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Abstract

Combinatorial auction is a type of auction where bidders can bid on
combinations of items, tend to lead more efficient allocation of items be-
tween agents than traditional auction mechanisms where it might possible
that agents’ valuation be not additive. However, determining the winners
so as to maximize revenue is NP-complete. In this report first, we will dis-
cuss about existing approaches for tackling this problem: exhaustive enu-
meration,dynamic programming and drawbacks. Second, we will discuss
about the possibility of approximate winner determination in the general
case with reasonable bound and Inapproximability result. After that we
will present the possible existing approaches for optimal winner determi-
nation . We will study one of the search technique branch on items and try
to improvise the search technique to find optimal winner determination
in combinatorial auction with our search algorithm with improved data
structure. Experiments are shown on weighted random bid distributions
.This algorithm uses value added Bidtree for preferred child generation to
make main search faster and item tree for faster heuristic computation. In
later section, we will study the effect of different admissible heuristics on
the performance of our algorithm by node generation,node expansion,item
computation & bidtree node traversal. In last we will present experimen-
tal result for both of heuristics that is helpful to understand how heuristics
effect performance in Winner determination in Combinatorial auction.
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1 Introduction

Auctions are popular,distributed and autonomy-preserving ways of allocat-
ing items(good,resources,services,etc.)among agents. They are relatively effi-
cient both in terms of process and income. They are exhaustively used among
human bidders in a variety of task and resource allocation problems. More re-
cently, Internet auction servers have been built that allow software agents to
participate in the auctions.

In auction, the seller wants to sell the items and get highest possible pay-
ments for them while each bidders want to ac quire the items at lowest price.
Auctions can be used among cooperative agents, but they also work in open
systems consisting of self-interested agents. An auction can be analysed us-
ing noncooperative game theory: what strategies are self-interested agents best
off using in the auction (and therefore will use), and will a desirable social
outcome-for example, efficient allocation-still follow. Auction mechanisms can
be designed so that desirable social outcomes follow even though each agent acts
based on self-interest.

In this report,focuses on Auctions with multiple distinguishable items. These
auctions are complex in the general case where the bidders have preferences over
bundles, that is, a bidder’s valuations for a bundle of items need not equal the
sum of his valuations of the individual items in the bundle. This is often in the
case for example,in electricity markets,equities trading,bandwith auctions, mar-
kets for trucking services, pollution right auctions, auctions for airport landing
slote and auction for carrier-of-last-resort responsibilities for universal services.

1.1 Sequential auctions mechanisms

In a Sequential auction the items are auctioned one at a time. Determin-
ing the winners in such an auction is easy because that can be done by picking
the highest bidder for each item separately. However, bidding in a sequential
auction is difficult if the bidders have preferences over bundles. To determine her
valuation for an item, the bidder needs to estimate what items she will receive
in later auctions. This requires speculation on what the others will bid in the
future because that affects what items she will receive. Furthermore, what the
others bid in the future depends on what they believe others will bid, etc. This
counter-speculation introduces computational cost and other wasteful overhead.
Bidding rationally would involve optimally trading off the computational cost
of lookahead against the gains it provides, but that would again depend on how
others strike that tradeoff. Furthermore,even if lookahead were computationally
manageable, usually uncertainty remains about the others bids because agents
do not have exact information about each other. This often leads to inefficient
allocations where bidders fail to get the combinations they want and get ones
they do not.
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1.2 Parallel auction mechanisms

In a Parallel auction the items are open for auction simultaneously, bid-
ders may place their bids during a certain time period, and the bids are publicly
observable. This has the advantage that the others bids partially signal to the
bidder what the others bids will end up being so the uncertainty and the need
for lookahead is not as drastic as in a sequential auction. However, the same
problems prevail as in sequential auctions, albeit in a mitigated form.

In parallel auctions, an additional difficulty arises: each bidder would like
to wait until the end to see what the going prices will be, and to optimize her
bids so as to maximize payoff given the final prices. Because every bidder would
want to wait, there is a chance that no bidding would commence. As a patch
to this problem, activity rules have been used. Each bidder has to bid at least
a certain volume (sum of her bid prices) by predefined time points in the auc-
tion, otherwise the bidders future rights are reduced. It looses the freedom for
bidders. in some prespecified manner (for example, the bidder may be barred
from the auction).

1.3 Method for fixing inefficient allocations

In Sequential and parallel auctions, the computational cost of looka-
head and counter-speculation cannot be recovered, but one can attempt to fix
the inefficient allocations that stem from the uncertainties discussed above.

One such approach is to set up an aftermarket where the bidders can ex-
change items among themselves after the auction has closed. While this ap-
proach can undo some inefficiencies, it may not lead to an economically efficient
allocation in general, and even if it does, that may take an impractically large
number of exchanges among the agents.

1.4 Combinatorial auction mechanisms

Combinatorial auction can be used to overcome the need for lookahead
and the inefficiencies that stem from the related uncertainties. In a combinato-
rial auction, there is one seller (or several sellers acting in concert) and multiple
bidders. The bidders may place bids on combinations of items. This allows a
bidder to express complementarities between items so she does not have to spec-
ulate into an items valuation the impact of possibly getting other,complementary
items. For example, the Federal Communications Commission sees the desir-
ability of combinatorial bidding in their bandwidth auctions, but so far combi-
natorial bidding has not been allowed largely due to perceived intractability of
winner determination. This report focuses on winner determination in combina-
torial auctions where each bidder can bid on combinations (that is, bundles) of
indivisible items, and any number of her bids can be accepted.the rest of report
is organised as follows.
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2 Winner determination in combinatorial auc-
tions

We assume that the auctioneer determines the winnersthat is, decides which
bids are winning and which are losing so as to maximize the sellers revenue. Such
winner determination is easy in non-combinatorial auctions. It can be done by
picking the highest bidder for each item separately. This takes O(am) time
where a is the number of bidders, and m is the number of items.

Unfortunately, winner determination in combinatorial auctions is hard. Let
M be the set of items to be auctioned, and let m = |M |. Then any agent, i,
can place a bid, bi(S) > 0,for any combination S ⊆ M . We define the length of
a bid to be the number of items in the bid.

Clearly, if several bids have been submitted on the same combination of
items, for winner determination purposes we can simply keep the bid with the
highest price, and the others can be discarded as irrelevant since it can never
be beneficial for the seller to accept one of these inferior bids.The highest bid
price for a combination is

b̄(S) = max(bi(S)) (1)

If agent i has not submitted a bid on combination S,we say bi(S) = 0.So if
no bidder has submitted a bid on combination S, then we say b̄(S) = 0

Winner determination in a combinatorial auction is the following problem.
The goal is to find a solution that maximizes the auctioneers revenue given that
each winning bidder pays the prices of her winning bids:

maxW∈A

∑
S∈W

b̄(S) (2)

where W is a partition.

Deffinition 2.1 A partition is a set of subsets of items so that each item is
included in at most one of the subsets. Formally,let S = {S ⊆ M}.Then the set
of partitions is

A = {W ⊆ S | S, S′ ∈ W → S ∩ S′ = ∅} (3)

Note that in a partition W , some of the items might not be included in any one
of the subsets S ∈ W .

2.1 Enumeration of exhaustive partitions of items

One way to optimally solve the winner determination problem is to enumer-
ate all exhaustive partitions of items.
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Definition 2.2. An exhaustive partition is a partition where each item is
included in exactly one subset of the partition. An example of the space of
exhaustive partitions is presented. The number of exhaustive partitions grows
rapidly as the number of items in the auction increases. The exact number of
exhaustive partitions is

m∑
q=1

Z(m, q) (4)

where Z(m, q) is the number of exhaustive partitions with q subsets, that
is, the number of exhaustive partitions on level q of the graph. The quantity
Z(m, q) also known as the Stirling number of the second kind is captured by
the following recurrence:

Z(m, q) = qZ(m− 1, q) + Z(m− 1, q − 1), (5)

where Z(m,m) = Z(m, 1) = 1. This recurrence can be understood by con-
sidering the addition of a new item to a setting with m−1 items. The first term,
qZ(m− 1, q), counts the number of exhaustive partitions formed by adding the
new item to one of the existing exhaustive partitions. There are q choices be-
cause the existing exhaustive partitions have q subsets each. The second term,
Z(m− 1, q− 1), considers using the new item in a subset of its own, and there-
fore existing exhaustive partitions with only m−1 previous subsets are counted.

Proposition 2.1.The number of exhaustive partitions is O(mm) and ω(mm/2)[3].

2.2 Dynamic programming

Rather than enumerating the exhaustive partitions as above, the space of
exhaustive partitions can be explored more efficiently using dynamic program-
ming. Based on the b̄(S) function, the dynamic program determines for each
set S of items the highest possible revenue that can be obtained using only the
items in S. The algorithm proceeds systematically from small sets to large ones.
The needed optimal substructure property comes from the fact that for each set,
S, the maximal revenue comes either from a single bid (with price b̄(S)) or from
the sum of the maximal revenues of two disjoint exhaustive subsets of S. C(S)
corresponds to the smaller of these two subsets(or to the entire set S if that has
higher revenue than the two subsets together). For each S,all possible subsets
(together with that subsets complement in S) are tried.

The time savings from dynamic programming compared to enumeration
come from the fact that the revenue maximizing solutions for the subsets need
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not be computed over and over again, but only once. The dynamic program
runs in O(3m) time [3]. This is significantly faster than enumeration. Clearly,
the dynamic program also takes O(2m) timebecause it looks at every S ⊆ M .
Therefore, the dynamic program is still too complex to scale to large numbers
of items above about 20 or 30 in practice.

The dynamic program executes the same steps independent of the num-
ber of bids. This is because the algorithm generates each combination S even
if no bids have been placed on S. Interpreted positively this means that the
auctioneer can determine how long winner determination will take regardless
of the number of bids that will be received. So,independent of the number of
bids, dynamic programming is the algorithm of choice if the number of items is
small. Interpreted negatively this means that the algorithm will scale only to a
small number of items even if the number of bids is small. we present a search
algorithm that avoids the generation of partitions that include combinations of
items for which bids have not been submitted. That allows our algorithm to
scale up to significantly larger numbers of items.

2.3 More compact problem representation

If no bid is received on some combination S, then those partitions W that
include S need not be considered. The enumeration and the dynamic program-
ming discussed above do not capitalize on this observation. By capitalizing on
this observation, one can restrict attention to relevant partitions.

Definition 2.3:The set of relevant partitions is

A′ = {W ∈ A | S ∈ W ⇒ bid has received on S}. (6)

That is, one can restrict attention to the following set of combinations of items.:

S’ = {S ⊆ M | bid has been received on S} (7)

2.4 NP -completeness of problem

The important question is not how complex the dynamic program is, be-
cause it executes the same steps regardless of what bids have been received.
Rather, the important question is whether there exists an algorithm that runs
fast in the size of the actual input, which might not include bids on all combi-
nations. In other words, what is the complexity of problem ? Unfortunately, no
algorithm can, in general, solve it in polynomial time in the size of the input
(unless P = NP ): the problem is NP -complete. If we take each bid as a set S
(of items) and the price,b̄(S), as the weight of set S then the problem is reduced
to weighted set packing. NP -completeness of winner determination then follows
from the fact that weighted set packing is NP -complete.
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2.5 Polynomial-time approximation algorithms

One could try to devise an algorithm that will establish a worst case bound,
that is, guarantee that the revenue from the optimal solution is no greater than
some positive constant, k times the revenue of the best solution found by the
algorithm. A considerable amount of research has focused on generating such
approximation algorithms that run in polynomial time in the size of the input.

2.5.1 Inapproximability

Proposition 2.2: For the winner determination problem, no polynomial-time
algorithm can guarantee a bound k ≤ n1−ε for any ε > 0 (unless NP = ZPP ).[4]

Proof: Assume for contradiction that there exists a polynomial-time approx-
imation algorithm that establishes some bound k ≤ n1−ε for the winner de-
termination problem.Then that algorithm could be used to solve the weighted
independent set problem to thesame k in polynomial time. This is because a
weighted independent set problem instance can be polynomially converted into
a winner determination instance while preserving approximability. This can be
done by generating one item for each edge in the graph. A bid is generated for
each vertex in the graph. The bid includes exactly those items that correspond
to the edges connected to the vertex.

Since the algorithm will k-approximate the weighted independent set prob-
lem in polynomial time, it will also k-approximate the independent set problem
in polynomial time. A polynomial-time k-approximation algorithm for the in-
dependent set problem could directly be used to k-approximate the maximum
clique problem in polynomial time. This is because the maximum clique problem
is the independent set problem on the complement graph. But Hastad showed
that no polynomial-time algorithm can establish a k ≤ n1−ε for any ε > 0 for
the maximum clique problem (unless NP = ZPP ). Contradiction.2

Above negative result shows that no polynomial-time approximation algo-
rithm can be constructed for achieving a reasonable worst case guarantee.

3 Problem definition

We are interested to find out the faster optimal winner determination in
combinatorial auction. Problem is, for given a set of items, bids will come
for any combination of items, optimal winner determination will be done by
efficient searching with efficient data structure. So we have to design a efficient
algorithm for searching using an efficient heuristic so that more prunning is
done. It will also depends on heuristic computation and nature of heuristic. So
there is a scope of study to the comparison of differnt heuristics in this context,
to designing a better heuristic.
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4 Related work

Combinatorial auction is very popular topic as it gives desirable social out-
come with economical efficiency. So many of the approaches had been devel-
oped to find optimal winner determination.There had several approaches for
this problem one is branch on items and other is branch on bid. In this report
we will study on branch on items by improving performance by improving data
structure. In previous branch on item technique it has done through IDA∗. For
main search(depth first search) there is need of Bidtree(a tree in which all leaf
has same depth & bid at leaf) to add node in Main search tree. For heuristic
estimate, there is a need of bid list (a list of bids corresponding to each item in
which item belongs),to find maximum average value for an item. The worst case
time complexity for heuristic estimation for m′ items is O(mm′b), b is greatest
number of bids in which a item belongs, m is item size(maximum possible items
in a bid).

5 Description of algorithm

5.1 Search space

We use tree search to achieve these goals. The input (after only the highest
bid is kept for every combination of items for which a bid was receivedall other
bids are deleted) is a list of bids, one for each S ∈ S’

{B1, .........Bn} = {(B1.S,B1.b̄), ................(Bn.S, Bn.b̄)} (8)

where Bj .S is the set of items in bid j,and b̄ is the price in bid j. Each path in
our search tree consists of a sequence of disjoint bids ,that is bids that do not
share items with each other (Bj .S ∩Bk.S = ∅ for all bids j and k on the same
path. So, at any point in the search ,a path corresponds to relevant partition.
Let U be the set of items that are already used on the path:

U = Uj|Bj is on the pathBj .S (9)

and let F be the set of free items:

F = M − U (10)

A path ends when no bid be addded to the path.This occurs when for very
bid ,some of its items have already been used on the path (∀, Bj .S ∩ U 6= ∅).
As the search proceeds down a path,a tally g is kept of the sum of the prices of
the bids on the path.

g =
∑

j|Bj is on the path

Bj .b̄ (11)

At every search node, the revenue from the path, that is, the g-value, is com-
pared to the best g-value found so far in the search tree to determine whether
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the current solution (path) is the best one so far. If so, it is stored as the best
solution found so far. Once the search completes, the stored solution is an op-
timal solution. here we have assumed that for all items bid has come. It is
quite natural assumption. Otherwise we can manually add a dummy bid with 0
value.This assumption is lying in the fact that every relevant partition W ∈ A′

is captured by at least one path from the root to a node (interior or leaf ) in
the search tree. This guarantees that the algorithm finds the optimal solution.
We had used dummy bid technique.

A naive method of constructing the search tree would include all bids (that
do not include items that are already on the path) as the children of each node.
Instead, the following proposition enables a significant reduction of the branch-
ing factor by capitalizing on the fact that the order of the bids on a path does
not matter.

Figure 1.3

Figure 1.1 MAIN SEARCH tree

Proposition 3.1: Every relevant partition W ∈ A′ is represented in the tree
by exactly one path from the root to a node (interior or leaf ) if the children of
a node are those bids that include the item with the smallest index among the
items that have not been used on the path yet. [3]

• include the item with the smallest index among the items that have not
been used on the path yet (i∗ = min({i ∈ {1, ....., m} : i /∈ U}),and
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• do not include items that have already been used on the path.

Formally, for any node, θ , of the search tree,

chilldren(θ) = {B ∈ {B1, .......Bn} : i∗ ∈ B.S,B.S ∩ U = φ}. (12)

Proof : We first prove that each relevant partition W ∈ A′ is represented by at
most one path from the root to a node. The first condition of the proposition
leads to the fact that a partition can only be generated in one order of bids on
the path. So, for there to exist more than one path for a given partition,some
bid would have to occur multiple times as a child of some node. However, the
tree uses each bid as a child for a given node only once.

What remains to be proven is that each relevant partition is represented
by some path from the root to a node in the tree. Assume for contradiction
that some relevant partition W ∈ A′ is not. Then, at some point, there has to
be a bid in that partition such that it is the bid with the item with the smallest
index among those not on the path, but that bid is not inserted to the path.
Contradiction. 2

Our search algorithm restricts the children according to Proposition 3.1.
this can be seen from above Figure 1.1 because all the bids considered at the
first level include item 1. Figure.1.1 also illustrates the fact that the minimal
index,i∗, does not coincide with the depth of the search tree in general.

To summarize, in the search tree, a path from the root to a node (interior
or leaf ) corresponds to a relevant partition. Each relevant partition W ∈ A′ is
represented by exactly one such path. The other partitions W ∈ A−A′ are not
generated. We call this search MAIN SEARCH.

5.2 Size of tree in MAIN SEARCH

Here we will analyse the worst case size of tree in MAIN SEARCH.

Propsition 3.2 The number of leaves in MAIN SEARCH is no greater than
(n/m)m . Also, the number of leaves in MAIN SEARCH is no greater than∑m

q=1 Z(m, q) ∈ O(mm) (see Eqs. (4) and (5) for the definition of Z). Further-
more, the number of leaves in MAIN SEARCH is no greater than 2n .

The number of nodes in MAIN SEARCH (excluding the root) is no greater
than m times the number of leaves. The number of nodes in MAIN SEARCH
is no greater than 2n.[3]

Proof. We first prove that the number of leaves is no greater than (n/m)m.The
depth of the tree is at most m since every node on a path uses up at least one
item. Let Ni be the set of bids that include item i but no items with a smaller
index than i. Let ni =| Ni |. Clearly, ∀i, j, Ni∩Nj = φ, so n1+n1+· · ·+nm = n.
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An upper bound on the number of leaves in the tree is given by n1n2 . . . nm be-
cause the branching factor at a node is at most ni and i∗ increases strictly along
every path in the tree.The maximization problem.

max n1, n2. . . . .nm s.t. n1 + n2 + · · ·+ nm = n

is solved by n1 = n2 = . . . . . = nm ,even if n is not divisible by m,the value of
the maximization is an upper bound.Therefore,the number of leaves in the tree
is no greater than (n/m)m.

Now prove that the number of leaves in MAIN SEARCH is no greater
than

∑m
q=1 Z(m, q) ∈ O(mm). Since dummy bids are used, each path from the

root to a leaf corresponds to a relevant exhaustive partition. Therefore the
number of leaves is no greater than the number of exhaustive partitions (and is
generally lower since not all exhaustive partitions are relevant). In Section 2.1
we showed that that the number of exhaustive partitions is

∑m
q=1 Z(m, q). By

Proposition 2.1, this is O(mm).

Next we prove that the number of nodes (and thus also the number of
leaves) is no greater than 2n. There are 2n combinations of bids (including the
one with no bids). In the search tree, each path from a root to a node corre-
sponds to a unique combination of bids (the reverse is not true because in some
combinations bids share items, so those combinations are not represented by
any path in the tree). Therefore, the number of nodes is no greater than 2n.
Because there are at most m nodes on a path (excluding the root), the number
of nodes in the tree (excluding the root) is no greater than m times the number
of leaves.2

Proposition 3.3 The bound (n/m)m is always tighter (lower) than the bound
2n .

Proof :

(n/m)m < 2n ↔ m log(n/m) < n ↔ log(n/m) < n/m. (13)

which holds for all positive numbers n and m. 2

The bound (n/m)m shows that the number of leaves (and nodes) in a MAIN
SEARCH is polynomial in the number of bids even in the worst case if the
number of items is fixed. On the other hand, as the number of items increases,
the number of bids also increases (n ≥ m due to dummy bids), So in the worst
case, the number of leaves (and nodes) in MAIN SEARCH remains exponential
in the number of items m.
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5.3 Faster preferred child generation

Figure 2.1 Bidtree
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Figure 2.2 value adde Bidtree

At any given node,θ, of the tree, MAIN SEARCH has to determine children(θ).
In other words, it needs to find those bids that satisfy the two conditions
of Proposition 3.1. We use a more sophisticated scheme to make child gen-
eration faster. Our version of MAIN SEARCH uses a secondary depth-first
search, SEARCH BID TREE(searching a bid for MAIN SEARCH in value
added Bidtree) to quickly determine the children of a node. SEARCH BID
TREE takes place in a different space: a data structure which we call the value
added bidtree. It is a binary tree in which the bids are inserted up front as the
leaves (only those parts of the tree are generated for which bids are received).
It will take care of preprocessing that ensure the only maximum value bid (e.g
several bids has come for same combination of items only maximum value bid is
selected) is inserted. In value added Bidtree every node has information about
which sub Bidtree has maximum average valued item & size of bid(number of
items in a bid).

We can see in in Figure 2.1 for previous Bidtree (in which node has no
information about in which sub Bidtree maximum average valued item is) but
Figure 2.2 shows that how value added Bidtree node have information about sub
Bidtree having maximum average valued item. As we see from the Figure 3.2
that value added Bidtree for same set of bids S, has 5 node generation(node ac-
tually generated) & 1 node expansion(node generated except leaves) in a MAIN
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SEARCH where as in Bidtree (Figure 3.1) the node generation is 7 & node ex-
pansion is 3. Dotted bids is prunned in MAIN SEARCH by value added Bidtree,
but in Bidtree it is generated due to expansion of interior node so less prunng
is done via Bidtree.

The use of a Stopmask differentiates the value added Bidtree from a clas-
sic binary tree. The Stopmask is a vector with one variable for each item,i ∈ M .
Stopmask[i] can take on any one of three values: BLOCKED, MUST, or ANY
PREFERRED. If Stopmask[i] = BLOCKED, SEARCH BID TREE will never
progress left at depth i. This has the effect that those bids that include item
i are pruned instantly and in place. If, instead, Stopmask[i] = MUST, then
SEARCH BID TREE cannot progress right at depth i. This has the effect that
all other bids except those that include item i are pruned instantly and in place.
Stopmask[i] = ANY PREFERRED corresponds to no pruning based on item i:
SEARCH2 may go left or right at depth i. Fig. 2.3 illustrates how particular
values in the Stopmask prune the Bidtree.

Figure 2.3 value added Bidtree traversal

SEARCH BID TREE is used to generate children in MAIN SEARCH.
The basic principle is that at any given node of MAIN SEARCH, Stopmask[i] =
BLOCKED for all i ∈ U , and Stopmask[i∗] =MUST, and Stopmask[i] = ANY
PREFERRED for all other values of i. Given these variable settings, SEARCH
BID TREE will return exactly those bids that satisfy Proposition 3.1.

We deploy a faster method for setting the Stopmask values. In what follows,
we present the technique in detail. When MAIN SEARCH begins, Stopmask[1]
= MUST, and Stopmask[i] = ANY PREFERRED for i ∈ {2, ...,m}. The first
child of any given node,θ, of MAIN SEARCH is determined by a depth- first
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search (SEARCH BID TREE ) from the top of the value added Bidtree until
a leaf (bid) is reached. This bid becomes the node that is added to the path
of MAIN SEARCH. Every time a bid,B, is appended to the path of MAIN
SEARCH, the algorithm sets Stopmask[i] = BLOCKED for all i ∈ B.S and
Stopmask[i] = MUST. These MUST and BLOCKED values are changed back to
ANY PREFERRED when backtracking a bid from the path of MAIN SEARCH,
and the MUST value is reallocated to the place in the Stopmask where it was
before that bid was appended to the path. The next unexplored sibling of any
child, q, of MAIN SEARCH is determined by continuing SEARCH BID TREE
by backtracking in the value added Bidtree after MAIN SEARCH has explored
the tree under q. Note that SEARCH BID TREE never needs to backtrack
above depth i in the value added Bidtree because all items with smaller indices
than i are already used on the path of MAIN SEARCH.

To ensure bactracking and to efficiently find appropriate bid. we had intro-
duced three fields for every node in value added Bidtree. Fields are INFLAG,
OUTFLAG & MAX AVG if node is visited then its INFLAG will be 1 other-
wise 0. If all of the bids already explored below a node then OUTFLAG is 1
otherwise 0.INFLAG nonzero tells that this node has visited but one can do
further exploration it depends on the value of OUTFLAG. If OUTFLAG is 0
then it can be explored otherwise exploration is not possible you should back-
track from that node to find appropriate bid. OUTFLAG nonzero means threre
is no chance of further exploration. you have to backtrack. MAX AVG stores
the maximum average value of an item in any of right or left sub Bidtree.

5.4 Algorithm for construction of value added Bidtree

for i=1 to m(item size)

If (item i exists & left child node has not generated earlier)
then node is generated ,INFLAG & OUTFLAG is 0,MAX AVG
is assigned by this average value of an item of an incoming bid

else if(item i exist & left child node has already generated)

if (average value of an item of an incoming bid is greater than MAX
AVG)
then MAX AVG is updated by average value of an item of an

incoming bid

else no change;

else if (item not i exist & right child node has not generated)
node is generated ,INFLAG & OUTFLAG is 0,MAX AVG
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is assigned by this average value of an item of an incoming bid

else
if (average value of an item of an incoming bid is greater than MAX

AVG)
then MAX AVG is updated by average value of an item of an
incoming bid

else no change;

if(bid is not placed in leaf)
bid is placed at leaf with INFLAG & OUTFLAG 0 ,MAX AVG is its

average value of an item of an incoming bid
else

if (MAX AVG less than average value of an item of an incoming bid)
MAX AVG is updated by average value of an item of an incoming bid

else no change;

5.5 Preferred ordering of bids in MAIN SEARCH by value
added Bidtree

Figure 3.1 MAIN SEARCH by Bidtree traversal
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Figure 3.2 MAIN SEARCH by value added Bidtree traversal

By using value added bidtree we get an advantage over Bidtree is that
is not follow a strict lexicographic ordering < 0, 1, 1, 0, 0 >,< 0, 1, 0, 1, 1 >,<
0, 1, 0, 1, 0 >.So previously Bidtree generates child in a order independent of
value of bid,but in the case of value added Bidtree it generates child which
is more promising to lead the solution early by pruning depth first search
tree(MAIN SEARCH)earlier. we can see from Figure 3.1 and Figure 3.2 how
value added Bidtree has done more pruning than Bidtree.

5.6 Complexity of search

The approach to generating children(θ) takes O(nm) time in the worst
case. As desired, the use of SEARCH BID TREE to generate children(θ) re-
duces this complexity,even in the worst case. For any given θ, finding the entire
set children(θ), one at a time, corresponds to conducting a depth-first search
(SEARCH BID TREE) in the value added Bidtree.The complexity of SEARCH
BID TREE is no greater than the number of edges in the Bidtree times two (to
account for backtracks). The following proposition gives a tight upper bound
on the number of edges in the Bidtree.

proposition 3.4 In a tree that has uniform depth m + 1 (under the con-
vention that the root is at depth 1), n leaves, and where any node has at most
two children (as is the case in SEARCH BID TREE), the number of edges is at
most[3]

nm− n log n + 2.2log n − 2 (14)

this bound is tight.Under the assumption that m− log n ≥ c for some constant
c > 0,this is

O(n(m− logn)). (15)
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on the other hand ,under the asumption that m− log n < c,this is

O(n) (16)

So worst case time complexity of SEARCH BID TREE in value added
Bidtree has not reduced from Bidtree. Finding a preferred child through a value
added Bidtree in SEARCH BID TREE has advantage over Bidtree. Worst case
time complexity for SEARCH BID TREE by value added Bidtree is also O(n).

6 Heuristic computation

6.1 Admissible heuristic

Definition: Winner determination problem is maximization problem so Ad-
missible heuristic is defined as Heuristic function(e.g h1(F )) should never
underestimate the revenue from the unallocated items on the Path.

Heuristic 3.1:Heuristic h1(F ) for unallocated items is computed using fol-
lowing function:

h1(F ) =
∑
i∈F

c(i) where c(i) = maxS|i∈S
b̄(S)
| S |

(17)

where b̄(s) is value of a bid,| S | is the number of items in a bid. For speeding
the MAIN SEARCH we had used Incremental Heuristic computation.

Proposition 3.5 From Heuristic 3.1 gives an upper bound on how much rev-
enue the unallocated items F can contribute.

Proof : For any set S ∈ F , if a bid for S is determined to be winning, then each
of the items in S contributes b̄(S)

|S| toward the revenue. Every item can be in only
one winning bid.Therefore, the revenue contribution of any one item i can be
at most maxS|i∈S

b̄(S)
|S| To get an upper bound on how much all the unallocated

items F together can contribute,so sum maxS|i∈S
b̄(S)
|S| over all i ∈ F .
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6.2 Faster heuristic computation via ITEM TREE

Figure 3.3 ITEM TREE for item 1
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Figure 3.4 ITEM TREE for item 2

Here we will discuss about how we achieve faster heuristic computa-
tion. It is done via ITEM TREE(Figure 3.3 & 3.4). ITEM TREE is similar
with value added Bidtree & construction is also same having the same fields
like INFLAG,OUTFLAG & MAX AVG. Only difference is that ITEM TREE
is constructed for every item separately and all the bids in the leaf for corre-
sponding ITEM TREE having that item necessarily. Due to this ITEM TREE
traversal (by using stopmask), worst case time complexity is O(n′) same as value
added Bidtree traversal (to find a bid) for finding a bid for maximum average
value of item. Hence by implementing ITEM TREE, Worst case time complex-
ity for heuristic computation will reduce to O(m′n′),(m′- number of items for
heuristic esimate,n′-greatest number of bids to which an item belongs). In pre-
vious case(traversing a list of bids for each item), worst case time complexity is
O(m′mn′) for heuristic computation at a node(m-comes because of traversing
through a bid to ensure there is no allocated item in a bid).
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6.3 Incremental heuristic computation

In heuristic estimate for rest of items that has not yet allocated in the
MAIN SEARCH is computed for each item separately. So by moving along
path in MAIN SEARCH, it may possible that we have to recompute the heuristic
estimate an item again and again. So inherently it will increase our overhead.
To encounter this problem we initially maintain a MAX LIST which initialise
by taking bid having maximum average value of an item for that corresponding
item. It will be updated with moving along MAIN SEARCH path. If we have
to compute heuristic for an item we first go through the MAX LIST and see any
of allocated items in path have not exist in the corresponding bid for that item
in MAX LIST then we will get the value for that item from this MAX LIST in
O(1) otherwise we have to search through ITEM TREE.

6.4 Algorithm for Incremental heuristic computation

INPUT: ITEM TREE ,MAX LIST & item i.

OUTPUT:Return maximum average value(MAX AVG) for item i(exclude bids
having item allocated in current MAIN SEARCH path.

If bid ∈MAX LIST(i) not having any item allocated to current MAIN SEARCH
path

return(MAX AVG);
else

search bid in ITEM TREE(i);
return(MAX AVG);

Update MAX LIST

7 Preprocessing

When a bid arrives, it is inserted into the value added Bidtree. If a bid
for the same set of items S already exists in the Bidtree (i.e. the leaf that
already exists for new bid), only the bid at leaf will change its MAX AVG if
new bid has more average value of an item than previous one,otherwise bid is
discarded. Inserting a bid into the Bidtree will take m steps.There are n bids
to insert. So, the overall time complexity of preprocessing with value added
Bidtree construction is O(mn).

8 Algorithm for winner determination

8.1 IDA∗ Algorithm for winner determination

INPUT: A set of bids with its value
OUTPUT: Returns a set of winning bids that maximises the revenue
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Global variable: flimit

Algorithm 3.1 (IDA∗ for winner determination).
//Returns a set of winning bids that maximizes the sum of the bid prices

1. flimit := ∞
2.Construction of Value added Bidtree
3.Construction of ITEM TREE
4.Construction of MAX LIST;
5. Loop

(a) winners, new-f := DFS-CONTOUR(M ′,φ, 0)
(b) if winners 6= null then return winners
(c) f-limit := min(new-f, 0.90.flimit)

Algorithm 3.2 DFS-CONTOUR(F , winners, g).//depth first search
Returns a set of winning bids and a new fcost

1. Compute h1(F ) // Methods for doing this are presented, F is set of un-
allocated items

for i ∈ F
c(i)=Incremental heuristic computation(MAX LIST,ITEM TREE,i));
Updation of MAX LIST

h1(F ) =
∑

i∈F c(i);// as definition from h1(F )

3. If g + h1(F ) < flimit then return null, g + h1(F ) // Pruning

4. Updation of Stopmask // global array variable

5. IF SEARCH BID TREE returns no children, then // End of a path reached

(a)Update the fields of value added bidtree
by making OUTFLAG zero for all node correspondinrg to bid, re-

cently
added

(b)flimit = g // Revert to Branch & Bound once first leaf is reached
(c) return winners, g

6. max-Revenue := 0, best-Winners := null, next-f := 0

7.generate children by SEARCH BID TREE of a node until no more child,and
making a sibling list

8. For each bid ∈ sibling list
(a) solution, new-f := DFS-CONTOUR(F-bid.S, winners ∪ bid, g+ bid.b)
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(b) If solution 6= null and new-f > maxRevenue, then
i. max-Revenue := new-f
ii. best-Winners := solution

(c) next-f := max(next-f, new-f)

9. If bestWinners 6= null then return bestWinners, maxRevenue
else return null, next-f

8.2 Time complexity of MAIN SEARCH

The time complexity for per MAIN SEARCH node is O(n′m′) because each
of the node activities have child generation(it requires O(n′)),h1-function com-
putation(it reqires O(m′n′)) if m′ items are unallocated. So Overall time com-
plexity for a node genration in MAIN SEARCH is O(n′m′). However IDA∗ can
generates some of nodes multiple times because all of the nodes generated in one
iteration are regenerated in next iteration. Each iteration generates at least one
more search node than previous iteration. Therefore, if the MAIN SERACH
has p nodes (it returned the optimal solution) then it means it has generated
at most p(p+1)

2 search nodes, but in practice it will generate fewer node because
flimit is decreased more across iterations.

9 Experimental setup

To determine the efficiency of the algorithm in practice, we ran experiments
on a core 2-duo microprocessor (2 GHz with 1 Gigabyte of RAM) in C with fol-
lowing bid distributions:

• Weighted random: pick the number of items randomly from 1,2.....,m.
Randomly choose that many items without replacemant. Pick the value
of bid randomly between 1 and the number of items in the bid.

It may possible that same bid can be generated more than once. In real
scenario many bids come for same combination of items, but our preprocessing
will take care of that ,actually during value added Bidtree construction low value
bid for same combination of items will be discarded. We had taken average value
for 50 runs for each item size & bid size combination.
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10 Experimental result

Figure 4.1

Figure 4.2
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Figure 4.3

Figure 4.4
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Figure 4.5

In this section we will discuss about the result we have got by using value
added Bidtree & ITEM TREE data structure. Initially in literature[3] is sug-
gesting about Bidtree same as value added Bidtree except that node has not
an information about path to leaf node having maximum average valued item.
Another data structure is ITEM TREE is also a value addded Bidtree having
all the leaf node the proper item, it is used in retrieving bid(MAX AVG) having
maximum average valued item faster. Its worst case time complexity is O(n′)
(Proposition 3.4), where n′ is number of bids in which item belongs, earlier
it was 0(mn′)(traversing through bid as well as bid list). we have also used
the MAX LIST which is used for faster heuristic computation by incremental
heuristic computation.

The 90% f-limit criterian is used to decrease the f-limit faster between it-
eration. we cannot take rate of decreasing for f-limit too fast because it will
increase depth of (MAIN SEARCH)depth first tree tremendously in last it-
eration and more node generation would be possible so less prunnng will be
there, apart from that if rate of decreasing is too slow then new iteration re-
peats a large portion of search from previous iteration. A good rate of decreas-
ing is achieved by running algorithm to various rate of decreasing for f-limit.
So,90% criteria is good rate of decreasing the f-limit, is achieved through ex-
perimentation. In previous case bids are generated in lexicographic order like
< 0, 1, 1, 0, 0 >,< 0, 1, 0, 1.1 >,< 0, 1, 0, 1, 0 > irrespective of the bid value, but
in our case we first chose those children having maximum average valued item so
it is helpful to more pruning of depth first tree because we get probable solution
earlier in depth first search tree(MAIN SEARCH).
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11 Comparative study of heuristics in our algo-
rithm for winner determination

11.1 Definition

Node generation: It is the number of nodes actually generated in MAIN
SEARCH.

Node expansion: It is the number of nodes except leaf node in MAIN SEARCH.

Item computation: During heuristic computation, compute the value of item
for heuristic estimate.

Bidtree node traversal: During searching for child in MAIN SEARCH, value
added Bidtree is traversed from root to leaf through its node called Bidtree node
traversal.

11.2 Introduction

In initial section we had seen that we can improve performance by using
efficient data structure.In this section and further we will study about different
heuristic and its impact on performance. Actually we have seen that the per-
formance of algorithm depends on node generation,node expansion,value added
Bidtree traverasal,heuristic computation. Heuristic computation & value added
Bidtree traversal depends on the node generation,& node expansion. So if we
give tighter bound heuristic function it seems that that it will do more prun-
ning. So we will study about two admissible heuristic function and how it affect
performance of IDA∗ algorithm in our case.

11.3 Another heuristic function

Heuristic 3.2: We have another heuristic.This heuristic function is as follows:

h2(F ) =
∑
j∈F

C ′
n(j) (18)

where F is set of unallocated items

C ′
n−1(ik) = maxi1,i2,....imCn−1(ij), j = 1, 2, ....m (19)

C ′
n(j) = maxq∈Fn−1(max(q∈Fn−1|ik∈Sn−1)

(b̄n−1(Sn−1)− C ′
n−1(ik)

| Sn−1 | −1
, (20)

max(q∈Fn−1|(ik /∈Sn−1)(Cn−1(q))) (21)

where Cn−1(q) = maxq∈Sn−1

b̄n−1(Sn−1)
| Sn−1 |

(22)
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where Fn−1 is set of maximum posssible items in (n− 1)th iteration,

Sn−1 is of set of items in (n− 1)th iteration.

Proposition 3.6: If any item k having maximum average value bid is not in
winning solution and maximum average value of k is reduced from bids having
item k then F ′ = {i|i 6= k, i ∈ F}.

v(k) +
∑
i∈F ′

c′(i) ≤
∑
i∈F

c(i) (23)

where,v(k) is maximum average value for an item k,c′(i) is the maximum aver-
age value of an item by reducing value of bid having item k by v(k). c(i) is the
maximum average value of an item from initial bid combination.

Proof : Proof by contradiction,we assume that LHS is greater than RHS.So
If item k maximum average value bid is not in winning combination then it will
reduce the average of those items that has in winning bid with item k.So,for
items i in a bid having item k,

F ′ = {j|j 6= k, j ∈ F} ,
c
′
(i) < c(i),rest other items unaffected so

∀j ∈ F ′, c
′
(j) ≤ c(j)

v(k) +
∑
j∈F ′

c′(j) ≤
∑
j∈F

c(j) (24)

It contradicts our assumption that v(k) +
∑

j∈F ′ c′(j) >
∑

j∈F c(j) .2

Proposition 3.7 Heuristic 3.2 is admissible heuristic(it never underestimate
the revenue from unallocated items) in winner determination problem

Proof :For any set S ∈ F . It has two cases
1. If all the bids in winning solution having maximum average value for items
and
2. If any of the the maximum average valued bid for an item is not in winning
solution.

case 1: If all bids in winning solution,by reducing the maximum aver-
age value for an item from a bid reduce the value of a bid by its average from
that bid so the average value of item in that is not reduced so next maximum
item will come from that bid so bid value is always reduced by its average value
so that sum of all items maximum average is not going to reduce so sum is
simply

∑
S|i∈S(maxS|i∈S) (b̄(S)

|S| , ∀ i ∈ F

case 2: If any of the maximum average valued bid for an item is not
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in winning solution. we take an element k , its bid corresponding to maximum
average value is not in winning solution. So by reducing all the bids having that
item k by its maixmum average value. So from proposition 3.6. iteratively it
can be shown that h2(F ) is not greater than h1(F ).2

11.4 Comparative heuristic estimate

In this section we will study about how different heuristic affect perfor-
mance. Performance of heuristics on algorithm depends on node generation,nodes
expansion and data structure.To study the impact of two different heuristics we
have taken the algorithm is same in both cases in every aspect of implementation
even similar kind of data structure is used in both cases. The motivation behind
study is that we want to study the impact on performance in case of admissi-
ble heuristic where heuristic h1 is less computational intensive than heuristic
h2.Heuristic h2 is giving more tight bound. Heuristic h2 is giving tighter up-
per bound so we are expecting that it should do more pruning by less node
expansion such that less node generation. We have done so many experiment
to investigate actual impact of both heuristic in winner determination in com-
binatorial Auction. We illustrate from next example that heuristic h2 is giving
tighter upper bound than h1

Let us take a set of bids
bids bid value
{1,2} 2
{1,2,3} 7
{2,3} 4
{3,4} 8

In heuristic h1, the estimate of an item is maximum average of each item
in set of bids in which item is coming So

h1(F ) = (7/3(1) + 7/3(2) + 4(3) + 4(4)) = 12.66 estimate of heuristic h1

In heuristic h2,the estimate of item is maximum of maximum average of
items in set of bids,so in 1st iteration maximum of maximum average of item
is 4 for item 3 & 4 for item 4(ties can be broken arbitrarily). So we have taken
item 3(for low index) before next iteration bid has changed as following

bids bid value
{1,2} 2
{1,2} 7− 4 = 3
{2} 4− 4 = 0
{4} 8− 4 = 4

So in next iteration we have to find estimate for another item, in this iter-
ation we had found item 4, estimate is 4 so bid has changed by
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bids bid value
{1,2} 2
{1,2} 3
{2} 0

So in further iteration we find item 1&2 both have same estimate 1.5.Ties
can be broken(arbitrarily) here I have taken in favour of lower index. So esti-
mate for 1 is 1.5. Again bid will change accordingly as

bids bid value
{2} 2− 2.5 = −0.5 → 0 from definition of heuristic h2
{2} 3− 1.5 = 1.5

So h2(F ) = 4(3) + 4(4) + 1.5(1) + 1.5(2) = 11,estimate of heuristic h2

Actual solution is {1,2} & {3,4} and revenue is (2+8)=10,So heuristic estimate
for heuristic h2 is much closer to the solution than heuristic h1.

11.5 Experimental setup

To understand the real impact of heuristic h1 and heuristic h2, we have
set an experiment. In which we have used value added tree & ITEM TREE
data structure and also used incremental heuristic computation. We have used
the weighted random distribution and all the experiment is done on core 2
duo processor with 2 Ghz and 1 GB RAM in C with Weighted random bid
distributions. Item size 10, 20, 30, 40 and 50 for bid size 100, 200, 400, 600, 800
and 1000 run 50 times for each item size and bid size combination & had taken
average value for each combination.

11.6 Experimantal result
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Figure 5.1

Figure 5.2

Figure 5.3
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Figure 5.4

Figure 5.5
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Figure 5.6

Figure 5.7

37



Figure 5.8

Figure 5.9
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Figure 5.10

In this section we will analyse the result of experimentation. We had seen
that computation in heuristic(h2) is costlier as comparison to heuristic(h1). The
total time complexity of heuristic h1 estimate is O(mn′) whereas the total time
complexity of heuristic h2 estimate is O(mn′ + m2)(n′ is greatest number of
bids corresponding to an item,m is maximum posssible items in a bid) for ad-
dition of a node in MAIN SEARCH. So heuristic h1 is computed significantly
faster as comparison to heuristic h2, but the main advantage of heuristic h2
over h1 is less node generation and less node expansion which is main cause
for overall perforamance of algorithm. So to experimentally study the effect of
tighter bound heuristuic h2,we have done several experiments on various bid
size(maximum possible bids) and various item size(maximum possible items in
a bid).

We have taken weighted random distribution for bid creation. From Figure
5.1 ,5.3, 5.5, 5.7, 5.9 we see that node expansion & node generation in heuristic
h2 is lower as comparison to heuristic h1.It means that heuristic h2 is prunning
more bids in depth search tree in MAIN SEARCH.Item computation & bidtree
node traversal is also having difference between h1 and h2 but not so significant
than node expansion,it means more pruning is done,but performance wise it is
not giving any advantage over heuristic h1.We can see from plot for performance
measurement in Figure 6.1, 6.2, 6.3, 6.4, and 6.5. We see that both heuristic
is taking almost same time where as in heuristic h2 node expansion & node
generation is less. So bottleneck is heuristic computation time in heuristic h2
.Due to costlier heuristic computation,it tradeoffs the advantages of heuristic h2
over h1.
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Figure 6.1
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Figure 6.2

Figure 6.3
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Figure 6.4

Figure 6.5
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12 Conclusion

As we have seen that performance of heuristic depends not only on node gener-
ation & node expansion in winner determination in combinatorial auction but
also on heuristic computation time. So for suggesting a heuristic function we
should consider its time complexity also,but it does not mean that computa-
tionally intensive heuristic will not give better performance. As we have seen
that heuristic h2 time complexity O(m2 + mn′) is comparable in performance
with heuristic h1 of time complexity O(mn′).So,if we will be able to reduce time
complexity of heuristic h2 by O(m2−ε + mn′) ,for ε > 0, it is possible that we
can get better performance as compare to heuristic h1 in winner determination
in Combination Auction.
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