +D).(B + C +D) for the AND gate,

(A+ E).(D + E).(A+D + E) for the OR gate,

(A+ Ef ).(Df + Ef ).(A+Df + Ef )(Df ) for the OR gate in the faulted circuit,

(E + Ef + F ).(E + Ef + F ) and

(E + Ef + F ).(E + Ef + F ).(F ) for the XOR operation.

In the next chapter, this model has been elaborated upon to formally define multi-cycle

droop fault and the problem of detecting such faults.
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Chapter 3

MDF Detection in Combinational

Circuits Using Boolean Satisfiability

Contents
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3.1 Requirements of an ATPG for MDF

In order to detect MDF in the target via T , we need to generate vectors that would produce

excitation in the preceding cycles ( corresponding to the given M Aggression ) so that the

worst case droop is produced on via T . The MDF thus generated is then to be propagated to

at least one Primary Output for fault detection. For a target via T along with its victim list

15



V , an M Aggression M Ag(T ) with a suitable value of M , a sequence of M + 2 test vectors

(TV ) is required to detect an MDF at T . Fig. 3.1 shows the properties of such a test sequence.

Such a sequence should have the following properties:

Mid Frequency Power Droop (MFPD) Excitation : The gates belonging to the aggres-

sor list must switch at the appropriate time to generate a cumulative power droop at the

target via. Specifically , the gates in the list λi(T ) ∈ M Ag(T ), for each 0 ≤ i ≤ M ,

undergoes a 0→1 transition within clock period t− i.

Multi Cycle Droop Fault (MDF) excitation : For producing MDF , we need to make the

gates in victim list V undergo a transition at the instant the cumulative power droop takes

place in the target via. So, the last vector in TV must ensure that the gates in victim list

V are set to ’0’ within clock period t− 1 and are set to ’1’ in clock period t. If the droop

produced in T is sufficient , then the gates in victim list will fail to switch and thus MDF

will occur.

MDF propagation: The test vector set TV also needs to ensure that if MDF is indeed

produced in the target via , then it must also be propagated to a circuit output for the

fault to be observed . Therefore , at clock period t , the test vector applied at the inputs

must set all gates in victim list to ’1’ (for MDF excitation ) and simultaneously is a test

vector for detecting multiple s-a-0 fault in all gates in victim list V.

We can sum up all the above properties of a test sequence as follows:

An MDF generated by the aggression of a given M Aggression (M Ag(T )) is said to be

testable (excitable) if and only if there exists a test sequence as above corresponding to M Ag(T ).

3.2 Data Structures

For representing the problem in Boolean Satisfiability domain , we use the following ADT’s :

• Signal: Every connecting line in the circuit is represented by a Signal data type. Each

Signal type has 2 unique variables associated with it , one representing its assignment in
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TV[M+1]

TV[M]

TV[i+1]

TV[i]

TV[1]

TV[0]

Sets gates in λM to ’0’. 

Sets gates in λM to ’1’ and gates in λM-1 to ’0’.

Sets gates in λi+1 to ’1’ and gates in λi to ’0’.

Sets gates in λi to ’1’ and gates in λi-1 to ’0’.

Sets gates in λ1 to ’1’ and gates in λ0 to ’0’ and 
gates in victim list to ’0’.

Sets gates in λ0 to ’1’ and gates in victim list to ’1’
and is a test vector to detect multiple s-a-0 fault at
every gate in victim list.

Captures ’0’ to ’1’ transition in  gates in λ0     
and gates in victim list.

Captures ’0’ to ’1’ transition in  gates in λM. 

Captures ’0’ to ’1’ transition in  gates in λi. 
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Figure 3.1: Properties of a test sequence corresponding to an M Aggression. Figure shows the

flow of time in which the test sequence should be applied.

the fault-free circuit and the other , its assignment in a faulty circuit. Given a Signal ,

we can determine the following in constant time:

1. Whether it a Primary Input (PI) or Primary Output (PO)

2. Its parent gate ( if any ) and child gates ( if any )

• LogicGate: Every gate in the circuit is modeled as of type LogicGate . Given a LogicGate

, we can determine the following in constant time :

1. Its FanIn Signals

2. Its FanOut Signal
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3. normal clauses , the CNF clauses representing the functionality of the gate in the

normal circuit , computed using the variables associated with the fault-free circuit

for each FanIn Signal and the FanOut Signal.

4. faulty clauses , the CNF clauses representing the functionality of the gate when it

is on a fault path , computed using the variables associated with the faulty circuit

for each FanIn Signal and the FanOut Signal.

• Circuit: The circuit ADT stores the list of LogicGate objects and Signal objects ,

together making up the entire circuit as given in input to the main algorithm.

3.3 Algorithm for Test Generation for detecting MDF

To generate a test sequence for a target via T , first make some tentative M Aggressions for T

where M is the threshold clock cycles and using vias only nearby distance from T , also make

a victim list V . These lists are made using external data coming from the layout information

of the chip using static timing analysis and RLC network simulation of the chip [4]. Before we

can move on to the main algorithm , we need to define certain procedures which are used by it.

Algorithm get Multiple Fault Detection Clauses(S, v)

Input: A set of gates S , and a logic value v which is either ’0’ or ’1’

Output: CNF Clauses whose satisfiable assignment gives a test vector for multiple s− a− v

fault in S

Begin:

fault path gates = φ

fault cone primary outputs = φ

fault detection clauses = φ

fault activation clause = φ

for Each gate g in S do

Get gates on the fault cone for a s − a − v fault at output of g and add them to

fault path gates.

Add Primary Outputs which are on the fault cone to fault cone primary outputs.
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Get X , the faulty variable associated with the FanOut of g and add the fault activation

clause as follows:

if v is 1 then

Add the literal X to the clause fault activation clause

else

Add the literal X to the clause fault activation clause

end if

end for

Add fault activation clause to fault detection clauses.

for Each gate g in fault path gates do

Add the faulty clauses for g to fault detection clauses

end for

for Each PO Signal in fault cone primary outputs do

Add the CNF Clauses representing the condition that the value assigned to at least 1 PO

Signal in the faulty circuit to differ from its corresponding value in the normal circuit.

end for

return fault detection clauses

End

Algorithm get Maximal Excitable Subset(S)

Input: A set of gates

Output: A subset of S , such that they can be simultaneously set to ’0’ by at least 1 vector

and be simultaneously set to ’1’ by at least 1 (other) vector

Begin:

W ← the set of subsets of S , arranged in decreasing order of cardinality

while W is not empty do

Pick the first set w from W

if All gates in w can be simultaneously excited to ’0’ then

if All gates in w can be simultaneously excited to ’1’ then
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return w

end if

else

Delete w from W

end if

end while

return Null set , signifying no such subset exists

End

Algorithm MDF Combinational TPG (C , V , M Ag )

Input : A circuit C, a victim list V , an M Aggression M Ag(T ).

Output : If successful then a test sequence TV and number of test vectors in it else failure.

Begin

1. Initialize the 3 counters hope H , effectiveness covered E , effectiveness at stake S, which

are used to keep track of the algorithm’s progress , as follows :

E = 0, H =
∑

λi(T )∈M Ag(T )

ξ(λi(T )), S = 0

If H < 1 , terminate the algorithm and output failure.

2. Generate TV[0] as follows :

• Compute C0
1 , the CNF clauses for detecting multiple s − a − 0 fault at gates in

victim list , by calling procedure get Multiple Fault Detection Clauses(V, 0) .

• Identify the maximal simultaneously excitable subset in λ0(T ) by calling procedure

get Maximal Excitable Subset(λ0(T )). Refine the given M Aggression by replac-

ing λ0(T ) by this subset .Compute C0
2 , the CNF clauses which ensure that all the

gates in this subset are set to ’1’ .

• Ideally , TV[0] should both set the gates in λ0(T ) to ’1’ and also be a test vector

for detecting multiple s− a− 0 fault in the victim list V. Therefore , if we have an
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assignment to the primary inputs which satisfy the conjunction of C0
1 and C0

2 , we

have found TV[0] . If such an assignment is not possible , solve C0
1 to get TV[0] ,

which just detects multiple s−a−0 fault. If C0
1 is also unsatisfiable , then the MDF

fault is redundant and the algorithm terminates.

Update the counters as follows :

H = H − ξ(λ0(T ))

If TV[0] satisfies both C0
1 and C0

2 , then

S = ξ(λ0(T ))

3. Generate TV[1] as follows :

• Compute C1
1 , the CNF clauses which set the gates in λ0(T ) to ’0’.

• Refine the MAggression by identifying the maximally excitable subset in λ1(T ).

Compute C1
2 , the CNF clauses which set the gates in the refined λ1(T ) to ’1’ .

• Compute C1
3 , the CNF clauses which sets the gates in V to ’0’ .

• If the conjunction of all the above 3 sets of clauses have a satisfiable assignment ,

then we have found TV[1] . If not , let C1
4 = C1

1 .C
1
3 and find an assignment for C1

4

to get TV[1]. If this does not have a satisfiable assignment , then solve C1
5 = C1

2 .C
1
3

to get TV[1] . If none of the above 3 combinations of clauses have a satisfiable

assignment , then stop and output failure .

H = H − ξ(λ1(T ))

If TV[1] sets the gates in refined λ0(T ) and S > 0 , implying that TV[0] sets gates in

λ0(T ) to ’1’ and the transition of λ0(T ) is captured , then

E = E + ξ(λ0(T ))
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If E ≥ 1 , then output the test sequence . If TV[1] sets gates in refined λ1(T ) to ’1’ , then

S = ξ(λ1(T ))

If (E + S +H) < 1 , terminate and output failure.

4. Generate TV[i] , 2 ≤ i ≤M , as follows :

for 2 ≤ i ≤M do

if λi(T ) and λi−1(T ) are both empty then

TV[i] is a random test vector

else

Ci
1 ← CNF clauses to set gates in λi−1 to 0

Ci
2 ← CNF clauses to set gates in λi to 1

if Both Ci
1 and Ci

2 are simultaneously satisfiable then

TV[i] ← is found

if S > 0 then

{This means TV[i-1] sets λi−1(T ) to 1 and transition of λi−1(T ) has been

captured}

E = E + ξ(λi−1(T ))

if E > 1 then

Stop and output the test vectors

end if

end if

else

if λi(T ) is not empty AND S > 0 then

if Ci
1 is satisfiable then

TV[i] found.

S = 0

else if Ci
2 is satisfiable then

TV[i] found

S = ξ(λi(T ))
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else

TV[i] is a random vector

end if

end if

end if

end if

end for

5. (for TV [M + 1]) If TV [M ] sets gates in λM(T ) to ’1’, then find a test vector which sets

λM(T ) to ’0’. If this test vector is possible, then

E = E + ξ(λM(T )).

Else if test vector above is not possible (empty), then output failure.

End.

3.4 A working example: c17

We take a small example to illustrate the working of the algorithm .

1

2

3

6

7

10

11

16

19

22

23

Figure 3.2: The ISCAS85 benchmark circuit c17

The inputs are as follows :
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Circuit C : c17.bench

Victim list V : Gates 16 , 19

M Ag(T ): It is as follows :

0 : 4 (16,19,10,11) 1

1 : 2 (22,23) 0.395

2 : 0

3 : 0

The circuit c17.bench is chosen due to its simplicity and ease of verification. Each of the

13 signal lines present in the circuit have 2 unique variables , one for the normal circuit and

one for the faulty circuit. For ease of reference , each signal has its corresponding name as its

normal circuit variable , and the same name having subscript f for the faulty circuit variable.

Thus , signal 23 has variable 23 as its fault-free circuit variable and 23f as the faulty circuit

variable. Primed variables indicate complementation . Also , independent variables ( as those

required for fault-detection in Primary Outputs ) are denoted by alphabets.

• H = 1.395 , E = 0 , S = 0

• CNormal i.e. the normal circuit CNF clauses which are appended with other CNF clauses

when solving :

(1 + 10).(3 + 10).(10′+ 1′+ 3′).(3 + 11).(6 + 11).(11′+ 3′+ 6′).(2 + 16).(11 + 16).(16′+ 2′+

11′).(11 + 19).(7 + 19).(11′ + 7′ + 19′).(10 + 22).(16 + 22).(10′ + 16′ + 22′).(16 + 23).(19 +

23).(16′ + 19′ + 23′)

• C0
1 =

(16′f + 19′f )(10 + 22f ).(16f + 22f ).(22′f + 16′f + 10′).(16 + 23f ).(19f + 23f ).(23′f + 19′f +

16′)(22′ + 22f +X).(22 + 22′f +X).(22 + 22f +X ′).(22′ + 22′f +X ′)(23′ + 23f + Y ).(23 +

23′f + Y ).(23 + 23f + Y ′).(23′ + 23′f + Y ′)(X + Y )

• Maximally excitable subset in λ0(T ) = 16 , 19 , 10. Clauses to ensure that all gates in

this subset are set to ’1’ : C0
2 = (16).(19).(10)

24



• Input Vector that satisfies C0
1 .C

0
2 :

TV [0] = 00000

The value of the counters are as follows : H = 0.395 , S = 0.75

• C1
1 .i.e. CNF clauses to set gates in refined λ0(T ) to ’0’ are (16′).(19′).(10′)

• C1
2 i.e. CNF clauses to set gates in refined λ1(T ) to ’1’ are (22).(23)

• C1
3 i.e. CNF clauses to set gates in victim list V to ’0’ are (16′).(19′) The following vector

satisfies all of the 3 above criteria , apart from satisfying the CNF formula for the normal

circuit :

TV [1] = 11101

The value of the counters are as follows : H = 0 , S = 0.395 , E = 0.75

• C2
1 i.e. CNF Clause to set gates in λ1(T ) to ’0’ are (22′).(23′)

• C2
2 is empty

• Input vector that satisfies C2
1 is

TV [2] = 00000

The value of the counters are as follows :

H = 0 , S = 0 , E = 1.145

As E > 1 , MDF detection test sequence found which are as follows:

TV [2] = 00000

TV [1] = 11101

TV [0] = 00000

3.5 Experimental Results

A working ATPG for combinatorial circuits is implemented in C++ using the algorithm pre-

sented above. This ATPG is called Hydra . In absence of actual chip data the vias are made
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using the ISCAS85 bench mark circuits. The M Aggressions and victim lists are chosen from

those vias. Two different methods have been employed to generate M Aggressions. These are

(a) logical neighbors of seed and (b) random selection, where seed is any gate randomly chosen

from the circuit. The generated M Aggressions are then fed to MDFTG along with circuit

and victim lists and the response of MDFTG is observed. The experiments are discussed as

follows :

3.5.1 Experiment #1 (Logical Neighbors method)

As the name suggests this method makes the M Aggression using the logically connected gates

nearest to a seed gate. Thus the formed M Aggressions are strongly logically correlated. In

this method we form anM Aggressions using following steps:

G← Gate list from the given circuit C

M ← A random number between 1 to 4

while G is not empty do

g ← A random gate chosen from G ( Seed gate )

T ′ ← Logical neighbors of g in both directions, upto 2 levels

if T ′ has more than 4 gates then

T ← Set of 5-6 gates chosen randomly from T ′ , which form the gates in the target via.

V ← Victim list , having 1-4 gates , formed from T randomly

Neighbors← The set of gates which are neighbors of g starting from the 3rd level.upto

M + 2 levels.

Form an M Aggression from Neighbors such that the gates further from g belong to

λi(T ) with larger value of i

Remove the gates in T from the list G.

else

Remove gates in T ′ from G

end if

end while
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In this manner a list of M Aggressions is formed. These M Ag(T )′s are fed to MDFTG and

the number of testable M Ag(T )′s are recorded as shown in the table below.

Figure 3.3: Comparison between MDFTG and Hydra for Experiment # 1

3.5.2 Experiment #2 (Random Selection method)

In this method the M Aggressions are formed choosing random gates from the circuit. Thus

the formed M Aggressions are uncorrelated. In this method we form an M Aggression using

following steps:

G← Gate list from the given circuit C

M ← A random number between 1 to 4

while G has more than 4 gates do

T ← Set of 5-6 gates chosen randomly from G , which form the gates in the target via.

V ← Victim list of 1-4 gates chosen randomly from the set T

Remove the gates in T from G

Form the M Aggression choosing gates randomly from list G
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end while

In this manner a list of M Aggressions is formed and fed to the two algorithms . A

summary of the results follow :

Figure 3.4: Comparison between MDFTG and Hydra for Experiment # 2

3.5.3 Comparison of SAT Solver based approach with Conventional

ATPG

There are a number of advantages when using the SAT Solver based approach . These are :

1. It is easy to formulate the CNF clauses to restrict the solution space to have the desired

features .i.e a set of gates being set to ’1’ or a line being s-a-0. In contrast , the ATPG

based approach has to modify the circuit( by adding gates to ensure a set of gates switch

together ) to find the required set of vectors.

2. ATPG based method can only work with a reduced victim list V R , such that no two

gates in the reduced list have a path between them. This is essential for the algorithm
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to be able to modify the circuit. But the SAT solver based approach can work with the

entire victim list V

3. As circuit modification is time consuming , ATPG based procedure tries to minimize the

time involved by eliminating entire aggressor lists , instead of refining the list to find

a maximal excitable set which the SAT solver based approach does. This results in an

improved accuracy of test generation.

4. Finally , due to the provisions of iterative solutions to a group of CNF clauses , the SAT

solver can remember the implications it had made while processing the normal circuit

CNF , and thus needs very little time when additional sets of clauses are added to the

same group.

The results obtained by the implementation of our algorithm shows a clear superiority over the

ATPG based approach , both in terms of successful test generation as well as the time taken

for completion . This difference is magnified in case of larger and more complicated circuits

like c7552 and c6288.
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Chapter 4

Prototype Algorithm for Test

Generation In Sequential Circuits

Contents

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Algorithm for MDF detection . . . . . . . . . . . . . . . . . . . . . . 32

4.3 A working example : s27 . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Observations on our proposed method . . . . . . . . . . . . . . . . . 39

In this section , a prototype algorithm is developed which would identify test-sequences for

MDF detection in full-scan sequential circuits. There are a couple of basic advantages of using

Boolean Satisfiability as the underlying combinational test generation method :

• It requires only a few minor adjustments to extend the algorithm for a sequential ATPG.

• The Boolean Satisfiability method can be easily extended to handle various fault models.

4.1 Preliminaries

A sequential circuit ( as represented in the Huffman model in figure 4.1 ) with n inputs ,

m outputs and d D flip-flops can be unrolled into multiple time-frames , each frame with a
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purely combinational circuit with n inputs , m outputs , d “Pseudo-Primary Inputs”(PPI) and

d “Pseudo-Primary Outputs”(PPO) .

Figure 4.1: The Huffman model for sequential circuits

This has the advantage of bringing the circuit in consideration to the combinational domain

, with the added constraint that the values at the PPO’s of time-frame (i − 1) must match

the values at the PPI’s of the ith time frame. For convenience of reference , the following

conventions would be used:

• PPI ij will denote the jth Pseudo-Primary Input of ith time-frame.

• PPOi
j will denote the jth Pseudo-Primary Output of ith time-frame.

• The logic value of PPOi−1
j is the value given to PPI ij

• The vector V returned by the SAT Solver which satisfies a given set of CNF clauses in

the “unrolled” sequential circuit as shown in figure 4.2 , has input assignments for both

the Primary Inputs(PIs) and the Pseudo-Primary Inputs(PPIs). Hence , for clarity of

reference , VPI [i] denotes the value assigned to the ith PI , while VPPI [i] denotes the

assignment to the ith PPI.

Thus we see MDF detection for sequential circuits involve only an additional constraint to

be imposed while determining the test sequence , the corresponding clauses for which are easily

generated . However , to be successful in finding a test sequence , we may have to consider

more than 1 possible assignment for the first vector TV [0] and work backwards from it. Hence

, an iterative procedure is involved , which tries to find the test sequence till either all possible
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Figure 4.2: Time-frame expansion of a Sequential Circuit

assignments for TV [0] are exhausted , or a test sequence is found. This approach has been

formalized in the next section , where the complete algorithm for test detection is presented.

4.2 Algorithm for MDF detection

Algorithm get All Assignments ( Clauses , C )

Input : A set of CNF clauses Clauses defined on the circuit C with n PI’s and d PPI’s

Output : All possible assignments of PI’s and PPI’s which satisfy Clauses

Begin:

1. Check if Clauses is satisfiable by feeding it into the SAT Solver. If not , return an empty

vector , signifying that the condition specified by Clauses was not satisfied.

2. Let Seed V ector be the vector that satisfies Clauses. Put Seed V ector in a queue

Generated TV .

3. Denote the array of all assignments to be returned as All Possible V ectors and add

Seed V ector to it.

while Generated TV is not empty do

Pop the first vector from Generated TV . Denote it by V .

Initialize PPI Constraints = φ , which is used to hold CNF clauses denoting con-

straints to be placed on PPI’s in order to generate other vectors which also satisfy
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Clauses.

for 1 ≤ i ≤ d do

Let X be the variable associated with the ith PPI and v = V i
PPI be the value

assigned to it in vector V .

if v is 1 then

Opposing Clause = X

Supporting Clause = X

else

Opposing Clause = X

Supporting Clause = X

end if

Add Opposing Clause to the list of constraints PPI Constraints .

Solve the conjunction of Clauses and Opposing Clause. If any assignment V
′

exists , it is guaranteed to be different from V as it has at least one PPI assignment

different from it.

Check if V
′

is present in All Possible V ectors. Add V
′

to All Possible V ectors

and Generated TV if absent.

Remove Opposing Clause from PPI Constraints and add Supporting Clause to

it

end for

end while

return All Possible V ectors

End.

Algorithm MDF Sequential TPG( C , V , M Ag(T ) )

Input : A circuit C, a victim list V , an M Aggression M Ag(T ).

Output : If successful then a test sequence TV and number of test vectors in it else failure.

Begin:

1. Initialize the 3 counters hope H , effectiveness covered E , effectiveness at stake S, which
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are used to keep track of the algorithm’s progress , as follows :

E = 0, H =
∑

λi(T )∈M Ag(T )

ξ(λi(T )), S = 0

If H < 1 , terminate the algorithm and output failure.

2. Generate TV[0] as follows:

(a) Compute C0
1 , the CNF clauses for detecting multiple s − a − 0 fault at gates in

victim list , by calling procedure get Multiple Fault Detection Clauses(V, 0) .

(b) Identify the maximal simultaneously excitable subset in λ0(T ) by calling procedure

get Maximal Excitable Subset(λ0(T )). Refine the given M Aggression by replac-

ing λ0(T ) by this subset .Compute C0
2 , the CNF clauses which ensure that all the

gates in this subset are set to ’1’ .

(c) If C0
1 is unsatisfiable , then MDF is redundant and the algorithm terminates .

(d) if C0
1 and C0

2 are jointly satisfiable , then C0 = C0
1 .C

0
2 else C0 = C0

1 .

(e) Call procedure get All Assignments ( C0 , C ) to get all candidate input assignments

( for both PI’s and PPI’s ) that satisfy C0 , and store it in Candidate TV s . The

desired TV[0] is one of the input assignments in Candidate TV s .

Update the counters as follows :

H = H − ξ(λ0(T ))

If C0 = C0
1 .C

0
2 is the clause from which all candidate vectors for TV[0] are generated ,

then

S = ξ(λ0(T ))

3. Find the rest of the test sequence as follows :

for Each input assignment TrialV ector in Candidate TV s do

Let C1
1 ← CNF clauses which set the gates in λ0(T ) to ’0’

Refine λ1(T ) by identifying the maximally excitable subset in it .
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Let C1
2 ← CNF clauses which set the gates in the refined λ1(T ) to ’1’

Let C1
3 ← CNF clauses which sets the gates in V to ’0’.

Let C1
4 ← CNF clauses which constrain the PPO’s of circuit C to be equal to their

respective PPI assignments as given in TrialV ector .

if C1
1 .C

1
2 .C

1
3 .C

1
4 is satisfiable then

Store this input vector as TV[1]

else if C1
1 .C

3
1 .C

1
4 is satisfiable then

Store the assignment as TV[1]

else if C2
1 .C

3
1 .C

1
4 is satisfiable then

Store the input assignment as TV[1]

else

Since none of the combinations of clauses could be satisfied , no transition is

possible. Hence stop and output failure.

end if

H = H − ξ(λ1(T ))

If TV[1] sets the gates in refined λ0(T ) and S > 0 , implying that TV[0] sets gates

in λ0(T ) to ’1’ and the transition of λ0(T ) is captured , then

E = E + ξ(λ0(T ))

If E ≥ 1 , then output the test sequence . If TV[1] sets gates in refined λ1(T ) to ’1’

, then

S = ξ(λ1(T ))

If (E + S +H) < 1 , terminate and output failure.

Generate TV[i] , 2 ≤ i ≤M , as follows :

for 2 ≤ i ≤M do

Ci
3 ← CNF clauses which ensure that the PPO’s of circuit C are equal to their

respective PPI assignments as given in TV[i-1] .

if λi(T ) and λi−1(T ) are both empty then

TV[i] is a test vector satisfying Ci
3.
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else

Ci
1 ← CNF clauses to set gates in λi−1 to 0

Ci
2 ← CNF clauses to set gates in λi to 1

if Ci
1.C

i
2.C

i
3 is satisfiable then

TV[i] is found

if S > 0 then

{This means TV[i-1] sets λi−1(T ) to 1 and transition of λi−1(T ) has been

captured}

E = E + ξ(λi−1(T ))

if E > 1 then

Stop and output the test vectors

end if

end if

else

if λi(T ) is not empty AND S > 0 then

if Ci
1.C

i
3 is satisfiable then

TV[i] found.

S = 0

else if Ci
2.C

i
3 is satisfiable then

TV[i] found

S = ξ(λi(T ))

else

TV[i] is a random vector

end if

end if

end if

end if

end for

end for
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(for TV [M + 1])

If TV [M ] sets gates in λM(T ) to ’1’, then find a test vector which sets λM(T ) to ’0’ and

whose PPO values are correspondingly equal to the respective PPI values of TV [M−1].

If this test vector is possible, then

E = E + ξ(λM(T )).

Else if test vector above is not possible (empty), then output failure.

End.

4.3 A working example : s27

Once again , we take a small example to illustrate the working of the algorithm . We have

chosen the circuit s27 for ease of comprehension of the result and the ability to verify the result

by inspection . The nomenclature scheme for the variables representing lines in the circuit is

the same as in 3.4 . The format of writing the input vectors is as follows : Primary Input

(PI) assignments in order followed by the Pseudo-Primary Input (PPI) assignments in order

, separated by a space. The ordering of the PI vectors is : G0 G1 G2 G3 , while the order

of the PPI’s is : G5 G6 G7. The PPI assignments of the first vector TV[M] is applied via

Scan-In and for all subsequent vectors , the PPI assignments are done by functional output of

the combinational circuit due to the previous vector.

G14

G12

G8

G13

G15

G16

G9
G11 G17

G10

G0

G1

G2

G3

G5

G6

G7

Figure 4.3: The ISCAS89 benchmark circuit s27

37



The inputs are as follows :

Circuit C : s27.bench

Victim list V : Gates G11 , G12

M Ag(T ): It is as follows :

0 : 4 (G11 , G12 , G15) 0.9

1 : 2 (G14 , G16) 0.26

2 : 2 (G8 , G9) 0.1

3 : 0

• H = 1.26 , S = 0 , E = 0

• CNormal i.e. the normal circuit CNF clauses which are appended with other CNF clauses

when solving :

(G14′ +G10′).(G11′ +G10′).(G10 +G14 +G11).(G5′ +G11′).(G9′ +G11′).(G11 +G5 +

G9).(G1′+G12′).(G7′+G12′).(G12 +G1 +G7).(G2′+G13′).(G12′+G13′).(G13 +G2 +

G12).(G0′ + G14′).(G14 + G0).(G12′ + G15).(G8′ + G15).(G15′ + G12 + G8).(G3′ +

G16).(G8′+G16).(G16′+G3+G8).(G11′+G17′).(G17+G11).(G14+G8′).(G6+G8′).(G8+

G14′ +G6′).(G16 +G9).(G15 +G9).(G9′ +G16′ +G15′)

• C0
1 =

(G11′f +G12′f ).(G14′+G10′f ).(G11′f +G10′f ).(G10f +G14 +G11f ).(G5′+G11′f ).(G9′f +

G11′f ).(G11f + G5 + G9f ).(G2′ + G13′f ).(G12′f + G13′f ).(G13f + G2 + G12f ).(G12′f +

G15f ).(G8′+G15f ).(G15′f+G12f+G8).(G11′f+G17′f ).(G17f+G11f ).(G16+G9f ).(G15f+

G9f ).(G9′f +G16′+G15′f ).(G17′+G17f +X).(G17+G17′f +X).(G17+G17f +X ′).(G17′+

G17′f +X ′).X

• Maximal excitable subset in λ0(T ) is G11 , G12 , G15 . Therefore , C0
2 , the CNF clauses

to set this set of gates to ’1’ simultaneously is (G11).(G12).(G13)

• C0 = C0
1 .C

0
2 and the set of all possible candidates for TV [0] that satisfy C0 are {0011 000, 1011 010}

. From this set , we choose the first trial solution as TV [0] and try to find a test sequence.

TV [0] = 0011 000
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• C1
4 , i.e. clauses to ensure TV [0] PPI’s are a result of functional justification of TV [1] are

(G10′).(G11′).(G13′)

• Set of gates in refined λ1(T ) is G14,G16 .

• Test vector which simultaneously sets V to ’0’ , λ0(T ) to 0 , λ1(T ) to ’1’ and ensures that

TV [0] PPIs are a functional justification of its PPO’s, is

TV [1] = 0111 101

• H = 0.36 , S = 0.9 , E = 0

• Maximal excitable subset in λ2(T ) is G8 , G9 .

• Test vector that sets λ1(T ) to ’0’ and λ2(T ) to ’1’ , and whose PPO assignments match

the corresponding PPI values as given in TV [1] is

TV [2] = 1100 101

• H = 0 , S = 0.1 , E = 1.16.

• As E > 1 , MDF vector sequence found which are as follows :

TV [2] = 1100 , Scan-In = 101

TV [1] = 0111

TV [0] = 0011

4.4 Observations on our proposed method

Empirical results show that in larger ISCAS89 circuits, the number of DFFs ( and hence PPI-

PPO pairs ) dominate the number of Primary Inputs by a wide margin. This leads to a large

number of satisfiable instances for TV [0], and since the algorithm is an iterative one, it takes

quite a lot of time to weed out the instances for which there are no MDF test vector sequences.

So, care must be taken during implementation to ensure optimality in the operations inside the

loop, to spend lesser time in test generation.
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Chapter 5

Implementation Details

The entire project has been implemented in C++ . For solving the SAT instances , we have

used a widely documented SAT Solver Zchaff [7] , which was chosen due to its flexible API and

its reputation as being one of the fastest known SAT solvers.

5.1 Description of Important Classes

Class LogicGate :

This is an abstract class representing a generic Logic Gate. The explicit nature of the gate is

set by deriving into a specific type like AND , OR , NOT etc. In such a derived class , all

methods which depend on the nature of the gate have been made virtual , enabling the derived

class(es) to represent each specific type of gate and their functionality by overriding the virtual

base method defined in this class .

Some class members -

1. Pointer to the the fan-out Signal of the gate .

2. Array of pointers to the fan-in Signals .

3. Array to store the corresponding CNF expressions for the gate .
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Class Signal :

Used to encapsulate a generic signal line of a logic circuit , which can assume the values ’0’, ’1’

or ’X’ . Each such object has pointers to the LogicGate objects to which it is connected in the

circuit.

Some class members -

1. Name of the signal line

2. Pointer to its Parent LogicGate

3. Array of pointers to LogicGates to which it is a fan-in line.

4. Two unique integers , one representing the signal in fault-free circuit and the other , in

the faulty circuit,

Class Circuit :

Each instance encapsulates a complete circuit definition ,which it constructs from its description

given in ISCAS89 benchmark format. The data structure is designed keeping in mind the

inherent hierarchy of the circuit , so that one can query the status of an internal signal line in

minimal time.

Some class members -

1. A LookUp Table , with names of the Signals as key and the pointer to that object as the

lookup value. This has been stored in the form of a Balanced Binary Search Tree , in

order to optimise the look-up time.

2. Array of Signals, storing the pointers to the Primary Inputs .

3. Array of Signals, storing the pointers to the Primary Outputs .
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Class MultiDroopTPG :

Inherited from class Circuit , this class uses the underlying data structures to model Multi-

Cycle Droop Fault (MDF) and generate test sequences for MDF detection given a list of

M Aggressions

5.2 Summary of Important Methods

Circuit::buildCircuitFromNetlist

This method takes the input circuit in ISCAS89 .bench format and builds the underlying data

structures , keeping in mind the hierarchical nature of the circuit to ensure that the most

frequent operations ( such as querying the value of a signal , setting a fault in a line etc ) are

done in minimal time.

MultiDroopTPG::generateLogicalNeighbourAggressions

Generates M Aggressions using the method of logical neighbors for a given circuit.

MultiDroopTPG::generateRandomAggressions

Generates M Aggressions using the method of random selection for a given circuit.

MultiDroopTPG::getMDFTestVectors

Writes the test vectors for the M Aggressions input by the user , or generated by the above

two methods , to a given file.

42



5.3 How to use Hydra - our MultiDroopTPG

The online help for the tool Hydra is given below , along with a detailed explanation of each

of its options.

Hydra 1.0

Usage: ./Hydra -c <Netlist filename> [-M <Number of Cycles>]

(-a <Aggressorlist filename> | -r | -n) [-t <TestVector filename>]

[ -l <Log filename> ]

Arguments in [] are optional...

Arguments in () indicate one & only one option is required

to be specified ...

Use -l to see log on stdout

-c It is followed by the name of the file from which the circuit is to be constructed. Compulsory.

-M Indicates the number of cycles over which MDF occurence is to be tested . Optional ,

default value is 6.

-a It is an option to supply a user-defined list of M Aggressions. Optional .

-n Denotes generation of M Aggressions by logical neighbours method. Optional.

-r Denotes generation of M Aggressions by random selection method. Optional.

-t Specifies the file-name where the test vectors for each M Ag(T ) is to be written . Optional

, default output is a file named “testvector.txt” .

-l Specifies the name of the logfile for facilitating debugging . Used without any argument ,

produces the log output on the terminal itself. Optional .
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Chapter 6

Conclusion

Experiments show that even if we chose M Ag(T )’s from logically nearer gates (Experiment #

1) there can be some MDF which are non redundant and hence testable. Also random selection

(Experiment # 2) has many testable M Ag(T )’s. These methods are two extreme cases to

choose an aggression. In practice an M Ag(T ) made from a real chip would be less constrained

than that in Experiment # 1 and less random than that in Experiment # 2. So there is a

considerable chance of MDF occurring in a real high performance chip specially in future chips.

6.1 Scope for Future Works

For complex sequential circuits , an iterative approach to finding out the MDF vectors may

take a considerably long time. So, it would perhaps be better to formulate the entire sequence

in to a single set of CNF clauses to be solved. Of course, the implementation needs to be done

carefully since for each time-frame , a new set of variables would be required to represent the

states of the signals in that frame , and so the potential state-space of satisfiable assignments

may be too large.
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