M.Tech.(Computer Science) Dissertation Series

Channel Assignment in Cellular Mobile Networks Using a Heuristic Algorithm

A dissertation submitted in partial fulfilment of the requirements for the M.Tech. (Computer Science) degree of the Indian Statistical Institute

By
Kalikinkar Mandal
Roll No : CS0706
Under the supervision of
Prof. Bhabani P. Sinha

Indian Statistical Institute 203, B.T. Road
Kolkata-700108

Certificate

This is to certify that the Dissertation titled "Channel Assignment in Cellular Mobile Networks Using a Heuristic Algorithm", done at Advanced Computing Microelectronics Unit, Indian Statistical Institute, Kolkata, is a bonafide work done by Kalikinkar Mandal, as a partial fulfillment for the award of the degree of Master of Technology in Computer Science under my guidance.

Prof. Bhabani P. Sinha
Countersigned
Date:
(External Examiner)
Date:

Acknowledgement

I am grateful to Prof. Bhabani P. Sinha, ACM Unit, Indian Statistical Institute, Kolkata, for providing me the opportunity to work at ACM Unit under his guidance. It was pleasure working under his supervision. He always available with new ideas and suggestions during the difficult phase of the study.

I would like to express my gratitude to all faculty members of ACM Unit and friends for their encouragement and help during the course of this dissertation.

Kalikinkar Mandal(cs0706)
M.Tech(CS), $2^{\text {nd }}$ Year

ISI, Kolkata

Contents

1 Introduction 1
1.1 Introduction 1
1.2 Preliminaries 2
1.2.1 Model of the cellular network: 2
1.2.2 Definition 3
2 Related Work 4
2.1 Lower bounds on bandwidth 4
2.1.1 Homogeneous demand on hexagonal cellular network 4
2.1.2 Non-homogeneous demand on hexagonal cellular network 4
2.1.3 Non-hexagonl cellular network 5
2.2 Channel Assignment Technique 5
2.2.1 Homogeneous demand 5
2.2.2 Non-homogeneous demand 6
3 Channel Assignment Algorithm 8
3.1 Construction of Simpler Network 10
3.1.1 Example 10
3.2 Definitions: 11
3.3 Distance Matrix 12
3.4 Assignment Scheme 13
3.5 Algorithms 16
3.5.1 Node Finding Algorithms 16
3.5.2 Assignment Algorithm 19
3.5.3 Frequency Reuse Algorithm 21
3.5.4 Weight Finding Algorithm 23
3.5.5 Iteration finding Algorithms: 24
4 Simulation Results 32
4.1 Simulation Result for Problem 6: 32
4.2 Comparison Of Results 35
4.3 Conclusion 36

Abstract

Our proposed technique deals with the channel assignment problem in a hexagonal cellular network with two-band buffering, where the channel interference does not extend beyond two cells. Here we introduced notion of simpler sub-network. We present an algorithm for solving the channel assignment problem. The proposed algorithm provides a near-optimal assignment for two benchmark problems and an optimal solution for remaining six benchmark problems but the computation time is less than 50 milisecond for all the problems on HPxw8400 Workstation compared to 10-20 second time taken by the algorithm in Coalesced cap approach (on an unloaded DEC Alpha station $2004 / 233$) for obtaining optimal solutions.

Index Terms - Simpler sub-network, benchmark problems, cellular networks, channel assignment, bandwidth.

Chapter 1

Introduction

1.1 Introduction

In recent years, the number of mobile users has grown up rapidly, while the communication bandwidth for providing services to them has remained more or less unchanged. Hence, the problem of using the radio spectrum efficiently to satisfy the customer demands has become a critical research issue. The geographical area under the service domain of a mobile cellular network is divided into a number of cells. Structure of each cell is considered as hexagonal in shape. Whenever a mobile cellular network is designed, each cell is assigned a set of frequency channels to provide services to the individual calls of that cell.

The Channel Assignment Problem is the task of assigning frequency channel to the cells satisfying some frequency separation constraints to avoid channel interference and using as small bandwidth as possible. we consider here the static model of CAP, where the demands of cells are known a priori.

For a network, the available radio spectrum is divided into non-overlapping frequency bands. We assume that the frequency bands are of equal length and are numbered as $0,1,2$, ..., from the lower end. Each such frequency band is called as a channel. The terms channel assignment and frequency assignment will be used interchangeably in our discussion. The highest numbered channel required in an assignment problem is termed as bandwidth. Three types of interference [1] are generally taken into consideration in the form of constraints:

1. co-site channel constraint: any pair of channels assigned to the same cell must be separated by a certain number.
2. adjacent channel constraint: adjacent channels are not allowed to be assigned to certain pairs of cells simultaneously.
3. co-channel constraint: same channel is not allowed to be assigned to certain pairs of cells simultaneously.

We consider the Channel Assignment Problem in a hexagonal cellular network with 2band buffering, where the interference does not extend beyond two cells. For various relative values of s_{0}, s_{1}, and s_{2}, the minimum frequency separations required to avoid interference for calls in the same cell, or in cells at distances one and two respectively.

The channel assignment problem is equivalent to a generalized graph-coloring problem, which is a well-known NP-complete problem. An exact search for the optimal solution is impractical for large-scale system due to its exponentially growing computation time. As a result, most of the investigations on this problem are based on heuristic approaches.

In this work we present a channel assignment algorithm for assigning channels to the different nodes to meet the total demand on each node in sucessive phases. In each phase we would first try to do the assignment only on linear chains of nodes such that any two nodes in two different chains are separated by a distance of at least two. However, if it is not possible to find such chains, we would then do the assignment with lines or triangles or quadrilateral superimposed on a chain as shown in Figure 3.1-4. The basic motivation behind this approach of sucessive multiphase assignments is to break the total assignments into assignments on simpler network structures (sparse chains or chains with few lines or chains with triangles or chains with quadrilateral(s)) on them with homogeneous demand on each node (only a portion demand on each node being met in every phase) and such an assignment can be done very quickly. The solution by this approach is near-optimal, requiring at most $5-6 \%$ more channels than the optimal solution. For all the philadelphia benchmark problems, but the execution time is significantly reduced. For example our proposed algorithm takes less than 50 milisecond execution time on HPxw8400 Workstation compared to 10-20 sec. time taken by the algorithm given in [2] for obtaining optimal solutions.

1.2 Preliminaries

In this section first we describe the general model of CAP for any arbitrary cellular network. Then we give some definition.

1.2.1 Model of the cellular network:

We consider here general model of CAP which is described in [3]. This model is described by the following components:

1. The number of distinct cells, say, n, with cell numbers as $0,1, \ldots, n-1$.
2. A demand vector $D=\left(d_{i}\right)(0 \leq i \leq n-1)$ where d_{i} represents the number of channels required for cell i.
3. A frequency separation matrix $C=\left(c_{i j}\right)$, where $c_{i j}$ represents the minimum frequency separation requirment between a call in cell i and a call in cell $j,(0 \leq i, j \leq n-1)$.
4. A frequency assignment matrix $\Phi=\left(\phi_{i j}\right)$, where $\phi_{i j}$ represents the frequency assigned to call j in cell $i 0 \leq i \leq n-1,0 \leq j \leq d_{i}-1$. The assigned frequencies $\phi_{i j}$'s are assumed to be evenly spaced and can be represented integers ≥ 0.
5. A set of frequency separation constraints specified by the frequency separation matrix: $\left|\phi_{i k}-\phi_{j l}\right| \geq c_{i j}$ for all i, j, k, l (except when $\left.i=j, k=l\right)$.

The goal of the channel assignment problem is to assign frequencies to the cells satisfying the frequency separation constraints as specified above, in such a manner that the system bandwidth becomes optimal.

1.2.2 Definition

Definition 1 The cellular graph is a graph where each cell of the cellular network is represented by a node and two node have an edge between them if the corresponding cells are adjacent to each other.
Definition 2 The cellular network is said to belong to a k-band buffering system if it is assumed that the interference does not extend beyond k cells from the call originating cell.
Definition 3 Suppose $G=(V, E)$ is a cellular graph. A subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of the graph $G=(V, E)$ is defined to be distance k-clique, if every pair of nodes in G^{\prime} is connected in G be a path of length at most k.

Chapter 2

Related Work

In this chapter we mention some techniques to solve the channel assignment problem and give brief descriptions of the methods.
Since CAP is an NP-complete problem, researchers have tried to solve the problem by an approximation algorithms using neural networks, simulated annealing, tabu search [4] etc. Several authors proposed a number of techniques using genetic algorithms [5], introducing the concept of critical block [3], coalesced CAP Approach [2] etc.

2.1 Lower bounds on bandwidth

2.1.1 Homogeneous demand on hexagonal cellular network

Consider a hexagonal cellular network with 2-band buffering system. Let ω be the demand of each node. Since we have considered 2-band buffering system, there are three parameters s_{0}, s_{1}, s_{2}, which are to avoid three types of interferences. Lower bounds on the required bandwidth for the cellular network with homogenious demand ω is defined in terms of s_{0}, s_{1} and $s_{2}[6]$.

2.1.2 Non-homogeneous demand on hexagonal cellular network

We assume that the calls in the same cell should be separated by at least s_{0} and the calls in the cells those are distance one apart should be separated by at least s_{1} and those are distance two apart should be separated by at least s_{2}.

Bandwidth Bounds:

Given a distance-2 clique G with non-homogeneous demand vector $D=\left(d_{i}\right)$, it is necessary to know the lower bounds on the minimum number of frequency needed to its assignment to check optimality of the solution. Let $d=\max _{1 \leq i \leq 7}\left(d_{i}\right)$. Then, a trivial lower bound on the bandwidth is $s_{0}(d-1)$ [3]. This lower bound is not always tight for all values of s_{0}, s_{1}, s_{2}
and D. The tight lower bound can be calculated in the following way:
Lemma A lower bound on minimum bandwidth [3] for G with demand vector $D=\left(d_{i}\right)$, where $d=\max _{1 \leq i \leq 7}\left(d_{i}\right)$ is:

1. $\max \left((d-1) s_{0},\left(\sum_{1 \leq i \leq 7} d_{i}-1\right) s_{2}+\left(s_{0}-s_{2}\right)\left(d_{4}-2\right)+2\left(s_{1}-s_{2}\right)\right)$ for $s_{1} \leq s_{0} \leq\left(2 s_{1}-s_{2}\right)$ and
2. $\max \left((d-1) s_{0},\left(\sum_{1 \leq i \leq 7} d_{i}-1\right) s_{2}+2\left(s_{1}-s_{2}\right)\left(d_{4}-2\right)+2\left(s_{1}-s_{2}\right)\right)$ for $s_{0} \geq\left(2 s_{1}-s_{2}\right)$.

Let $W=\left(\omega_{i}\right)$ be the demand vector, where ω_{i} is the channel required for the node i. Let $\omega=\max _{1 \leq i \leq n}\left(\omega_{i}\right)$. Then the trivial lower bound on bandwidth is $(\omega-1) s_{0}[3]$. This lower bound is not always tight for all values of s_{0}, s_{1} and s_{2} and W for 2-band buffering system.

2.1.3 Non-hexagonl cellular network

Lower bound for the non-hexagonal cellular network can be found by reconstituting a subset of the network in a hierarchical way [2].

2.2 Channel Assignment Technique

2.2.1 Homogeneous demand

Genetic algorithm approach: Using the elitist model of genetic algorithm(EGA) we can solve Channel Assignment Problem(CAP). For hexagonal cellular networks with homogeneous demand of ω channels per cell, this approach essentially selects a small subset of cells of the network, on which we apply the EGA to find its assignment and next repeat the assignment for the whole network. For $\omega=1$, this approach improves the bandwidth requirement by 25% at best over that in [5].

Cellular graph is a graph where each cell of the cellular network is represented by a node and two nodes have an edge between them if the corresponding cells are adjacent to each other. cellular graph simply represents the topology of the cellular structure, without any regard to the demand per cell, and is different from the CAP graph mentioned above. The cellular graph is of hexagonal structure with two-band buffering, i.e., the interference extends only up to two cells from the call originating cell.

GA for channel assignment technique:

Let Q be the set of all finite length string or chromosome. Each element of the string is an $(r s)$, where is the cell number at which a call is generated and s is the call number to this cell r. A collection of M (finite) such strings or chromosomes is called a population. A simple genetic algorithm is composed of three basic operators: 1) reproduction or selection, 2) crossover, (we have taken here PMX) and 3) mutation. We will repeat the above three
steps up to certain number of times with some crossover probability $(\mathrm{c} \mathrm{p}=0.95)$ and mutation probability (here we start with 0.5) [5]. Fitness function is bandwidth required for a string. The computation time for problem 3 and 7 are $0.5-1.0 \mathrm{sec}$. For problem $12-5 \mathrm{sec}$, problem $46-12 \mathrm{sec}$, problem 5 2-7 sec, problem $86-17 \mathrm{sec}$. For problems 2 and 6 , computation time for the optimal assignment varied between 1280 h for different runs on DEC Alpha station.

2.2.2 Non-homogeneous demand

Homogeneous demands can also be used to solve the channel assignment problem with nonhomogeneous demand vector $W=\left(\omega_{i}\right)$. Given a network with nonhomogeneous demand vector $W=\left(\omega_{i}\right)$ with ω_{i} being the demand for cell i. The trivial minimum bandwidth requirement is given by $(\omega-1) s_{0}[3]$. we may obtain a solution to the problem with nonhomogeneous demand vector $W=\left(\omega_{i}\right)$ where $\omega=\max \left(\omega_{i}\right)$ keeping the bandwidth requirement very close to the optimal one.

Critical block approach:

Let there be n nodes in the cellular graph of k -band buffering with a demand vector $W=\left(\omega_{i}\right)$, $1 \leq i \leq n$.
Given a cellular graph G with a demand vector W, and the set of all possible distance kcliques $\left\{G_{j}\right\}$, each with minimum bandwidth B_{j}, the critical block is that distance k-cliques, whose minimum bandwidth requirement is maximum for all B_{j} 's.
For a network with a given demand vector and frequency separation constraints, we present an algorithm for finding its critical block. A novel idea of partitioning (through a linear integer programming (IP) formulation) the critical block into several smaller sub-networks with homogeneous demands has been introduced which provides an elegant way of assigning frequencies to the critical block with a very small execution time [3]. This idea of partitioning is then extended for assigning frequencies to the rest of the network. The proposed algorithm gives an optimal solution for all the eight benchmark instances, with minimum number of frequency channels. The running time of all the eight benchmarks except problems 2 and 6 takes a few seconds on an unloaded Sun Ultra 60 workstation. For the problems 2 and 6 algorithm needs around 60 seconds and 72 seconds of running time, respectively on the same workstation.

Coalesced CAP approach:

An elegant technique for solving the channel assignment problem which can be applied even to a cellular network with no regular hexagonal structure. This technique first maps a given problem P to a modified problem P^{\prime} on a small subset of cells of the network, offering a much reduced search space. This helps solving the problem P^{\prime} by applying approximate algorithms more efficiently [2]. This solution to P^{\prime} is then used to derive the solution to the original problem P, based on the solution obtained for P^{\prime}, two possible situations may arise: 1) the solution to P derived from the solution to P^{\prime} results in zero call blocking, i.e., it is an
admissible solution for P or
2) if all requirements for P are not satisfied by the solution to P^{\prime}, resulting in call blocking. An algorithm which is a modified version of the forced assignment with rearrangement(FAR) operation reported in [11]. Application of this Modified FAR operation to well-known benchmarks always generates optimal results for all of them. The running time of this algorithm is around 10 and 20 seconds on an unloaded DEC Alpha station $2004 / 233$, for the benchmark problems 2 and 6 , respectively to get optimal solution.

Chapter 3

Channel Assignment Algorithm

Introduction

In this chapter, we present our proposed channel assignment algorithm for assigning channels to different nodes to meet the total demand on each node, in sucessive phases. First we break up the total demand of the network (which is non-homogeneous in general) in terms of homogeneous demands on different simpler network structure of the original network. The simpler network structures are sparse chains or perturbed chains having few lines or triangles or quadrilateral(s) superimposed on some nodes of such chains as shown in the Figure 3.14. This process of finding this sparse chains or sparse perturbed chains will be done by a node-finding algorithm. After that the actual assignment of frequencies with homogeneous demands taken together on appropriate simpler sub-networks of the given network is done by frequency assignment algorithm. We find the homogeneous demand on each such subnetwork by a weight finding algorithm. Finally all these homogeneous assignment of the appropriate sub-networks of the given network together constitute the non-homogeneous assignment of the original netwok.

In critical block approach [3] the assignment is first done over the critical block. But here our approach is to break the whole network into several small sub-networks with almost linear (chain) structure having homogeneous demand of the nodes. Then we do the assignment of this sub-networks sucessively producing a very fast result with non-optimal solutions.

Figure 3.1: Sparse chain

Figure 3.2: Chain with lines

Figure 3.3: Triangle superimposed on a chain

Figure 3.4: Quadrilateral superimposed on a chain

3.1 Construction of Simpler Network

We construct a sub-networks by choosing some nodes. We choose the nodes from the network based on the demand vector and some minimum bandwidth. The construction of the network is done in two stages. In the first stage, we try to find linear chain. If it is not possible to find linear chain then we find a chain with lines or triangle or quadrilateral i.e., linear chain with some perturbation. Then in the second stage, we find another linear chain if possible. Before that we introduce the notion of forward node, backward node, distance matrix and some definitions related to this.

Consider the cellular graph given below. Take the node v. Node v has adjacent nodes a, b, c, d, e and f i.e node v has six neighbours. Let $N(v)$ be the neighbours of the node v, where

$N(v)=\{a, b, c, d, e, f\}$.
Now we partition the set $N(v)$ into two disjoint subsets as described below.
Let v be the origin. Let $v X$ be the x -axis and $v Y$ be the y -axis. The nodes which are belonging to the angle range $90^{\circ}-270^{\circ}$, put those node(s) into the backward neighbor set and the node(s) which belongs to the range $271^{0}-89^{0}$, put those node(s) into the forward neighbor set.
We denote the forward neighbor of v as $N_{f}(v)$ and backward neighbor of v as $N_{b}(v)$.
$N_{f}(v)=\{b, c, d\}$.
$N_{b}(v)=\{a, f, e\}$.

3.1.1 Example

Consider the graph given below.

In the above network the forward neighbor and backward neighbor of node 4 are:
$N_{f}(4)=\{2,5\}$
$N_{b}(4)=\{1,3,6\}$

In the above figure suppose there are imaginary axes x-axis and y-axis at each node to calculate forward neighbor and backward neighbor.
In the above network forward and backward neighbor of the nodes $3,8,18$ are given below:
$N_{f}(3)=\{4,10\}$ and $N_{b}(3)=\{2,9\}$
$N_{f}(8)=\{2,9,16\}$ and $N_{b}(8)=\{1,7,15\}$
$N_{f}(18)=\{15,19\}$ and $N_{b}(18)=\{14\}$
Similarly one can find the forward and backward neighbor of all the nodes in the network.

Notations:

Let D be the demand vector and let N be the number of nodes in the network.
Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{\alpha}\right)$ be the weight vector. We will detremine α later.
We denote $N_{b}[\mathrm{i}][\mathrm{j}]$ is the j th backward neighbor node of node i. Similarly $N_{f}[\mathrm{i}][\mathrm{j}]$ is the j th forward neighbor node of node i.
We denote Nodes ${ }^{f}$ [], the set of nodes is found using f frequency channels.

3.2 Definitions:

Chain: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the sequence of nodes. The chain formed by these nodes are defined as $v_{1} e_{1} v_{2} e_{2} \ldots e_{n-1} v_{n}$ where $e_{i}=$ edge between v_{i} and v_{i+1}.

In this context the terms chain and path will be used interchangeably in our discussions.
Distance between two nodes: Let v_{1} and v_{2} be two nodes in the network. We denote $d\left(v_{1}, v_{2}\right)$ is the distance between the node v_{1} to v_{2} and is defined as length of the shortest path from v_{1} to v_{2}.

Triangle: We call a chain contains a triangle if there exists a node v and two other nodes v_{1} and v_{2} which are different from v such that $d\left(v, v_{i}\right)=1$ for $i=1,2$ and $d\left(v_{1}, v_{2}\right)=1$. Where $d(v, u)$ is the distance between the node u and v.

Weight Vector: Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of nodes. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be the assignment on the nodes. We denote $\omega=\left(\omega_{i}\right)$ as a weight vector and ω_{i} is how many times we take the same set V of nodes and the assignment A.

Sparse chain: Let C_{1} be a chain formed by the nodes $v_{1}, v_{2}, \ldots, v_{n}$ and C_{2} be the chain formed by the nodes $u_{1}, u_{2}, \ldots, u_{m}$. We call C_{1} and C_{2} are sparse chain if for any node v_{i} from C_{1} and for any node u_{j} from $C_{2}, d\left(v_{i}, u_{j}\right) \geq 2$ for $1 \leq i \leq n, 1 \leq j \leq m$. The distance between the chains C_{1} and C_{2} are at least two.

Quadrilateral: We call a chain contains a quadrilateral if there exists a node v and three other nodes v_{1}, v_{2} and v_{3} which are different from v such that $d\left(v, v_{i}\right)=1$ for $i=1,2,3$ and $d\left(v_{1}, v_{3}\right)=2$. Where $d(v, u)$ is the distance between the node u and v.

3.3 Distance Matrix

Distance matrix stores the information redarding the distance between two any nodes in the network. We require the distance between two nodes, when we assign the frequency channel to the sub-networks.
Consider the 21-node cellular network.

Let $D_{\text {matrix }}$ be the distance matrix of the above network of order 21×21. For the node i and node $j,(i, j)$-th entry of $D_{\text {matrix }}$ is distance between the node i and node j.
The distance matrix corresponding to the above network is defined as:

$$
D_{\text {matrix }}=\left(\begin{array}{lllllllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 2 & 1 & 1 & 2 & 3 & 4 & 5 & 3 & 2 & 2 & 2 & 3 & 4 & 3 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 & 3 & 2 & 1 & 1 & 2 & 3 & 4 & 4 & 3 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \\
2 & 1 & 0 & 1 & 2 & 4 & 3 & 2 & 1 & 1 & 2 & 3 & 5 & 4 & 3 & 2 & 2 & 2 & 3 & 3 & 3 \\
3 & 2 & 1 & 0 & 1 & 5 & 4 & 3 & 2 & 1 & 1 & 2 & 6 & 5 & 4 & 3 & 2 & 2 & 4 & 3 & 3 \\
4 & 3 & 2 & 1 & 0 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 7 & 6 & 5 & 4 & 3 & 2 & 5 & 4 & 3 \\
2 & 3 & 4 & 5 & 6 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 1 & 1 & 2 & 3 & 4 & 5 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 2 & 1 & 1 & 2 & 3 & 4 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 1 & 2 & 3 & 2 & 2 & 3 \\
2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 1 & 2 & 2 & 2 & 2 \\
3 & 2 & 1 & 1 & 2 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 5 & 4 & 3 & 2 & 1 & 1 & 3 & 2 & 2 \\
4 & 3 & 2 & 1 & 1 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 6 & 5 & 4 & 3 & 2 & 1 & 4 & 3 & 2 \\
5 & 4 & 3 & 2 & 1 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & 5 & 4 & 3 \\
3 & 4 & 5 & 6 & 7 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 & 5 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 1 & 0 & 1 & 2 & 3 & 4 & 2 & 3 & 4 \\
2 & 2 & 3 & 4 & 5 & 2 & 1 & 1 & 2 & 3 & 4 & 5 & 2 & 1 & 0 & 1 & 2 & 3 & 1 & 2 & 3 \\
2 & 2 & 2 & 3 & 4 & 3 & 2 & 1 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 1 & 1 & 2 \\
3 & 2 & 2 & 2 & 3 & 4 & 3 & 2 & 1 & 1 & 2 & 3 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 1 & 1 \\
4 & 3 & 2 & 2 & 2 & 5 & 4 & 3 & 2 & 1 & 1 & 2 & 5 & 4 & 3 & 2 & 1 & 0 & 3 & 2 & 1 \\
3 & 3 & 3 & 4 & 5 & 3 & 2 & 2 & 2 & 3 & 4 & 5 & 3 & 2 & 1 & 1 & 2 & 3 & 0 & 1 & 2 \\
3 & 3 & 3 & 3 & 4 & 4 & 3 & 2 & 2 & 2 & 3 & 4 & 4 & 3 & 2 & 1 & 1 & 2 & 1 & 0 & 1 \\
4 & 3 & 3 & 3 & 3 & 5 & 4 & 3 & 2 & 2 & 2 & 3 & 5 & 4 & 3 & 2 & 1 & 1 & 2 & 1 & 0
\end{array}\right) .
$$

3.4 Assignment Scheme

We have shown frequency assignment scheme for a sequence of nodes. The chain formed by these sequence of nodes does not contains a triangle.

Scheme 1: Suppose we have a sequence of nodes $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$ form a linear chain. Given s_{0} channels. Can we assign frequency channel to these nodes. If s_{0} is odd with $s_{0} \geq 5$ then $s_{0}=2 k+1, k \geq 2 . s_{1}=2$ and $s_{2}=1$

node\#	v_{0}	v_{1}	v_{2}	\ldots	v_{i-1}	v_{i}	v_{i+1}	\ldots	$v_{2 k-1}$	$v_{2 k}$	\ldots
channel\#	0	$k+1$	1	\ldots	$k+\left\lceil\frac{i-1}{2}\right\rceil$	$\left\lfloor\frac{i}{2}\right\rfloor$	$k+\left\lceil\frac{i+1}{2}\right\rceil$	\ldots	k	0	\ldots

This is the frequency assignment of the nodes. For any three node v_{i-1}, v_{i} and v_{i+1}, the channel difference between v_{i} and v_{i+1} is $k+\left\lceil\frac{i+1}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor$ which is equal to $\mathrm{k}+1$ when i is even and channel difference between v_{i} and v_{i-1} is $k+\left\lceil\frac{i-1}{2}\right\rceil-\left\lfloor\frac{i}{2}\right\rfloor$ which is equal to k when i is even. When i is odd then first difference is k and second difference is $k+1$. So there is
no channel interference.
If s_{0} is even then $s_{0}=2 k$

node\#	v_{0}	v_{1}	v_{2}	\ldots	$v_{2 i-1}$	$v_{2 i}$	$v_{2 i+1}$	\ldots	$v_{2 k-2}$	$v_{2 k-1}$	$v_{2 k}$	\ldots
channel\#	0	k	1	\ldots	$2 k-i+1$	i	$2 k-i$	\ldots	$k-1$	$k+1$	0	\ldots

Similarly for any three nodes $v_{2 i-1}, v_{2 i}$ and $v_{2 i+1}$, the channel difference between the node $v_{2 i-1}, v_{2 i}$ is $2 k-2 i+1$ and channel difference between the node $v_{2 i+1}, v_{2 i}$ is $2 k-2 i$. Maximum value of i is $k-1$, so the minimum difference is equal to $2 k-2(k-1)=2=s_{1}$. Hence there is no interference.

For example take $s_{0}=5, s_{1}=2$ and $s_{2}=1$. In Fig.1.1, we see using s_{0} frequency channel, we can assign frequency to the nodes on a linear chain of length at least s_{0}.

Fig.1.1

In Fig.1.1 each node has a label of the form $\{x\}$ where frequency channel x assigned to that node.

Take $s_{0}=7, s_{1}=2$ and $s_{2}=1$.

Fig. 1.2

In the above Fig.1.2 we have assigned frequency to the nodes on a linear chain of length at least s_{0}.
So using s_{0} frequency channel we can find an frequency assignment of the nodes on a linear
chain of length at least s_{0}. This is not true for all values of s_{0}, s_{1}, s_{2}.
Cosider a chain with triangle. Take $s_{0}=5, s_{1}=2$ and $s_{2}=1$.

Fig.1.3

In Fig.1.3, each node has a label of the form $\{x\}$ where frequency channel x assigned to that node. Here number of frequency channel required to assign frequencies on the nodes is equal to $s_{0}+1$.
So when a chain contains a triangle then we require $s_{0}+1$ frequency channel, this is not true for all values of s_{0}, s_{1}, s_{2}.

Cosider a chain with triangle. Take $s_{0}=5, s_{1}=2$ and $s_{2}=1$.

Fig.1.3

A chain having a quadrilateral superimposed on it shown in Fig.1.3. The assignment on the nodes is shown in Fig.1.3. Number of frequency channel required to assign frequencies on the nodes is equal to $s_{0}+2$.

Now the idea is if we find such a chain in the network then the above kind of assignment is possible. Our aim is we try to find such a linear chain and do the assignment. If it is not possible to find such chain then we find chain with triangle or chain with two consecutive triangle.

3.5 Algorithms

In this section we present five type of algorithms. The algorithms are given in the following manner:

1) find a set of node using frequency channel f
2) assign frequency channel to these nodes
3) if frequency reuse is possible in the network then find the nodes and its assignments
4) find the weight at the i-th step
5) iteration for f
6) modify the demand vector according to the set of nodes and its weights.

3.5.1 Node Finding Algorithms

In this section we select a set of nodes to construct the simpler network. We take an amount of bandwidth, say f and choose the nodes by the below algorithm. Our nodes selection method is like that:

1) while we are taking bandwidth s_{0}, we find a set of nodes such that the path or chain formed by these nodes of length at least s_{0}, the path does not contain any triangle.
2) while we are using bandwidth $s_{0}+1$, we select a set of nodes such that the chain formed by these nodes of length at least s_{0}, the path does not contain two consecutive triangle or a quadrilateral.

We are starting to find nodes from maximum demand node. Note that if we have more than one maximum then we take that one whose sum of the neighboring node demand is maximum. Each time we find nodes from maximum demand node.
Algorithm : Find_Nodes_Using_f_Frequency
Input: Max_Demand_Node, maximum demand node and number of frequency channel f. Output: a sequence of nodes and n, number of nodes.
begin
Step 1: if $\left(N_{f}(\right.$ Max_Demand_Node $)==$ null $)$
call procedure : Backward_Search(Max_Demand_Node, f)
Let n_{1} be the number of nodes and Nodes $_{b}[]$ be the sequence of nodes returned by the procedure Backward_Search.

Step 2: if $\left(N_{b}(\right.$ Max_Demand_Node $)==$ null $)$
call procedure : Forward_Search(Max_Demand_Node , f)
Let n_{2} be the number of nodes and $N_{\text {odes }}^{f}[$] be the sequence of nodes returned by the procedure Forward_Search.

Step 3: if $\left(N_{b}(\right.$ Max_Demand_Node $) \neq$ null \& $N_{b}($ Max_Demand_Node $) \neq$ null $)$
3.1 let $\max _{f}$ and smax_{f} be the maximum and second maximum of the forward neighbor of Max_Demand_Node , $\max _{b}$ and smax_{b} be the maximum and second maximum of the backward neighbor of Max_Demand_Node.
3.2 if ($\left.\max _{b} \geq \max _{f}\right)$
3.2.1 call procedure : Backward_Search(Max_Demand_Node, f)
3.2.2 if the node corresponding to the value $\max _{f}\left(\right.$ let the node be $N_{\text {max }}$) and first two nodes selected by the procedure Backward_Search form a triangle then take the node corresponding to the value $\max _{f}$. Call the procedure Forward_Search($N_{\text {max }}, f$)
3.3 else
3.3.1 call procedure Forward_Search(Max_Demand_Node, f)
3.3.2 choose the backward neighbor node in such a way such that the first two nodes selected by Forward_Search and this node does not form a triangle while we are using frequency $f=s_{0}$. Call the procedure Backward_Search.
3.4 Let n_{1} be the number of nodes and Nodes $_{b}[]$ be the sequence of nodes returned by the procedure Backward_Search. Let n_{2} be the number of nodes and Nodes ${ }_{f}$ [] be the sequence of nodes returned by the procedure Forward_Search. $n=n_{1}+n_{2}$, total number of nodes, and Nodes $_{b}[] \cup$ Nodes $_{f}$ [] are the sequence of nodes.
end
Remark: If $f=s_{0}+1$, then in the neighborhood of maximum demand node we choose the nodes in such a way that the chain formed by the nodes does not contain two consecutive triangles or a quadrilateral. Again if $f=s_{0}+2$ then we don't need to follow this strategy, we just simply take the maximum demand node.

Algorithm : Backward_Search
Input: f, number of frequency and Max_Demand_Node maximum demand node.
Output: $\operatorname{Nodes}_{b}[]$ contains sequence of nodes and n number of nodes in the set Nodes $_{b}[$].

begin

Step 1: Set $i=0$ and Nodes $_{b}[i]=$ Max_Demand_Node.

```
Step 2: if ( }f=\mp@subsup{s}{0}{}\mathrm{ )
while( N
{
```

2.1 Find the first maximum and second maximum demand nodes of backward neighbor of Nodes ${ }_{b}[i]$.
$2.2 i=i+1$.
2.3 Put the maximum demand node into the array $\operatorname{Nodes}_{b}[$], provided the chain formed by the nodes does not contains a triangle. Otherwise put second maximum demand node. If any node has three neighbor and first maximum and second maximum are iequal and maximum demand of both backward neighbor of maximum and second maximum demand node are same then take third maximum demand node of $N \operatorname{odes}_{b}[\mathrm{i}-1]$.
\}
Step 3: if $\left(f=s_{0}+1\right)$
while($N_{b}\left[\right.$ Nodes $\left._{b}[i]\right][1] \neq$ null $)$ \{
3.1 Find the first maximum and second maximum demand nodes of backward neighbor of Nodes ${ }_{b}[i]$.
$3.2 i=i+1$.
3.3 Put the maximum demand node into the array Nodes $_{b}[$], provided the path formed by the nodes does not contains a quadrilateral or two consecutive triangle. Otherwise put the second maximum demand node.

Step 4: if $\left(f>s_{0}+1\right)$
while ($N_{b}\left[\right.$ Nodes $\left._{b}[i]\right][1] \neq$ null $)$
\{
4.1 Find the first maximum and second maximum demand nodes of backward neighbor of Nodes ${ }_{b}[i]$.
$4.2 i=i+1$.
4.3 Put the maximum demand node into the array Nodes $_{b}[]$.

\}

Step 5: return the set of nodes Nodes $_{b}[]$ and $(i+1)$ is the number of nodes. end

Algorithm : Forward_Search

This algorithm is same as Backward_search. Instead of backward neighbor $N_{b}(v)$ of v we take here forward neighbor of $N_{f}(v)$ of v.

The benchmark cellular network.

Example 1: In the above network, each node has a label of the form $[x]$, where x is the demand of that node. Node 11 is the maximum demand node and $N_{f}(11)=$ null so we call the procedure Backward_Search. Nodes selected by Find_Nodes_Using_f_Frequency are $\{11,10,9,8,7,6,13,12\}$.

3.5.2 Assignment Algorithm

Once we find the set of nodes, the following algorithm is used to assign the channels to the nodes.
Algorithm: Assignment_On_The_Nodes
Input: Set of nodes Nodes ${ }^{f}[]$ and n is the number of nodes and f minimum bandwidth. Frequency separation constraints s_{0}, s_{1}, s_{2}.
Output: A conflict free assignment of the set of nodes. assignment $[\mathrm{i}]$ is the frequency assignment on the i th node.
begin
Step 1:
if $\left(f=s_{0}\right.$ and $\left.s_{0}=2 k+1\right)$
\{
for $i=0$ to $n-1$
assignment $[\mathrm{i}]=\left\lfloor\frac{i}{2}\right\rfloor$, if i is even and s_{0} is odd
assignment $[\mathrm{i}]=\left\lfloor\frac{s_{0}}{2}\right\rfloor+\left\lceil\frac{i}{2}\right\rceil$, if i is odd
\}
if $\left(f=s_{0}\right.$ and $\left.s_{0}=2 k\right)$
\{

```
    for i=0 to }\frac{n}{2
    assignment[2i] = i
    assignment [2i+1]=2k-i
}
```


Step 2:

```
else
{
```

2.1 Take first three nodes from the array Nodes $^{f}[]$, check do they form triangle or not.
2.2 Set $i=0$ and assignment $[\mathrm{i}]=0$. Find an appropriate frequency assignment of the first three nodes. Frequency assignment should be admissible.
2.3 For $i \geq 3$ follow the following assignment rule:
2.3.1 Take the node Nodes ${ }^{f}[\mathrm{i}]$, take the frequency j, find all nodes where the frequency j is used. If all these nodes are 3 distance $k+1$ distance for k-band buffering system, here $k=2$) apart from node $N_{\text {odes }}{ }^{f}[\mathrm{i}]$ then goto the next step. If all nodes are not three distance apart then then reject the frequency j, try with another one $(0 \leq j \leq f-1)$.
2.3.2 Find all the neighboring node(s) of $\operatorname{Nodes}^{f}[\mathrm{i}]$, where the frequency is assigned. Let p be the number of nodes and freq $_{l}(0 \leq l \leq p-1)$ is assigned on the l th node. If $\left|\mathrm{j}-\mathrm{freq}_{l}\right| \geq s_{1}$ and $\left|\mathrm{j}-f r e q_{l}\right| \%(f-1) \neq 0$ for all l then goto the next step. Otherwise try with another frequency.
2.3.3 Find all node(s) which are distance two apart from the node $\operatorname{Nodes}^{f}[\mathrm{i}]$ where the frequency is assigned. Let p_{1} be the number of nodes and freq $_{l_{1}}\left(0 \leq l_{1} \leq\right.$ $\left.p_{1}-1\right)$ is assigned on the l_{1} th node. If $\mid \mathrm{j}-$ freq $_{l_{1}} \mid \geq s_{2}$ for all l_{1}, then assign the frequency j on node Nodes ${ }^{f}[\mathrm{i}]$. Otherwise try with another frequency. If assignment of a node is done then assign the frequency to the next node.

\}

end
Remark: In the above algorithm in step 2.2 while we are using frequency $f=s_{0}$ or more, different types of frequency assignment is possible. We take such an assignment that we can assign frequency on the maximum number of nodes and nodes selected by the procedure Find_Nodes_Using_f_Frequency in the network. When $s_{1}=2 s_{2}$, we don't take step 2.3.3.

Example 2: In Example 1 the nodes selected by Find_Nodes_Using_f_Frequency are \{11, $10,9,8,7,6,13,12\}$. One possible confilct free assignment is shown in the above figure. Here we have used $f=s_{0}$ frequency channels. 0 -th frequency channel is assigned to the node 11, 2-nd frequency channel is assigned to the node 10,4 -th frequency channel is assigned to the node 9 , 1 -st frequency channel is assigned to the node 8,3 -rd frequency channel is assigned to the node 7 . Then at the node 6,13 and 12 we are reusing 0 -th, 2 -nd and 4 -th frequency channels respectively, since we have considered the network is a 2 -band buffering system. $\{0,3,1,4,2,0,3,1\}$ this is also one possible confilct free assignment.

3.5.3 Frequency Reuse Algorithm

When the frequency assignment on the set of nodes return by the algorithm Find_Nodes_Using_f_Frequ is done, next we find a set of nodes(if possible) in the network where we can reuse the frequency channels and find its assignments. It is not always possible that we can find a set of nodes(where frequency reuse is possible), this selection of nodes depends on the previous selection of nodes.
Algorithm: Frequency_Reuse
Input: The nodes Nodes ${ }^{f}[]$ return by the algorithm Forward_Search or Backward_Search and the frequency assignmentassignment[] on that nodes returned the algorithm Assignment_On_the_ 1 and n number of nodes. Frequency separation constraints s_{0}, s_{1}, s_{2}.
Output: Node(s) reuseNodes ${ }^{f}[]$ and their conflict free frequency assignment.
begin
Step 1: Take the middle most node from the set $\operatorname{Node}^{f}[]$ and v be that node. Find all nodes which are d distance apart from the node v. When $f=s_{0}$, we take $d=2$ and when $f>s_{0}$ we take $d=1$. Let A_{d} be the set of nodes which are d distance apart from the node v.
Step 2: For each node v_{1} in the set A_{d} do the following:
Take the frequency j and check can we assign the frequency j on the node $v_{1}(0 \leq$ $j \leq f-1)$. If the frequency j is not possible to assign on the node v_{1} then try with
another frequency.
If frequency assignment is not possible on v_{1} then goto the next node in A_{d}.
end

Remark: In the above algorithm in step 1 we took $d=2$ because if we take the nodes which are one distance apart from the node v then they may form a triangle there. But we know that while we are using frequency $f=s_{0}$ then the path formed by the nodes does not contain any triangle. Thus to reduce the number of checking (the checking is whether $j^{\text {th }}$ frequency assignment on $i^{\text {th }}$ node is valid or not), we have taken $d=2$.

Example 3: In Example 2 we have seen, $\{0,2,4,1,3,0,2,4\}$ is the frequency assignment on the nodes $\{11,10,9,8,7,6,13,12\}$. Now using Frequency_Reuse algorithm we found the nodes $\{18,19,20\}$ where we can reuse the frequencies if possible. And $\{4,2,0\}$ are the frequency assignments. $\{18,19,20\}$ these nodes form a chain. The first chain formed by the nodes $\{11,10,9,8,7,6,13,12\}$. The distance between first and second chain is two. This chains are called sparse chains.

At the end of Frequency_Reuse algorithm we have constructed the simpler sub-network with its node assignments. In the above network the sub-network is formed by $\{11,10,9,8$, $7,6,13,12,4,2,0\}$ nodes.
Analysis: For some demand vector $D,\{11,10,17,9,8,15,14,13,12\}$ be the set of nodes returned by the algorithm Find_Nodes_Using_f_Frequency when $f=s_{0}$. If we assign 0 -th frequency channel at node 11, 2-nd frequency channel at node 10 and 4 -th frequency channel at node 17 then we can not assign any frequency channel to the node 9 . Rest of the frequency assignment on the nodes are shown in Fig.1. Hence we do not prefer this type of assignment.

Fig. 1
If we assign 0 -th frequency channel at node 11,3 -rd frequency channel at node 10 and 1 -st frequency channel at node 17 then $\{0,3,1,5,2,0,3,1,4\}$ is the frequency assignment on the linear chain. Now applying algorithm Frequency_Reuse, we can assign the frequency channel 4 to the nodes 0 and 19. So we take such an assignment that we can assign frequency channel to the maximum number of nodes.

Fig. 2

3.5.4 Weight Finding Algorithm

Once we have found the set of nodes and its assignments, we should find the weight corresponding to the set of nodes i.e. how many times we take the same set of nodes and its assignments. Using the below algorithm we find the weight $\left(\omega_{i}\right)$ at $i^{t h}$ step.

Algoithm : Find_Weight_At_ith_Stage
Input: Nodes[], the set of nodes returned by the algorithm Find_Nodes_Using_f_Frequency and n is number of nodes. Demand vector at ith step.
Output: weight $\left(\omega_{i}\right)$, is the weight at the i th step.
begin

Step 1:

```
for(i=0;i<n-1;i++)
{
```

1.1 Let d_{1} and d_{2} are the first maximum and second maximum demand respectively of the neighbors of Nodes $[i]$.
If any node has only one neighbor then put $d_{2}=0$.
1.2 Calculate $d=d_{1}-d_{2}$, and $W[i]=d$.
\}
Step 2: Find the minimum number in the array $W[]$ other than zero and let it be $N_{\text {min }}$.
Step 3: return $\left(N_{\min }+1\right)$ is the weight at the i th step. end

Example 4: In Example 1 the nodes selected by Find_Nodes_Using_f_Frequency are \{11, $10,9,8,7,6,13,12\}$. For each node in the set we find maximum and second maximum of the backward neighbor of that node and calculate their absolute difference. The absolute difference set is $\{28,10,15,10,5,5,20\}$. Now 5 is the minimum number in this set. So the weight $\left(\omega_{i}^{\left(s_{0}\right)}\right)=5+1=6$. weight is weight corresponding to the set of nodes.

3.5.5 Iteration finding Algorithms:

Upto this stage we have done the followings:

1. found a set of nodes using f frequency channel.
2. assiged the frequencies to the nodes.
3. checked the further frequency reuse is possible or not.
4. found wight i.e., once we have found a set of nodes and their assignments then how many times we can repeat the assignment on the same set of nodes.

Let V be the set of nodes of the simple sub-network. Let v_{1} and v_{2} be two nodes where the maximum and minimum frequency channel is assigned. If the demand is more than one then the channel assignment in the second round and onwards, starting from node v_{1} again and following the same order as it was in first round.
In the first step what could be the minimum value of f. Minimum value of $f=s_{0}$ for avoiding co-site channel interferences.

One trivial question is that how many times we can choose $f=s_{0}$. Similarly how many times we can choose $f=s_{0}+1$ and so on.
Using the algorithm Iteration_For_s s_{0} we find how any times we take $f=s_{0}$.

Must Node: Must node is a node in the network, while we are constructing a linear chain in the node-finding algorithm, the first node chosen by the node-finding algorithm the chain contains a triangle.

In the above figure node 11 is the maximum demand node. We have choosen the paths from node 11. At node 17 first form the triangle. If a triangle is in the chain of length s_{0} then minimum bandwidth $s_{0}+1$. We take $f=s_{0}$ until demand of node 17 and node 11 are equal. If we do not take these two nodes together then one node demand will be more that another. So we need one more iteration to assign the frequency to maximum demand node for that we have to use minimum s_{0} frequency channel. When demand of node 11 and 17 are equal then we have to use frequency channel $f=s_{0}+1$. And each step we have to include node 17.

Algorithm: Iteration_For_s s_{0}
Input: Demand vector D, must node must_node and maximum demand node Max_Demand_Node. Output: α_{1}, number of times $f=s_{0}$.
begin
Step 1: Find the maximum demand node in the neighbor of must_node. If Max_Demand_Node belonging to the neighbor of must node, do not take that node. Let $n_{\max }$ be the maximum demand node and $d_{\text {max }}$ be its demand.
Step 2: Calculate difference between must node demand and $d_{\max }$ i.e $\operatorname{diff}=d_{\max }-D[$ must_node]. Again calculate difference between maximum demand (corresponding to maximum demand node) and $d_{\max }$ i.e $k=D\left[\right.$ Max_Demand_Node] - $d_{\text {max }}$.
Step 3: Calculate $T=\frac{\operatorname{diff}}{2}+\operatorname{int}\left(\frac{k}{2}\right) \times 2$, where $\operatorname{int}(x)$ is the integer part of x.
Step 4: Return T.
end

After α_{1} iteration the structure of the demand vector is shown in the above figure. At this stage we are using $f=s_{0}+1$. When we are choosing the nodes, if node 4 is include then node 11, 4, 17, 9 formed two consecutive triangle. Then we have to take $f=s_{0}+2$. Then by below algorithm we find how many times we take $f=s_{0}+1$.
Algorithm: Iteration_For_(f_{2})
Input: Demand vector D^{\prime} after α_{1} iteration and must node must_node.
Output: α_{2}, how many times $f=s_{0}+1$.

begin

Step 1: Find first maximum and second maximum demand node in the neighbor of must node such that these three nodes forms a triangle. Let these three nodes be v_{1}, v_{2}, v_{3}.
Step 2: Let $w_{1}, w_{2}, \ldots w_{k}$ be the neighboring nodes of the triangle. Let $d_{\max }=\max _{1 \leq i \leq k} D^{\prime}\left[w_{i}\right]$.
Step 3: Let $d_{\text {max }}^{\prime}=\min _{1 \leq i \leq 3} D^{\prime}\left[v_{i}\right]$.
Step 4: Return $\operatorname{int}\left(\frac{d_{\text {max }}^{\prime}-\bar{d}_{\text {max }}}{2}\right)+1$.
end

After $\alpha_{1}+\alpha_{2}$ iteration the structure of the network is shown in the above figure. We take the frequency $f=s_{0}+1$ until the demand of maximum demand node becomes zero.

Algorithm: Iteration_For_(f_{3})
Input: Demand vector $D^{\prime \prime}$ after α_{2} iteration and must node must_node.
Output: α_{3}, how many times $f=s_{0}+2$.
begin
Step 1: Return $\operatorname{int}\left(\frac{D^{\prime \prime}[\text { must_node }]}{2}\right)$.
end
According to our initial strategy we will find a set of nodes using frequency f and frequency assignment on the nodes. Once we find the set of nodes and its frequency assignments then we can find how many times we repeat this assignments on the nodes. By weight finding algorithm, we can find the weight corresponding to the particular set of nodes. We have solved the problem how many times we use frequency $f=f_{j}(1 \leq j \leq 3), f_{j}=s_{0}+j-1$. By the algorithm Iteration_For_ $\left(f_{j}\right)$, we can find number of times we use frequency f.
Let α_{j} be the number of times we use frequency $f=f_{j}$. Let $n_{i}{ }^{f_{j}}$ be the number nodes selected at i-th step and $V_{i}^{\left(f_{j}\right)}$ be the node set.
$V_{i}^{\left(f_{j}\right)}=\left\{V_{i}^{\left(f_{j}\right)}\left(k_{1}\right), V_{i}^{\left(f_{j}\right)}\left(k_{2}\right), \ldots, V_{i}^{\left(f_{j}\right)}\left(k_{n_{i}} f_{j}\right)\right\}$.
For a particular i and $j, \omega_{i}{ }^{f_{j}}$ be the weight at the i-th step corresponding to the node set $V_{i}^{\left(f_{j}\right)}$.

Algorithm: Preprocessing

Input: Demand vector D, distance matrix $D_{\text {matrix }}$ and forward and backward neighbor of each node. Frequency separation constraints s_{0}, s_{1}, s_{2}.
Output: A set of nodes $V_{i}^{\left(f_{j}\right)}$ and their frequency assignments $A_{i}^{\left(f_{j}\right)}, 1 \leq i \leq \alpha_{j}$ for $1 \leq j \leq 3$. $V_{i}^{\left(f_{j}\right)}\left(k_{f_{j}}\right)$ is the $k_{f_{j}}$ th node selected at i-th step while we are using frquency $f=f_{j}$ and $A_{i}{ }^{\left(f_{j}\right)}\left(k_{f_{j}}\right)$ is the frequency assignment on that node $\left(1 \leq k_{f_{j}} \leq n_{i}{ }^{\left(f_{j}\right)}\right)$. begin

Step 1: if $\left(s_{1}=s_{2}\right)$
\{

1. while $(D[$ Max_Demand_Node $] \neq 0)\{$
1.1 Set $f=s_{0}$.
1.2 call the procedure Find_Nodes_Using_f_Frequency.
1.2.1 let $V_{i}^{\left(s_{0}\right)}$ be the set of nodes and $n_{i}{ }^{f}$ be the number of nodes.
1.2.2 call the procedure Assignment_On_the_Nodes and $A_{i}{ }^{(f)}$ be the frequency assignment on the nodes.
1.2.3 call the procedure Frequency_Reuse, let $R_{i}{ }^{(f)}$ be the set of nodes, $R A_{i}{ }^{(f)}$ be the corresponding assignment of the nodes and $m_{i}^{(f)}$ be the number of nodes.
1.2.4 call the procedure Find_Weight_At_ith_Stage to find weight. Let $\omega_{i}{ }^{f}$ be the weight.
1.2.5 decrease the demands by $1 \omega_{i}{ }^{f}$ times, for all nodes in the set $V_{i}{ }^{(f)} \cup R_{i}{ }^{(f)}$.
\}
\}
Step 2: if $\left(s_{2} \leq s_{1} \leq 2 s_{2}\right.$ or $\left.s_{1} \geq 2 s_{2}\right)\{$
2. call the procedure Find_Nodes_Using_f_Frequency with $f=s_{0}$.
1.1 let $V_{1}^{\left(s_{0}\right)}$ be the set of nodes and $n_{1}^{s_{0}}$ be the number of nodes.
1.2 call the procedure Assignment_On_the_Nodes and $A_{1}{ }^{\left(s_{0}\right)}$ be the frequency assignment on the nodes.
1.3 call the procedure Frequency_Reuse, let $R_{1}{ }^{\left(s_{0}\right)}$ be the set of nodes, $R A_{1}{ }^{\left(s_{0}\right)}$ be the corresponding assignment of the nodes and $m_{1}{ }^{\left(s_{0}\right)}$ be the number of nodes.
1.4 call the procedure Find_Weight_At_ith_Stage to find weight. Let $\omega_{1}{ }^{1}$ be the weight.
1.5 decrease the demands by $1 \omega_{1}{ }^{0}$ times, for all nodes in the set $V_{1}{ }^{\left(s_{0}\right)} \cup R_{1}{ }^{\left(s_{0}\right)}$.
3. call the procedure Iteration_For_ $\left(f_{1}\right)$, let α_{1} be the number of times $f_{1}=s_{0}$.
4. For $\mathrm{i}=2$ to $\alpha_{1}+1$ do the following:
3.1 call the procedure Find_Nodes_Using_f_Frequency, let $n_{i}{ }^{f_{1}}$ be the number of nodes and $V_{i}^{\left(f_{1}\right)}$ be the set of nodes.
3.2 do the frequency assignment by the algorithm Assignment_On_the_Nodes and $A_{i}{ }^{\left(f_{1}\right)}$ be the frequency assignment on the nodes.
3.3 call the procedure Frequency_Reuse, let $R_{i}{ }^{\left(f_{1}\right)}$ be the set of nodes, $R A_{i}{ }^{\left(f_{1}\right)}$ be the corresponding assignment of the nodes and $m_{i}{ }^{\left(f_{1}\right)}$. be the number of nodes.
3.4 call the procedure Find_Weight_At_ith_Stage, let $\omega_{i}{ }^{1}$ be the weight.
3.5 decrease the demands by $1 \omega_{i}{ }^{f_{1}}$ times, for all the nodes in the set $V_{i}{ }^{\left(f_{1}\right)} \cup R_{i}{ }^{\left(f_{1}\right)}$.
5. call the procedure Iteration_For_ $\left(f_{2}\right)$, let α_{2} be the number of times $f_{2}=s_{0}+1$.
6. For $\mathrm{i}=1$ to α_{2} do the following
5.1 call the procedure Find_Nodes_Using_f_Frequency, let $n_{i}{ }^{f_{2}}$ be the number of nodes and $V_{i}{ }^{\left(f_{2}\right)}$ be the set of nodes.
5.2 do the frequency assignment by the algorithm Assignment_On_the_Nodes and $A_{i}{ }^{\left(f_{2}\right)}$ be the frequency assignment on the nodes.
5.3 call the procedure Frequency_Reuse, let $R_{i}{ }^{\left(f_{2}\right)}$ be the set of nodes, $R A_{i}{ }^{\left(f_{2}\right)}$ be the corresponding assignment of the nodes and $m_{i}{ }^{\left(f_{2}\right)}$ be the number of nodes.
5.4 call the procedure Find_Weight_At_ith_Stage, let $\omega_{i}{ }^{2}$ be the weight.
5.5 decrease the demands by $1 \omega_{i}{ }^{2}$ times, for all the nodes in the set $V_{i}^{\left(f_{2}\right)} \cup R_{i}{ }^{\left(f_{2}\right)}$.
7. call the procedure Iteration_For_(f_{3}), let α_{3} be the number of times $f_{3}=s_{0}+2$.
8. For $\mathrm{i}=1$ to α_{3} do the following
7.1 call the procedure Find_Nodes_Using_f_Frequency, let $n_{i}{ }^{f_{3}}$ be the number of nodes and $V_{i}{ }^{\left(f_{3}\right)}$ be the set of nodes.
7.2 do the frequency assignment by the algorithm Assignment_On_the_Nodes and $A_{i}{ }^{\left(f_{3}\right)}$ be the frequency assignment on the nodes.
7.3 call the procedure Frequency_Reuse, let $R_{i}{ }^{\left(f_{3}\right)}$ be the set of nodes, $R A_{i}{ }^{\left(f_{3}\right)}$ be the corresponding assignment of the nodes and $m_{i}{ }^{\left(f_{3}\right)}$ be the number of nodes.
7.4 call the procedure Find_Weight_At_ith_Stage, let omega ${ }_{i}{ }^{3}$ be the weight.
7.5 decrease the demands by $1 \omega_{i}^{f_{3}}$ times, for all the nodes in the set $V_{i}^{\left(f_{3}\right)} \cup R_{i}^{\left(f_{3}\right)}$.
9. return total number of iteration $1+\sum_{1 \leq j \leq 3} \alpha_{j}$
\}
end

Once we have done proeprocessing then these results are available:

1) the set of nodes $A_{i}{ }^{\left(f_{j}\right)} \cup R_{i}{ }^{\left(f_{j}\right)}$ and number of nodes $n_{i}{ }^{f_{j}}+m_{i}{ }^{f_{j}}$ for $1 \leq j \leq 3$;
2) their frequency assignments $A_{i}{ }^{\left(f_{j}\right)} \cup R A_{i}{ }^{\left({ }_{j}\right)}$;
3) weight vector ω.

Now we will do the final assignment of the nodes. In this stage we take the nodes in this manner: the nodes which we have found in preprocessing stage at the last step we take those set of nodes in the first stage and we find is there any other node(s) where the frequency assignment is possible. So we start with maximum value of f that we have used at preprocessing stage and then we decrease the value of f by 1 until $f=s_{0}$.

After $1+\sum_{1 \leq j \leq 3} \alpha_{j}$ iterations, if there is any node with non-zero demand, we call that nodes are isolated node set(INS).
Algorithm: Final_Assignment_On_Nodes
Input: $V_{i}{ }^{\left(f_{j}\right)}$ set of nodes, $A_{i}{ }^{\left(f_{j}\right)}(1 \leq j \leq 3)$ are the assignments on the nodes and $n_{i}{ }^{f_{j}}$ number of nodes in each set $i, 1 \leq i \leq \alpha 1 \leq j \leq 3$. Weight vector ω and total number of iteration α. D initial demand vector.

Output: $F S_{i}{ }^{\left(f_{j}\right)}$ set of nodes and $\eta_{i}{ }^{f_{j}}$ number of nodes. $F A_{i}{ }^{\left(f_{j}\right)}$ be the corresponding assignment on the nodes $(1 \leq i \leq \alpha 1 \leq j \leq 3) . I N S_{j_{1}}{ }^{f}$ isolated nodes and $I N A_{j_{1}}{ }^{f}$ their assignments, $\xi_{j_{1}}{ }^{f}$ be the number of nodes ($1 \leq j_{1} \leq d_{\text {max }}$).
begin
Step 1: For each $j(3 \geq j \geq 1)$ do the following:

1. For each $i=\alpha_{j}$ to 1 , do the following:
1.1 call the procedure Frequency_Reuse with input $V_{i}^{\left(f_{j}\right)}, A_{i}^{\left(f_{j}\right)}$ and $f=f_{j}$.
1.2 let $R S_{i}{ }^{f_{j}}$ be the set of nodes and $R S A_{i}{ }^{f_{j}}$ be their assignments. $\beta_{i}{ }^{f_{j}}$ be the number of nodes.
$1.3 F S_{i}^{\left(f_{j}\right)}=V_{i}^{\left(f_{j}\right)} \cup R S_{i}{ }^{f_{j}}$.is
1.4 $F A_{i}{ }^{\left(f_{j}\right)}=A_{i}{ }^{\left(f_{j}\right)} \cup R S A_{i}{ }^{f_{j}}$ and $\eta_{i}{ }^{f_{j}}=n_{i}{ }^{f_{j}}+\beta_{i}{ }^{f_{j}}$.
1.5 decrease the demand by $1 \omega_{i}{ }^{f_{j}}$ times, for all the nodes in the set $F S_{i}{ }^{\left(f_{j}\right)}$.

Step 2: repeat the steps from 1.1 to 1.5 for the set of nodes $V_{1}{ }^{\left(s_{0}\right)}$ with weight $\omega_{1}{ }^{s_{0}}$.
Step 3: If $D[i] \neq 0 \forall i$, then take non-zero demand nodes.

1. find maximum demand among all non-zero demand nodes and let $d_{\max }$ be the maximum demand.
2. for $j=1$ to $d_{\max }$ do the following:
2.1 let $I N S_{j_{1}}{ }^{f}$ be the nodes. Check the chain formed by the nodes contains any triangle or not.
2.2 if chain formed by the nodes contains any triangle then use frequency $f=s_{0}$. If the chain contains two consecutive triangle or a quadrilateral then use frequency $f=s_{0}+1$.
2.3 call the procedure Assignment_On_The_Nodes with input $I N S_{j_{1}}{ }^{f}$. Let $I N A_{j_{1}}{ }^{f}$ be the assignments.
2.4 call the procedure Frequency_Reuse with input $I N S_{j_{1}}{ }^{f}, I N A_{j_{1}}{ }^{f}$ and f. Let $S_{j_{1}}{ }^{f}$ be the nodes and $A_{j_{1}}{ }^{f}$ be their assignments returned by the algorithm Frequency_Reuse.Let $\xi_{j_{1}}{ }^{f}$ be the number of nodes.
2.5 $I N S_{j_{1}}{ }^{f}=I N S_{j_{1}}{ }^{f} \cup S_{j_{1}}{ }^{f}$.
$2.6 I N A_{j_{1}}{ }^{f}=I N A_{j_{1}}{ }^{f} \cup A_{j_{1}}{ }^{f}$.
end
Algorithm: Arrangement_Of_Frequencies
Input: $\left\{F S_{i}{ }^{\left(f_{j}\right)}\right\},\left\{F A_{i}^{\left(f_{j}\right)}\right\}$ and $\eta_{i}{ }^{f_{j}}(1 \leq i \leq \alpha 1 \leq j \leq 3) . I N S_{j_{1}}{ }^{f}$ isolated nodes,
$I N A_{j_{1}}{ }^{f}$ their assignments $\left(1 \leq j_{1} \leq d_{\max }\right)$ and $\xi_{j_{1}}{ }^{f}$ number of nodes.
Output: A conflict free assignment of the network and required bandwidth B.
begin
Step 1: Set $B=0$.
Step 2: For each $j(3 \geq l \geq 1)$ do the following:
For each $i=\alpha_{j}$ to 1 , do the following:
1 assign the frequency channel $F A_{i}^{\left(f_{j}\right)}(t)+B$ to the node $F S_{i}^{\left(f_{j}\right)}(t)$ until its demand exceeds, for $0 \leq t \leq \eta_{i}{ }^{f_{j}}-1$.
2 repeat the above step $\omega_{i} f_{j}$ times and each time change $B=B+f_{j}$.
Step 3: For each $j_{1}=1$ to $d_{\max }$ do the following:
3. assign the frequency channel $I N A_{j_{1}}{ }^{f}(k)+B$ to the node $I N S_{j_{1}}{ }^{f}(k)$ for $0 \leq k \leq \xi_{i}{ }^{f}-1$.
4. $B=B+f$.

Step 4: return B, number of frequency channel. end

Chapter 4

Simulation Results

In this chapter we will take eight benchmark instances and show the results returned by our work. We take one most difficult problem and explain it step by step. Finally we would do the comparison between our approach and existing methods.

A set of benchmark problems has been defined on a hexagonal cellular network of 21 cells [3], [2].

D_{1}	8	25	8	8	8	15	18	52	77	28	13	15	31	15	36	57	25	8	10	13	8
D_{2}	5	5	5	8	12	25	30	25	30	40	40	45	20	30	25	15	15	30	20	20	25

In the above table D_{1}, D_{2} are two demand vectors of the hexagonal cellular network of 21 cells. Eight problems (problems 1-8) are in terms of the specific values of s_{0}, s_{1}, s_{2} and for the two-band buffering system and the corresponding demand vector used for each of them.

Problem	1	2	3	4	5	6	7	8
s_{0}	5	5	7	7	5	5	7	7
s_{1}	1	2	1	2	1	2	1	2
s_{2}	1	1	1	1	1	1	1	1
Demand	D_{1}	D_{1}	D_{1}	D_{1}	D_{2}	D_{2}	D_{2}	D_{2}

Problems 2 and 6 are most difficult ones. Now we describe the step by step solution to the problem 6 and present the complete result with 269 frequency channels.

4.1 Simulation Result for Problem 6:

In problem $6 s_{0}=5, s_{1}=2, s_{2}=1$ and D_{2} is the demand vector.
In Fig. 1 each node has a label of the form $[\mathrm{x}]$, where x is the demand of that node. These
are the initial demand of each node. Now using above algorithms we show the results step by step.

In the above network node 11 is the maximum demand node. $\{11,10,9,8,7,6,13,12\}$ these nodes are found by the algorithm Find_Nodes_Using_f_Frequency with $f=s_{0}=5$. The frequency assignment on the selected nodes are shown in the below table. Algorithm Frequency_Reuse selects $\{18,19,20\}$ these nodes along with their assignments. $\omega_{1}=6$ return by weight finding algorithm. Decrease the demands by ω_{1} to the selected set of nodes.

Fig. 2 shows the structure of the network after one iteration. Similarly $\{11,10,9,8,7,14,13,12\}$ these nodes are selected by the algorithm Find_Nodes_U sing_f_Frequency with $f=5$. Algorithm Frequency_Reuse select nodes $\{19,20\}$ along with their assignments. $\omega_{2}=2$. Decrease the demands by ω_{2} to the selected set of nodes.

Fig. 3 shows structure of the network after six iterations. Here $f=6$, in this stage the path formed by the nodes contains a triangle. Node 10, 17, 9 forms a triangle.

After four iterations, the above figure Fig. 4 shows the demand of each node. Here $f=7$.

Fig. 5 shows the stracture of the network after seven iteration. These nodes $\{3,9,11,17,20\}$ are isolated nodes. We do the assignments until all nodes demand equal to zero.

In the above table each row represents the frequency assignment on the selected nodes and ω_{i} represent the weight at the i-th step.
Each rows the nodes are selected by the algorithms Find_Nodes_Using_f_Frequency and Frequency_Reuse. The assignment is done by the algorithms Assignment_On_The_Nodes and Frequency_Reuse.

Table 4.1: Frequency Assignment Table at Preprocessing Stage

Nodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	ω_{i}
$F A_{1}{ }^{\left(s_{0}\right)}$							0	2	4	1	3	0	1	3					1	3	0	6
$F A_{2}{ }^{\left(s_{0}\right)}$								2	4	1	3	0	1	3	0					3	0	2
$F A_{3}{ }^{\left(s_{0}\right)}$						3	0	2	4	1	3	0	1						1	3	0	2
$F A_{4}{ }^{\left(s_{0}\right)}$								2	4	1	3	0	1	3	0					3	0	2
$F A_{5}{ }^{\left(s_{0}\right)}$						1	3	0	2		3	0	4				4	1	1			2
$F A_{6}{ }^{\left(s_{0}\right)}$						1	3		8	1	3	0	4		0	2					0	2
$F A_{7}{ }^{\left(s_{0}\right)}$						1	3	0	2		3	0	4	1	3		4	1				2
$F A_{8}{ }^{\left(s_{0}+1\right)}$	4								2	5	3	0	4	1	3	0		1		4		2
$F A_{9}{ }^{\left(s_{0}+1\right)}$	5					4	1		2	5	3	0			3	0		1		4		2
$F A_{10}{ }^{\left(s_{0}+1\right)}$	4					5			2	5	3	0		1	3	0		1		4		4
$F A_{11}{ }^{\left(s_{0}+1\right)}$		0	2			4	1	3		5	3	0			5			1	2		4	2
$F A_{12}{ }^{\left(s_{0}+1\right)}$		4					3	0	2	5	3	0		1				1	4			2
$F A_{13}{ }^{\left(s_{0}+2\right)}$		1			2	1				6	4	0		6	2	0	3	1	5			2
$F A_{14}{ }^{\left(s_{0}+2\right)}$					2	1	4			6	4	0		6	2	0	3	1	5			2
$F A_{15}{ }^{\left(s_{0}+2\right)}$				1	3	6	1	3	0	4		0		4		5	2	6	0			2
$F A_{16}{ }^{\left(s_{0}+2\right)}$			0	5		1	4				3	0		6	2		3	1	0			2
$F A_{17}{ }^{\left(s_{0}+2\right)}$			0		4	6				5	2	0		4	0		3				0	2
$F A_{18}{ }^{\left(s_{0}+2\right)}$				4	2		0	2		1		0					3	5			0	2
$F A_{19}{ }^{\left(s_{0}+2\right)}$					5			0		6	2	0						4			0	2
$F A_{20}{ }^{\left(s_{0}\right)}$				0						2		1						4			1	1
$F A_{21}{ }^{(4)}$				0						3								1				1

4.2 Comparison Of Results

In order to evaluate the performance of the algorithms for channel assignment problem, we should compare the lower bounds and execution time of the algorithms. Problems 2 and 6 are most difficult in literature. An efficient heuristic algorithm has been proposed in [7], which also produced non-optimal result for problems 2 and 6 with 463 and 273 channels, respectively. An efficient channel assignment algorithm has been proposed in [3], which produced optimal solution for problems 2 and 6 with execution time 60 sec and 72 sec respectively on an unloaded Sun Ultra 60 workstation. For problems 2 and 6 , the number of the frequency channel required by our algorithm is at most $5-6 \%$ more than the optimal solution and for other six benchmark instances procuced optimal solutions. The exact number of channel required by our algorithm for problems 2 and 6 are 440 and 269 respectively. The execution time of our algorithm is at most 50 milisecond on an HPxw8400 workstation.

Problem	1	2	3	4	5	6	7	8
Time:(msec)	21	45	31	31	8	12	8	8

Table 4.2: Performance Comparison

Problem	1	2	3	4	5	6	7	8
Lower bounds	$\mathbf{3 8 1}$	$\mathbf{4 2 7}$	$\mathbf{5 3 3}$	$\mathbf{5 3 3}$	$\mathbf{2 2 1}$	$\mathbf{2 5 3}$	$\mathbf{3 0 9}$	$\mathbf{3 0 9}$
Our approach	$\mathbf{3 8 1}$	$\mathbf{4 4 0}$	$\mathbf{5 3 3}$	$\mathbf{5 3 3}$	$\mathbf{2 2 1}$	$\mathbf{2 6 9}$	$\mathbf{3 0 9}$	$\mathbf{3 0 9}$
$(2003)[3]$	381	427	533	533	221	253	309	309
$(2001)[7]$	381	463	533	533	221	273	309	309
$(2001)[8]$	381	427	533	533	221	254	309	309
$(2000)[9]$	381	433	533	533	-	260	-	309
(1998) $[10]$	381	427	533	533	221	253	309	309
(1998)[11]	-	-	-	-	221	268	-	309
(1997)[12]	381	-	533	533	221	-	309	309
$(1997)[1]$	381	436	533	533	-	268	-	309
$(1996)[13]$	381	-	533	533	-	-	-	-
$(1996)[14]$	381	433	533	533	221	263	309	309
(1994)[15]	381	464	533	536	-	293		310
(1992)[16]	381	-	533	533	221	-	309	309
$(1989)[17]$	381	447	533	533	-	270	-	310

4.3 Conclusion

We have done the assignment of the network in few steps. First we break the whole network into simpler sub-networks. Next we have assigned frequency channel to these sub-networks with homogeneous demand. Finally all these homogeneous assignment of the appropriate sub-networks of the given network together constitute the non-homogeneous assignment of the original netwok.

The proposed algorithm is able to achive the near-optimal solution for the problems 2 and 6 and optimal solutions for the remaining of six benchmark instances with less than 50 milisecond. Hence this algorithm will be very useful to cope up with rapid fluctuation in demands on the nodes of a network due to handoff or heavy traffic situations, which could otherwise be different with the existing algorithms providing optimal solutions but requiring large execution time(20-30 seconds). Thus, while the existing optimal algorithms can be used for long-term channel assignment, our proposed algorithm may be used for short-term assignment to satisfying the channel demand very quickly, altough in a near-optimal way.

Table 4.3: Complete Channel Assignment for Problem 2

Table 4.4: Complete Channel Assignment for Problem 6

Bibliography

[1] C. W. Sung and W. S. Wong, "Sequential packing algorithm for channel assignment under cochannel and adjacent channel interference constraint," IEEE Transactions on Vehicular Technology, vol. 46, pp. 676-685, 1997.
[2] B. P. S. S. C. Ghosh and N. Das, "Coalesced cap:an improved technique for frequency assignment in cellular networks,," IEEE Trans. Veh. Technol., vol. vol. 55, no. 2, pp. 640-653, March. 2006.
[3] —_, "A new approach to efficient channel assignment for hexagonal cellular networks," Int. J. Foundations Comp. Sci., vol. vol.14, pp. 439-463, June 2003.
[4] D. Kunz, "Channel assignment for cellular radio using neural networks," IEEE Transactions on Vehicular Technology, vol. 40, pp. 188-193, 1991.
[5] B. P. S. S. C. Ghosh and N. Das, "Channel assignment using genetic algorithm based on geometric symmetry,"" IEEE Trans. Veh. Technol., vol. vol. 52, no. 4, pp. 860-875, Jul. 2003.
[6] -_, "Optimal channel assignment in cellular networks with non-homogeneous demands,," Technical Report CCSD/ACMU/03-2001.
[7] G. Chakraborty, "An efficient heuristic algorithm for channel assignment problem in cellular radio networks," Vehicular Technology, IEEE Transactions on, vol. 50, no. 6, pp. 1528-1539, Nov 2001.
[8] R. Battiti, A. Bertossi, and D. Cavallaro, "A randomized saturation degree heuristic for channel assignment in cellular radio networks," IEEE Transactions on Vehicular Technology, vol. 50, pp. 364-374, 2001.
[9] D.-W. Tcha, J.-H. Kwon, T.-J. Choi, and S.-H. Oh, "Perturbation-minimizing frequency assignment in a changing tdma/fdma cellular environment," IEEE Transactions on Vehicular Technology, vol. 49, no. 4, pp. 390-396, Mar. 2000.
[10] D. Beckmann and U. Killat, "A new strategy for the application of genetic algorithms to the channel-assignment problem," IEEE Transactions on Vehicular Technology, vol. 48, no. 4, pp. 1261-1269, Jul. 1999.
[11] C. Y. Ngo and V. O. K. Li, "Fixed channel assignment in cellular radio networks using a modified genetic algorithm," IEEE Transactions on Vehicular Technology, vol. 47, pp. 163-171, 1998.
[12] J.-S. Kim, S. Park, P. Dowd, and N. Nasrabadi, "Cellular radio channel assignment using a modified hopfield network," IEEE transactions on vehicular technology, vol. 46, no. 4, pp. 957-967, 1996.
[13] P. W. D. J. S. Kim, S. H. Park and N. M. Nasrabadi, "Channel assignment in cellular radio using genetic algorithm," Wireless Personal Commun., vol. vol.3, no. 3, pp. 273286, Aug. 1996.
[14] W.Wang and C. K. Rushforth, "An adaptive local-search algorithm for the channelassignment problem," IEEE Trans. Vehicular Technology, vol. vol. 45, no. 3, pp. 495466, Aug. 1996.
[15] T.-M. ko, "A frequency selective insertion strategy for fixed channel assignment," in Proc. 5th IEEE Int. Symp., pp. 311-314, Sept. 1994.
[16] N. Funabiki and Y. Takefuji, "A neural network parallel algorithm for channel assignment in cellular radio network," IEEE Trans. Vehicular Technology, vol. 41, pp. 430-437, Nov. 1992.
[17] R. J. K. N. Sivarajan and J. Ketchum, "Channel assignment in cellular radio," Proc. 39th IEEE Vehicular Technology Conf., pp. 846-850, May 1989.

