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Abstract

This report is a study of Broadcast Encryption (BE) schemes primarily concentrating on the
widely used Subset Cover Framework. We start with the basic framework of Broadcast En-
cryption, defining the various terminologies that are found in the BE literature. The study of
schemes concentrates primarily on the Complete Subtree and the Subset Difference schemes. We
also study the more recent work, the Punctured Interval scheme. We summarize the results of
the significant schemes at the end of our study.

As our contribution, we propose two new frameworks: the Hitting Set Framework and the
Interval Framework. We describe the Hitting Set Framework in which finding the minimal set
of keys for a transmission can be mapped to the bipartite matching problem which has well
known polynomial time solutions. Then we describe the Interval Framework and propose two
new schemes in this framework. The first scheme, L-DAG gives results similar to the Punctured
Interval scheme (N − 1 keys per user for N users for the header size of r + 1 where there are r
revoked users). The other I-L-DAG scheme achieves much better results (logN keys per user for
the header size of r) but at the cost of resilience. We also propose a new tradeoff between keys
per user and the header size using our first scheme L-DAG in which, increasing the header size
to r+ k− 1 from r, we can decrease the number of keys by a factor of k making it 2N/k− 1. We
compare our scheme with the Punctured Interval scheme, and suggest some improvements to the
latter.

Then we propose an improvisation on the tree-based schemes: the k-ary tree scheme based on
the subset-cover framework. In this, we combine the ideas used in the Complete Subtree scheme
and the Subset Difference scheme to perform the key pre-distribution with the help of k-ary trees
where k ≥ 3. This helps us achieve a reduced number of keys per user while the header size
grows to 3r − 2. As an example, we start with the Ternary Tree scheme from which we develop
the idea for the more general k-ary tree scheme. Further, in the k-ary tree scheme, for a fixed
N , we study the variation in the number of keys stored per user by varrying k. We argue that
there will be a k for which the number of keys stored per user will be minimmum.



Preface

This is the report of our work for my M. Tech. dissertation at the Indian Statistical Institute
with the able guidance of Professor Palash Sarkar.

Structure of the report

The report is distributed essentially into three parts. The first part introduces Broadcast
Encryption and the real-life problems from where this entire area of research arises. In the
second part we study the significant works in the area of Broadcast Encryption starting with the
work of Amos Fiat and Moni Naor [FN93]. Then we go through the Subset Cover Framework
by Dalit Naor, Moni Naor and Jeff Lotspiech [NNL01], and then the improvised LSD scheme by
Dani Halevy and Adi Shamir [HS02]. Finally we study the most recent work by Nam-Su Jho,
Jung Hee Cheon, Myung-Hwan Kim and Eun Sun Yoo [JHC+05] which is one of the best schemes
as per our study. In the third part, we put our contributions that include two new frameworks
and a few new schemes. Our L-DAG scheme gives a result similar to the one in [JHC+05]. It
also gives new tradeoffs in the number of keys and the header size. Another scheme proposed by
us, the k-ary tree scheme is an improvisation on the existing tree-based schemes. It also gives
new trade-offs between the number of keys and the header size.

Prerequisites

Basic counting techniques, concept of pseudorandom generators, cryptographic security notions
based on computational security and imagination (trivially).

Implementations

I have implemented a program that finds all possible subsets generated by the Subset Difference
scheme in [NNL01] accommodating the labeling of the users in a cyclic manner. I have also
implemented the subset cover algorithm of our k-ary Tree scheme, that takes as input the set of
revoked users and finds the minimal set of subsets (to which keys have been pre-assigned) such
that they cover all privileged users.
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Chapter 1

What is Broadcast Encryption ?

1.1 Necessity is the mother of invention

With the advent of the information era, as the emphasis on the free transfer of information
grew, one significant challenge that the world economy has been facing is information piracy.
Pay-TV subscribers found ways to circumvent the techniques adopted to prevent viewing of
channels without payment. Digital media could be easily copied for reuse. Security was sought
at all levels including the information processing at the users. Data had to be encrypted so that
only legitimate users have access to it.

1.2 The first few steps

Broadcast Encryption frameworks assume a scenario where there is a center and a set of users.
The center provides the users with prearranged keys when they join the system. At some point,
the center wishes to broadcast a message (e.g. a session key for the subsequent session) to a
dynamic subset of users in such a way that non-privileged users cannot learn the message.

According to [JHC+05], Broadcast Encryption (BE) is a cryptographic method for a center
to efficiently broadcast digital contents to a large set of users so that only a subset of users for
whom the content is intended (called privileged users) can decrypt the contents. BE has a wide
range of applications such as internet or mobile video broadcast, Pay-TV or even digital media
like CD or DVD to name a few.

In context of the BE framework, a few simple solutions that are immediate are as follows
(mentioned in [FN93]):

First Simple Solution Provide every user its own key and transmit an individually encrypted
message to every member of the privileged class. This would require a very long transmission
(number of members in the privileged class times the length of the message).

Second Simple Solution Provide every possible subset of users with a key. This would mean
giving every user the keys corresponding to every subset it belongs to. The message length would
not be affected in this case by the number of privileged users, since there would be a unique key
corresponding to the subset of privileged users, and only that key would be used for encryption.

9



What is Broadcast Encryption ?

Figure 1.1: BE Framework showing a Center and many Users

So, the transmitted message would have just one encryption of the secret. But the number of
keys per user will be very large.

As we will see soon, our interest in the study of BE primarily revolves around optimization of
different parameters associated with the different schemes proposed. The above simple solutions
are two extremes with respect to the parameters keys per user and transmission overhead. All
the schemes that we have studied in this context, try to optimize these parameters in different
directions.

1.3 A few definitions

In BE, the center distributes to each user u, the set Ku of keys called the user key set of u. We
assume that the user keys are not updated afterward i.e.; the user keys are stateless. A session
is a time interval during which only one encrypted message (digital content) is broadcast. The
session key (say) SK is the key used to encrypt the contents of a session.

Definition 1.3.1. A broadcast scheme allocates keys to users so that given a subset T of U, the
center can broadcast messages to all users following which all members of T have a common key.
This allocation of keys is called key pre-distribution.

In order to broadcast a message M , the center encrypts M using the session key SK and
broadcasts the encrypted message together with a header which contains the encryptions of SK
such that it can be retrieved by non-revoked users. In other words, the center broadcasts

〈header;ESK(M)〉

where ESK is a symmetric encryption algorithm running with the key SK.

10



What is Broadcast Encryption ?

Every non-revoked user u computes F (Ku, header) to find SK from the header and then de-
crypt ESK(M) with SK where F is a predefined algorithm. For any revoked user v, F (Kv, header)
should not render SK.

Moreover, there should be no polynomial time algorithm that outputs SK even with all the
revoked user keys and the header as input. This is where the idea of resilience follows from.

Definition 1.3.2. A broadcast scheme is called resilient to a set S (S ⊂ U) if for every subset
T that does not intersect with S (T ∩ S = φ), any eavesdropper (adversary) that has all secrets
associated with members of S, cannot obtain any “knowledge” of the secret common to T.

Definition 1.3.3. A scheme is called k-resilient if it is resilient to any set S ⊂ U of size k.

The transmissions in a BE system are of three types: key pre-distribution (typically done during
manufacture of set-top-boxes in a Pay-TV system), secondly, the privileged and the revoked sets
are identified (by strings encoding the identification of privileged subsets of users of the system)
typically as part of the header for a session and finally, the actual encryption of the broadcast
content. The later two are defined as follows:

Definition 1.3.4. When nothing is known about the privileged subset T , any broadcast scheme
requires that an initial set of messages be exchanged between the center and all the users so that
they can have initial set of their own individual private keys or data structures agreed upon. This
is called Set Identification Transmission.

Definition 1.3.5. For every session being established between the center and the privileged set of
users, messages are broadcast by the center to all users to establish a common key for that session
using which all transmissions will be encrypted by the center so that only the privileged set of
users (having the common key) can decrypt it. Such messages form the Broadcast Encryption
Transmission.

11
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Chapter 2

Where to start? (Zero Message
Schemes)

One can recollect the mention in section 1.2 of the fact that most of the existing literature in
BE proposes schemes fitting as solutions to the problem and then analyzes it with respect to the
parameters that are of interest to see their applicability in real life at different BE scenarios. If
one intends to improve the different schemes, the following “resources” are points of interest of
the existing schemes :

• Message Header Length for a session.

• Number of Keys stored at the center.

• Number of Keys stored at each user.

• Computation Effort involved in retrieving the common key by the members of the privileged
class.

Other than these, the resilience of a scheme is also of interest.

We start with the work of Fiat-Naor [FN93]. Zero Message Schemes do not require the center to
broadcast any message in order for the member of the privileged class to generate a common key.
(Note: It is assumed that the Key Pre-distribution during the Set Identification Transmission for
a session has already happened or would take negligible bandwidth.)

2.1 The Basic Scheme

The Basic Scheme allows users to determine a common key for every subset, resilient to any
set S of size k.

Definition 2.1.1. For every set B ⊂ S, 0 ≤ |B| ≤ k, define a key KB and give KB to every
user x ∈ U \ B. The common key to the privileged set T is simply the exclusive or of all keys
KB, B ⊂ U \ T , 0 ≤ |B| ≤ k.

Clearly, every coalition of S ≤ k users will all be missing key KS and will therefore be unable
to compute the common key for any privileged set T such that S ∩ T is empty.

15



Where to start? (Zero Message Schemes)

Subset Name Subset Key Assigned
S1 {u1} k1

S2 {u2} k2

S3 {u3} k3

S4 {u4} k4

S5 {u1, u2} k5

S6 {u1, u3} k6

S7 {u1, u4} k7

S8 {u2, u3} k8

S9 {u2, u4} k9

S10 {u3, u4} k10

Table 2.1: Example key assignment to subsets for 2-resilient Basic scheme for 4 users

User Keys Assigned
u1 {k2, k3, k4, k8, k9, k10}
u2 {k1, k3, k4, k6, k7, k10}
u3 {k1, k2, k4, k5, k7, k9}
u4 {k1, k2, k3, k5, k6, k8}

Table 2.2: Key pre-distribution to subsets for the above key assignment to subsets

Let us consider an example with four users U = {u1, u2, u3, u4} that have been assigned inde-
pendent random keys as shown in table 2.1. User u1 gets the keys for subsets to which it does
not belong. Table 2.1 shows the key pre-distributuion. Now, if the only privileged user is u1,
then the key to be used to encrypt the session key SK would be

k2 ⊕ k3 ⊕ k4 ⊕ k8 ⊕ k9 ⊕ k10.

It can be easily observed that unless all the other three users {u2, u3, u4} collide, the key of u1

cannot be found. This as expected complies with the above argument.

The memory requirement for this scheme is that every user is assigned
∑k

i=1

(
n−1
i

)
keys. With

this requirement we need make no assumptions whatsoever. We therefore have:

Theorem 2.1.1. There exists a k-resilient scheme that requires each user to store
∑k

i=1

(
n−1
i

)
keys and the center need not broadcast any message in order to generate a common key to the
privileged class.

The center needs to store
∑k

i=1

(
n
i

)
keys.

2.2 1-Resilient Schemes using Cryptographic Assumptions

Trying to improve the memory requirements of the basic scheme, cryptographic assumptions
such as “one-way functions exist” and “extracting prime roots modulo a composite is hard” are
useful. These improvements are applicable to any k. However, they are most dramatic for k = 1.
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Where to start? (Zero Message Schemes)

Figure 2.1: Pseudorandom Generator (a black box that doubles a uniform random string)

2.2.1 1-Resilient Scheme based on One-Way Functions

If we consider the 1-resilient version of the basic scheme described above, it requires every
user to store n − 1 different keys. This will be reduced to dlog ne keys per user if the keys are
pseudorandomly generated from a common seed. The following is the way this can be done.

Assumption : We assume that one-way functions exist and hence pseudorandom generators
exist. Let G : {0, 1}l → {0, 1}2l be the pseudorandom generator such that the length of the
output of G is twice the length of the input of G as shown in figure 2.1.

Key Distribution : The n users are associated with the leaves of a binary tree on n nodes.
The root is labeled with the common seed s ∈ {0, 1}l. The other vertices are labeled recursively
as follows: apply the pseudorandom generator G to the root label and taking the left half (first l
bits) of G(s) to be the label of the left subtree while the right half bits (last l bits) of G(s) to be
the label of the right subtree.

By the basic scheme, every user x should get all the keys except the one associated with the
singleton set B = {x}. To let a user x have all the other keys, the path from the root to the
leaf corresponding to that user is removed which results in a forest of dlog ne trees. Upon this,
the user x is provided with the labels associated with the roots of these trees. Hence, whenever
needed, user x can compute the labels associated with the leaf nodes (except that of K{x}).

Resilience : Given the labels of the roots of all the trees in the above forest, the label of K{x}
is still pseudorandom for user x. If two or more users belonging to the two subtrees of the root
come together, they can know the keys corresponding to all subsets in the system (they will have
the keys for the roots of the two subtrees of the root of the tree from which keys for all nodes of
the tree can be derived).

Theorem 2.2.1. If one-way functions exist, then there exists a 1-resilient scheme that requires
each user to store log n keys and the center need not broadcast any message in order to generate
a common key to the privileged class.
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Where to start? (Zero Message Schemes)

Figure 2.2: Complete Binary Tree to whose leaves the users are associated. (Only a portion of
the bottom of the tree has been shown. The dotted lines indicate there are more nodes below
them but could not be shown due to space constraints.) This tree having N leaves has N − 1
internal nodes.

Figure 2.3: The subtrees falling off from the path between the root and the leftmost leaf (user)
in a Complete Binary Tree

18



Where to start? (Zero Message Schemes)

2.2.2 A 1-Resilient Scheme based on Computational Number Theoretic As-
sumptions

A specific number theoretic scheme, cryptographically equivalent to the problem of root ex-
traction modulo a composite, can further reduce the memory requirements for 1 − resilient
schemes. This scheme is cryptographically equivalent to the RSA scheme and motivated by
the Diffie-Hellman key exchange mechanism, and the original Shamir cryptographically secure
pseudorandom sequence.

Key Distribution The center chooses a hard-to-factor composite N = P.Q where P and Q
are primes. It also chooses a secret value g of high index. User i is assigned key gi = gpi , where
pi, pj are relatively prime for all i, j ∈ U . All users know what user index refers to what pi. A
common key for a privileged subset of users T is taken as the value gT = gpT mod N where
pT =

∏
i∈T pi.

Every user i ∈ T can compute gT by evaluating

g

Q
j∈T−{i} pj

i mod N

Resilience Suppose that for some T ⊂ U and some j /∈ T , user j could compute the common
key for T . Then j could also compute g. If this is assumed to be hard, then any user outside T
cannot get the key common to T .

19
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Chapter 3

The Subset-Cover Revocation
Framework

3.1 The Framework

Let U be the set of all users. A BE algorithm in this framework defines a collection of subsets
S1, ..., Sw, Si ⊂ U . each subset Si is assigned a long-lived key Li. Each user belonging to Si
should be able to deduce the key Li from the secret information it has.

Given a revoked set R ⊂ U , the remaining users can be partitioned into disjoint subsets
Si1 , ..., Sim so that

U \R =
m⊎
j=1

Sij

and a session key is encrypted m times with Li1 , ..., Lim .

Specifically, an algorithm in the framework uses two encryption schemes:

• An encryption scheme to deliver the session keys to the privileged users of the disjoint
subsets Si1 , ..., Sim using the long lived keys Li1 , ..., Lim of those subsets.

• An encryption scheme to encrypt the message itself using the session key.

Components of the Algorithm

Scheme Initiation : Every receiver u is assigned private information Iu such that for all
1 ≤ i ≤ w if u ∈ Si, Iu allows u to deduce the key Li corresponding to the set Si. Also, if u /∈ Si
where Si is any of the sets Si1 , ..., Sim , Iu does not help u in any way to deduce the key Li.

The Broadcast Algorithm : At the center,

• Choose a session encryption key K

• Given the set R, the center finds out the partition Si1 , ..., Sim of users in U \R.

• It encrypts K with these encryption keys and also encrypts the actual message with K and
then broadcasts these.

21



The Subset-Cover Revocation Framework

Figure 3.1: The Complete Binary Tree with the revoked nodes and the path from the root to
them indicated by dark black lines. When the rest of the nodes and the edges of the tree are
deleted, they Form the Steiner Tree as shown in the next figure.

The Decryption Step : At the receiver u,

• Find ij such that u ∈ Sij . (If u ∈ R, return NULL)

• Extract the corresponding key Lij from Iu.

• Decrypt the session key from the corresponding encryption

• Decrypt the actual message using this session key

Security Intuitively, a critical property that can be identified as to be required from the key as-
signment method in order to provide a secure Subset-Cover algorithm is: key-indistinguishability .
An algorithm is said to satisfy this property if for every subset Si, its key Li is indistinguishable
from a random key given all the information of all the users that are not in Si.

3.2 Subset-Cover Revocation Schemes

The following are two instantiations of revocation schemes based on the above Subset-Cover
framework. Both schemes are r − flexible, i.e.; they work with any number of revocations.

3.2.1 The Complete Subtree Method

The collection of subsets S1, ..., Sw in this scheme corresponds to all complete subtrees in a full
binary tree with |U | leaves. Hence, for any node vi in the full binary tree, let the subset Si be
the collection of receivers u that correspond to the leaves of the subtree rooted at node vi.

Key Distribution : Assign an independent and random key Li to every node vi in the
complete subtree. Assign every user u with the log|U |+ 1 keys associated with the nodes along
the path from root to leaf u.
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The Subset-Cover Revocation Framework

Figure 3.2: The Steiner Tree ST (R) formed from the Complete Binary Tree shown in figure 3.1
by removing all non-revoked nodes and corresponding edges.

Revocation : For a given set R of revoked users, let u1, ..., ur be the leaves corresponding to
the elements in R. The partitioning of U \R into disjoint subsets would be as follows: Consider
the Steiner Tree ST (R) defined as the minimal subtree of the full binary tree that connects all
the leaves in R. ST (R) is unique. Let Si1 , ..., Sim be all the subsets formed by the users at the
leaves of the subtrees of the original tree that “hang-off” ST (R).

The following claims are obvious:

• Every leaf u /∈ R is in exactly one subset in the above partition.

• A leaf u ∈ R does not belong to any subset in the above partition.

Theorem 3.2.1. The complete subtree revocation method requires

• message length of at most r log N
r keys,

• to store logN keys at the receiver, and

• O(log logN) operations plus a single decryption operation to decrypt the message.

where r = |R| and N = |U | keys,

3.2.2 The Subset Difference Method

The main disadvantage of the Complete Subtree Method is that U \R may be partitioned into
a number of subsets that is too large. To see how, consider the path between any two internal
nodes of the complete subtree which are neighbours in ST (R) but are quite a distance away in the
complete subtree. All subtrees falling off from this path of the complete subtree are individual
subsets in the Complete Subtree Method. We intend to keep additional keys for the union of
such subsets to reduce the maximum header length.
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Figure 3.3: Showing the leaves that are in the subset Si,j for the Subset Difference Method

The goal is now to reduce the partition size. We show an improved method that partitions
the non-revoked receivers into at most 2|R| − 1 subsets, thus getting rid of a log|U | factor and
effectively reducing the message length accordingly. In return, the number of keys stored by
each receiver increases by a factor of 1

2 log|U |. In this method any user belongs to substantially
more subsets than (O(|U |) instead of O(log|U |)) the Complete Subtree Method and hence the
number of keys stored per user increases. The challenge is then to devise an efficient procedure
to concisely encode this large set of keys at the user.

We now discuss the key pre-distribution and the covering algorithms. After that we take up
an example to illustrate the key distribution amongst users and discuss the resilience.

The Subset Description As in the previous method, the receivers are viewed as leaves in a
complete binary tree. The collection of subsets S1, ..., Sw defined by this algorithm corresponds to
subsets of the form (G1\G2) “a group of receivers G1 minus another group G2”, where G2 ⊂ G1.
In the complete binary tree with all users at its leaves, therefore a valid subset is represented by
two nodes in the tree (vi, vj) such that vi is an ancestor of vj . We denote such subset as Si,j . A
leaf is in Si,j iff it is in the subtree rooted at vi but not in the subtree rooted at vj . Figure 3.3
illustrates an example where Si,j is a subset.

The Cover For a given set R of revoked users, let u1, ..., ur be the leaves corresponding to the
elements in R. The Cover is a collection of disjoint subsets Si1,j1 , ..., Sim,jm that partitions U \R.

Finding the Cover Let ST (R) be the directed Steiner Tree induced by R and the root. We
build the subset collection iteratively, maintaining a tree T which is a subtree of ST (R) with the
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property that “any u ∈ U \ R that is below a leaf of T has been covered.” We start by
making T to be equal to ST (R). We then iteratively remove nodes from T (while adding subsets
to the collection) until T consists of just a single node:

• Find two leaves vi and vj in T such that the least-common-ancestor va of vi and vj does
not contain any other leaf of T in its subtree. Let vl and vr be the two children of va such
that vi is a descendant of vl and vj is a descendant of vr. (If there is only one leaf left,
make vi = vj to be the leaf, va to be the root of T and vl = vr = va.)

• If vl 6= vi then add the subset Sl,i to the collection; likewise, if vr 6= vj then add the subset
Sr,j to the collection.

• Remove from T all descendants of va and make it a leaf.

Effectively, the cover algorithm does the following: Find maximal chains of nodes with outde-
gree 1 in ST (R). For each such chain of length ≥ 1, add a subset to the cover. If the chain is of
the form {vi1 , ..., vil−1

} (nodes of outdegree 1 in ST (R)) followed by a node vil which is either a
leaf or has outdegree 2, then the subset added to the cover is Si1,il .

To visualize the change from the Complete Subtree Method, we see that there, all subtrees that
“hang-off” from the maximal chains between nodes of degree two, used to form distinct subsets.
All such nodes are coagulated to form a single subset here in the Subset Difference Method.

Lemma 3.2.2. Given any set of revoked leaves R, the above method partitions U \ R into at
most 2|R| − 1 disjoint subsets.

Proof. The Steiner Tree ST (R) has r = dRe nodes as leaves and r − 1 nodes as internal nodes.
As the algorithm suggests, every node in ST (R) becomes a leaf of the intermediate tree T exactly
once. When a node is a leaf, it either gives rise to a new subset or not (when it is an immediate
child of va in the algorithm). Hence there can be at most 2r − 1 subsets.

Key Assignment to Subsets If a receiver needs to store explicitly, the keys of all subsets it
belongs to, then it would have to store O(|U |) keys. This is because, for each complete subtree
Tk it belongs to, user u would have to store a number of keys proportional to the number of
nodes in the subtree Tk and not on the path from the root of Tk to u. There are logN such trees
one for each height 1 ≤ k ≤ logN , yielding a total of

∑logN
k=1 (2k − k) which is O(N) keys where

N = |U |.

Instead, we use pseudorandom generators to bring down the total number of keys required to
be stored by each user to O(log2|U |). Hence we now define what information Iu the user u must
store. While the total number of subsets to which a user belongs to is O(N), these can be grouped
into logN clusters defined by the first subset (from which another subsets is subtracted).

Let G : {0, 1}l → {0, 1}3l be a (cryptographic) pseudorandom sequence generator similar to the
one used in figure 2.1 but whose output length is three times the length of the input. Let GL(S)
denote the left third of the output of G on the seed S, GM (S) the middle third and GR(S) the
right third. Given that any parent node was labeled S, its two children are labeled GL(S) and
GR(S) respectively where S comes from some original LABELi assigned to some ancestor of the
children.
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Now we choose for each 1 ≤ i < N corresponding to an internal node in the full binary tree,
a random and independent value LABELi. This value should induce the keys for all legitimate
subsets of the form Si,j . Consider now the subtree Ti (rooted at vi). Let LABELi,j be the label
of node vj derived in the subtree Ti from LABELi by repeated application of G using the above
method. Following such a labeling, the key Ki,j assigned to set Si,j is GM (LABELi,j).

The process of generating labels and keys for a particular subtree is depicted in Figure 3.4(a).
For such a labeling process, given the label of a node vi, it is possible to compute the labels of
all its descendants. Hence it is possible to get all the keys of subsets of the form Si,j . On the
other hand, without receiving the label of an ancestor of a node, its label is pseudorandom and
for a node vj , given the labels of all its descendants (but not including itself) the key Ki,j is
pseudorandom (LABELi,j , the label of vj , is not pseudorandom given this information simply
because one can check for consistency of the labels). It is important to note that given LABELi,
computing Ki,j requires at most logN invocations of G.

Information Iu held by a user In order to derive the key assignment described above, the
information Iu that the user u gets should be such that for each subtree Ti that u is a leaf of,
the receiver u should be able to compute Ki,j iff j is not an ancestor of u. Consider the path
from vi to u and let vi1 , . . . , vik be the nodes just hanging off the path, i.e. they are adjacent to
the path but not ancestors of (see Figure 3.4(b)). Each vj in Ti that is not an ancestor of u is a
descendant of one of these nodes. Therefore if u receives the labels of vi1 , . . . , vik as part of its Iu,
then invoking G at most logN times suffices to compute Ki,j for any vj that is not an ancestor
of u.

Number of labels held by a user Total number of labels (from which all keys can be
derived) stored by a user u can be found by summing up the labels due to each Ti to which it
belongs. Each tree Ti of depth k that contains u, contributes k − 1 (plus one key for the case
where there are no revocations), so the total is

1 +
logN+1∑
k=1

(k − 1) = 1 +
(logN + 1) logN

2
=

1
2

log2N +
1
2

logN + 1.

Illustrative Example Let us consider a system with 16 users as shown in figure 3.5 and find
out the labels that are assigned to the user u1. u1 is part of the subtrees rooted at the internal
nodes v1, v2, v4 and v8. These nodes are the ancestors of u1 that form a path. The subtrees
“falling off” from this path are those rooted at v3, v5, v9, and v17 (shown in dark gray). Hence u1

gets the labels for roots of these subtrees that have been derived from the labels of the ancestors of
u1. The labels derived from LABEL1 are: LABEL1,3, LABEL1,5, LABEL1,9 and LABEL1,17.
Similarly the labels derived from LABEL2 are: LABEL2,5, LABEL2,9 and LABEL2,17. The
labels derived from LABEL4 are: LABEL4,9 and LABEL4,17. The only label derived from
LABEL8 is: and LABEL8,17.

Security In order to prove security we show that the key-indistinguishability condition stated
in section 3.1 holds for this method, namely that each key is indistinguishable from a random
key for all users not in the corresponding subset. Theorem 12 of Section 6 of [NNL01] proves
that this condition implies the security of the algorithm.
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Figure 3.4: (a) The first figure shows derived label of the node vj of figure 3.3 from the uniform
random label LABELi of vi. (b) The second figure shows the labels of vi1 , . . . , vik induced by
LABELi of vi that the user u receives.
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Figure 3.5: An example with 16 users where u1 gets the following labels: LABEL1,3, LABEL1,5,
LABEL1,9, LABEL1,17, LABEL2,5, LABEL2,9, LABEL2,17, LABEL4,9, LABEL4,17,
LABEL8,17

Observe first that for any u ∈ U , u never receives keys that correspond to subtrees to which it
does not belong. Let Si denote the set of leaves in the subtree Ti rooted at vi. For any set Si,j
the key Ki,j is (information theoretically) independent of all Iu for u /∈ Si. Therefore we have to
consider only the combined secret information of all u ∈ Sj . This is specified by at most logN
labels - those hanging on the path from vi to vj plus the two children of vj - which are sufficient
to derive all other labels in the combined secret information. Note that these labels are logN
strings that were generated independently by G, namely it is never the case that one string is
derived from another. Hence, a hybrid argument implies that the probability of distinguishing
Ki,j from any random string of the same length is negligible.

Theorem 3.2.3. The Subset Difference Method requires

• message length of at most 2r − 1 keys,

• to store 1
2 log2N + 1

2 logN + 1 keys at the receiver, and

• O(logN) operations plus a single decryption operation to decrypt the message.

where r = |R| and N = |U | keys,
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Chapter 4

Layered Subset Difference
Algorithms

The paper by Halevy and Shamir [HS02] discussed the Layered Subset Difference Schemes.
They first introduced the Basic LSD scheme and then the General LSD scheme.

4.1 The Basic LSD Scheme

Their main observation was the following lemma:

Lemma 4.1.1. If i, j, k are vertices which occur in this order on some root-to-leaf path in the
tree, then Si,j can be described as the disjoint union Si,j = Si,k ∪ Sk,j

The basic idea of the LSD scheme is to retain only a small subcollection of the Si,j used by
the SD scheme. Whenever needed, a discarded set can be replaced by a union of two smaller sets
which are in the subcollection.

The subcollections of sets Si,j in the LSD scheme is defined by restricting the levels in which
the vertices i and j can occur in the tree. We define some of the log n levels as “special”. The root
is considered to be at a special level, and in addition we consider every level of depth k ∗

√
log n

for k = 1, ..., log n as special. There are thus log n special levels which are equally spaced at
a distance of log n from each other. The collection of levels between (and including) adjacent
special levels is defined as a “layer”.

The subcollection of sets in the LSD scheme is defined in the following way:

Definition 4.1.1. Useful Set: Si,j is a useful set if it is not empty, and at least one of the
following conditions is true:

• both i and j belong to the same layer, or

• i is at a special level.
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The above definition leads us to the following arguments about dividing the subsets into useful
sets as follows: If Si,j is non-empty, j is a strict descendant of i. If they belong to the same layer,
then Si,j is a useful set. Otherwise, define k as the first vertex on the path from i to j which is in
a special level (possibly i itself). Since i and k are in the same layer, Si,k is a useful set (unless
it is empty) even if k and j belong to different layers. Consequently, Si,j is the disjoint union of
two useful sets Si,k and Sk,j or equal to one of them if the other is empty. This leads us to the
following lemma:

Lemma 4.1.2. Any non-empty set Si,j is either a useful set or the disjoint union of two useful
sets.

So how do we gain? Since the number of covering sets in the SD scheme is bounded by
2r − 1, and each one of them is replaced by at most two useful sets during the actual broadcast,
the number of messages sent by the broadcaster in this scheme is at most 4r − 2. The 1.25r
average complexity for r randomly chosen revoked users in the SD scheme suggests a 2.5r average
complexity in the modified scheme, but in fact there is an additional saving since many of the
sets do not get split. Actual experiments on trees with 2, 00, 000 users indicate that the average
complexity is closer to 2r, which is only 1.6 times larger than in the original SD scheme. What
we gain from this slightly increased message complexity is a significant reduction in the size of
the tamper resistant memory in each user’s smart card. The analysis follows:

How much do we lose for that? The keys associated with the broadcast sets are generated
by the user in the same recursive way as in the SD algorithm. The only labels a user should
memorize are those that correspond to sets Si,j in which i is an ancestor of u, j is just hanging
off the path from i to u, and the levels of i and j are those specified in the definition of useful
sets.

Note that at each level in the tree there can be at most one vertex which can serve as i and
one vertex which can serve as j wrt u, and these two vertices are siblings.

To count the number of memorized labels, consider the two possible cases of useful sets:

• Local sets: Each layer contains
√

log n levels, and thus the number of i and j pairs which
belong to that layer is O((

√
log n)2) = O(log n). Since there are log n possible layers, the

number of i and j pairs of this type in the whole tree is O(log
3
2 n).

• Special sets: Each i in a special level can be associated with a j in any one of the O(log n)
levels underneath it. Since there are logn possible is, the number of labels of this type is
also O(log

3
2 n).

Consequently, the total number of labels u has to know is reduced from O(log2 n) to
O(log

3
2 n).

It is easy to show that the choice of
√

log n as the distance between consecutive special levels
is optimal among all the equidistant partitions. For any choice of distance s between consecutive
special levels, the number of keys each user has to remember is O((s2 × log(n)

s ) + (log n× logn
s )).

The first derivative of this expression (as a function of s) is log n− log2 n
s2

which is equal to 0 for
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s =
√

log n. Since the second derivative is positive, choosing this value of s minimizes the storage
complexity of this scheme.

The above arguments leads us to the following lemma:

Lemma 4.1.3. The number of labels memorized by each user u in the basic LSD scheme is
(log

3
2 n)

4.2 The General LSD Scheme

In this section we show how to further reduce the memory requirements of the user revocation
scheme, by solving an interesting graph theoretic problem.

The basic LSD algorithm represents each Si,j as the disjoint union of two sets from a smaller
subcollection. It is easy to generalize this observation and represent Si,j as the disjoint union of
d sets.

We extend the previous lemma on partitioning the set Si,j of users into a disjoint union of
two useful sets by the following idea: We apply a telescoping formula of set differences for any
descending chain of sets. The result is the following lemma:

Lemma 4.2.1. Let i, k1, k2, ..., kd−1, j be any sequence of vertices which occur in this order (but
not necessarily consecutively) along some root-to-leaf path in the tree. Then

Si,j = Si,k1 ∪ Sk1,k2 ∪ ... ∪ Skd−1,j .

Mapping the Complete Subtree Method to the Graph Theoretic Problem: Any root
to leaf path can be viewed as a line graph of length log n with directed edges between adjacent
vertices. Broadcasting to the set Si,j corresponds to walking from vertex i to vertex j, and
addressing all the subtrees that hang off this segment. The original line graph has very few edges
(whose labels require very little memory) but these edges provide only a slow way of walking
from i to j (with many messages). Since for each original edge the corresponding set is a single
subtree, this covering technique is equivalent to the Complete Subtree Method.

Mapping the Subset Difference Technique to the Graph Theoretic Problem: The
Subset Difference technique adds to the line graph all the edges in its directed transitive closure.
We can now jump from any i to any descendant j in a single jump (and thus address all the users
in Si,j with a single message), but each user has to memorize the labels of O(log2(n)) edges.

Mapping the Basic LSD Scheme to the Graph Theoretic Problem: The basic LSD
scheme shows that we only have to use O(log

3
2 n) edges (labels) in order to get from any i to any

descendant j in two steps (messages).

Motivation for the General LSD Scheme solution: The general LSD scheme considers
the following graph theoretic problem: What is the smallest number of edges we have to add to
the line graph in order to guarantee the existence of a directed path of length at most d from any
i to any descendant j?
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To make the graph construction applicable to our user revocation problem, we have to add two
additional constraints:

• Monotonicity : We can only add an edge from i to one of its descendants.

• Shrinkage: If we add an edge from i to j, we also have to add all the edges from i to vertices
j between i and j.

We describe an efficient solution to this graph theoretic problem by representing each vertex on
the line graph by its distance from the root, expressed as a d-digit number in base b = O(log

1
d n).

The root is represented by 0...00, its child is represented by 0...01, etc.

Our goal is to define a small subcollection of useful transformations between pairs of numbers
which satisfy the monotonicity and shrinkage condition, and allow us to change any i to any
larger j with a sequence of at most d useful transformations.

Consider for example the problem of changing i = 825917 to j = 864563 in standard decimal
notation. The simplest solution is to allow arbitrary single-digit transformations such as

825917→ 865917→ 864917→ 864517→ 864567→ 864563.

However, these transformations do not satisfy either the monotonicity or the shrinkage condition.
Consequently, we have to use a more complicated sequence of transformations defined as follows:

Definition 4.2.1. Useful Transformation: Let i be represented as a d digit number in base
b by −→x a−→0 where −→x is a sequence of arbitrary digits, −→a is the rightmost nonzero digit, and

−→
0

is a sequence of zeroes. The transformation of i to j is called useful if j is represented either by−−−→
x+ 10

−→
0 or by any number −→x a′−→y in which a

′ ≥ a and −→y is an arbitrary sequence of digits of
the same length as 0.

The basic LSD scheme can be viewed as a special case of this definition for d = 2, where
two digit numbers ending with 0 are considered to be special. In the general LSD scheme, the
number of trailing zeroes in the representation of i determines how special it is and how big is
the layer within which it is allowed to jump (j can be any destination between i + 1 and the
first vertex which is even more special than i, inclusive). In our previous example, these useful
transformations allow the broadcaster to split the Si,j set into the following segments:

825917→ 825920→ 826000→ 830000→ 864563.

Note that from the point of view of the broadcaster, the first three transitions are of the first
type (which jumps to the end of the layer and increases the specialty level of the vertex), and
the last transition is of the second type (which jumps to the middle of the layer).

However, from the point of view of the user he knows the label associated with at most one of
these transitions, and its memorized shrunk version is likely to be of the second type even if the
broadcast transition was of the first type.

32



Layered Subset Difference Algorithms

Counting the number of Useful Transformations: Consider any pair of i and j linked by
a single useful transformation. We can choose the location of the digit a within i in d ways, and
for each location we can choose the d− 1 digits in the sequences −→x and −→y in bd1 ways, and the
two digits a ≤ a′ in b2

2 ways. Since b = O(log
1
d n), we get a total number of useful transformations

of O(d ∗ bd+1) = O(d ∗ log
(d+1)
d n).
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Chapter 5

The Punctured Interval Scheme π

The paper by Nam-Su Jho, Jung Hee Cheon, Myung-Hwan Kim and Eun Sun Yoo [JHC+05]
discusses the Punctured Interval (PI) Scheme. Their revocation method is based on the Subset-
Cover framework proposed by Naor et. al [NNL01].

5.1 Punctured Intervals

Assume that L be a straight line with N dots (users) on it, where N is the number of total
users. In our scheme, each user is indexed by an integer k ∈ [1, N ] and he/she is represented by
the k-th dot, denoted by uk, in the line L. Let p ≥ 0 and c > 0 be integers. By a p-punctured
c-interval we mean a subset of L which contains c or less consecutive users starting from and
ending at non-revoked users and containing p or less revoked users. Let S(p;c) be the set of all
p-punctured c-intervals. In each session, the p-punctured c-intervals are to be determined under
the following rules:

• The first p-punctured c-interval starts from the leftmost non-revoked user, and each of
the following starts from the first non-revoked user after the last non-revoked user of the
previous.

• Each p-punctured c-interval contains the maximal possible number of users.

The p-punctured c-interval starting from ui and ending at uj with ux1 , . . . , uxq revoked users
is denoted by Pi,j;xi,...,xq or Pi,j;X in short for X = {x1, . . . , xq}, where 1 ≤ j − i ≤ c, 0 ≤ q ≤ p,
and i ≤ x1 ≤ . . . ≤ xq ≤ j if there are revoked users.

Figure 5.1: 1-punctured 6-intervals
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Figure 5.2: Key chain of a 10-punctured 20-interval

5.2 Punctured Interval Scheme (p; c)− π

We assign just one key to each p-punctured c-interval, which can be easily derived by all non-
revoked users in that interval, and construct key chains using one-way permutations in order to
reduce the storage size.

Key Generation Let ht : {0, 1}l → {0, 1}l be one-way permutations for t = 0, 1, . . . , p, where
l is the key length. To assign one key to each p-punctured interval, we randomly choose N keys
K1,1,K2,2, . . . ,KN,N to be given to u1, . . . , uN , respectively. From each Ki,i the center constructs
the one-way key chains under the following rule : For any possible p-punctured c-interval P
starting from ui given,

• The one-way key chain consists only of the keys of all non-revoked users in P . There are
no keys of the revoked users in the chain.

• For any non-revoked user uk ∈ P , if the next user uk+1 ∈ P is also non-revoked, then just
apply h0 to the key of uk to obtain the key of uk+1.

• If the next t users are revoked and the user uk+t+1 ∈ P is non-revoked, then apply ht to
the key of uk to obtain the key of uk+t+1, where 1 ≤ t ≤ p.

The following example illustrates how to construct the key chain of a given punctured interval
(with p = 10, c = 20) : In the key chain of P = Pi,j;x1,...,xq , the key of a non-revoked user uk ∈ P
is denoted by Ki,k;x1,...,xt , where i < x1 < . . . < xt < k < xt+1 < . . . < xq and 0 ≤ t ≤ q ≤ p. For
example,

K5,11 = h6
0(K5,5);

K5,11;7 = h3
0h1h0(K5,5);

K4,11;5,6,7,9,10 = h2h3(K4,4);

K3,11;4,5,7,8 = h2
0h

2
2(K3,3);

K3,11;4,5,6,7,9 = h0h1h4(K3, 3); . . .

The center assigns these keys to users so that the user uk receivesKk,k and all possibleKi,k;x1,...,xts,
where i < x1 < x2 < . . . < xt < k with 0 ≤ t ≤ p and 2 ≤ (ki+ 1) ≤ c. Figure describes the key
assignment in the scheme (3; 5)− π for u5:

36



The Punctured Interval Scheme π

Figure 5.3: One-way key chains starting from K1,1, where c = 5

Encryption For each session, the center divides L into disjoint p-punctured c-intervals P1, . . . , Pm ∈
S(p; c), whose union covers all the non-revoked users. Let P = Pi,j;x1,...,xq be one of Pµs. The last
key Ki,j;x1,...,xq of the key chain corresponding to P is called the interval key of P . Lets denote
the interval key of Pµ by Kmu for each µ = 1, 2, ldots,m, just for convenience. Then the center
broadcasts :

〈info1, info2, . . . , infom;EK1(SK), EK2(SK), . . . , EKm(SK);FSK (M)〉

where infoµ is information on Pµ, the µ-th interval starting from uiµ and ending at ujµ with
qµ revoked users. For each µ, infoµ consists of iµ, lµ, lµ,1, . . . , lµ,qµ , where lµ = jµiµ + 1 and
lµ,1, . . . , lµ,qµ are the distances from uiµ to the first, . . ., to the last revoked users of Pµ, respectively.
The starting position iµ can be represented by logN bits and the ls are at most log c bits. So
the size of all infos is m(logN +p log c), which will be ignored when computing the transmission
overhead because it is negligible compared to the size of all EK(SK)s.

Decryption Receiving the encrypted message, each non-revoked user uk first locates the punc-
tured interval that he/she belongs using the infos. Let the punctured interval be Pi,j;x1,...,xq ,
where i ≤ k ≤ j, k 6= x1, . . . , xq. Then uk can find Ki,j;x1,...,xq as follows:

• Find t for which xt < k < xt+1, where 0 ≤ t ≤ q. Here, t = 0 and t = q mean that there is
no revoked user before and after uk, respectively.

• Choose Ki,k;x1,...,xt from the assigned user keys.

• Starting from Ki,k;x1,...,xt , apply one-way permutation his under the rule described in Key
Generation until the second subscript reaches to j.

• The resulting key is then Ki,j;x1,...,xq .

With this, uk decrypts EKi,j;x1,...,xq (SK) and ESK(M) to obtain the session key SK and the
message M , respectively, in order.
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Efficiency We analyze efficiency - the transmission overhead (TO), the computation cost (CC)
and the storage size (SS) - of the scheme (p; c) − π. The transmission overhead of the scheme
(p; c)− π is

TO(p;c)(N, r) =

⌊
r

p+ 1

⌋
+

⌈
N − (p+ 2)

⌊
r

(p+1)

⌋
c

⌉
,

where N and r are the total number and revoked users, respectively. Especially,

TO(1;c)(N, r) =

⌊
r

2

⌋
+

⌈
N − (3)

⌊
r

(2)

⌋
c

⌉
.

This occurs when

o x x

is repeated from the leftmost user and then the remaining privileged users are on the right, where

o

and

x

denote a privileged user and a revoked user, respectively. It is not hard to prove the above
equations, but we omit the proof because it is long and tedious. It is trivial that the computation
cost CC(p;c) is at most c1 computations of one-way permutations, which is independent of N and
r. The storage size of each user can be easily computed as follows:

SS(p;c) =
p∑

k=0

(
1

(k + 1)

k+1∏
i=1

(c− i)

)
+ 1,

which is also independent of N and r.

Security Note that even a non-revoked user cannot compute the interval keys of the other
punctured intervals. Those who do not belong to any punctured interval are the revoked ones
and they can never access to the session key. Neither those revoked users who belong to punctured
intervals can access to their interval keys because they cannot invert the one-way permutations.
The only way to compute the interval key Ki,j;x1,...,xq of Pi,j;x1,...,xq is to obtain one of the keys
in the key chain. However, no revoked user is assigned a key in the key chain and hence they
cannot compute the interval key even though they all collude. Furthermore, the interval keys
of previous sessions when the user was not revoked do not help at all in the present session, in
which he/she is revoked, because the revocation of him/her results in a totally new key chain.

5.3 Summary

As we are about to finish our study of BE, we try to summarize the most important parameters
for the schemes. The schemes of the Subset-Cover Framework and the Punctured Interval scheme
give trade-offs between the header size and the number of keys stored at the user. The table 5.1
summarizes these parameters.
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Scheme # Keys at
Center

Max. Header
Length

# Keys at User

Simple Solutions
First Simple Solution O(n) O(|P |) O(1)
Second Simple Solution O(2n) O(1) O(2n−1)

Zero Message Schemes
The Basic Zero Message Scheme

∑k
i=1

(
n
i

)
O(1)

∑k
i=1

(
n−1

i

)
1-Resilient Scheme based on
One-Way Functions

O(1) →
(2n+1)

O(|P |) dlog ne → (2n+1−dlog ne)

1-Resilient Scheme based on
Computational Number Theo-
retic Assumptions

O(n) O(1) n− 1

The Subset Cover Revocation Framework
The Complete Subtree Method 2dlog ne+1 |R| log n

|R| log n+ 1
The Subset Difference Method 2dlog ne+1 2|R| − 1 O(n)→ O(log2 n)
The Basic LSD Method O(log

3
2 n) 4|R| − 2 O(log

3
2 n)

The Punctured Interval Method

The Punctured Interval Scheme
(p; c)− π

Varries with
p and c

⌊
r

p+1

⌋
+⌈

N−(p+2)
⌊

r
(p+1)

⌋
c

⌉
∑p

k=0

(
1

(k+1)

∏k+1
i=1 (c −

i)

)
+ 1

Table 5.1: Comparison of the important parameters for the schemes that are part of this study.
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Chapter 6

Some Basics

6.1 Introduction

The schemes addressing the problem of Broadcast Encryption (BE) work on the common setup
of a broadcasting center and a group of users out of which some are revoked and the rest are
privileged. The method for pre-distribution of keys plays an important role in deciding which
subsets have keys assigned to them and hence which of them would be counted in to construct
the header under a given set of revoked users R. In schemes that try to optimize, some keys are
stored at the user and others are generated dynamically from the stored keys and other stored
information that is part of Iu for that user u. We begin our thoughts by characterizing our keys
in the system. Then we consider a lower bound on the number of keys that should be allotted
by the center to the system.

6.2 Key Characterization

We have seen in our study of BE that pseudorandom generators are pretty handy in reducing
the information (actual number of keys) that need to be stored at the center or with the users
(Iu). In the tree based schemes for example, a random seed is assigned as the label of the root
of any subtree of a binary tree and the labels of its two children can all be derived by applying
the pseudorandom generator (G : {0, 1}l → {0, 1}2l) to its label (as shown in figure 2.1). The
output of the function G is double the size of its input. The left half of the output is assigned as
the label of the left subtree and the right half to the right subtree. The use of a pseudorandom
generator ensures that the labels of the subtrees are poly-time indistinguishable from a uniform
random string, provided the input to G was also uniformly distributed and random.

Schemes for which the key pre-distribution is devised using pseudorandom generators, use the
fact that the subsets of users are correlated in a manner such that labels assigned to those subsets,
when concatenated, form the deterministic output of a particular input to the pseudorandom
generator. It uses this property to store the labels associated with some superset of users so that
the labels of its subsets can be generated dynamically.

Such schemes could be analyzed by assuming that all labels assigned to all subsets of users are
uniformly random strings (not generated by pseudorandom generators).

Definition 6.2.1. Primary Key: A key assigned to a subset of users that is generated from a
uniformly random source of strings (and is not an output of any pseudorandom generator).
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Definition 6.2.2. Derived Key: A key that is a part of the output a pseudorandom generator
(the other part is known to be the key for some other subset of users).

An analysis of a BE scheme can be done based on the assumption that either of the above kind
of keys have been assigned to subsets. Practically, this is a time-space trade-off that we need to
make. If no pseudorandom generators are used, all labels (keys for subsets) associated with the
key-pre-distribution structure have to be stored at the center and user ends. Using them would
bring down the space usage, but then the labels have to be generated at run-time as and when
required. Usually the later is more convenient since in applications like smart cards memory is
scarce, and moreover the fast pseudorandom generators are not difficult to implement.

6.3 Lower bound on the number of Keys

Motivation: One of the important parameters that we try to optimize in every BE scheme is
the number of keys held by each user. Considering any pair of users, they should never have the
same set of keys (or else they can never be mutually revoked). This leads us to the notion that
a user would be uniquely identified by a subset of all keys available with the center.

Observation: To be able to revoke all users except one (arbitrary) dynamically, every user
should have a unique key unknown to the others. This leads us to the following lemma:

Theorem 6.3.1. In any BE scheme with total users as n there have to be at least n primary
keys in the system to allow any arbitrary revocation.

The proof of the theorem follows from the argument above. Off course this is not at all a tight
lower bound. For most schemes, primary keys are 2n or even 2n for trivial schemes.
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Chapter 7

The Hitting Set Framework

All existing schemes of BE consider the set of users U , and try to partition the privileged
set P ⊆ U into subsets for which there are pre-assigned common keys so that an encoding of
the session key in the header for each such subset in the partition would meet the purpose of
broadcasting the message to the entire set of privileged users.

Here, we look at a contrasting perspective to the same problem.

Definition 7.0.1. Hitting Set Problem: Given a collection C of subsets of a finite set S, positive
integer K ≤ |S|, is there a subset S

′ ⊆ S with |S′ | ≤ K, such that S
′

contains at least one
element from each subset in C?

7.1 Does our problem fit the framework?

Now, assume K = {k1, k2, ..., km} to be the set of all keys present in the system (generated at
the center and distributed amongst the users). Let U = {u1, u2, ..., un} be the set of subsets of K
where the subset ui of keys uniquely identifies the ith user. U is the set of all users. Let R ⊆ U
be the set of revoked users.

Let P = {P1, ..., Pn} be the set of sets non-revoked keys remaining with the n users. Every
user will have at least one unique key that no one else has. So, for privileged user ui, the set
Pi will have at least one element but for a revoked user, uj , the set Pj will definitely be empty.
Hence,

P T = ∪Pi∈PPi

is the collection of all privileged keys.

Given this distribution of keys amongst users (subsets of keys), the system needs to dynamically
find the set K

′ ⊆ P T of keys such that every nonempty subset in P (privileged user) has at least
one element (key) in K

′
. So, the problem is basically of finding the Hitting Set of the set

of nonempty subsets in P . Trying to minimize the cardinality of the hitting set is a further
extension towards what we would like to achieve.
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Figure 7.1: The bipartite graph G((U \ R) ∪ P T , E) in which, finding the Maximal Matching
would give the Hitting Set

We construct a bipartite graph G((U \ R) ∪ P T , E) as shown in figure 7.1 whose vertices
represent the privileged users in U \R and the privileged keys in P T and an edge ei,j ∈ E is an
ordered pair (ui, kj) where ui ∈ U \R and kj ∈ P T . Finding the hitting set is same as finding a
maximal matching which has polynomial time algorithms.
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Chapter 8

The Interval Framework

The key assignment of the existing tree-based schemes have been such that a user used to get
unique keys corresponding to a set of subsets having the following containment property: an
element of the set of subsets corresponding to a user is either a subset of another element of
the set or are mutually exclusive sets of users. This restricted the assignment of keys to non-
overlapping subsets of users but gave us the advantage of associating the subsets with nodes of
a tree and hence conveniently using a PRG for reducing the number of keys to be stored at a
user’s end. The associated bound on the header size was 2r − 1 where R is the set of revoked
users and r = |R|.

We propose the Interval Framework, we move to an idea where a user would be getting keys
corresponding to subsets that would be overlapping but -unlike for tree-based schemes- may not
be completely contained in each other. For key pre-distribution, the center assumes a circular
ordering of the users. Let U be the set of users that are assigned the order u0, . . . , un−1, where
n = |U |.

Definition 8.0.1 (Interval). A subset of consecutive users in the assumed cyclic order is called
an interval.

8.1 Basic Circular Order Scheme

Keeping the first simple solution stated in section 1.2 in mind, where every user is assigned a
unique key, we look at a step ahead to reduce the header size by doubling the number of keys.
Every user is still assigned a unique key. Along with that, every adjacent pair is assigned a
unique key. So, a user effectively gets three keys: one that is unique to itself and two other which
uniquely identify its pairing with its two neighbours in the cyclic order. The total number of
keys with the center is 2n. The header size is at most n− r and is at least (n− r)/2.

8.2 All-Interval Circular Order Scheme

In the basic scheme, we considered intervals of length one and two only starting at a user and
had assigned keys to those intervals only. In the all-interval circular order scheme, we consider
all intervals starting at a user ui in this circular array of users, with the lengths of the interval l
varying from 1 to (n− 1). Hence, there will be (n− 1) such intervals for every user. Hence, for
n users, the total number of such intervals would be n(n− 1).
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Figure 8.1: An example set of keys for the Basic Circular Order Scheme. Nodes u0 to u7

correspond to unique keys assigned to the users. Nodes k01 to k70 represent keys assigned to
pairs of users. Key ki,i+1 is the key assigned to the user ui and its neighbour ui+1.

The number of intervals a user is part of (and hence, the number of keys assigned to every
user) is: n(n− 1)− (n− 1)(n− 2)/2, which is O(n2).

Where we gain is the header size. The best known upper bound on the header size is 2|R| − 1.
In this case it would be |R|.

Security Notion: Since the two schemes above are such that the keys assigned to subsets are
independent uniform random strings (primary keys), hence the security notion is information
theoretic. Both the schemes are fully resilient against traitors i.e.; even if an adversary gets hold
of the keys corresponding to a subset of users (the traitors), it will not be able to derive any
information about the keys corresponding an interval not containing any one of the traitors.

8.3 The Layered DAG of Intervals Scheme

Although the all-interval circular order scheme achieves a better header size, the number of
keys that a user has to carry is O(n2). We intend to bring this down by trying to draw a relation
between overlapping intervals and represent it by a directed acyclic graph and hence assign keys
using it.

8.3.1 Construction of the Layered DAG of Intervals

Identifying the Nodes of the DAG: The all-interval circular order scheme identifies all the
possible n(n − 1) intervals in the cyclic order. We use each intervals to label a node of our
directed acyclic graph. Hence, our graph has n(n−1) nodes. We would call the nodes as intervals
interchangeably, whenever appropriate.
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Figure 8.2: An example L-DAG Scheme for four users. There are three layers of intervals of
length 1, 2 and 3 each. Each interval corresponds to a node in the directed graph.

Layering: We first arrange the intervals according to their lengths into layers. The first layer
has all the n intervals of length 1. The second layer has all the n intervals of length 2. We
proceed in a similar manner to construct all the (n− 1) layers. The last layer would contain the
n intervals of length (n− 1) each.

Edge Assignment: If we look at the arrangement of the nodes into layers, then we see that
the union of two consecutive intervals at layer i (the layer with intervals of length i) is an interval
in layer (i+ 1). We assign two directed edges from the two intervals of layer i to the intervals in
layer (i+ 1).

8.3.2 Key pre-distribution

Key pre-distribution at the center: All the nodes at layer 1 (each corresponding to a
singleton set of a user), is assigned a primary key. A Pseudo-Random Generator of the form
G : {0, 1}n → {0, 1}2n that doubles a uniform random string is used to label the edges coming
out of the nodes. Nodes at layer 2 are assigned a key formed by a simple XOR of the labels of its
incoming edges. Again, the edges coming out of the nodes of the layer 2 are labeled by applying
the keys of the nodes as inputs to the PRG and so on.

Key pre-distribution to a user: A user has to receive the keys of all the intervals to which it
belongs (not only keys of intervals that start at that user). Let us consider the intervals to which
a particular user ui belongs. It is a subgraph of the DAG described above with, with a triangular
planar embedding. From the construction of the DAG and the key-assignment method explained
above, we see that each user needs to store 2n− 3 keys corresponding to the two sides (of length
(n− 1) each) of the triangle to derive the keys of the rest of the intervals (inside the subgraph)
to which it belongs.
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8.3.3 Resilience:

Assuming computational security, a user only has the keys of intervals in the triangular planar
subgraph corresponding to it. Even if an adversary gets hold of the keys of a number of such
users (traitors), it can not by any means derive any other key that it has already not caught hold
of (from the traitors). Hence, this scheme is also fully resilient.

8.4 The Inverted Layered DAG of Intervals Scheme

Using the idea of the the layered DAG of intervals scheme, we modify the construction a bit
to achieve far better results.

8.4.1 Construction of the Inverted Layered DAG of Intervals

The DAG construction in this case is same in terms of the association of intervals with nodes
and layering. The edge assignment is also similar but with inverted directions of the edges.
Precisely, if we reverse the direction of all the edges of the previous DAG, then we get the graph
for this scheme.

8.4.2 Key pre-distribution

We form a tree T such that the nodes at layer (n− 1) of the DAG above are the leaves of the
tree. The root of this tree is assigned a primary key. This is the only primary key the center has
to store.

Key pre-distribution at the center: The keys now assigned to the intervals of layer (n− 1)
are hence derived from the above tree. Now, for rest of the nodes of the DAG, the outgoing edges
of each node are assigned a label using the PRG G as before. The intervals at layer (n − 2) is
assigned a key by XOR-ing the labels of their incoming edges and so on.

Key pre-distribution to a user: A user is a part of (n − 1) intervals out of the n intervals
of layer (n− 1) of the DAG. So, it has to have the keys of all these (n− 1) intervals. Now, if we
consider these (n− 1) intervals as leaves of the tree T , then keys of log n nodes of T are sufficient
to generate all these keys.

8.4.3 Resilience:

This scheme is 1-resilient. An adversary having the keys of any two users, can derive the keys
of any other user since they will have all the n keys associated with the intervals at layer (n− 1).

8.5 Summary of parameters of Interval Framework:

Table 8.1 summarizes the parameters of the different schemes of the Interval Framework.
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Figure 8.3: An example Inverted L-DAG Scheme for four users. There are three layers of intervals
of length 1, 2 and 3 each. Each interval corresponds to a node in the directed graph. The edges
here are exactly opposite to the ones in L-DAG.

Scheme # Keys at
Center

Header
Length

# Keys at User Resilience

First Simple Solu-
tion

O(n) O(|P |) O(1) FullyResilient

The Basic Zero
Message Scheme

2n n− r 3 FullyResilient

All-Interval Circu-
lar Order Scheme

n(n− 1) r n(n−1)−(n−1)(n−
2)/2

FullyResilient

Layered DAG of In-
tervals Scheme

n r 2n− 3 FullyResilient

Inverted Layered
DAG of Intervals
Scheme with tree
support

1 r log n 1− resilient

Table 8.1: Summary of the parameters of schemes of the Interval Framework
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8.6 Comparison with the Punctured Interval Scheme (p; c) − π
and Improvements

It turns out that our Interval Framework results (through the L-DAG Scheme) are just the
same as the PI framework discussed in chapter 5. Since we consider intervals which are not
punctured, p = 0 and c = N − 1 would result in the header size r + 1 while our result gives
header size r. On the other hand, in our scheme a user needs to store 2N − 3 keys while in the
(0;N − 1)− π scheme, the storage size is N .

We can modify our scheme a bit by keeping just N/2 layers in the L-DAG instead of N − 1.
This would result in a header size of at most r + 1 and number of keys required to be stored
by each user would be N − 1. This is almost equivalent to the (0;N − 1) − π scheme. But our
scheme has an advantage over the (0;N − 1) − π scheme in the fact that we use pseudorandom
generators in our scheme which are easily implemented, while the (0;N − 1) − π scheme uses
one-way permutations. Now, all known methods for implementing one-way permutations are
time-consuming. A one-way permutation can be constructed using number theoretic operations,
such as, x going to gx mod p for some prime p. Such operations, however, are significantly slower
than symmetric key primitives. There is no natural way of constructing a one-way permutation
from symmetric key primitives. For example, a block cipher provides a permutation for each
value of the key K. But, then the permutation is not publicly known; if K is known, then it
is easy to invert a block cipher. Similarly, there are no natural ways of obtaining a one-way
permutation from stream ciphers or hash functions. In view of the above, to implement the
PI construction, one will require expensive number-theoretic operations. Further, for the one-
wayness to be guaranteed, the size of the underlying group should be quite large, at least 1024
bits. The number of keys per user (with c = N − 1 and p = 0) is (N − 1), but, these are 1024-bit
keys. So that the total key size is 1024(N − 1) bits. This is where our proposed scheme has an
advantage over the (0;N −1)−π scheme. But again, instead of using one-way permutations, the
(0;N − 1)− π scheme can use a length-doubling pseudorandom generator as shown in figure 2.1
and just consider the first l bits of it as its output. This will as well work for the (0;N − 1)− π
scheme.

But what we get from this is an idea for extending our L-DAG scheme to get a tradeoff between
reducing the keys stored at users by a factor of k while increasing the header size by k. In general,
the L-DAG scheme can be modified to keep only N/k layers in the L-DAG used in the scheme.
This would result in a header size of at most r+ k− 1 and number of keys required to be stored
by each user would be 2N

k − 1.
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Chapter 9

The k-ary Tree Schemes

9.1 Motivation

In the Complete Subtree method a user gets keys assigned to all nodes on the path from the
root of the binary tree to the leaf corresponding to itself. In the Subset Difference method, a user
gets labels assigned to nodes “falling off” from the path from the root to the leaf corresponding
to the user. The Subset Difference Method assigns keys to subsets that were assigned keys in the
Complete Subtree Method and more. The combination of these two concepts of key assignment
come to use when the tree that we construct out of the users is ternary or k-ary in general.

9.2 The Ternary Tree Scheme

Ternary trees intuitively, should be able to reduce the number of keys that need to be stored
at the user by reducing the height of the tree for a fixed number of users (as compared to binary
trees) and also allowing the use of a pseudorandom generator that will expand a random label
of a node four times its length. The key assignment to subsets for such a tree has to be done in
such a manner that revocations do not give rise to too many subsets.

9.2.1 Key Assignment

The users are arranged as leaves of a complete ternary tree (each node has three or no children).
We start with this assumption for a number of users of the form 3m. Later on we can extend the
same idea for any number of users in the system. We assume the nodes of the ternary tree that
are at the same distance from the root to form layers of nodes. The root node is assumed to be
in layer 0.

Primary Labels

Each node of the ternary tree is assigned two independent random labels called primary
labels : node vi is assigned LABELcsi and LABELsdi . The label LABELcsi is assigned to be
used as a Complete Subtree label while LABELsdi is assigned to be used as a Subset Difference
label.
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Pseudorandom Generators for Derived Labels

Other than the uniformly random labels assigned to nodes, the nodes also get derived labels
from the Subset Difference labels of its ancestors. The derived label of a child of vi is generated
using the pseudorandom generator G : {0, 1}l → {0, 1}4l. Let s (string of length l) be the Subset
Difference label (can be derived or primary) of vi. An input s to the pseudorandom generator G
is expanded four times its length. This output is split into four parts of length l each namely,
Gk(s), Gl(s), Gm(s) and Gr(s) i.e.;

G(s) = Gk(s)||Gl(s)||Gm(s)||Gr(s).

Gl(s), Gm(s) and Gr(s) are the derived labels of the left, middle and the right children of vi
which was assigned the the label s. Gk(s) is used as a key for the subset Sp,i by the subset
difference method where vp is the parent of vi whose primary label LABELsdp has been used to
get the derived label s of vi.

Now, if we consider a user ui at the leaf level of this ternary tree, it is given labels of the
following nodes:

• Labels corresponding to the Subset Difference method: the derived labels of all nodes
“falling off” from the path from the root to itself generated from the primary labels of all
its ancestors in the path.

• Labels corresponding to the Complete Subtree method: the primary labels of all its ances-
tors in the path from the root to itself (the leaf).

Counting total number of subsets with keys

Key by the Complete Subtree method: Every node gets a primary label that acts as the
key for the subset composed of all users that are leaves to that subtree.

Key by the Subset Difference method: It assigns a node at the ith layer the labels derived
from (at most dlog3(n)e) primary labels of its ancestors. When each such label s is applied as
an input to the pseudorandom generator G, the output has Gk(s) which acts as a key for some
subset. So, each such node at the ith layer gets (i) such labels.

Total Keys: A node at the ith layer has (i) + 1 associated keys. There are 3i nodes at layer i.
Hence the total number of keys used in the system is:

dlog3(n)e∑
i=1

(i+ 1)(3i) =
dlog3(n)e∑
i=1

(i3i) +
dlog3(n)e∑
i=1

(3i).

Note 9.2.1. The subsets getting keys by the Complete Subtree method are all complete subtrees
and the subsets getting keys by the Subset Difference method are strictly not complete other than
the singleton subsets at the leaf level. Hence we claim that the subsets to which keys are assigned
and have cardinality more than one, get keys by exactly one of the methods and not by both. For
the singleton subsets at the leaf level, we will consider the keys assigned by the Complete Subtree
method.
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Keys per User

A user in this method gets dlog3(n)e keys by the Complete Subtree method and
∑dlog3(n)e

i=1 i by
the Subset Difference method which totals to:

dlog3(n)e+
(dlog3(n)e)(dlog3(n)e+ 1)

2
.

9.2.2 Subset Cover

We now construct an algorithm that takes as input the set of revoked users, and finds the
minimal subset cover using the subsets to which keys have been assigned by the key assignment
method above. The cover that we get for an arbitrary revocation results in the minimum possible
header for that revocation using the available subsets with assigned keys.

Cover Algorithm

The algorithm goes as follows:

• Construct the Steiner Tree ST (R) induced by the set of revoked users R from the com-
plete ternary tree using the nodes only on the paths starting from the root to the leaves
corresponding to the revoked users.

• We build the subset cover by constructing an intermediate tree T that is initially equal to
the Steiner Tree ST (R).

• We keep iteratively removing nodes from this tree T and their corresponding subtrees (as-
suming that all leaves under this subtree have been covered) and keep adding corresponding
subsets to the cover by the following algorithm:

– Find a node vi in T such that it is the least-common-ancestor of leaves in T and has no
internal node in its subtree. Let vi have l (can take values 1, 2 or 3) children namely
vj1 , . . . , vjl . Let v

j1
′ , . . . , v

jl
′ be the children of vi in the original ternary tree which

are ancestors of the l nodes of vi.

– For all these leaf nodes vjk of vi which are not the same as their ancestor nodes v
jk
′ ,

add subsets S
jk
′
,jk

to the cover. Depending on the value of l, there will be three cases
as follows:

∗ l = 1 which can happen if there is only one leaf left in T rooted at vroot, in which
case, Sroot,j1 is added to the cover. This subset has a key assigned by the Subset
Difference Method.
∗ l = 2 which means there are two children vj1 and vj2 of vi in T . In this case, Si,j1

and Si,j2 are added to the cover. These subsets have keys assigned by the Subset
Difference Method. The set corresponding to the leaves of the third child subtree
is also added to the cover and it has a key assigned through the Complete Subtree
Method.
∗ l = 3 which means there are three children vj1 , vj2 and vj3 of vi in T . In this case,
Si,j1 , Si,j2 and Si,j3are added to the cover. These subsets have keys assigned by
the Subset Difference Method. No other set needs to be added to the cover.
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Maximum Header Size

There are two types of nodes in ST (R): leaf nodes (corresponding to revoked users), and
internal revoked nodes of degree two or more. The root node may be one of the internal revoked
nodes. If not, then it is a special third kind of node of degree one. On analyzing the above
algorithm carefully, we make the following claims:

Lemma 9.2.1. A leaf node in T (ST (R) to begin with) gives rise to at most one subset due to
the above cover algorithm.

Proof. If T has only one leaf (that would imply that there are only two nodes left: the leaf and
the root), that would give rise to a single subset to cover all privileged users (that have not yet
been covered) by the Subset Difference method. Now, if T has more than one leaf and one of
them is (say) vj1 , then its corresponding v

j1
′ in the above algorithm gives rise to one set of the

cover S
j1
′
,j1

if v
j1
′ 6= vj1 . If v

j1
′ = vj1 then it does not give rise to any subset of the cover.

Lemma 9.2.2. An internal revoked node other than the root in ST (R) has degree at least two.
The root can have degree one.

Proof. An internal revoked node (other than the root) in ST (R) has been formed because there
are at least two revoked nodes (internal or leaf) in its subtree.

Lemma 9.2.3. An internal revoked node of degree two in ST (R) gives rise to at most two subsets
due to the above cover algorithm.

Proof. An internal revoked node of degree two in ST (R) has three subtrees in the original com-
plete subtree: two with some revoked leaves in each and one without any revoked leaf. At some
point of time in the algorithm, when it becomes the node vi, it will have two leaves. The subtree
of this vi without any revoked leaf in the original ternary tree is one that occurs due to this
internal revoked node. The other two subtrees have one revoked leaf each in T and hence subsets
occurring due to them have been taken care of by the algorithm and the subtrees get removed
before this internal revoked node. These are counted as subsets generated by the two nodes which
are leaves of vi. Now, when this node vi becomes a leaf in T at some stage, it may give rise to
another subset which has been assigned a key through the Subset Difference Method.

Lemma 9.2.4. An internal revoked node of degree three in ST (R) gives rise to at most one
subset due to the above cover algorithm.

Proof. When such a node of degree three becomes the vi of the above algorithm with all its
three leaves revoked, all its subtrees gets deleted and it itself becomes a leaf. Upon becoming a
leaf itself, it can give rise to at most one subset to be added to the cover that would have been
assigned a key through the Subset Difference Method.

Lemma 9.2.5. An internal revoked node in ST (R) gives rise to at most two subsets due to the
above cover algorithm.

Proof. Follows from lemma 9.2.3 and 9.2.4.

Theorem 9.2.6. The above cover algorithm gives rise to a header size of at most 3|R| − 2.

Proof. Follows from lemma 9.2.1 and 9.2.5.
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Figure 9.1: Example revocation in Ternary Tree scheme
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9.2.3 Revocation and Resilience

Resilience: It can be easily observed that any user gets keys only for those subsets to which
it belongs. The proof for the fact that this scheme is fully resilient follows the same lines as the
security argument stated in section 3.1 based on the key-indistinguishability condition. It can be
shown that each key is indistinguishable from a uniform random string for all users not in the
corresponding subset.

Revocation: Any user can be revoked in the proposed scheme.

9.2.4 Summary

This is a scheme based on the Complete Subtree and the Subset Difference schemes needing 3
2

times the header size of the Subset Difference scheme but reducing the keys per user by a factor
of (log3 2)2. While the Subset Difference method uses

(dlog2(n)e)(dlog2(n)e+ 1)
2

keys, the Ternary Tree scheme uses

dlog3(n)e+
(dlog3(n)e)(dlog3(n)e+ 1)

2

keys for header size around 3
2 times of the former.

9.3 The k-ary Tree Scheme

9.3.1 Motivation

The Ternary Tree scheme of section 9.2 draws us to an intuition which can lead us to an
improvement on the number of keys of the Ternary Tree Scheme keeping the header size 3r − 2.
The internal nodes of the Steiner Tree ST (R) have subtrees that may or may not have revoked
leaves. If a particular subtree has revoked leaves, each such subtree can be made to result into
subsets by the subset difference method as we did for the ternary tree. But what about the
subtrees that do not have any revoked leaf in them? If we allow such subtrees to form more
than one subset, then we cannot restrict the number of subsets due to internal nodes to two and
hence the header size will definitely not remain 3r − 2. Hence all such combinations of possibly
unrevoked set of subtrees have to be allotted independent keys.

k-ary trees again, should be able to reduce the number of keys that need to be stored at the
user by further reducing the height of the tree than the Ternary Tree for a fixed number of users
and also allowing the use of a pseudorandom generator that will expand a random label of a node
k+ 1 times its length. As before, the key assignment to subsets for such a tree has to be done in
such a manner that revocations do not give rise to too many subsets.
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9.3.2 Key Assignment

The users are arranged as leaves of a complete k-ary tree (each node has k or no children). We
start with this assumption for a number of users of the form km. Later on we can extend the
same idea for any number of users in the system. We assume the nodes of the k-ary tree that
are at the same distance from the root to form layers of nodes. The root node is assumed to be
in layer 0.

Primary Labels

Each node of the k-ary tree is assigned two types of independent random labels called primary
labels : node vi is assigned LABELsdi which will be used for the Subset Difference label. It also
gets for each layer above it, labels LABELcs1i , . . . , LABELcsdi assigned to be used as a Complete
Subtree label where d =

∑k−3
i=0

(
k−1
i

)
= 2k−1−(k−1)−1. Each such label will be used as a key for a

subset formed by union of leaves of unrevoked subtrees. There are a total of
∑k−2

i=0

(
k
i

)
= 2k−k−1

such keys associated to subtrees in each layer above it on its path or “hanging off” it.

Pseudorandom Generators for Derived Labels

Other than the uniformly random primary labels given to nodes, the nodes also get derived
labels from the Subset Difference labels of its ancestors. The derived label of a child of vi is
generated using the pseudorandom generator G : {0, 1}l → {0, 1}(k+1)l. Let s (string of length l)
be the Subset Difference label (can be derived or primary) of vi. An input s to the pseudorandom
generator G is expanded (k+ 1) times its length. This output is split into (k+ 1) parts of length
l each namely, Gk(s), Gl1(s), . . . , Glk−1

(s) and Glk(s) i.e.;

G(s) = Gk(s)||Gl1(s)|| . . . ||Glk−1
(s)||Glk(s).

Gl1(s), . . . , Glk(s) are the derived labels of the k children of vi which was assigned the the label s.
Gk(s) is used as a key for the subset Sp,i by the subset difference method where vp is the parent
of vi whose primary label LABELsdp has been used to get the derived label s of vi.

Now, if we consider a user ui at the leaf level of this k-ary tree, it is given labels of the following
types:

• Labels corresponding to the Subset Difference method: the derived labels of all nodes
“falling off” from the path from the root to itself generated from the primary labels of all
its ancestors in the path.

• Labels corresponding to the Complete Subtree method: the primary labels of all its ances-
tors in the path from the root to itself (the leaf) and also corresponding to the union of
subtrees of siblings of its ancestors.

Counting total number of subsets with keys

Keys by the Complete Subtree method: Every internal node gives rise to
∑k−2

i=0

(
k
i

)
=

2k − k− 1 primary keys as explained above that act as keys for union of subsets composed of all
users that are leaves to the unrevoked subtrees of that node. There are ki nodes in the ith layer.

59



The k-ary Tree Schemes

So the total number of keys due to the internal nodes by the Complete Subtree Method comes
down to:

dlogk Ne−1∑
i=0

ki(2k − k − 1).

Since the leaf nodes do not have any subtrees, they do not need any key to be assigned by the
Complete Subtree Method.

Keys by the Subset Difference method: It assigns a node at the ith layer the labels derived
from (at most dlogk(n)e) primary labels of its ancestors. When each such label s is applied as
an input to the pseudorandom generator G, the output has Gk(s) which acts as a key for some
subset. So, each such node at the ith layer gets (i) such labels.

Total Keys: A node at the ith layer (0 ≤ i < dlogk(n)e) has (i+
∑k−2

i=0

(
k
i

)
) = (2k − k − 1 + i)

associated keys and for i = dlogk(n)e, there are (i) keys. There are ki nodes at layer i. Hence
the total number of keys used in the system is:

dlogk(n)e∑
i=1

iki +
dlogk(n)e−1∑

i=0

ki(2k − k − 1).

Note 9.3.1. Here again, the subsets getting keys by the Complete Subtree method are all complete
subtrees and the subsets getting keys by the Subset Difference method are strictly not complete
other than the singleton subsets at the leaf level. Hence we claim that the subsets to which keys
are assigned and have cardinality more than one, get keys by exactly one of the methods and
not by both. For the singleton subsets at the leaf level, we will consider the keys assigned by the
Complete Subtree method.

Keys per User

A user in this method gets
∑k−3

i=0

(
k−1
i

)
= (2k−1− (k− 1)− 1) keys per layer and hence (2k−1−

k)(dlogk(n)e) keys by the Complete Subtree method and
∑dlogk(n)e

i=1 i by the Subset Difference
method which totals to:

(2k−1 − k)(dlogk(n)e) +
(dlogk(n)e)(dlogk(n)e+ 1)

2
.

9.3.3 Subset Cover

We now construct the algorithm that takes as input the set of revoked users, and finds the
minimal subset cover using the subsets to which keys have been assigned by the key assignment
method above. The cover that we get for an arbitrary revocation results in the minimum possible
header for that revocation using the available subsets with assigned keys.

Cover Algorithm

The algorithm goes as follows:

• Construct the Steiner Tree ST (R) from the complete k-ary tree using the nodes only on
the paths starting from the root to the leaves corresponding to the revoked users. This is
the tree induced by the set of revoked users R.
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• We build the subset cover by constructing an intermediate tree T that is initially equal to
the Steiner Tree ST (R).

• We keep iteratively removing nodes from this tree T and their corresponding subtrees (as-
suming that all leaves under this subtree have been covered) and keep adding corresponding
subsets to the cover by the following algorithm:

– Find a node vi in T such that it is the least-common-ancestor of leaves in T and has
no internal node in its subtree. Let vi have l children (leaves) namely vj1 , . . . , vjl . Let
v
j1
′ , . . . , v

jl
′ be the children of vi in the original k-ary tree which are ancestors of the

l nodes (l can be 1, . . . , k) of vi.

– For all these leaf nodes vjk of vi which are not the same as their ancestor nodes v
jk
′ ,

add subsets S
jk
′
,jk

to the cover. Depending on the value of l, there will be the following
cases:

∗ l = 1 which can happen if there is only one leaf left in T rooted at vroot, in which
case, Sroot,j1 is added to the cover. This subset has a key assigned by the Subset
Difference Method.
∗ l ∈ {2, . . . , k − 1} which means there are l children vj1 , . . . , vjl of vi in T . In this

case, Si,j1 , . . . , Si,jl are added to the cover. These subsets have keys assigned by
the Subset Difference Method. The set corresponding to the union of users in the
other child subtrees is also added to the cover and it has a key assigned through
the Complete Subtree Method.
∗ l = k which means there are k children vj1 , . . . , vjk of vi in T . In this case,
Si,j1 , . . . , Si,jk are added to the cover. These subsets have keys assigned by the
Subset Difference Method. No other set needs to be added to the cover.

Maximum Header Size

There are two types of nodes in ST (R): leaf nodes (corresponding to revoked users), and
internal revoked nodes of degree two or more. The root node may be one of the internal revoked
nodes. If not, then it is a special third kind of node of degree one. On analyzing the above
algorithm carefully, we make the following claims:

Lemma 9.3.1. A leaf node in T (ST (R) to begin with) gives rise to at most one subset due to
the above cover algorithm.

Proof. If T has only one leaf (that would imply that there are only two nodes left: the leaf and
the root), that would give rise to a single subset to cover all privileged users (that have not yet
been covered) by the Subset Difference method. Now, if T has more than one leaf and one of
them is (say) vj1 , then its corresponding v

j1
′ in the above algorithm gives rise to one set of the

cover S
j1
′
,j1

if v
j1
′ 6= vj1 . If v

j1
′ = vj1 then it does not give rise to any subset of the cover.

Lemma 9.3.2. An internal revoked node other than the root in ST (R) has degree at least two.
The root can have degree one.

Proof. An internal revoked node (other than the root) in ST (R) has been formed because there
are at least two revoked nodes (internal or leaf) in its subtree.

Lemma 9.3.3. An internal revoked node of degree between 2, . . . , k − 1 in ST (R) gives rise to
at most two subsets due to the above cover algorithm.
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Proof. An internal revoked node of degree between 2, . . . , k − 1 in ST (R) has k subtrees in the
original complete subtree: l out of which have some revoked leaves in each and k− l without any
revoked leaf. At some point of time in the algorithm, when it becomes the node vi, it will have
l leaves. The union of leaves of the subtrees of this vi that are without any revoked leaf in the
original k-ary tree is one that occurs due to this internal revoked node. The other k− l subtrees
have one revoked leaf each in T and hence subsets occurring due to them have been taken care
of by the algorithm and the subtrees get removed before this internal revoked node. These are
counted as subsets generated by the k − l nodes which are leaves of vi. Now, when this node vi
becomes a leaf in T at some stage, it may give rise to another subset which has been assigned a
key through the Subset Difference Method.

Lemma 9.3.4. An internal revoked node of degree k in ST (R) gives rise to at most one subset
due to the above cover algorithm.

Proof. When such a node of degree k becomes the vi of the above algorithm with all its k leaves
revoked, all its subtrees gets deleted and it itself becomes a leaf. Upon becoming a leaf itself, it
can give rise to at most one subset to be added to the cover that would have been assigned a key
through the Subset Difference Method.

Lemma 9.3.5. An internal revoked node in ST (R) gives rise to at most two subsets due to the
above cover algorithm.

Proof. Follows from lemma 9.3.3 and 9.3.4.

Theorem 9.3.6. The above cover algorithm gives rise to a header size of at most 3|R| − 2.

Proof. Follows from lemma 9.3.1 and 9.3.5.

9.3.4 Revocation and Resilience

Resilience: It can be easily observed that any user gets keys only for those subsets to which
it belongs. The proof for the fact that this scheme is fully resilient follows the same lines as the
security argument stated in section 3.1 based on the key-indistinguishability condition. It can be
shown that each key is indistinguishable from a uniform random string for all users not in the
corresponding subset.

Revocation: Any user can be revoked in the proposed scheme.

9.3.5 Summary

This scheme is an improvisation on the Ternary Tree Method needing the same header size of
3r− 2 as the Ternary Tree Method but reducing the keys per user to a certain extent. While the
Ternary Tree Method uses

(dlog3(n)e) +
(dlog3(n)e)(dlog3(n)e+ 1)

2

keys, the k-ary Tree scheme uses

(2k−1 − k)(dlogk(n)e) +
(dlogk(n)e)(dlogk(n)e+ 1)

2
.
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Number of Users (n) SD scheme k=3 k=4 k=5 k=6 k=7 k=8 k=9
103 56 35 35 70 144 238 490 998
104 106 54 56 87 177 300 615 1250
105 154 77 81 124 210 363 741 1503
106 211 104 95 144 244 492 868 1757
107 301 135 126 176 259 558 996 2012
108 379 170 161 210 341 625 1125 2268
109 466 209 180 234 390 693 1255 2525

Table 9.1: Showing the number of keys to be stored by users for different values of n and k.

keys for header size same as the former. But the point to be noted here is that the number of
keys does not keep decreasing with increasing k. If k is too large, the keys due to the Complete
Subtree Method will grow too much in number and hence will defeat the purpose. So, there exists
an optimal k for which this set of keys will be minimum in number.

Here, we consider for different values of n, the number of keys that a user needs to store for
different values of k:

It is clear from the table that our scheme performs best at k = 4, for all practical purposes.
It clearly out-performs the Subset Difference method in terms of the number of keys stored per
user.

The point to be noted here is that increasing the value of k doesnot keep decreasing the required
number of keys to be stored at the user. This is because of the Complete Subtree method keys
that grow exponentially with increase in k.
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Chapter 10

The Road Ahead

The study on Broadcast Encryption reaffirms that it is a nascent area where there is lot to
explore.

The Interval Framework looked like a very promising avenue. The schemes that we have come
up with in the framework, surely can be improved. Its results were similar to the PI scheme
that is one of the best known scheme as per our study. In L-DAG, the challenge that lies on the
road for improvement is to fit the key distribution system into some combinatorial structure (say
trees) that would reduce the number of keys that need to be stored at every user. In Inverted
L-DAG, the challenge is to bring in resilience into the system.

The improvisations that we have suggested in the Subset-Cover Framework through the k-ary
Tree scheme, has also given us a promising insight into the problem. We have come up with and
idea that combines the Complete Subtree and Subset Difference key pre-distribution methods.
We have been thinking of other areas of improvement to the k-ary tree scheme. Introduction of
the idea of layering to this k-ary tree scheme, will bring down the number of keys that need to
be stored at each user. The maximum header size needs to be analyzed for the same.

Traitor Tracing is another interesting aspect of Broadcast Encryption Schemes that we have
not explored during our work. Efficient Traitor Tracing Algorithms are are necessary for practical
use of BE schemes. Tracing traitors for schemes developed by us would definitely be significant
addition to what we have done.

Though the cover algorithm for the k-ary tree scheme has been implemented, an implementa-
tion of the key pre-distribution algorithm will also add to this work. Subset identification from
the information carried in the header also has to be implemented.

In short, this looks like just the beginning of what can definitely be a significant research work
that will have innumerable applications in various broadcast communiation scenarios.
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