
Analysis of Data Structures

for VLSI Layout Tools

Sandeep Kumar Dey

Reg. No. - CS0708

Supervisor: Professor Susmita Sur Kolay

July 16, 2009

Analysis of Data Structures
for VLSI Layout Tools

Report Submitted

by

Sandeep Kumar Dey

(Roll No: MTC0708)

As a Partial Fulfillment of Master of Technology (2007-2009)

in Computer Science

Under the Guidance of

Professor Susmita Sur Kolay

Indian Statistical Institute, Kolkata

203 B. T. Road,

Kolkata - 700108

July 2009

i

Indian Statistical Institute
Kolkata-700 108

CERTIFICATE

This is to certify that the thesis entitled “Analysis of Data Structures for
VLSI Layout Tools” is submitted in the partial fulfilment of the degree of M. Tech.
in Computer Science at Indian Statistical Institute, Kolkata. It is fully adequate, in
scope and quality as a dissertation for the required degree.

The thesis is a faithfully record of bonafide research work carried out by Sandeep
Kumar Dey under my supersion and guidance. It is further certified that no part
this thesis has been submitted to any other university or institute for the award of
any degree or diploma.

Professor Susmita Sur Kolay
(Supervisor)

Countersigned
(External Examiner)
Date:

ii

Acknowledgement

I feel privileged and take this opportunity to express my sincere gratitude to the
supervisor of this study, Prof. Susmita Sur Kolay. Her command over the area of
my work has been of great help for my analysis. She not only suggested directions
towards the solution of the problem but also helped me in all aspects including the
preparation of this manuscript and have also given me full freedom to think and work
independently. This work has been possible only because of her continuous sugges-
tions, inspiration, motivation and full freedom given to me to incorporate my ideas.
I also take this opportunity to thank all my teachers who have taught me in my M.
Tech. course. I am specially thankful to my teachers Dr. Arijit Bishnu, Prof. Sub-
has Nandy and Dr. Sandip Das for teaching me graph algorithms and geometric
algorithms which were very essential part of my dissertation. I am also thankful
to Subhasis-da, Debasis, Pritha-di, Arindam-da, Subhabrata, Sanjay, Santanu, So-
mindu, Aritra, Nargis, Kali, Mrinmoy, Pulak, Swarup and Chiranjit for motivating
me in my downtimes. I am specially thankful to Somindu, Aritra and Mrinmoy for
providing me resources like food, coffee whenever I felt hungry and laptop for unlim-
ited time when I needed it most. This helped me carry on my work uninterruptedly
and conveniently. My special thanks to my friends Subhasis-da, Subhabrata, Sanjay
and Santanu for their fruitful discussions on different algorithms and codes through-
out the thought process. And last but never the least, I thank my parents, sister
Papri, and my wife Ruchira for their endless support.

Place : Kolkata
Date : Sandeep Kumar Dey

iii

Abstract

An efficient layout data-structure is of great importance to design rule checking al-
gorithms, compaction algorithms, gridless area routing algorithms and many more
layout tools. The atomic operations for most of the layout tools are point searching,
area searching, neighbour searching, node searching and shadow searching. Nowa-
days, the trapezoidal corner stitching structure, whose point searching is O(N1/2),
is the most popular data structure used for the layout tools. The point searching is
O(logN) for the other popular tree based data-structures such as KD trees and Quad
trees, which is natural due to their construction. But tree based data structures does
not provide a fascinating solution to other atomic operations such as area searching
and neighbour searching. And the trapezoidal corner stitching structure wins over
tree based structures in the area searching and neighbour searching operations.
In this thesis, we propose a new data-structure for the atomic operations of layout
tools, which combines the trapezoidal corner stitching structure with a KD tree based
structure. We call this structure TBT corner stitching (Tree based Trapezoidal cor-
ner stitching). The point searching is O(logN), area and neighbour searching is O(n),
where N is total number of tiles in the layout and n is the number of tiles intersecting
the querry area or the number of neighbouring tiles of the query tiles. We will also
compare the complexity of point searching, area searching and neighbour searching
algorithms of tree based as well as corner stitch based layout data-structures with
our data-structure.

iv

Contents

1 Introduction 1

2 Corner Stitching 3
2.1 The Rectilinear Corner Stitch . 3

2.1.1 Point Searching Algorithm 5
2.1.2 Area Searching Algorithm . 5
2.1.3 Neighbour Searching Algorithm 6

2.2 The Trapezoidal Corner Stitch . 8
2.2.1 Point Searching Algorithm 9
2.2.2 Area Searching Algorithm . 10
2.2.3 Neighbour Searching Algorithm 11

3 Tree Based Data Structures 12
3.1 The Quad Tree . 12

3.1.1 Point Searching Algorithm 14
3.1.2 Area Searching Algorithm . 14
3.1.3 Neighbour Searching Algorithm 14

4 Partial Bin Based Hierarchical Corner Stitching 15
4.1 Bin Layer . 15
4.2 Point Searching Algorithm . 17
4.3 Area Searching/Enumeration . 17
4.4 Neighbour Searching/Enumeration 17

5 Tree Based Trapezoidal Corner Stitching 18
5.1 Implementation Details of the Data-Structure 18

5.1.1 Cornerstitch Layer . 18
5.1.2 Tree Layer . 19

5.2 Algorithms Implemented . 21
5.2.1 Point Searching . 22
5.2.2 Area Searching . 22
5.2.3 Neighbour Searching . 23
5.2.4 Insertion of a Tile . 23
5.2.5 Deletion of a Tile . 24

v

5.3 Work flow of the Code . 25

6 Comparative Study of Different Layout Data Structures 28
6.1 Time Complexity for Different Data-Structures 28
6.2 Space Complexity for Different Data-Structures 29

7 Conclusion 30

vi

List of Figures

1.1 All the layout tools shown directly access a common layout database 2

2.1 Every point in a corner-stitched plane is contained in exactly one tile.
In this case there are three solid tiles, and the rest of the plane is
covered by space tiles (dotted lines). The space tiles on the sides extend
to infinity. In general, a plane may contain many different types of
tiles. 4

2.2 In (a) it is illegal for two tiles of the same type to share a vertical edge.
In (b) the two tiles must be merged together since they have exactly
the same horizontal span. 4

2.3 The record describing each tile contains four pointers to other tile
records. The pointers are called corner stitches, since they point to
neighboring tiles at the lower-left and upper-right corners. The corner
stitches provide a form of two-dimensional sorting. They permit a
variety of geometrical operations to be performed efficiently, such as
searching an area or finding all the neighboring tiles on one side of a
given tile. 5

2.4 Example point search showing the tile enumeration order and traversal
of tile stitches. 6

2.5 Example area search showing the tile enumeration order and traversal
of tile stitches. 7

2.6 Example neighbour search showing the tile enumeration order and
traversal of tile stitches. 7

2.7 Nine trapezoid shapes are possible for tiles representing 45o layout. . 8
2.8 Example of trapezoidal corner stitching in a layout plane. 9
2.9 Example point search showing the tile enumeration order and traversal

of tile stitches. 9
2.10 Example area search showing the tile enumeration order and traversal

of tile stitches. 10
2.11 Example neighbour search showing the tile enumeration order and

traversal of tile stitches. 11

3.1 a) Two dimensional representation of a quad tree b) The corresponding
tree structure . 12

3.2 Tiles Intersecting Division lines . 13

vii

3.3 (a) Division of a line segment, (b) The corresponding binary tree . . 13

4.1 The configuration of PB Corner Stitching. 16
4.2 The operations of PB Corner Stitching. 16

5.1 The operations of TB Trapezoidal Corner Stitching. 19
5.2 An Example Layout containg all types of trapezoidal tiles 19
5.3 The tree structure for the Example layout in Figure 5.2 20
5.4 Connection between the tree structure and the corstitched tiles 21
5.5 Layout Data-Structures Construction 25
5.6 Point search, Area search and Neighbour search programs interacting

with the tree based trapezoidal data-structure 26

7.1 The operations of 3 - Layer Trapezoidal Corner Stitching. 30

viii

List of Tables

6.1 Comparion of Time Complexities . 28
6.2 Comparion of Space Complexities (in Bytes) 29

ix

Chapter 1

Introduction

VLSI designers have a number of layout tools at their disposal now a days. They
have a graphical editor to enter and modify their layouts, a design rule checker to
verify the geometrical correctness of their layouts, an extractor to permit simulating
and verifying the timing of their layouts, and a postprocessor to create the required
fabrication masks from symbolic layouts. Some layout tools also have a compactor
to quickly generate design rule correct layouts, and placement and routing tools to
generate floorplans and interconnecting wires. Traditionally, each of these layout
tools operates in its own environment, employing dedicated layout data-structures
and often a dedicated user interface. If these tools are integrated together, it is
usually on the surface, namely the user sees what appears to be a common interface.
Although to the user such a tool system provides the functionality and integration
he needs, to the CAD developer it is difficult to maintain and to build upon for the
future.
What is needed is an integrated layout system which provides complete functionality,
is tightly integrated, is fast and efficient, and is easy to build upon. This requires
the entire system to rely on a common layout database. Moreover, the database
should be based on a data structure which supports efficient and fast access and
search operations for all the tools in the system.
This thesis presents such a data structure namely, tree based trapezoidal corner
stitching(TBT corner stitching) suitable for representing 45o layout and performs
efficiently the point, area and the neighbour search operations. We could have used
tree based data structures such as KD trees, Quad trees but they lack ability to do
efficient area and neighbour searching when compared to corner stitching structures.
If we consider only corner stitching structures, they lack ability to do efficient point
searching when compared to tree based data structures.
The desired layout data structure should lend itself to optimal access and update
algorithms as needed by a layout editor, design rule checker, compactor, and extrac-
tor. A layout editor requires access operations such as selecting layout objects at a
point (point search), selecting all layout objects in a rectangular area (area search),
and selecting all layout objects electrically connected to an object (node search).
Furthermore, an editor requires update operations such as inserting and deleting

1

objects in the database. Since a layout editor is an interactive tool, all these op-
erations must be fast. Frequently used “batch” tools, such as design rule checking,
compaction, and extraction, must also have fast database operations. A design rule
checker requires finding the context of layout objects (neighbor search) and searching
the possibility of design rule violations near objects (area search). A compactor also
considers design rules and the context of layout objects (neighbour search). It also
must find the closest interacting (in the sense of design rules) objects to each object
(unbounded area search or shadow search). An extractor requires identifying circuit
nodes in a layout (node search) and calculating circuit perimeter (neighbor search)
and area (area search) parasitics. Note that the most used operations for all tools
are neighbor and area searching. Therefore, these search operations were given the
highest priority when choosing the best data structure. A typical collection of layout
tools is shown in Figure 1.1.

Figure 1.1: All the layout tools shown directly access a common layout database

The rest of the thesis is organized as follows. In section 2, we provide de-
tails of corner stitching datastructures ([Ous84]), ([JKOT84]), ([BM97]), ([DMH90]),
([SF93]), ([She93]) and the algorihms for point searching, area searching and neigh-
bour searching with their time complexities. In section 3, we provide details of
tree based data structures ([Ked82]), ([HF90]), ([GGLW96]), ([NR86]), ([MB99])
and the algorihms for point searching, area searching and neighbour searching with
their time complexities. In section 4 we will discuss Partial bin based corner stitch-
ing ([ZYX00]) and the algorihms for point searching, area searching and neighbour
searching with their time complexities. In section 5, we will discuss our TBT corner
stitching datastructure and the algorihms for point searching, area searching and
neighbour searching with their time complexities. In section 6, we will compare
the time complexities of the different data structures as mentioned in the previous
sections. In section 7, we conclude the thesis and focus on its future capabilities.

2

Chapter 2

Corner Stitching

In this chapter we will discuss the corner stitching data structures for layouts hav-
ing rectilinear tiles as well as layouts having trapezoidal tiles. We will discuss the
algorithms for point searching, area searching and neighbour searching.

2.1 The Rectilinear Corner Stitch

The Rectilinear Corner Stitching is a data-structure for representing rectangular re-
gions in a plane. It was originally developed by Ousterhout ([JKOT84]), ([Ous84])
as a data-structure for CAD of VLSI layouts. Corner Stitching represents regions by
simply associating values with areas, and linking these areas only to their neighbor-
hood. This allows many algorithms to operate on a region in time typically linear
with respect to the area of the region.
In CAD of VLSI layouts the most important interactions occur between mask fea-
tures lying in close proximity. One of the most computationally demanding aspects
of layout CAD is the verification of mask geometries; minimum widths and sep-
arations dominate design rule checking, and abutment and overlap of geometries
dominate the extraction of circuit descriptions. Similarly in constructive operations,
such as compaction and channel finding, examination of neighborhoods plays a key
role. Corner Stitching, by linking regions to their neighborhood, is able to provide
cost-effective operations suited to the needs of VLSI CAD.
Corner stitching is simple, provides a variety of efficient searching operations, and
allows the database to be modified quickly. There are three important properties of
a corner-stitched plane, illustrated in Figures 2.1, 2.2, and 2.3:
Coverage: Each point in the x-y plane is contained in exactly one tile (Figure 2.1).
Empty space is represented as well as the area covered with material.
Strips: Material of the same type is represented with horizontal strips (Figure 2.2).
Areas of the same type of material are represented with horizontal strips that are
as wide as possible, then as tall as possible. In each of the figures the tile structure
on the left is illegal and is converted into the tile structure on the right. The strip
structure provides a canonical form for the database and prevents it from fracturing

3

into a large number of small tiles.
Stitches: The records describing the tile structure are linked together in the database
using four links per tile, called stitches. The links point to neighboring tiles at two
of the tile’s four corners (Figure 2.3).

• In the upper right corner, one stitch points to the top most neighboring tile on
the right (tr stitch) and one to the right most tile whose bottom edge contains
the upper right corner (rt stitch).

• In the lower left corner, one stitch points to the bottom most neighboring tile
on the left (bl stitch) and one to the left most tile whose top edge contains the
lower left corner (lb stitch).

Figure 2.1: Every point in a corner-stitched plane is contained in exactly one tile. In
this case there are three solid tiles, and the rest of the plane is covered by space tiles
(dotted lines). The space tiles on the sides extend to infinity. In general, a plane
may contain many different types of tiles.

Figure 2.2: In (a) it is illegal for two tiles of the same type to share a vertical edge. In
(b) the two tiles must be merged together since they have exactly the same horizontal
span.

4

Figure 2.3: The record describing each tile contains four pointers to other tile records.
The pointers are called corner stitches, since they point to neighboring tiles at the
lower-left and upper-right corners. The corner stitches provide a form of two-
dimensional sorting. They permit a variety of geometrical operations to be performed
efficiently, such as searching an area or finding all the neighboring tiles on one side
of a given tile.

2.1.1 Point Searching Algorithm

Point searching is used to locate the tile containing a given point P. The algorithm
iterates in y and then x, starting from any given tile in the plane as follows:

1. Move upwards using rt stitches or downwards using lb stitches until a tile is
found whose vertical range contains yp. The vertical range of a tile includes
the tile’s bottom up to but not including the tile’s top.

2. If the tile contains the point P , then stop. Otherwise move left using the bl
stitch if, along the line y = yp P is to the left of the tile, or move right using
the tr stitch if P is to the right of the tile.

3. Go to step 1

Fig. 2.4 shows an example of a point search. If the tiles in a tile plane are of
relatively uniform size, the number of tiles intersecting a horizontal or vertical line
is approximately

√
N . Therefore, the complexity of the point search algorithm is

O(
√

N) where N is the total number of tiles in the plane. The worst-case complexity
is N when all tiles line up in a row or column. In practice, the point search performs
better than

√
N (or N) if one can start from a tile close to the point.

2.1.2 Area Searching Algorithm

Area searching is used to find all tiles overlapping (with surfacearea > 0) a given
area, where the area is a rectangle. The algorithm is recursive and resembles a depth
first search algorithm. The area search algorithm is pivotal upon tile left edges. Tiles
overlapping the area, but whose left edge does not extend into the area are called

5

Figure 2.4: Example point search showing the tile enumeration order and traversal
of tile stitches.

seed tiles. Seed tiles always lie along the left hand side of the area and are used to
begin the recursive area search. Tiles overlapping the area whose left edge extends
into or overlaps the area are reported during the search from a seed tile. In general,
files are visited from left to right and from top to bottom (see Figure 2.5). When
a tile is reported, all neighbour tiles along its right edge and overlapping the area
are visited. Each visited tile is reported recursively if the portion of its left edge
lying within the area is above the reported tile’s bottom. The algorithm operates as
follows:

1. For each seed tile, ordered from top to bottom along the left edge(s) of the
area, do steps 2 and 3.

2. Report the tile and find all right neighbor tiles via an edge walk along the tile’s
right edge that a) overlap the area and b) do not extend below the reported
tile within the area.

3. For each tile found in step 2, perform step 2 and 3 recursively.

Figure 2.5 shows an example of a area search. The complexity of enumerating
tiles in an area is O(n), where n is the number of tiles overlapping the area. Before an
area search can begin, the first seed tile must be found using a point search and seed
tile search. Therefore, the total complexity of a general area search is O(

√
N + n).

2.1.3 Neighbour Searching Algorithm

Neighbour searching is used to find all tiles having overlapping edges with the query
tile. The neighbour search algorithm is pivotal upon the four pointers(rt, tr, lb, bl)
of the query tile. So there are four seed tiles. The algorithm operates as follows:

6

Figure 2.5: Example area search showing the tile enumeration order and traversal of
tile stitches.

1. For seed tile rt, follow the bl pointer and report the tile if the bottom edge of
the tile is ovelapping with the top edge of the query tile. Otherwise stop.

2. For seed tile tr, follow the lb pointer and report the tile if the left edge of the
tile is ovelapping with the right edge of the query tile. Otherwise stop.

3. For seed tile lb, follow the tr pointer and report the tile if the top edge of the
tile is ovelapping with the bottom edge of the query tile. Otherwise stop.

4. For seed tile bl, follow the rt pointer and report the tile if the right edge of the
tile is ovelapping with the left edge of the query tile. Otherwise stop.

Figure 2.6: Example neighbour search showing the tile enumeration order and traver-
sal of tile stitches.

Figure 2.6 shows an example of a neighbour search. The complexity of enumer-
ating tiles is O(n), where n is the number of neighbour tiles. Before an neighbour
search can begin, the first seed tile must be found using a point search and seed tile
search. Therefore, the total complexity of a general area search is O(

√
N + n).

7

2.2 The Trapezoidal Corner Stitch

The primary deficiency of rectangular comer stitching is that it only works with
rectangles. To remedy this, trapezoidal corner stitching ([DMH90]) was introduced
so that corner stitching could be efficiently applied for non− 90o layout. All tiles in
Tailor are trapezoids whose top and bottom edges are parallel with the x axis and
whose left and right edges have an angle of 45o, 90o, or135o with the x axis. One of
nine different shapes of trapezoids are possible as shown in Figure 2.7. Each tile is
of a particular material type. Tile planes in trapezoidal corner stitching maintain
similar properties to rectangular corner stitching.

Coverage: Each point in the x-y plane is contained in exactly one tile. Empty
space is represented as well as the area covered with material.
Strips: Material of the same type is represented with horizontal strips. Areas of
the same type of material are represented with horizontal strips that are as wide as
possible, then as tall as possible. In each of the figures the tile structure on the left
is illegal and is converted into the tile structure on the right. The strip structure
provdes a canonical form for the database and prevents it from fracturing into a
large number of small tiles.
Stitches: The records describing the tile structure are linked together in the database
using four links per tile, called stitches. The links point to neighboring tiles at two
of the tile’s four corners (Figure 2.8).

• In the upper right corner, one stitch points to the top most neighboring tile on
the right (tr stitch) and one to the right most tile whose bottom edge contains
the upper right corner (rt stitch).

• In the lower left corner, one stitch points to the bottom most neighboring tile
on the left (bl stitch) and one to the left most tile whose top edge contains the
lower left corner (lb stitch).

Figure 2.7: Nine trapezoid shapes are possible for tiles representing 45o layout.

8

Figure 2.8: Example of trapezoidal corner stitching in a layout plane.

2.2.1 Point Searching Algorithm

Point searching is used to locate the tile containing a given point P. The algorithm
iterates in y and then x, starting from any given tile in the plane as follows:

1. Move upwards using rt stitches or downwards using lb stitches until a tile is
found whose vertical range contains yp. The vertical range of a tile includes
the tile’s bottom up to but not including the tile’s top.

2. If the tile contains the point P , then stop. Otherwise move left using the bl
stitch if, along the line y = yp P is to the left of the tile, or move right using
the tr stitch if P is to the right of the tile.

3. Go to step 1

Figure 2.9: Example point search showing the tile enumeration order and traversal
of tile stitches.

Fig. 2.9 shows an example of a point search. If the tiles in a tile plane are of
relatively uniform size, the number of tiles intersecting a horizontal or vertical line

9

is approximately
√

N . Therefore, the complexity of the point search algorithm is
O(
√

N) where N is the total number of tiles in the plane. The worst-case complexity
is N when all tiles line up in a row or column. In practice, the point search performs
better than

√
N (or N) if one can start from a tile close to the point.

2.2.2 Area Searching Algorithm

Area searching is used to find all tiles overlapping (with surfacearea > 0) a given
area, where the area is a rectangle. The algorithm is recursive and resembles a depth
first search algorithm. The area search algorithm is pivotal upon tile left edges. Tiles
overlapping the area, but whose left edge does not extend into the area are called
seed tiles. Seed tiles always lie along the left hand side of the area and are used to
begin the recursive area search. Tiles overlapping the area whose left edge extends
into or overlaps the area are reported during the search from a seed tile. In general,
files are visited from left to right and from top to bottom (see Figure 2.10). When
a tile is reported, all neighbour tiles along its right edge and overlapping the area
are visited. Each visited tile is reported recursively if the portion of its left edge
lying within the area is above the reported tile’s bottom. The algorithm operates as
follows:

1. For each seed tile, ordered from top to bottom along the left edge(s) of the
area, do steps 2 and 3.

2. Report the tile and find all right neighbor tiles via an edge walk along the tile’s
right edge that a) overlap the area and b) do not extend below the reported
tile within the area.

3. For each tile found in step 2, perform step 2 and 3 recursively.

Figure 2.10: Example area search showing the tile enumeration order and traversal
of tile stitches.

Figure 2.10 shows an example of a area search. The complexity of enumerating
tiles in an area is O(n), where n is the number of tiles overlapping the area. Before an

10

area search can begin, the first seed tile must be found using a point search and seed
tile search. Therefore, the total complexity of a general area search is O(

√
N + n).

2.2.3 Neighbour Searching Algorithm

Neighbour searching is used to find all tiles having overlapping edges with the query
tile. The neighbour search algorithm is pivotal upon the four pointers(rt, tr, lb, bl)
of the query tile. So there are four seed tiles. The algorithm operates as follows:

1. For seed tile rt, follow the bl pointer and report the tile if the bottom edge of
the tile is ovelapping with the top edge of the query tile. Otherwise stop.

2. For seed tile tr, follow the lb pointer and report the tile if the left edge of the
tile is ovelapping with the right edge of the query tile. Otherwise stop.

3. For seed tile lb, follow the tr pointer and report the tile if the top edge of the
tile is ovelapping with the bottom edge of the query tile. Otherwise stop.

4. For seed tile bl, follow the rt pointer and report the tile if the right edge of the
tile is ovelapping with the left edge of the query tile. Otherwise stop.

Figure 2.11: Example neighbour search showing the tile enumeration order and
traversal of tile stitches.

Figure 2.11 shows an example of a neighbour search. The complexity of enumer-
ating tiles is O(n), where n is the number of neighbour tiles. Before an neighbour
search can begin, the first seed tile must be found using a point search and seed tile
search. Therefore, the total complexity of a general area search is O(

√
N + n).

11

Chapter 3

Tree Based Data Structures

In this chapter we will discuss the tree based data-structures for layouts having recti-
linear tiles as well as layouts having trapezoidal tiles. We will discuss the algorithms
for point searching, area searching and neighbour searching.

3.1 The Quad Tree

The quad tree([Ked82]) can be generalized to organize any two dimensional collection
of objects. We start with a big rectangle that contains all the objects. This rectangle
is the root of the quad tree. That rectangle is divided to four equal subrectangles
by dividing each of its sides into two (See Figure 3.1). The four rectangles are the
sons of the original rectangle. In turn, each of these rectangles is divided into four,
and so on. Now each node in the tree has a list of objects that resides in that node.

Figure 3.1: a) Two dimensional representation of a quad tree b) The corresponding
tree structure

An object is put into a node if and only if it is inside the rectangle that cor-
responds to that node but is not inside any of its sons. Since all the objects are
enclosed in the first rectangle, each object resides in a node. This node is uniquely
determined by the above rule. Since most rectangles in IC design tend to be small
and uniformly distributed, most of the rectangles will be at the leaves of the quad
tree. Theretore, the expected depth of the tree is 0(log N). One more problem is left:

12

Many small objects will be at the upper nodes of the quad tree, namely, those that
intersect the (rectangle) division lines. Therefore, if a window intersects a division
line of an upper node, all the objects that also intersect a division line of that node
have to be checked. Even the object that are far away from the window have to be
checked (See Figure 3.2).

Figure 3.2: Tiles Intersecting Division lines

In order to reduce the search effort, the items are not put in a list at the quad-tree
node. Instead, they are put into a binary tree that divides either the X dividing line
or the Y dividing line. The binary tree represents a successive bisection of the line
segment. An object is put into a node if a dividing point is inside that node. For
example, In Figure 3.3 it is shown that how a line segment is being divided and the
corresponding binary tree.

Figure 3.3: (a) Division of a line segment, (b) The corresponding binary tree

There are different variations of Quad trees such as Hinted Quad tree ([GGLW96]),
Multiple Storage Quad trees ([HF90]), Dual Quad trees ([NR86]). The underly-
ing algorithms has a common structure with some modifications to achieve better
performance on different layout tool objectives such as compaction or design rule
verification. We will only discuss the algorithms for the simple Quad tree.

13

3.1.1 Point Searching Algorithm

We need to traverse the quad tree by checking whether the x value of the query
point lies left or right with respect to the bisector lines and y value lies above or
below the bisector lines. When we reach a leaf node of the quad tree, we check in
the list of tiles that the query point lies in a tile or not. In the worst case we may
have to traverse the height of the tree. Since the height of the tree is O(logN), the
complexity of the point search is also O(logN).

3.1.2 Area Searching Algorithm

REGIONSEARCH (qptr, region) qptr points to the root of the tree. region is an
array containing 4 coordinates of a rectangle.

1. If (qptr == NULL) then return.

2. If this is a leaf of tree nodes then scan through the tile list and report the tiles
that intersect with the given region. After checking all tiles in the list, return.

3. If a given region intersects the boundaries of the first child,
then REGIONSEARCH(qptr− > first, region)

4. If a given region intersects the boundaries of the second child,
then REGIONSEARCH(qptr− > second, region)

5. If a given region intersects the boundaries of the third child,
then REGIONSEARCH(qptr− > third, region)

6. If a given region intersects the boundaries of the fourth child,
then REGIONSEARCH(qptr− > fourth, region)

End REGIONSEARCH

3.1.3 Neighbour Searching Algorithm

To find the neighbours for a tile pointed by querytile with distance being the distance
to expand tile’s extent in +X, +Y,−X,−Y to form the search window, we use the
following algorithm. NEIGHBOURSEARCH(querytile, distance)

1. Expand the query tile by the given distance along all the four edges of the
query tile.

2. Store the coordinates of the generated window in the array called region.

3. call REGIONSEARCH(qptr, region) Where qptr points to the root of the quad
tree.

End NEIGHBOURSEARCH.

14

Chapter 4

Partial Bin Based Hierarchical
Corner Stitching

4.1 Bin Layer

The size and shape of the bin layer are the same with the corner stitching layer. All
tiles in the corner stitching layer are projected to the bin layer, as shown in Figure
4.1. An imaginary square grid divides the area into mxn bins, which are managed
by a two-dimensional array. The bins are indexed by its position at x and y direc-
tions, such as Bin(1,3) or Bin(5,2). Given the coordinates of a point and the size
of bins, we can easily determine the indexes of the bin that contains the point. If
we directly add the bin-based structure onto the corner stitching layer, which means
that all of the tiles intersecting a particular bin are linked together and stored in
that bin, then too much data redundancy would occur. So we simplify the bin layer
by cutting out the superfluous, and get the new hierarchical PB corner stitching
structure, as shown in Figure 4.2. A tile is only kept in the bin where the lower left
corner of the tile’s projection locates. In Figure 4.1, the solid tile’s projection on the
bin layer covers two bins: Bin(3,2), Bin(4,2), but only one of them Bin(3,2) keeps
a pointer to the tile. Also, when a bin covers more than one projection’s lower left
corner, as Bin(3,1) in the figure, only one tile is kept in the bin. This idea is based
on the fact that corner stitching is efficient at neighbor searching. When perform-
ing point searching, first a tile near the given point is obtained from the bin layer,
and then that tile would be used as a starting tile to search in the corner stitching
layer. Since the searching in the corner stitching layer is started near the target tile,
the scope of the searching is limited; thus the searching time would not be decreased.

Figure 4.1
In hierarchical PB corner stitching, bin layer keeps the global position information

of some tiles, which greatly improves the speed of obtaining tiles from coordinates,
namely point searching. In PB corner stitching, each bin keeps no more than one
pointer, and the searching within a bin is via point searching in corner stitching layer,

15

Figure 4.1: The configuration of PB Corner Stitching.

which is faster than searching in linked lists.Compared to traditional corner stitching,
the memory requirement of PB corner stitching structure increases r2 times, where
r2 is the number of bins.

Figure 4.2

Figure 4.2: The operations of PB Corner Stitching.

16

4.2 Point Searching Algorithm

Point searching is used to locate the tile containing a given point P. The algorithm
first obtains a tile near the point from bin layer, then switches to the corner stitching
layer, starts with that tile, and iterates in y and then x until the target tile is found.
The algorithm goes as follows:

1. Given the coordinates of P : Xp, Yp, and the size of bin:S, figure out the bin
that P lies in, called bin(a,b), where a = bXp/Sc, b = bYp/Sc.

2. If bin(a,b) is not empty, then set the starting tile to bin(a,b), go to step 3.
Otherwise, search all the bins that lie to the lower left of bin(a,b), until a bin
that is not empty, or bin(a1,b1) is found, where O <= a1 <= a, O <= b1 <= b,
then set the starting tile to bin(a1,b1)

3. Move upwards using rt stitches or downwards using lb stitches until a tile is
found whose vertical range contains Yp.

4. If the tile contains P, then stop. Otherwise move left using the bl stitches, or
move right using the tr stitches.

5. Go to step 3.

Suppose the bins are much larger than the average tile size, then the speed of the
point searching depends on step 3 to step 5. Which is traditional corner stitching
point searching in the bin’s range. Thus the complexity of the point searching is
O(N1/2/r), where N is the total number of tiles and r2 is the total number of bins.

4.3 Area Searching/Enumeration

Area enumeration is used to report all tiles in a tile plane by giving a bounding box
as the area. The area enumerate complexity assumes the tile covers the lower left
corner of the area has already been found. Since the searching area is limited, the
point searching used in area enumeration is the traditional corner stitching point
searching. Area enumeration is O(n), where n is the number of tiles in the area.

4.4 Neighbour Searching/Enumeration

Neighbour searching/enumeration is used to report all tiles which have a overlapping
edge with the query tile. The neighbour enumerate complexity assumes the tile
covers the lower left corner of the tile has already been found. Since the searching
neighbours is limited, the point searching used in neighbour enumeration is the
traditional corner stitching point searching. Neighbour enumeration is O(n), where
n is the number of neighbour tiles.

17

Chapter 5

Tree Based Trapezoidal Corner
Stitching

As mentioned in 1 chapter, the atomic operations point searching, area searching
and the neighbour searching algorithms are of prime importance in the layout tools.
The partial bin based corner stitching also has some limitations. The number of
bins would affect the efficiency of PB corner stitching. If the bin number is too
small, and then PB corner stitching tends to resemble traditional corner stitching,
the improvement of efficiency is limited. If the bin number is too large, then a tile
may cover several bins. It might be slower to find a nearby tile to a point in the bin
layer, thus affect the speed of point searching. Also, if there are too many bins, the
memory requirement would increase too much. One question that arises from the
discussions in the previous sections is the following:

Can we further extend the trapezoidal corner stitching to make it more
efficient for point searching algorithm? What would be the added extra
layer?

Our goal here is to analyze the performance of the point searching, area searching
and the neighbour searching algorithms using newly introduced data-structure Tree
Based Trapezoidal Corner Stitch (see Figure 5.1).

5.1 Implementation Details of the Data-Structure

Our layout data-structure consists of two layers namely, a tree layer and a corner-
stitch layer. We have shown a tree layer in Figure 5.3 for an example layout shown
in Figure 5.2.

5.1.1 Cornerstitch Layer

We have maintained an array of structures. Each element of the array which is a
structure contains the detailed information of a layout tile. The details are already

18

Figure 5.1: The operations of TB Trapezoidal Corner Stitching.

explained in section 2.2 of chapter 2. Besides that for each tile the information of
the leftmost x and the rightmost x information is also stored in the structure.

Figure 5.2: An Example Layout containg all types of trapezoidal tiles

5.1.2 Tree Layer

Each node in the tree layer (see Figure 5.3) consists of array of indices of the layout
tiles and pointers to its left and right child. The odd level nodes also contains the
median x value of all the tile’s left-most x value in the node and the even level
contains the median y value of all the tile’s top-most y value in the node. When
creating nodes of a even levels, a partition of the tile indices is done based on the

19

Figure 5.3: The tree structure for the Example layout in Figure 5.2

median x value. The tiles which have their left-most x value less median x value are
put in the left child and the rest are put in the right child. And the tiles which are
in the left child are checked if their right-most x value is greater than the median x
value. If it is so then those tile indices are also copied to the right child. Similarly,
When creating nodes of a odd levels, a partition of the tile indices is done based
on the median y value. The tiles which have their top-most y value less median y
value are put in the left child and the rest are put in the right child. And the tiles
which are in the left child are checked if their bottom-most y value is lesser than the
median y value. If it is so then those tile indices are also copied to the right child.
The leaf nodes contains a threshold number of tile indices which is a constant. This
is done for a simpler implementation of the code. Through the tile indices stored
in a tree node one can easily reach the tile in the cornerstitch layer and extract the
detailed information (see Figure 5.4). The height of the tree is O(logN) where N is

20

the number of tiles in the layout. Space required is O(NlogN).

5.2 Algorithms Implemented

In this section we will discuss the point searching, area searching and the neighbour
searching algorithms for our data-structure which are of primary importance for a
layout tool.

Figure 5.4: Connection between the tree structure and the corstitched tiles

21

5.2.1 Point Searching

Point searching is used to locate the tile containing a given point P(x,y). We use
our tree layer to find the tile index for the point and then report the details of the
tile from the corner stitch layer. The algorithm iterates in x and then y alternately
depending on the level of the tree, starting from the root node of the tree layer.

1. while a leaf node is not reached do step 2 and step 3.

2. If the level is odd then check
if x < medianx of the node then go to left child of current node.
else go to right child of the current node.

3. If the level is even then check
if y < mediany of the node then go to left child of current node.
else go to right child of the current node.

4. check in the list of tiles in the leaf node.
If a tile is found that contains the query point
then report the tile information from corner stitch layer.
else report point does not lie in the layout.

5.2.2 Area Searching

Area searching is used to find all tiles overlapping (with surfacearea > 0) a given
area, where the area is a rectangle. The algorithm is recursive and resembles a depth
first search algorithm. The area search algorithm is pivotal upon tile left edges. Tiles
overlapping the area, but whose left edge does not extend into the area are called
seed tiles. Seed tiles always lie along the left hand side of the area and are used to
begin the recursive area search. Tiles overlapping the area whose left edge extends
into or overlaps the area are reported during the search from a seed tile. In general,
files are visited from left to right and from top to bottom (see Figure 2.5). When
a tile is reported, all neighbour tiles along its right edge and overlapping the area
are visited. Each visited tile is reported recursively if the portion of its left edge
lying within the area is above the reported tile’s bottom. The algorithm operates as
follows:

1. The index of the first seed tile is found from the tree layer by point search
algorithm described in section 5.2.1.

2. For each seed tile, ordered from top to bottom along the left edge(s) of the
area, do steps 2 and 3.

3. Report the tile and find all right neighbor tiles via an edge walk along the tile’s
right edge that a) overlap the area and b) do not extend below the reported
tile within the area.

4. For each tile found in step 2, perform step 2 and 3 recursively.

22

The complexity of enumerating tiles in an area is O(n), where n is the number of
tiles overlapping the area. Before an area search can begin, the first seed tile must
be found using a point search and seed tile search. Therefore, the total complexity
of a general area search is O(logN + n).

5.2.3 Neighbour Searching

Neighbour searching is used to find all tiles having overlapping edges with the query
tile. The neighbour search algorithm is pivotal upon the four pointers(rt, tr, lb, bl)
of the query tile. So there are four seed tiles. The algorithm operates as follows:

1. For seed tile rt, follow the bl pointer and report the tile if the bottom edge of
the tile is ovelapping with the top edge of the query tile. Otherwise stop.

2. For seed tile tr, follow the lb pointer and report the tile if the left edge of the
tile is ovelapping with the right edge of the query tile. Otherwise stop.

3. For seed tile lb, follow the tr pointer and report the tile if the top edge of the
tile is ovelapping with the bottom edge of the query tile. Otherwise stop.

4. For seed tile bl, follow the rt pointer and report the tile if the right edge of the
tile is ovelapping with the left edge of the query tile. Otherwise stop.

If the query tile itself is not given it can be retrieved by our point search algorithm
presented in section 5.2.1. The complexity of enumerating tiles is O(n), where n is
the number of neighbour tiles. Before an neighbour search can begin, the first seed
tile must be found using a point search and seed tile search. Therefore, the total
complexity of a general area search is O(logN + n).

5.2.4 Insertion of a Tile

The first step is to run the area search algorithm to check that there are no existing
solid tiles in the desired area of the new tile. The second step is to insert the tile in
to the data-structure which involves spliting and merging of the vacant tiles. The
insertion algorithm is as follows:

1. Find the space tile containing the top edge of the area to be occupied by the
new tile.

2. Split the top space tile in to a piece entirely above the new tile and a piece
overlapping the new tile. Update corner stitches in the tiles adjoing the new
tile.

3. Find the space tile containing the bottom edge of the new tile, split it in the
same manner and update the corner stitches around it.

23

4. Traverse along the left edge of the new tile, each tile along this edge must be
a vacant tile that spans the entire width of the new tile. Split the space tile
in to piece entirely to the left of the new tile, a piece entirely to the right of
the new tile, and a piece entirely with in the new tile. Now Merge the center
space tile with the solid tile. Each spliting or merging requires updation of the
stitches of the adjoining tiles.

5. Delete the older vacant tile index from the tree layer.

6. For each tile generated in the corner stitch layer we enter the index of the new
tile in the tree layer. This is done by searching from the root checking with the
median x or the median y values depending upon the level (similar to point
search in the tree layer) till a leaf node is reached.

7. If the threshold value exceeds in the leaf, split the node to the next level by
creating a left and a right child based on the current level and the median x
or the median y value

5.2.5 Deletion of a Tile

The deletion is complicated by the need of split and merge space tiles so as to
maintain the horizontal strip representation. We present the algorithm that works
in the clockwise direction around the tile being deleted, which is referred as dead
tile.

1. Change the type of the dead tile to vacant.

2. Use neighbour finding algorithm to search from top to bottom through all the
tiles that adjoin the right edge of the dead tile.

3. For each vacant tile found in step 2, split either the neighbour or the dead tile
so that the two tiles have the same vertical span, then merge the tiles together
horizontally.

4. When the bottom edge of the dead tile is reached, scan upwards along the left
edge of the original dead tile to find all space tiles that are left neighbours of
the original dead tile.

5. For each vacant tile found in step 4, merge the vacant tile with the adjoining
remains of the original dead tile. Do this by repeating steps 2 and 3, treating
the current vacant tile as the dead tile in the step 2 and 3.

6. It is also necessary to do vertical merging in step 5. After each horizontal
merging in step 5, check to see if result tile can be merged with the tiles just
above or below it, and merge if possible.

7. Delete the dead tile index from the tree layer.

24

8. If the tiles are merged during deletion operation in the corner stitch layer then
delete the indices of the older tiles and insert the index of the new merged tile.

9. If the threshold value exceeds in the leaf, split the node to the next level by
creating a left and a right child based on the current level and the median x
or the median y value.

5.3 Work flow of the Code

The code is written using C on Linux platform. There are multiple C files for dif-
ferent functions. The main function is written in LayoutAtomicOperations.c. The
trapezoidal corner stitch layer is generated by TrapezoidalCornerStichConstruct.c
using the input layout file named InputLayoutFile.txt and the tree layer is generated
by TreeLayerConstruct.c using the generated trapezoidal corner stitched array of
structures.

Figure 5.5: Layout Data-Structures Construction

The pointSearch.c, areaSearch.c and neighbourSearch.c files are used to output
tiles given a query point, coordinates of query rectangle and coordinates of the
query tile respectively. The tile information are stored in files named pointTile.txt,
areaTile.txt and neighbourTile.txt for point searching, area searching and neigh-
bour searching respectively. Internally, the areaSearch.c and neighbourSearch.c calls
pointSearch.c to find the seed tile.

Sample content of file InputLayoutFile.txt :
(x1,y1), (x2,y2), (x3,y3), (x4,y4) type name

25

Figure 5.6: Point search, Area search and Neighbour search programs interacting
with the tree based trapezoidal data-structure

The type parameter indicates the shape of the tile which is among the nine tiles as
shown in Figure 2.7. The name parameter indicates type of tile that can be solid
(diffusion, polysilicon, metal), vacant. Instructions for running the code:

1. make

2. ./laos < inputgen >< trx >< try >< pSearchKD >< pSearchCS ><
aSearch >< nSearch >

Meaning of the different parameters:

1. inputgen can take 1 or 0 value, 1 mean need to generate InputLayoutFile.txt,
0 means InputLayoutFile.txt already exists.
if inputgen = 0, then trx = try = 0. if inputgen = 1, then trx = try = multiple
of 10, (top right vertex of the bounding box of layout)

2. For point searching
pSearchKD = 0/1 : OFF/ON
pSearchCS = 0/1 : OFF/ON

3. For Area searching aSearch = 1/2
1 means it uses CS internally and 2 means it uses KD internally.

26

4. For Neighbour searching nSearch = 1/2
1 means it uses CS internally and 2 means it uses KD internally.

5. Example runs:
./laos 1 10 10 0 0 0 0 generates only InputLayoutFile.txt file
./laos 0 0 0 1 0 0 0 doing point search using tree layer
./laos 0 0 0 0 1 0 0 doing point search using corner stitch layer
./laos 0 0 0 0 0 1 0 doing area search
./laos 0 0 0 0 0 0 1 doing neighbour search

27

Chapter 6

Comparative Study of Different
Layout Data Structures

In this chapter we will compare the time and the space complexities of the point
searching, area searching and neighbour searching algorithms performed using dif-
ferent data-structures

6.1 Time Complexity for Different Data-Structures

In the Table 6.1 we have give the time complexities of the point searching, area
searching and neighbour searching algorithms performed using different data-structures
The tree based trapezoidal corner stitching (TBTCS) wins over traditional corner

Table 6.1: Comparion of Time Complexities
Operation Linked List Quad Tree 4-D Tree Corner

Stitching
PBCS TBTCS

Point
Search

O(N) O(logN + T) O(logN) O(N1/2) O(N1/2/r) O(logN)

Area
Search

O(N) O(T + n) O(n) O(n) O(n) O(n)

Neighbour
Search

O(N) O(logN + T) O(logN) 1 1 1

stitching and other tree based data-structures. The partial bin based corner stitching
has a competitive time complexity, but it depends on the number of bin. And the
estimation of the number of bins required for a layout is a difficult problem to answer
because if the number of bins is too small, and then PB corner stitching tends to
resemble traditional corner stitching, the improvement of efficiency is limited. If the
bin number is too large, then a tile may cover several bins. It might be slower to
find a nearby tile to a point in the bin layer, thus affect the speed of point searching.

28

6.2 Space Complexity for Different Data-Structures

In the Table 6.2 we have give the space complexities of different data-structures Our

Table 6.2: Comparion of Space Complexities (in Bytes)
Linked List Quad Tree 4-D Tree Corner

Stitching
PBCS TBTCS

12N 2N3/2 + 4(N − 2) 2NlogN + 4(N − 2) 32N 32N + 8r2 36N +
2NlogN+
4(N − 2)

data structure TBTCS requires more space than all other data-structures, but now
a days memory is it is a good deal to have better time complexity sacrificing some
more space.

29

Chapter 7

Conclusion

In this dissertation work we have described the different data-structures used in the
layout tools such as Corner Sitching and Quad trees. Both variations have their
advantages and disadvantages. So we have proposed the new data-structure namely
Tree Based Trapezoidal Corner Stitching. It takes more space as compared to other
mentioned data-structures and the insertion and deletion operations also have more
complexity. But the most important atomic operations for the layout tools that is
the point searching, area searching and the neighbour searching are improvised when
compared to other tree based data-structures and corner stitched data-structures.

Figure 7.1: The operations of 3 - Layer Trapezoidal Corner Stitching.

30

We have also given a thought of a future work by introducing more layers to the
data-structure which may increase the storage requirement but the time complexity
for the atomic operations may drastically come down. In Figure 7.1 we have shown
a 3-layer trapezoidal corner stitching which consists of a bin layer, a tree layer and a
corner stitched layer. We have not done the complexity analysis for the algorithms
based on this data-structure.

31

Bibliography

[BM97] G. Blust and Dinesh P. Mehta. Corner stitching for simple rectilinear
shapes. IEEE Transactions on CAD of Integrated Circuits and Systems,
16(2):186–198, 1997.

[DMH90] Michiel Smulders David Marple and Henk Hegen. Tailor: A layout
system based on trapezoidal comer stitching. IEEE Transactions on
Computer-Aided Design, 9(1):66–90, 1990.

[GGLW96] Donald S . Fussell Glenn G. Lai and D. F. Wong. Hinted quad trees
for vlsi geometry drc based on efficient searching for neighbors. The
American Mathematical Monthly, 15(3):317–324, March 1996.

[HF90] Pei-Yung Hsiao and Wu-Shiung Feng. Using a multiple storage quad
tree on a hierarchical vlsi compaction scheme. IEEE Transactions on
Computer-Aided Design, 9(5):522–536, 1990.

[JKOT84] Robert N. Mayo Walter S. Scott John K. Ousterhout, Gordon
T. Hamachi and George S. Taylor. Magic: A vlsi layout system. 21st
Design Automation Conference, pages 152–159, 1984.

[Ked82] Gershon Kedem. The quad-cif tree: A data structure for hierarchical
on-line algorithms. 19th Design Automation Conference, pages 352–357,
1982.

[MB99] M. Overmars O. Schwarzkopf M. Berg, M. Kreveld. Computational Ge-
ometry Algorithms and Applications. Springer, 1999.

[NR86] S. K. Nandy and I. V. Ramakrishnan. Dual quadtree representation for
vlsi designs. 23rd Design Automation Conference, pages 663–666, 1986.

[Ous84] John K. Ousterhout. Corner stitching: a data structuring technique for
vlsi layout tools. IEEE Transactions on CAD of Integrated Circuits and
Systems, 3(1):87–91, 1984.

[SF93] Carlo H. Scquin and H. Faqanha. Corner-stitched tiles with curved
boundaries. IEEE Transactions on CAD of Integrated Circuits and Sys-
tems, 12(1):47–58, 1993.

32

[She93] Naveed A. Sherwani. Algorithms for VLSI Physical Design Automation.
Kluwer Academic Publishers, 1993.

[ZYX00] C. Yici Z. Yan, W. Baohua and H. Xianlong. Area routing oriented
hierarchical corner stitching with partial bin. IEEE Transactions on
CAD of Integrated Circuits and Systems, 16(2):105–110, Spring 2000.

33

