
Some Results on RC4

Abstract. In this paper, we have given a theoretical analysis of the key scheduling algorithm (KSA) of
RC4, where the nonlinear operation is swapping among the permutation bytes. We have come up with
explicit formulae for the probabilities with which the psuedo random index j and hence the permutaion
bytes are biased to the secret key at any stage before the first l + 1 rounds of the KSA, where l =
keylength. Theoretical proofs of these formulae had been left open since Roos’ work (1995)[27]. But
in 2008 Gautam Paul and Subhamoy Maitra[35] gave the first theoretical proof of the Roos’ bias. In
their work the analysis was based on the assumption that the pseudo random index j is uniformly
distributed over ZN at each round of KSA. In reality, this is actually not the case. The only thing that
is truely random in the whole of RC4 are the key bytes. In this paper, we have done the analysis based
on the assumption that only the key bytes are distributed uniformly over ZN . The formulae that we
got gives a better approximation of the expermental probabilities than result in [35].
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1 Introduction

RC4 is a synchronous stream cipher. RC4 was designed by Ron Rivest of RSA Security in
1987. While it is officially termed “Rivest Cipher 4”, the RC acronym is alternatively under-
stood to stand for “Ron’s Code”, thus RC4 = Ron’s code #4 or Rivest’s code # 4 RC4 was
initially a trade secret, but in September 1994 a description of it was anonymously posted to
the Cypherpunks mailing list which invoked the external analysisis of RC4. The name “RC4”
is trademarked, however. RC4 is often referred to as “ARCFOUR” or “ARC4”(meaning Al-
leged RC4, because RSA has never officially released the algorithm), to avoid possible trade-
mark problems. RC4 is one of the most widely-used software stream cipher and is used in
popular protocols such as Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
(to protect Internet traffic), Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access
(WPA) (to secure wireless networks). It is also used in Microsoft Windows, Lotus Notes,
Apple AOCE, Oracle Secure SQL etc. Though a variety of other stream ciphers have been
proposed after RC4, it is still the most popular stream cipher algorithm due to its simplicity,
ease of implementation, speed and efficiency. The algorithm can be stated in less than ten
lines, yet after two decades of analysis its strengths and weaknesses are of great interest to
the community.

The RC4 algorithm uses a state array or a S-Box S = (S[0], . . . , S[N − 1]) of length N.
Typically, N = 256. S is initialized as the identity permutation, i.e., S[y] = y for 0 ≤ y ≤ N−1.
A secret key k of size l bytes (typically, 5 ≤ l ≤ 16) is used to scramble this permutation.

The RC4 cipher has two components, namely, the Key Scheduling Algorithm (KSA) and
the Pseudo-Random Generation Algorithm (PRGA). The KSA takes as input the secret key
k and the state array S and turns into a random permutation S of 0, 1, . . . , N−1. The random
permutation obtained after the completion of KSA forms the input to the PRGA which then
uses this permutation to generate pseudo-random keystream bytes. The keystream output



byte z is bitwise XOR-ed with the message byte to generate the ciphertext byte which is
then send through the channel. On the other end the receiver has in his disposal a similar
synchronised RC4 running wiht the same key k. The receiver upon receiving the cipher text
z again bitwise XOR’s with the keystream byte generated at his/her end to get back the
message byte.

The index i in both the algorithm above is normally termed as the deterministic index
of RC4 whereas the index j is termed as the pseudo-random index of RC4.

KSA()
Initialization:

for i from 0 to N-1
S[i] := i

endfor
j := 0

Scrambling:
for i from 0 to N-1

j := (j + S[i] + key[i mod l]) mod N
swap(&S[i],&S[j])

endfor

PRGA()
Initialization:

i := 0
j := 0

Keystream Generation Loop:
while GeneratingOutput:

i := (i + 1) mod N
j := (j + S[i]) mod N
swap(&S[i],&S[j])
output S[(S[i] + S[j]) mod N]

endwhile

2 A Different Probabilistic Approach For The Analysis Of The
Key Scheduling Algorithm

2.1 Notations

Let, Sy+1 be the permutation and jy+1 be the value of the pseudo-random index after the
(y + 1)th round of the RC4 KSA, i.e, the round when the deterministic index i takes the
value y, where y ∈ {0, 1, · · · , N − 1} . Thus, SN denotes the final state after the completion
of RC4 KSA. We denote the initial state by S0 and the initial value 0 of j by j0. Further let,
ZN denote the set {0, 1, · · · , N − 1} .

2.2 Our Work

In the literatures that we have went through all the probability analysis that is done on the
KSA of RC4 is done based on the assumption that the pseudo-random index j can take all
possible N values at each round of the KSA independently, according to the uniform distri-
bution. But in reality this is not the case for RC4. This assumtion has inherent drawbacks as
it considers events and hence their probabilities, in cases where those events actually never
occur. Thus increasing the search space as one tries to implement such kind of theoretical
biases.

In this section we discuss some of the previously known result but without the as-
sumption of the pseudo-random index j being uniformly distributed. Instead we calcu-
late the probabilities based on the fact that the key bytes are uniformly distributed over



ZN = {0, 1, · · · , N − 1}(where we identify the congruence class i with i). Since the only
thing that is truely random in the whole of RC4 are the key bytes. Which in effect means
that one can manipulate upto the lth round of KSA, by choosing different key bytes. After
which everything is deterministic. Thus the idea behind this discussion is to come out with
some results which are soley dependent on the key bytes and thus giving a better probabilistic
analysis of RC4.

Theorem 1. During KSA,

1. Sy[y] = y can only happen if till the (y + 1)th round the index j does not hit y and
2. if Sy[y] 6= y then Sy[y] < y.

Proof. 1. The other possibility is that the index j hits y first, say in the (α + 1)th round
α < y and after that it is swapped again in an intermediate round, i.e, between (α + 1)th

round and (y + 1)th round. This can happen more that once.

Let, Sα[α] = β, then after (α + 1)th round

Sα+1[α] = y, Sα+1[y] = β.

Now, after the (α + 1)th round the index i takes values greater than α. So, to have after any
(γ + 1)th (α < γ < y) round Sγ+1[y] = y, j should hit α in the (γ + 1)th. In that case after
(γ + 1)th round

Sγ+1[α] = Sγ[γ]

Sγ+1[γ] = y.

Now this can happen more than once where after each such step Sγ+1[γ] = y.. So the only
way Sy[y] may be equal to y is when γ = y− 1 but in that case Sy[y− 1] = y. Thus, leading
to the conclusion that Sy[y] 6= y. Hence the theorem.

2. Suppose if possible Sy[y] = A > y. Now before (y + 1)th round the value of the determin-
istic index i was < y which implies that there must have been an index α < y such that
Sα[α] = A > y > α impling that there exists a β < α < y such that Sβ[β] = A > y > α > β.
Now this argument can be continued infinitely many times. Thus, impling that the index i is
unbounded below which is a contradiction to the fact that minimum value of i is 0. Hence,
the theorem. �

Theorem 2. P (Sy[y] = y) =
(

N−1
N

)y

(y ≤ l).

Proof.

P (Sy[y] = y) = P (j1 6= y, · · · , jy 6= y) [By Theorem 1]

P (j1 6= y) = P (K[0] 6= y) =
(N − 1

N

)
.



Now,

jx =
x−1∑
m=1

Sm[m] +
x−1∑
m=0

K[m mod l] =
x−1∑
m=1

Sm[m] +
x−2∑
m=0

K[m mod l] + K[(x− 1) mod l].

Let,
∑x−1

m=1 Sm[m] +
∑x−2

m=0 K[m mod l] = αx.

Then “jx 6= y | j1 6= y, · · · , jx−1 6= y” ⇒ K[(x− 1) mod l] 6≡ (y − αx) mod N. Thus,

P (jx 6= y | j1 6= y, · · · , jx−1 6= y) = P
(
K[(x− 1) mod l] 6≡ (y − αx) mod N

)
=
(N − 1

N

)
.

Therefore,

P (Sy[y] = y) = P (j1 6= y, · · · , jy 6= y)

= P (j1 6= y) · P (j2 6= y | j1 6= y) · · ·P (jy | j1 6= y, · · · , jy−1 6= y)

= P (K[0] 6= y) · P (K[1] 6≡ (y − α2) mod N) · · ·

P (K[y − 1] 6≡ (y − αy) mod N)

=
(N − 1

N

)
·
(N − 1

N

)
· · ·
(N − 1

N

)
=
(N − 1

N

)y

. �

Theorem 3. P (S0[0] = 0; S1[1] = 1; · · · ; Sy[y] = y) =
(

(N−1)!
Ny(N−y−1)!

)
(y ≤ l).

Proof.

P (S0[0] = 0) = 1 [Since the initial permutation is the identity permutation in KSA]

Now,

P (S0[0] = 0; S1[1] = 1; · · · ; Sy[y] = y)

= P (; j1 6= 1; j1 6= 1, j2 6= 2; · · · ; j1 6= 1, · · · , jy 6= y) [by Theorem 1]

= P (j1 6= 1, · · · , j1 6= y; j2 6= 2, · · · , j2 6= y; · · · ; jy 6= y)

Now,

P (j1 6= 1, · · · , j1 6= y) = P (k[0] 6= 1, · · · , y) =
(N − y

N

)
.

Therefore,

P (jx 6= x, · · · , jx 6= y | j1 6= 1, · · · , j1 6= y; j2 6= 2, · · · , j2 6= y; · · · ;

jx−1 6= x− 1 · · · jx−1 6= y)

= P (K[x] 6≡ x− αx+1, · · · , y − αx+1) =
(N − (y − (x− 1))

N

)



where αx has the same meaning as in Theorem 2 and x ≤ y. Then from the chain rule we

get the required probability =
(

(N−1)!
Ny(N−y−1)!

)
�

Corollary 1. The event “jy+1 = y(y+1)
2

+
∑y

m=0 K[m mod l]” can occur if and only if the

event “S0[0] = 0; S1[1] = 1; · · · ; Sy[y] = y” occurs, where y is such that y(y+1)
2

≤ N and
(y+1)(y+2)

2
> N .

Proof. Let, Ay be the event “S0[0] = 0; S1[1] = 1; · · · ; Sy[y] = y” and Ey the event that

“jy+1 = y(y+1)
2

+
∑y

m=0 K[m mod l]”. Let, j′y+1 =
∑y

m=1 Sm[m]+
∑y

m=0 K[m mod l] where
atleast one Sm[m] 6= m. Now, the other possibility by which Ey can occur is if,

jy+1 ≡ j′y+1 mod N

⇒
y∑

m=1

Sm[m] ≡ y(y + 1)

2
mod N

Now, from the second part of Theorem 1 we get Sm[m] ≤ m, which imples that in j′y

y∑
m=1

Sm[m] =

ym∑
m=1

(im)nm

where
∑ym

m=1 nm = y and im ∈ {1, · · · , y} ∀m. Therefore,

ym∑
m=1

(im)nm + δN =
y(y + 1)

2
.

where δ ∈ N ∪ {0} . Clearly, if y(y+1)
2

≤ N then δ = 0 in which case
∑ym

m=1 (im)nm 6= y(y+1)
2

,
since for atleast one m, Sm[m] < m. �

According to the corollary 1 for N = 256 and l upto 22 (since 22.23
2

= 253 < 256 and 23.24
2

=

276 > 256) the event “jy+1 = y(y+1)
2

+
∑y

m=0 K[m mod l]” can occur if and only if “S0[0] =
0; S1[1] = 1; · · · ; Sy[y] = y”, where y ≤ l. Which implies that in lemma 1 of [35, section 2.1],
P (Ey | Ay) = 0 instead of 1/N, ∀ y ≤ l ≤ 22. Also the probability of Ay in lemma 1 of [35,
section 2.1] was calculated assuming that j takes values from ZN uniformly at random which
is not the case in KSA. Hence, the probability of the same event calculated as in Theorem
3 gives a more exact picture of what actually occurs during RC4 KSA.

Experimental Results : We here substantiate our above claims through experimental results,
which actually shows that our claim is indeed true. The following experimental results were
obtained by running RC4 KSA on one million randomly selected keys of length 16 bytes.



d Experimental Theorem 3 Mentioned Paper Diff. Diff.
col 2, col 3 col 2, col 4

5 0.942002 0.9426899 0.943204346 0.0006899 0.001202346
6 0.918577 0.920595605 0.921403419 0.002018605 0.002826419
7 0.893766 0.895423069 0.896607697 0.001657069 0.002841697
8 0.865494 0.867441098 0.869089214 0.001947098 0.003595214
9 0.834725 0.836945122 0.839143578 0.002220122 0.004418578
10 0.802510 0.804251953 0.807084699 0.001741953 0.004574699
11 0.768166 0.769694252 0.773239341 0.001528252 0.005073341
12 0.732340 0.733614834 0.737941633 0.001274834 0.005601633
13 0.694950 0.696360956 0.701527645 0.001410956 0.006577645
14 0.657209 0.658278716 0.664330183 0.001069716 0.007121183
15 0.618262 0.619707697 0.626673878 0.001445697 0.008411878
16 0.578868 0.580975966 0.588870698 0.002107966 0.010002698

Thus we can see that that the experimental results also seems to sugest that Theorem 3
actually gives a more accurate probability of the event.

Also, (N−l)×···×(N−1)
N i > 1

2

⇒ log(N − l) + · · ·+ log(N − 1)− l log(N) > −1

⇒ l
(

log(N − 1)− log(N)
)

> log(N − l) + · · ·+ log(N − 1)− l log(N) > −1

⇒ l
(

log(N)− log(N − 1)
)

< 1

⇒ l <
1(

log(N)− log(N − 1)
)

Now, for N = 256 and l <= 177, i.e, for all key of length < 177 the event “S0[0] = 0; S1[1] =
1; · · · ; Sl[l] = l” occurs with probability > 1

2
.

Thus we have the following corollary.

Corollary 2. For N = 256 and l ≤ 177, i.e, for all key of length ≤ 177 the event “S0[0] =
0; S1[1] = 1; · · · ; Sy[y] = y” (y ≤ l) occurs with probability > 1

2
. �

Here we also like to bring to the notice that after the lth round the probability of events
like “Sy[y] = y where y > l” is actually much more than what we find in the literature. For
example, consider the event “Sl+1[l + 1] = l + 1”. now for this event to occur it is sufficient
that “K[0] 6= l +1, k[0] 6≡ l +1− jl−Sl[l]; j2 6= l +1; · · · ; jl 6= l +1” event occurs thus giving



P (Sl+1[l + 1] = l + 1) =

(
N − 1

N

)l

; if jl = Sl[l] = 0 or jl + Sl[l] = N

=

(
N − 2

N

)(
N − 1

N

)l−1

; otherwise

which is much more than the
(

N−1
N

)l+1
which is what we get if we consider j to be uniformly

distributed over ZN .
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