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Chapter 1

Introduction

1.1 PCA

PCA is a useful statistical technique that has found application on fields such as face recognition and

image compression,and is a common technique for finding patterns in data of high dimensions.PCA finds

the orthogonal directions that account for the highest amount of variance. The data is then projected

into the subspace spanned by these directions.

It is a way of identifying patterns in data, and expressing the data in such a way as to highlight their

similarities and differences. Since patterns in data can be hard to find in data of high dimension, where

the luxury of graphical representation is not available, PCA is a powerful tool for analysing data. The

other main advantage of PCA is that once you have found these patterns in the data, and you compress

the data, ie. by reducing the number of dimensions, without much loss of information. This technique

used in image compression. some mathematical and statistical skills are required to understand the

process of PCA , such as covariance, standard deviation, eigenvectors and eigen values.

The following steps are required to perform a Principal Components analysis on a set of

data

• Step1: get some data

At first we collect some data of some dimensions on which PCA will be applied.

2



CHAPTER 1. INTRODUCTION 3

• Step2: Subtract the mean

Now we have to subtract the mean from each of the data dimensions. The mean subtracted is the

average across each dimension.

• Step3: Calculate the covariance matrix

In this step we calculate the variance covariance matrix of the given data which is a squre matrix.

• Step4: Calculate the eigenvectors and eigenvalues of the covariance matrix

Scince the covariance matrix is squre, we can calculate the eigenvectors and eigenvalues for the

matrix. These are rather important, as they tell us useful information about our data. Scince sum

of eigenvalues = sum of the variances .

• Step5: Choosing components and forming a feature vector

Here is where the notion of data compression and reduced dimensionality comes into it. In fact,

it turns out that the eigenvector with the highest eigenvalue is the principle component of the

data set. To be price, if we have n dimensions in our data, and so we calculate n eigenvectors and

eigenvalues, and then we choose only the first p (largest) eigenvectors, then the final data set has

only p dimensions.

• Step6: Deriving the new data set

This the final step in PCA. Once we have chosen the components (eigenvectors) that we wish

to keep in our data and formed a feature vector, we simply take the transpose of the vector and

multiply it on the left of the original data set, transposed.

FinalData = RowFetureVector × RowDataAdjust,

where RowFetureVector is the matrix with the eigenvectors in the columns transposed so that the

eigenvectors are now in the rows, with the most significant eigenvector at the top, and RowDataAd-

just is the mean adjusted data transposed, i.e the data items are in each column, with each row

holding a separate dimension
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1.2 Kernel PCA

Kernel PCA is a nonlinear generalization of PCA

Why Kernel PCA

• The essential idea of KPCA is based on the hope that if we do some non linear mapping of the data

points to a higher dimensional(possibly infinite) space we can get better non linear features which

are a more natural and compact representation of the data.

How

• Let us consider M input data points of N dimensions and also Consider a nonlinear mapping

φ(.) : RN → RH(F ) from RN the space of N dimensional data points to some higher dimensional

space or feature spaceRH(F ).

• As of now assume that the mapped data are zero centered ( i.e
∑M

i=1 φ(xi) = 0 ). Now we define a

dot product matrix K such that [K]ij = [φ(xi).φ(xj)] , K is called the Gram matrix.

• Once we have this mapping KPCA is nothing but Linear PCA done on the points in the higher

dimensional space.

• The computational complexity arising from the high dimensionality mapping is mitigated by using

the kernel trick.

The details of the Kernel PCA algorithm will be described in the next chapter. Now

we are going to discuss something about Kernel Trick and Kernel function.

Kernel Function:

A kernel function K on a space x is a mapping from X×X to R. Define the kernel function K(x,y)

as K(x, y) = (1 + x1y1 + x2y2)2. Consider the following transformation

φ(

 x1

x2

) = (1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2)
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φ(

 y1

y2

) = (1,
√

2y1,
√

2y2, y2
1 , y

2
2 ,
√

2y1y2)

〈φ(

 x1

x2

), φ(

 y1

y2

)〉 = (1 + x1y1 + x2y2)2

= K(x,y)

The inner product can be computed by K without going through the map φ(.)

Example of kernel function

• Polynomial kernel with degree d

K(X,Y ) = (XTY + 1)d

• Radial basis function kernel with width σ

K(X,Y ) = exp(−‖X − Y ‖2/(2σ2))

Here in this paper we will mainly discussing about Polynomial Kernel

Kernel Trick

• The relationship between the kernel function K and the mapping φ(.) is

K(X,Y ) = 〈φ(X), φ(Y )〉

–This is known as the kernel trick

• In practice, we specify K, thereby specifying φ(.) indirectly, instead of choosing φ(.)

• Intuitively, K(x,y) represents our desired notion of similarity between data x and y and this is from

our prior knowledge.

• K(x,y) needs to satisfy a technical condition (Mercer condition) in order for φ(.) to exist.
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Figure 1.1:

Properties of Kernel PCA: For Mercer kernels, we know that we are in fact doing a standard PCA

in F . Consequently, all mathematical and statistical proper- ties of PCA carry over to kernel PCA, with

the modi cations that they become statements about a set of points φ(Xi) , i = 1,...,M , in F rather than

in RN . In F , we can thus assert that PCA is the orthogonal basis transformation with the following

properties (assuming that the eigenvectors are sorted in descending order of the eigenvalue size):

1. the first q(q ∈ 1, ...,M) principal components, i.e. projections on eigen- vectors, carry

more variance than any other q orthogonal directions.

2. the mean-squared approximation error in representing the observations by the first q

principal components is minimal.

3. the principal components are uncorrelated.

4. the first q principal components have maximal mutual information with respect to the

inputs (this holds under Gaussianity assumptions, and thus depends on the particular kernel chosen and

on the data)
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Comparison of Kernel PCA with related methods

• Other generalizations of linear PCA : Hebbian Networks, Autoassociative Multi-Layer Perceptrons,

Principal Curves

• Advantages of Kernel PCA :

- No nonlinear optimization is involved.

- The number of principal components does not need to be specified in advance.

• Disadvantages of Kernel PCA :

- Compared with neural approaches, processing very large number of observations is

much more difficult.

- Compared with the Principal Curve approach, the results are harder to interpret in

the input space.
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Figure 1.2:

1.3 Face Recognition :

Face recognition is one of biometric methods identifying individuals by the features of

face.Given still or video images of a scene, identify or verify one or more persons in the scene using a

stored database of faces. The solution to the problem involves the segmentation of faces (face detection)

from image of a scene, feature extraction from face region, recognition.

A basic structure of a Face Recognition System is shown in the diagram given above(fig 1.2).

The main parts are typically face detection and face recognition which can it self be decomposed

in normalization, feature extraction and classification steps.

Before face recognition is performed, the system should determine whether or not there is a face

in a given image or given video, a sequence of images. This process is called face detection. Once a face

is detected, face region should be isolated from the scene for the face recognition. The face detection and

face extraction are often performed simultaneously.

Feature extraction is to find a specific representation of the data that can highlight relevant infor-

mation. At the feature extraction stage, the goal is to find an invariant representation of the face image.

Usually, an image is represented by a high dimensional vector containing pixel values (holistic represen-

tation) or a set of vectors where each vector contains gray levels of a sub-image (local representation).
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Different approaches of face recognition for still images in the literature can be categorized into

three main groups :

1.Holistic Approach.

2.Feature-Based Approach.

3.Hybrid Approach.

1. Holistic Approach :

In holistic approach, the whole face region is taken into account as input data into face detection

system for extracting the features of a face image.

Principal Component Analysis:

One of the feature extraction techniques, based on Principal Component Analysis (PCA), was first

used for face recognition by Turk and Pentland [4]. The aim of PCA is to find a representation of the

data minimizing the reconstruction error. The PCA finds the orthogonal directions that account for the

highest amount of variance. The data is then projected into the subspace spanned by these directions.

In practice, the principal component axes are the eigenvectors of the covariance matrix of the data.

The corresponding eigen values indicate the proportion of variance of the data projections along each

direction.

Linear Discriminant Analysis:

Another feature extraction method used in face recognition is based on Linear Discriminant Anal-

ysis (LDA), also known as Fisher Discriminant Analysis [5].

The LDA subspace holds more discriminant features than the PCA subspace. LDA finds a subspace

in which the variability is maximized between different class data, and at the same time where variability

in the same class data (face images of the same identity) is minimum.

We define the within-class scatter matrix as Sw and between-class scatter matrix as Sb .The goal

is to maximize the between-class measure while minimizing the within-class measure. One way to do this

is to maximize the ratio det(Sb)/det(Sw). Intuitively, for face recognition, LDA should outperform PCA

because it inherently deals with class discrimination. However, Martinez and Kak [5] have shown that

PCA might outperform LDA when the number of samples per class is small.
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2. Feature-Based Approach :

In feature-based approaches, local features on face such as nose, and then eyes are segmented and

then used as input data for structural classifier.

E.g. Pure Geometry Methods.

3. Hybrid Approach :

Use both local features and whole face region to recognize a face.

• Classification Task :

The classification step consists of attributing a class label to the input data. Some of the well

known classifiers are nearest neighbor classifier and minimum distance classifier. Current approaches

for face recognition often make use of simple image similarity metrics such as the Euclidean distance

between the feature vector of reference images and feature vector of the test image. Because of

curse of dimensionality problem, the distance metrics are not computed in the image space but in

an appropriate subspace such as PCA or LDA. Some more appropriate metrics have been proposed

in the literature such as Mahalanobis distance, Normalized correlation.

• Limitation of the above Approaches :

All the above methods concern about the dissimilarity (i.e., generally the metrics like Euclidean

distance or Mahalanobis distance) between representations of the query image and the training

images. We classify the test face image into the class whose distance is the least from the training

images. In this approach the test image always fall into one of the face classes of the database.

This process of identification known as closed set identification

In case, if the test image is not a valid face image (i.e., image of an object or a scene or a face

image which is not in our database), it will be classified to one of the face classes of our database,

then this type of identification is called open set identification. Here the test image is said to be

imposter to the system.

We have to find a threshold value on the dissimilarity value that will decide whether a test image

is either a valid face or not.
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1.4 PCA Based Face Recognition :

PCA based face recognition, means we are going to recognise the face by reducing dimensionality.

One approach to deal with high dimensional data is by reducing their dimensionality. Project high

dimensional data onto a lower dimensional sub-space using linear or non-linear transformations.

• Each dimensionality reduction technique finds an appropriate transformation by satisfying certain

criteria (e.g., information loss, data discrimination, etc.)

• The goal of PCA is to reduce the dimensionality of the data while retaining as much as possible

of the variation present in the dataset.

Methodology :

- Suppose Γ is an N2 × 1 vector, corresponding to an N ×N face image I.

- The idea is to represent Γ(Φ = Γ−meanface) into a low-dimensional space:

Φ̂−mean = w1u1 + w2u2 + ...+ wKuK(K << N2)

Step 1 : Obtain face images I1, I2, ..., IM (training faces)

(very important: the face images must be centered and of the same size)

Step 2 : Represent every image Ii asa vector Γi

Step 3 : Compute the average face vector Ψ :

Ψ = 1
M ΣM

i=1Γi

Step 4 : Subtract the mean face :

Φi = Γi −Ψ

Step 5 : Compute the covariance matrix C :

C = 1
M ΣM

n=1ΦnΦT
n = AAT (N2 ×N2 matrix)

where A = [Φ1Φ2...ΦM ] (N2 ×M matrix)



CHAPTER 1. INTRODUCTION 12

Step 6 : Compute the eigenvectors ui of AAT

The matrix AAT is very large −− > not practical !!

Step 6.1 : Consider the matrix ATA (M ×M matrix)

Step 6.2 : Compute the eigenvectors vi of ATA

ATAvi = µivi

What is the relationship between ui and vi ?

ATAvi = µivi ⇒ AATAvi = µiAvi ⇒ Cui = µiui , where ui = Avi

. Thus AAT and ATA have the same eigen values and their eigen vectors are related as

follows ui = Avi .

Note 1 : AAT can have upto N2 eigenvalues and eigenvectors.

Note 2 : ATA can have upto M eigenvalues and eigenvectors.

Note 3 : The M eigenvalues of ATA (along with their corresponding eigenvectors)

correspond to the M largest eigenvalues of AAT (along with their corresponding eigenvectors)

Step 6.3 : Compute the M best eigenvectors of AAT : ui = Avi

(important: normalize ui such that ‖ ui ‖= 1)

Step 7 : Keep only K eigenvectors (corresponding to the K largest eigenvalues)

Classification :

• After extracting features using PCA above, we can apply any classifier like minimum distance

classifier, K-nearest neighbor classifier to classify a query image.

• In minimum distance classification ,we first extract the features of the query image by projecting

onto above eigen space.

• We classify an query image to a face class for which it contains the training image having minim

um distance from the query image.
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• In K-nearest neighbor classification (K is predefined), we consider the first K nearest training images

and classify into the face class for which the maximum number of neighbors came from.

• We may use Euclidean distance or Mahalanobis distances for calculating the distances.

• Note. For increasing the distance b/w classes more and decrease with-in- class distance, we use

Linear Discriminant Analysis for feature extraction.



Chapter 2

Kernel Principal Component

Analysis

We already know that Kernel PCA is a nonlinear generalization of PCA. Here in this chapter

we are mainly going to describe the derivation part of Kernel PCA algorithm. For a given input data

set, first we do the nonlinear trnsformation from input space to some higher dimensional space (i.e in

Feature Space) and then apply PCA in Feature Space.

• Principal Component Analysis in Feature Space :

Given a set of centered observations Xk ∈ <N , k=1, . . . ,M,
∑M

k=1Xk = 0, PCA diagonalizes

the covariance matrix :

C =
1
M

M∑
j=1

XjX
T
j . (2.1)

Now we apply the nonlinear map Φ from input space <N to Feature Space(F).

Φ : <N → F,X 7→ Φ(X). (2.2)

Note that the feature space F could have an arbitrary large, possibly infinite dimensionalty. Again,

we assume that we are dealing with centered data,
∑M

k=1 Φ(XK) = 0. In F , the covariance matrix

takes the form

C =
1
M

M∑
j=1

Φ(Xj)Φ(Xj)T . (2.3)

14
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We now have to find eigenvalues λ ≥ 0 and eigenvectors V ∈ F \ {0} satisfying λV = CV .

Again, all solutions V with λ 6= 0 lie in the span of Φ(X1), ...,Φ(XM ). For us, this has two useful

consequences : first, we may instead consider the set of equations

λ(Φ(Xk).V ) = (Φ(Xk).CV ) (2.4)

for all k=1,...,M and second, there exists coefficients αi(i = 1, ...,M)) such that

V =
M∑
i=1

αiΦ(Xi). (2.5)

Combining (2.4) and (2.5), we get

λ

M∑
i=1

αi(Φ(Xk).Φ(Xi)) =
1
M

M∑
i=1

αi

Φ(Xk).
M∑

j=1

Φ(Xj)(Φ(Xj).Φ(Xi))

 (2.6)

for all k=1,...,M. Defining an M ×M Gram Matrix K by

Kij := (Φ(Xi).Φ(Xj)) (2.7)

this reads

MλKα = K2α (2.8)

where α denotes the column vector with entries α1, α2, ..., αM . To find solutions of (2.8), we solve

the eigen value problem

Mλα = Kα (2.9)

for nonzero eigenvalues.Let λ1 ≤ λ2 ≤ ... ≤ λM denote the eigenvalues of K, and α1, ..., αM

the corresponding complete set of eigen vectors, with λp being the first nonzero eigenvalue. We

normalize αp, ..., αM by requiring that the corresponding vectors in F be normalized.i.e,

(V k.V k) = 1, k = 1, ...,M. (2.10)

By virtue of (2.5) and (2.9) ,this translates into a normalization condition for αp, ..., αM :

1 =
M∑

i,j=1

αk
i α

k
j (Φ(Xi).Φ(Xj)) =

M∑
i,j=1

αk
i α

k
jKij = (αk.Kαk) = λk(αk.αk) (2.11)



CHAPTER 2. KERNEL PRINCIPAL COMPONENT ANALYSIS 16

For the purpose of principal component extraction, we need to compute projections onto the eigen-

vectors V k in F (k=p,...,M).Let X be a test point, with an image Φ(X) in F, then

(V k.Φ(X)) =
M∑
i=1

αk
i (Φ(Xi).Φ(X)) (2.12)

may be called its nonlinear principal components corresponding to Φ.

Kernel PCA Algorithm :

To perform kernel-based PCA , henceforth reffered to as kernel PCA, the following steps

have to be carried out: first, we compute the Gram Matrix Kij = (k(Xi, Xj))ij . Next we solve

(2.9) by diagonalizing K, and normalize the eigenvector expansion coefficients αn by requiring

λn(αn.αn) = 1. To extract the principal components (corresponding to the kernel K) of a test

point X, we then compute projections onto the eigenvectors by

(V n.Φ(X)) =
M∑
i=1

αn
i k(Xi, X). (2.13)

Figure 2.1:
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Computational Complexity of KPCA :

• The Gram matrix is an M ×M matrix and finding the eigen values and eigen vectors is of O(M3)

complexity.

• Also the memory storage is of O(M2)

• However in most applications all the eigen vectors are not needed. The number of eigen vectors

needed is usually << N . In such cases we can use iterative methods to compute the eigen vectors

and the eigen values and the complexity becomes O(M2).

• O(M2) complexity to compute the kernel principal components.



Chapter 3

Proposed Modification

3.1 Why Modification

In this paper we are mainly concern about Polynomial Kernel.In KPCA for constructing Gram

Matrix, we are consider Polynomial Kernel of degree d i.e K(X,Y ) = (XTY + 1)d .

For the purpose of face recognition,if we are using Kernel PCA (Polynomial Kernel) with Gram

Matrix, then in that case we are moving in the following way :

Here we consider each face image as a single vector, i.e each pixel consider as a variable.If in

our hand 400 images are there, then first we calculate the Kernel Matrix or Gram Matrix K of order

400× 400 by using the following rule :

Kij := (Φ(Xi).Φ(Xj)) (3.1)

Next we are going to find the eigenvalues and eigenvectors of K, and normalize the eigenvector

expansion coefficients αn by requiring λn(αn.αn) = 1. To extract the principal components (correspond-

ing to the polynomial kernel K(X,Y ) = (XTY + 1)d ) of a test point X, we then compute projections

onto the eigenvectors by

(V n.Φ(X)) =
M∑
i=1

αn
i k(Xi, X). (3.2)

18
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In that case we are not using the nonlinear map Φ explicitely, instead of that we are doing

everything in the input space whatever we need.That means we did not impose any condition on

the individual pixels of the face images.

So we are modifying this method by applying some conditions on individuals pixels

of the face images. That means in our proposed method we are going to use the nonlinear map Φ

explicitely.How we are using the map Φ explicitely and how we are doing the PCA in the transformed

space (i.e in Feature space) is given below :

3.2 How

Suppose we are considering 400 images I1, I2, ...., I400 and each image is of order 92 × 112. Then

we consider each image as a single column vector of dimension (92× 112, 1) .

Consider the Nonlinear map Φ defined as follows :

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2) (3.3)

Now we apply the nonlinear map Φ on each image I.Since each image I is of size (92 × 112, 1) ,

after applying this nonlinear map Φ on I, the dimension of the transformed vector I ′ become huze.So we

reduce the size of each image first, then apply the nonlinear map Φ on every images.

Suppose I ′
1, I

′
2, ...., I

′
400 are the transformed vector after applying Φ on I1, I2, ...., I400 .Let us con-

sider the matrix A defined as follows : A = [I ′
1, I

′
2, ...., I

′
400]. Here A is of order (92×112, 400).Now we are

going to do the PCA on the set of vectors I ′
1, I

′
2, ...., I

′
400 .This is the same as PCA based face recognition

process described in chapter 1.

All we are interested to find out the eigenvalue and eigenvectors of the variance covariance matrix

C = AAT . Since the matrix C is of order (92 × 112, 92 × 112), finding the eigenvalues and eigenvectors

of C is quite impossible, so all we are do that , first consider the matrix C ′ = ATA and find out the

eigenvalues, eigenvectors of C ′.Then premultiplying A with C ′ and in that way find out the eigenvalues,

eigenvectors of C. Next we project all the data points(vectors) onto the eigenvectors corresponding to the

largest eigenvalues,for reducing the dimension.Then apply the KNN rule (K-nearest neighbour rule) for

doing the classification.
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Now we do the classification on the set of images (E.x. ORL data set, YALE data set, Other

data set) using our proposed method by applying different nonlinear map Φ and in the usual Kernel PCA

method using Gram Matrix, and comparing the results.

ORL Data set : This data set contains the face images of 40 different peoples and each people

have 10 face images with different expressions. That means this data set has 40 different classes and each

class contains 10 members, total 400 face images are there.

YALE Data set : This data set contains the face images of 15 different peoples and each people

have 11 face images with different expressions. That means this data set has 15 different classes and each

class contains 11 members, total 165 face images are there.

OTHER Data set : This data set contains the face images of 38 different peoples and each people

have 10 face images with different expressions. That means this data set has 38 different classes and each

class contains 10 members, total 380 face images are there.

All the above data set contains Gray Lavel images.

3.3 Experiment and Result :

First we apply the nonlinear map Φ defined as follows :

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2) (3.4)

in our proposed Polynomial PCA method and comparing the result with the usual Kernel PCA method

using Gram Matrix, by considering a polynomial kernel of degree 2

(i.e K(x, y) = (xT y + 1)2).
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Figure 3.1: Classification Rate using our Proposed method VS usual Gram Matrix method

Now we apply the nonlinear map Φ defined as follows :

Φ : (x1, x2) −→ (
√

2x1,
√

2x2
√
x1,
√
x2,
√

2x1x2, x
2
1, x

2
2) (3.5)

in our proposed Polynomial PCA method and comparing the result with the usual Kernel PCA method

using Gram Matrix, by considering a polynomial kernel of degree 2

(i.e K(x, y) = (xT y + 1)2).

Figure 3.2: Classification Rate using our Proposed method VS usual Gram Matrix method
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Now we apply the nonlinear map Φ defined as follows :

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2, , x

3
1, x

3
2, ) (3.6)

in our proposed Polynomial PCA method and comparing the result with the usual Kernel PCA method

using Gram Matrix, by considering a polynomial kernel of degree 3

(i.e K(x, y) = (xT y + 1)3).

Figure 3.3: Classification Rate using our Proposed method VS usual Gram Matrix method



Chapter 4

New Dimensionality Reduction

Method

4.1 Method

Here we are going to introduce a new dimensionality reduction method for face recognition using

Polynomial PCA. In the previous chapter we have used the nonlinear map Φ on the reduced images, that

means we first reduce the size of each face images and then applying the non linear map Φ over all the

images(vectors).Hence we are not working with the full size images. Next we collect all the transformed

images(vectors) and apply the PCA method over the nonlinear space.

We are not applying the nonlinear map Φ on the whole images because of the fact that if we

consider the non linear map Φ as

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2) (4.1)

and apply that map over an image of size 92 × 112 that mens over a vector v of length (92 × 112, 1)

,then the dimension of the transformed vector Φ(v) becomes huze. The dimension increases because of

the term x1x2.That neans in an image if we consider pixelwise covariance i.e the covariance of each pixel

with each other ,then the dimension increases.If a vector v is of dimension (n, 1) where n=92×112 , then

after applying the nonlinear map Φ as described above the dimension of the transformed vector Φ(v)

become ( (n2+3n)
2 , 1).

23
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Likewise if we consider 400 images of size 92× 112 i.e 400 vectors v1, v2, ...., v400 each of dimension

(92× 112, 1) and apply the nonlinear map Φ as in equation 4.1 over all the vectors, then in our hand 400

transformed vector Φ(v1),Φ(v2), ...,Φ(v400) are there each of dimension ( (n2+3n)
2 , 1) where n = 92× 112.

It is impossible to store all the images in a single matrix or it is not feasible to work with the set

of vectors Φ(v1),Φ(v2), ...,Φ(v400).

So for working with the set of vectors Φ(v1),Φ(v2), ...,Φ(v400) we need to reduce the dimension of

Φ(v1),Φ(v2), ...,Φ(v400).For that we are using a simple technique. The dimension increases because of

the presence of product terms i.e because of pixelwise covariances, so if we reduce the no. of product

terms in Φ(vi) then our problem become solve.For that we consider each pixel in an image and no need

to consider all the product terms (i.e covariances) with other pixels, only consider the product terms (i.e

covariances) in some neighbourhood (e.x 6× 6,7× 7,8× 8,9× 9) of each pixels , rest are zero.

This is going to be a reasionable assupmption that we can make in an image(face image). i.e in an

image I

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ r

or|j1 − j2| ≥ r where r=6,7,8,9

Under the above assumptions if we apply the nonlinear map Φ as described in equation 4.1 over

the set of vectors v1, v2, ...., v400 , then we get a set of transformed vectors Φ(v1),Φ(v2), ...,Φ(v400) each

of dimension approximately (rn, 1) where r=6,7,8,9 and n=(92× 112).This dimension is feasible and we

able to store all the 400 transformed vectors in a matrix and it is possible to apply PCA over the set of

transformed vectors.

Now in this way we are going to apply the Polynomial Kernel PCA (i.e Linear PCA on a nonlinear

space or feature space) over a set of face images and do the classification.Next we compare this result

with the usual Kernel PCA method using Gram Matrix.
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4.2 Experiment and Result :

1. First we consider the nonlinear map Φ which consists only linear, squre and product terms.i.e the

map

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2) (4.2)

Now we apply this nonlinear map Φ in our proposed Polynomial PCA method under the Assumption

given below (Note that here we apply the nonlinear map Φ over whole images,we are not reducing the

size of each images, we just maintain the Assumption given below) and comparing the result with the

usual Kernel PCA method using Gram Matrix,by considering a polynomial kernel of degree 2

(i.e K(x, y) = (xT y + 1)2).

The size of the neighbourhood can vary.Suppose we are considering 6 × 6 neghbourhood.Hence our

Assumption is

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ 6

or|j1 − j2| ≥ 6

Table 4.1:Classification Rate using our Proposed method under the Assumption of 6 × 6 nbd VS

usual Gram Matrix method
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If we consider 7× 7 nbd then our Assumption becomes

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ 7

or|j1 − j2| ≥ 7

Under this Assumption by considering the same nonlinear map Φ as described in eqn 4.2,the output

is as follows :

Table 4.2:Classification Rate using our Proposed method under the Assumption of 7 × 7 nbd VS

usual Gram Matrix method

If we consider 8× 8 nbd then our Assumption becomes

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ 8

or|j1 − j2| ≥ 8

Under this Assumption by considering the same nonlinear map Φ as described in eqn 4.2,the output

is as follows :

Table 4.3:Classification Rate using our Proposed method under the Assumption of 8 × 8 nbd VS

usual Gram Matrix method
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If we consider 9× 9 nbd then our Assumption becomes

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ 9

or|j1 − j2| ≥ 9

Under this Assumption by considering the same nonlinear map Φ as described in eqn 4.2,the output

is as follows :

Table 4.4:Classification Rate using our Proposed method under the Assumption of 9 × 9 nbd VS

usual Gram Matrix method

2. Secondly we consider the nonlinear map Φ which consists only linear, squre,cubic and product

terms.i.e the map

Φ : (x1, x2) −→ (x1, x2, x1x2, x
2
1, x

2
2, x

3
1, x

3
2) (4.3)

Now we apply this nonlinear map Φ in our proposed Polynomial PCA method under the Assumption

given below (Note that here we apply the nonlinear map Φ over whole images,we are not reducing the

size of each images, we just maintain the Assumption given below) and comparing the result with the

usual Kernel PCA method using Gram Matrix,by considering a polynomial kernel of degree 3

(i.e K(x, y) = (xT y + 1)3).
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The size of the neighbourhood can vary.Suppose we are considering 6×6 neghbourhood.Hence our

Assumption is

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ 6

or|j1 − j2| ≥ 6

Under this Assumption by considering the nonlinear map Φ as described in eqn 4.3,the output is

as follows :

Table 4.5: Classification Rate using our Proposed method under the Assumption of 6× 6 nbd VS

usual Gram Matrix method

If we consider 7× 7, 8× 8 or 9× 9 nbd then our Assumption becomes

Assumption : Cov((i1, j1), (i2, j2)) = 0 if either |i1 − i2| ≥ r

or|j1 − j2| ≥ r where r=7,8,9

Under the above Assumption by considering the same nonlinear map Φ as described in eqn 4.3,

the output does not changes i.e we are getting the same output as in table 4.5.The output changes if we

change the nonlinear map Φ.



Chapter 5

Conclusion and Scope for further

Reduction

In chapter 3 we proposed a Polynomial PCA method for face recognition.In this method one problem

is the high dimensionality. If we want to impose some pixelwise conditions on a face image , then the

dimension of that image vector become high.Then practically it is impossible to handle this type of high

dimensional vectors .So in chapter 4 we proposed a new technique for reducing the dimension .Now if

we apply our proposed polynomial PCA method using the new technique described in chapter4 for face

recognition and do the classification using K-NN rule ,then we are getting better output(Classification

Rate) from our proposed polynomial PCA method than the usual Kernel PCA method using Gram matrix.

For recognition a face we are using a set of images(Here gray level images) ,each image contains

some human faces.For example if we consider ORL data set, which contains 400 face images in which

40 different peoples are there and each people have 10 different face images in different expressions. In

our Proposed Polynomial PCA method we are only concern about each pixels of face images,not in the

respective positions of the different parts of faces(e.x: nose ,ear,eyes,lips etc).If we are concern about the

respective positions and as well as pixelwise informations then our classification rate may come much

better than the previous.

29
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