
 1

 Moving Object Detection

 and

 Collision Time Approximation

 M.Tech. Dissertation Report

A dissertation submitted in partial fulfilment of the requirement for the

M. Tech. (Computer Science) degree of the Indian Statistical Institute

 By

 Somnath Panja

 CS0813

 Under the esteemed guidance of

 Dr. C. A. Murthy
 Professor

 Machine Intelligence Unit

 Indian Statistical Institute, Kolkata

 INDIAN STATISTICAL INSTITUTE

 203, Barrackpore Trunk Road

 Kolkata 700108

 2

 Acknowledgments

 With great pleasure and sense of obligation I express my heartfelt

gratitude to my guide Dr. C. A. Murthy (Machine Intelligence Unit). I am

highly indebted to him for his invaluable guidance and his readiness for

anytime help. His persisting encouragement, everlasting patience and

excellent expertise in subject have benefited to an extent, which is beyond

expression.

 I also want to thank to Dr. Utpal Garain (CVPR, ISI Kolkata) for his

motivation, encouragement.

 Without wasting this valuable chance, I want to thank my classmates,

friends and my family members for their consistent support.

 And lastly I want to thank my parents for their consistent flow of

energy by which we are able to do anything in this world.

 Somnath Panja

 October, 2010

 3

 Abstract

 The development of robots in modern times has been limited to safe

and supervised areas. As technology has advanced, new goals have been

set for robot behaviour. Previous investigations and models on Street-

crossing Robots have demonstrated that robots need to be able to track

multiple vehicles before they decide to cross a street. This behaviour has

been accomplished through the preparation of an algorithm after

calculating and analyzing diverse obstacles that could put the robot in

danger.

 In this initial work we focused on proving this algorithm in one-way

street with no more that one lane in this direction, for it is more

dangerous and complicated for the robot to attempt to cross a street with

multiple lanes.

 This paper describes progress toward a street-crossing system for an

outdoor mobile robot. The system can detect and track vehicles and

calculate the time when it is safe to cross the street.

 4

Contents

1. Introduction ……………………………………..5

 1.1 Road map of the report………………………7

2. Motivation………………………………………8

3. Related work…………………………………….9

4. Algorithm……………………………………….11

 4.1 Assumptions…………………………………11

 4.2 Procedure…………………………………………...12
 5. Results………………………………………………….33

 6. Summary and future work………………………………35

 Appendices………………………………………………….36

 References…………………………………………………...53

 5

Chapter 1

Introduction

 In the past, delivery robots have been confined to a single building.

Imagine a robot that could travel autonomously across campus to pick up

a book at the library, and then bring it back to you in your office. There

are systems that are able to drive safely on sidewalks (for example, [1]);

avoiding obstacles while staying on a path, but none are able to cross the

street. Developing a robot that can cross a street autonomously would

allow for delivery robots that could cover a number of buildings, robotic

wheelchairs that could drive their users safely across intersections, and

sentry robots that could patrol multiple buildings.

 The detection of moving object and collision time calculation is very

important for the navigation of mobile robot. Here, by “collision time”

we mean the remaining time from current time to the time of intersection

of a moving vehicle (or object) and the straight line perpendicular to the

road passing through the robot position in the road plane.

 Many existing algorithms [2]-[4] segment each video frame to

determine the objects; this action can be computationally expensive, and

it is not necessary if the goal is to determine the moving objects.

Alternatively, Doherty and Dyck proposed an algorithm [5] that derives

the objects based on the motion between frames.

 Mori [6-9] has explored algorithms for tracking cars in the context of a

robotic travel aid for the blind, but he does not address the street crossing

 6

problem explicitly. His vehicle detection and tracking results are quite

impressive, but his tracking results depict a single oncoming vehicle. In

fact, his algorithm explicitly expects to detect at most two vehicles in a

frame.

 Mori’s algorithm needs to detect road boundaries in its initial setup.

The algorithm uses dynamic tracking windows overlying a street lane at

known distances from the robot. His distance, width, velocity, and

collision time estimates are based on a known world distance to a pixel

coordinate in the image plane. We believe that this fixed camera

constraint is not appropriate for a robot trying to make its way across the

street.

 A street-crossing mobile robot must be able to detect and track all

moving and stationary vehicles in the visible scene in real time, as the

robot itself moves through the world. The system must be able to

determine the “collision time” of all tracked vehicles. Being able to

determine collision time implies knowing distance and tracking distance

over time.

 As a safety precaution, human street crossers often make eye contact

with drivers. A person's pose and gaze indicate a desire to cross. A person

may become impatient or frustrated with a busy street. Some people

assume drivers will stop if they walk out in front of their cars.

 A robot can’t make eye contact and must signal its intention to cross in

some nonhuman fashion. The street-crossing robot we are developing is

infinitely patient, and will be a safe and conservative street crosser. The

robot will only attempt to cross the street when the minimum collision

 7

time of all tracked vehicles is greater than the robot's crossing time by

some margin of safety.

1.1 Road-map of the report

 In this initial work, we focused on crossing the street in a one-way

road with one lane in one direction and there is no traffic signal. (See Fig.

1 for a diagram of the robot’s camera view. Fig. 2 shows an image from

the robot’s left-facing camera.)

 In chapter 3, we have discussed the some related works that have been

done.

 In chapter 4, we have discussed the whole algorithm. In section 4.1 we

have listed out our assumptions towards success of the algorithm. In

section 4.2.1 we have discussed how the robot will determine length of

the path to cross the road. Then in section 4.2.2 we have discussed about

the moving object detection, tracking algorithm, velocity and acceleration

calculation of each moving vehicle or moving object (those are needed to

track for the robot to cross the road safely.). In that section we have also

discussed about how to calculate collision time.

 Chapter 5 contains the Summary and Future scope of this work. And

finally the appendix contains some of the matlab-code used for the

experiment purposes.

 8

Chapter 2

Motivation

 From the beginning of robotics, robots have been in constant

evolution. This evolution in the construction of robots is a direct

consequence of the necessity to adapt to new and more complex tasks. It

is clear that research and new work with robots is becoming more

interesting and necessary in technological and social activities. This

investigation attempts to develop a better tracking system capable of

allowing a robot to detect vehicles, obstacles, pedestrians, motions,

collision time etc. when the robot tries to cross a street.

 According to these past investigations, new robots being built have

more efficient and complete equipment that makes the task of crossing

safely more possible. The efficiency of a tracking system will also depend

on other factors including luminosity of the environment, speed of

vehicles, creation of shadows, noises, etc. These could pose development

problems.

 9

Chapter 3

Related Work

 There had not been much design development on the robot vision

system towards street crossing robot because it was quite new. Problem

of moving a robot through unknown environment has attracted much

attention over past two decades. There have been some developments on

unmanned system and related technologies like unmanned aircraft

towards the new dream of building of smart robots.

 Systems that use computer vision to track vehicles in real time

generally come under two major headings: automated driving systems

[10–16] and systems that monitor and analyze traffic scenes [17–25].

Unfortunately, most methods from these domains are unsuitable or

inappropriate for the street crossing problem.

 Some traffic analysis systems use a homography or projective

transform between image and world coordinates [26, 27, 28]. This

transform is useful for gathering traffic statistics such as vehicle count,

speed and congestion. It requires off-line camera initialization or road

markers to support on-line camera calibration. This is a reasonable

approach in the context of fixed camera traffic surveillance systems, but

invalid for a mobile robot.

Some vehicle tracking systems exploit symmetries that arise from the

viewing angle. For example, the rear view of a car from an autonomous

vehicle is generally symmetric. These systems use models based on

 10

vehicle gray level or color symmetries and vehicle edge symmetries or

aspect ratios [10, 11, 13]. From the vantage point of a robot waiting to

cross the street, the symmetry of an approaching or passing car is ever-

changing. Another type of symmetry is based on the relatively uniform

palette of gray values on the road surface [29, 30]. Here is another

assumption that is generally true of highways and generally false in a

typical street-crossing scene. The road model needs to stay current with

changing lighting conditions. Some researcher also uses Mori scan and

history tracking [32].

Almost all of the algorithms presented in the literature include some kind

of lane masking or road boundary detection to limit the search space for

vehicles. In the context of traffic analysis systems, highway lanes are

generally straight and relatively easy to detect given the overhead camera

view. In the context of autonomous highway vehicles, lane detection is

fundamental to following the curvature of the road. Again, the camera

view is conducive to detecting lane boundaries reliably as long as the

road does not have sharp bends. The street crossing robot has a sidelong

view of the roadway at street level. Perfect detection of the road

boundaries requires some cooperation from the real world. The street

must be generally flat, straight, and free of traffic at the time of detection;

for this application, explicit road boundary detection is an unrealistic

expectation. Implicitly, road boundaries are being detected as the left and

right limits of motion in the scene. As a practical matter, it is unrealistic

to assume that vehicles remain wholly within their lane at all times.

 11

Chapter 4

Algorithm

 We made some assumptions towards success of this algorithm. So,

before going into detail of the algorithm we’ll discuss those assumptions.

4.1 Assumptions

 Following are the assumptions that we made towards success of the

algorithm.

1. The street should be one-way traffic i.e. the vehicles are moving in

one direction either from left to right or from right to left.

2. The street including the position of the robot is a plane.

3. Only one camera is used as the robot’s eye at a height of the robot.

4. Initially the robot is positioned at one side of the road at a safe

distance let’s say 5 feet away from the road from where it will start

journey. The robot will cross the road along perpendicular line to the

road from the robot’s initial position. The camera is focusing along

that line i.e. the robot is facing towards the line.

5. The robot can see the path to cross the road. The robot will not cross

the road if it can not see the path. Let’s call it as robot’s path.

 12

4.2 Procedure

 The overall procedure is divided into two stages viz. 1. offline

processing 2. final processing

4.2.1 Offline processing

 There are two steps which can be performed offline before moving

vehicle detection. One of them is the calculation of length of the path to

travel to cross the road and another is scale factor calculation.

4.2.1.1 Calculation of length of the path to travel

 In this section, we’ll describe how we have calculated the length of the

path to travel to reach the robot to other side of the road. Following are

the steps:

1. Capturing background images

 Let all conditions stated in section 4.1 are satisfied and hence robot

can see its path. Let us consider the figure 4.1. Let ‘O’ is the initial

position of the robot. Rectangle ABCD is the road. Vehicles are moving

in the direction B to A (i.e. in the direction BA). X axis is parallel to the

road side. Y axis is across the road and perpendicular to the X axis. Y

axis is along the robot’s path to travel to cross the road. XY plane is the

same plane as road plane. Z axis is perpendicular XY plane through the

 13

robot’s initial position ‘O’ as shown in the figure 4.1. The point H be

the position of the camera at a height of the robot, let’s say 5 feet.

Suppose, initially camera is facing along Y axis at the point ‘H’. In that

position camera makes 90 degree angle with the Z axis. Now we’ll

rotate the camera in ZY plane to see along and for each 10 degree

decrement of the angle with negative Z axis we’ll take a background

image. So we’ll take 10 such background images during rotation from

90 degree to 0 degree in ZY plane. Let’s number these frames from 1 to

10. Background images are taken when no vehicle is present on the

road. Then in the following section we’ll decide for which frame the

distance between the column axis and the road edge is minimum. Then

we’ll find out in which angle that image was taken. Now if we know the

focal length of the camera we can find out the length of the path to

travel to cross the road.

 14

1. Length of the path calculation

 Step 2.1

 This step we’ll execute for each frame from frame 1 to frame 10.

A. Edge extraction

 We’ll detect edges in the current frame. You can use any edge

detection algorithm with a threshold. After edge extraction we’ll get a

binary image. I used Canny edge detection algorithm to detect edges.

It gives a good result.

B. Road edge detection

 We assume that rows and columns in an image are evaluated as

shown in figure 4.2. We’ll perform following computation on edge

detected binary image. For the first frame we’ll consider that the initial

row for the following computation is equal to floor of the one third of

total number of rows present in the image. Then we’ll search each row,

say I, from the initial row to 1st row of the image until we get a row

that is a possible road’s side edge on the opposite side to the robot’s

standing position. A row will be a possible road edge if the following

conditioned are satisfied.

1. Consider a horizontal strip of 21 of rows with centred at row I,

i.e. consider a block of rows [I-10 I+10], provided (I-10)>0. If

(I-10) <=0 consider the rows [1 I+10]. Then count the total

 15

number of white pixels in these rows. To be a possible road side

edge the count must be greater than 1000.

2. If the 1
st
 condition is satisfied then consider a horizontal block

[I+10 I+50]. Count the total number of white pixels in those

rows. The row, I, to be a road side edge this count must be less

than 500 since this block is on the road so there should not be

much edges visible in this portion.

3. If 1
st
 and 2

nd
 conditions are satisfied and (I-50) <=0 then we say

that row I is the road side edge which is in other side of the road

in which the robot is standing. Else consider a horizontal strip of

rows, [I-50 I-10], and count the total number of white pixels on

those rows. Since this block is out side of the road, the row I to

be a road’s side edge the count must be greater than 2500.

 figure 4.2

Following are the steps to perform to evaluate the length of the

path:

 16

1. For the first frame take initial frame is equal to floor of the one

third of total number of rows present in the image.

2. For each row, I, from the initial row to 1 repeat the following

steps

 i. check if condition 1, 2 and 3 are satisfied for a possible road

 edge. If conditions are satisfied mark the row as road edge

 for that frame. Assign initial row for the next frame is this

 row. Go to the next frame. Else if this is the first frame or its

 previous frame has not detected any road edge then assign

 initial row for the next frame same as this frame. Else if the

 previous has detected the road edge then the required frame

 is the current frame and go to step 2.2.

Step 2.2

 Now we have got the required frame. Find the camera angle

when this image was captured. Let the angle is Ɵ. Let camera focal

length is ƒ and the camera height is h. Let vertical dimension of the

camera image format is Ʋ.

Then vertical view angle, α = 2 arctan (Ʋ/2ƒ)

 Path length= h tan ((Ɵ+ (α/2)) pi/180)

 Now we have calculated the path length to travel to cross the road.

 17

 figure 4.3

The above shows the final situation of the above algorithm. Let BC and

DA are road edges. Vehicles are moving along negative direction of X

axis. OH is the robot. Camera is positioned at point H. We want to detect

the CD road edge. Let PQSR are the final image or required frame that

we have got after execution of Road edge detection algorithm described

in the above step. The line segment OT is the robot path. So we are

calculating the length of the line segment OT. The point V is the middle

point of the line segment PQ. Here,

Camera angle of the final frame with HO (i.e. along negative Z axis) =

Ɵ=

Camera vertical view angle = α = . Height of the robot = =h

 18

4.2.1.2 Scale factor calculation

 Now we rotate the camera towards right direction (with respect to

figure 4.3) parallel to XY plane to make an angle of 45 degree with the

positive X axis. In this position camera makes 90 degree with the Z axis

and 45 degree with the Y axis. Now if we capture image frame it will

look like the figure 4.4.

 In the above figure the line segment AB and CD describes road edges.

XYZ is the reference system. OH is the robot. H is the camera position

making an angle 45 degree with the X axis and 90 degrees with the Z

axis. Now we’ll find scale factor near PQ on the left side from the middle

of the line segment PQ. To find scale factor we simply measure one

distance, say MN, in the object space with a measurement tape. Let this

 19

distance be d. Let its corresponding distance in the image plane as shown

in the figure 4.4 be di. Then,

 The use of scale factor we’ll see when we’ll calculate collision time of

the moving vehicle and the robot.

4.2.2 Final processing

 Now at the same position of the camera as described in section 4.2.1.2

(see figure 4.4 for reference) the robot capture video frames and perform

this processing for each video frame. A number of processing has been

performed to find the time at which the robot is safe to cross the street.

First we have to detect moving vehicles (or pedestrians). Then we’ll track

those moving vehicles. Then we’ll calculate the velocity, acceleration and

collision time for each moving vehicle. These procedures are done for

each frame of the video until the robot can detect a safe time to cross the

road.

4.2.2.1 Moving vehicle detection

 To detect vehicles, a number of processing steps are taken. Movement

in the image is found by double differencing successive frames of the

scene. The double differenced image is then filtered using a 5x5 median

filter to remove noise and background motion. Edges are extracted using

 20

an edge detection algorithm. The highest edge points are candidates for a

line marking the top of a car.

4.2.2.1.1 Image double differencing

 The main tracking feature of the algorithm is motion. Image

differencing is a useful technique used for extracting scene motion. There

are two general methods: reference frame differencing and inter frame

differencing. Both methods are sensitive to background and camera

motion, but the reference frame (or background subtraction) method is

unsuitable for a street-crossing robot. A reference frame must be grabbed

when the scene is stationary and free of objects that could move while the

tracking process is active. Alternatively, a reference frame could be

computed by observing the constant parts of the image over time. Next,

the reference frame needs to be updated on-line to stay current with

lighting changes. Finally, whenever the robot moves, the reference frame

becomes invalid. It is highly unlikely that the world will cooperate

whenever the algorithm needs a clean reference frame.

 We have used a variation of simple image subtraction called “double

differencing”. The double difference method takes three consecutive

frames, performs two subtractions against the middle frame, then ANDs

the subtraction results to obtain a single motion image.

4.2.2.1.2 Noise filtering

 21

 A 5x5 median filter is used to remove camera noise and tiny flutters

due to background motion. Most motion due to wind on trees and

telephone wires are ignored by the assumption that vehicles stay in

contact with the road plane.

 4.2.2.1.3 Edge extraction

 An edge detector is used to delineate the motion edges. Here we don’t

want to find weak edges since we don’t want to consider edges

corresponding to background motion. So a suitable threshold should be

used to get edge extracted binary image. Sobel is used frequently in the

literature because it is efficient and provides generally good results. In the

context of vehicle tracking, we expect to find mostly horizontal and

vertical edges due to the typically rectangular contour of vehicles.

4.2.2.1.4 Bounding box computation

 In this step we’ll detect each maximal bounding box on the edge

image satisfying certain conditions. Each box will correspond to one

moving vehicle or a possible track collision. The conditions to be

satisfied to be a bounding box are below

I. It is a rectangular region of the edge detected image.

II. The number of white pixels (assuming white pixels are

corresponds to edge pixels) in the first row of the bounding box

will be greater than 7.

III. There are no consecutive five rows in that box having number

of white pixels in each row are zero.

 22

IV. The number of white pixels in the 1
st
 column of the bounding

box is greater than five.

V. There is no consecutive five columns in that box having

number of white pixels in each column less than or equal to six.

The above conditions must be satisfied to be bounding box. We say a

bounding box as maximal bounding box if no superset of that

bounding box is a bounding box.

 Our aim is to find all such bounding boxes in the current edge

detected image. Following are the steps that I followed to compute such

maximal bounding box.

Procedure (Edge Image)

1. Count the number of white pixels in each row and save in an

array. Traverse that array to find all such horizontal strips

satisfying conditions II and III for bounding box.

2. Now for each such horizontal strip do the following steps

2.1 Count the number of white pixels in each column and save

it in an array.

2.2 Traverse that array to find where to satisfy condition IV for

the bounding box. Now starting from this column we’ll find

where the condition V has been failed. Then we’ll call the

function Procedure with input image as sub region of the

current horizontal strip starting from the column where

condition IV was satisfied to the column where the condition

V was failed. If the condition V does not fail up to the size of

the input Edge Image we check whether the difference of row

 23

and column dimensions between the sub region of the

horizontal strip where the conditions IV and V have been

satisfied and the input Edge Image is less than 5. If it is then

we call this is a maximal bounding box. Otherwise we’ll call

the function Procedure with input as the sub region.

4.2.2.1.5 Tracking Algorithm

 Once the object areas are determined in each frame, the tracking

algorithm is needed to trace the objects from frame to frame. Here object

areas are the maximal bounding boxes computed in the previous section.

In this section, we will present a rule-based algorithm using the

information of the object trajectories, sizes, grayscale distribution, and

textures. Variables based on the information are first computed, and then

the tracking results are decided based on variable values. I have got idea

from [31].

 The variables for object trajectories are the object position

coordinates. To decide the object position, we define the centroid of an

object as

 24

where O is the set of coordinates of an object area and is the value

of the edge image at position (i, j). Each object is then corresponding to a

point. Furthermore, we assume that the object trajectories are close to

straight lines in a few adjacent frames and the object acceleration rate is a

constant in these frames.

 The next comparison we’ll perform from frame number four onwards.

From the previous frame information record we’ll get the predicted

position of this moving object. By comparing the predicted positions and

real positions, it is possible to achieve trajectory-based tracking.

 Assuming the frame rate is adequate, the sizes of the objects should

not change dramatically between adjacent frames. The dispersion variable

is used for tracking the objects based on size. The dispersion of an object,

is defined as

where is the object centroid, while O and have the same

definition as in equations that defined the centoid. When the dispersions

are computed in each frame, we can track the objects by comparing them.

 The grayscale distribution of an object usually does not change too

much, given that the lighting condition stays relatively constant between

consecutive frames. In other words, the span of grayscale values for the

same object is similar from frame to frame. The variables that we use,

 25

based on grayscale distribution, are the mean of the whole grayscale

range the mean of the 10% pixels of largest grayscale value

and the mean of the 10% pixels of smallest grayscale value These

three variables will indicate the grayscale span of the object. Hence,

grayscale based tracking can be achieved by matching the variables of the

objects in different frames.

 The last variable is based on object texture. The surfaces of the

objects are usually not homogeneous. If we consider the grayscale

variations on the object, they are usually different from object to object.

These differences are reflected in the wavelet transform coefficients. A

variable denoted by that can roughly indicate the texture property of

an object is the mean of the 10% of the pixels with the largest values in

the constructed “edge” image. Generally speaking, large values indicate

more textures on the object.

 Because there are extremes that violate the assumptions that we have

made, it is obvious that none of the above four sets of variables will be

accurately tracking the objects all the time. Therefore, we cannot just

depend on one set of the variables and need to integrate four sets together.

 In the current frame, each object is associated with four sets of

variables. Each existing track in the previous frame will also produce four

sets of variables. Therefore, the tracking problem becomes finding the

best matches between the objects and the existing tracks. A natural way

to do this is to compute the differences between the variable values and

then threshold the differences. If there are objects in the current frame

and existing tracks in the previous frame, there will be a total of

sets of differences to evaluate. Considering the situations of new tracks,

 26

ceased tracks and track collisions, we have to make sure that the variables

of an object are similar to those of an existing track when we extend the

track to that object. Since we have four sets of variables, the first rule that

we use is that at least three sets of differences must be less than the

threshold. Otherwise, we will not consider that object as a possible

extension for the track.

 After we evaluate sets of we’ll have a matrix of size .

The elements of the matrix show how many sets of variable differences

between the specific object and the certain track is less than the threshold.

As discussed in the previous paragraph, an element greater than 2

corresponds to a possible track extension. However, it is obvious that

there usually will not be one and only one eligible element in each row

and each column of the matrix. Therefore, we develop the following

strategy.

 First, we start from the simple cases. If an element is the only one

eligible in its row and its column, there is no ambiguity. We simply

extend the corresponding track to the corresponding object and simplify

the matrix by eliminating the row and the column or by putting a value -1

along the row and along the column that the element is in. Second,

suppose is the only eligible element in row if all other eligible

elements in column are not the only element in their corresponding

rows, we will extend track to object and eliminate the row and

 column to simplify the matrix. A similar procedure is performed

when is the only eligible element in column j and all other eligible

elements in row i are not the only one in their corresponding columns.

After using the above two rules repeatedly, the eligible elements left in

the matrix correspond to complicated situations that cannot be solved

 27

using simple thresholding. We then adopt a weighted sum as the cost

function, which is described by the equation

where is the cost function, are the weights, and

superscripts and whether the variable is computed from the current

frame or the track. For each eligible element in the matrix, a weighted

sum is computed. Then for each column, the row producing the smallest

value is selected, which is equivalent to finding the best matching

object of an existing track.

 After the process described above, there may be tracks and objects left

with no matches. These situations often correspond to new tracks, ceased

tracks, and track collision. We first consider the possibility of track

collision by examining the variable values. If the mean values of the

predicted positions of several existing tracks are “close” to one of the

objects’ (compatible with the dispersion values), we then evaluate the

dispersion values. If the object dispersion value is larger than the largest

dispersion value of the tracks and smaller than the summation of the

dispersion values of all those tracks, we will mark the object and the

tracks as possible track collision. The rest of unmatched objects and

tracks are then labeled as new tracks and ceased tracks.

4.2.2.1.5 Velocity and acceleration calculation

 28

 Now we’ll calculate the velocity and acceleration of each moving

vehicle (as recognized by bounding boxes) in the image frame in terms of

pixel coordinates if the current frame number is greater than or equal to

two. We’ll compute the velocity from the second frame onwards and

we’ll save the current velocity to be available in the next frame for further

computation. To calculate current velocity we’ll first compute

instantaneous velocity. By instantaneous velocity we mean the velocity

that is obtained by considering the current position of the vehicle in the

current frame and its corresponding position in the previous frame.

Instantaneous velocity along X direction = () . frame rate

pixels/sec

Instantaneous velocity along Y direction = () . frame rate

pixels/sec

If the velocity of the vehicle in the previous frame is negative then

velocity along X direction in the current frame = average of the

instantaneous velocity in X direction in the current frame and velocity of

this vehicle in X direction in the previous frame

and

velocity along Y direction in the current frame = average of the

instantaneous velocity in Y direction in the current frame and velocity of

this vehicle in Y direction in the previous frame.

 29

Otherwise keep instantaneous velocity as the current velocity and save if

for further computation in the current frame as well as for the next frame.

 A similar idea has been used to calculate the acceleration of each

moving vehicle in the current frame if the current frame number is greater

than or equal to three. First we calculate the instantaneous acceleration

depending on the velocity of the current and previous frame. Then if the

previous acceleration along x or y direction is non zero then averaging the

instantaneous acceleration and the acceleration of the corresponding

moving vehicle in the previous frame in x and y direction separately we’ll

get the acceleration of the moving vehicle in the current frame in X and Y

direction else keep the acceleration same as instantaneous acceleration.

 Then we’ll predict the position of each moving vehicle in the next

frame. Here, we assume that the object trajectories are close to straight

lines in a few adjacent frames and the object acceleration rate is a

constant in these frames. The object location coordinates in the next

frame for each moving vehicle in the current frame is predicted using the

equation

where υ is the initial speed and ɑ is the acceleration rate.

4.2.2.1.5 Collision time calculation

 As I have stated earlier, by collision time I mean the remaining time

from the current time to the time at which the front position of the vehicle

touches the robot path.

 30

 Consider the figure 4.5. Here, the XYZ coordinate system is the object

space reference frame and the xy coordinate system with the point S as

origin is the image reference frame. E is the centroid of a moving vehicle

at the current frame and F was its centroid in the previous frame. The

camera position is positioned at the same position as described in section

4.2.1.2. PQRS is the image frame. L is the middle point of the line

segment PQ. The robot will cross the road along Y axis. The collision

time is the time that the vehicle (shown in the figure 4.5) takes to reach at

the point K. If we know the vertical dimension of the camera image

format and the camera focal (lens focal length) length then we can find

the vertical view angle, α of the camera as described in the section

4.2.1.1. Then we can get the angle = 90- (α/2). Now the triangle

OHL is a right angle triangle and we know the length of the line segment

OH = height of the robot and the angle is 90 degree. So we can

get the length of the OL in object reference XYZ. Then we’ll find the

length of the line segment OL in image coordinate system xy by

multiplying its distance in the object plane (XYZ coordinates system)

 31

with scale factor. Then we’ll get the coordinates of the point T with

respect to xy coordinate system. The line OK makes a 45 degree angle

with the positive direction of X axis. So we get the equation of the line

OK with respect to xy coordinate system. Now we get the equation of the

line EF using centroid of the moving object in the current frame and its

corresponding position in the previous frame. So we can find the

coordinate of the point K. Here, we consider the point K to be correctly

detected if the x coordinate of K lies in the interval [100 1600] and the y

coordinate of the point K lies in [-1000 700]. These values depend on the

dimension of the image. I used a camera with image row dimension is

720 and column dimension is 1280. If the coordinates of K are not in this

range we will not consider that point for further computation instead

we’ll consider the corresponding point which we had in the previous

frame for the corresponding vehicle. If we detect the point K correctly

then compute the effective point as given below

x coordinate of the effective point = (.2) . x coordinate of the currently

computed point + (.8) . x coordinate of the corresponding point for the

same vehicle in the previous frame

and

y coordinate of the effective point = (.2) . y coordinate of the currently

computed point + (.8) . y coordinate of the corresponding point for the

same vehicle in the previous frame

 Since in reality road is not a plane we are imposing 80% weight age to

the history. Then we save this point for further computation in the current

frame and the next frame.

 Then find the distance of the effective point from the centroid of the

vehicle in the current frame. We’ll subtract the length of the vehicle

which half of the column dimensions of the bounding box from this

distance. Since we are interested in when the robot touches the robot path.

 32

Now we’ll perform next computation considering this effective distance

and calculate the time required to reach at that position using the equation

where υ is the initial speed and ɑ is the acceleration rate. Take the

positive root of the solution as the collision time.

 4.2.2.1.5 Robot start time to cross the road

 Let the robot maintain a constant speed during the time to cross the

road and it is known. We know the path length to travel to cross the road.

So we know how much time the robot will take to cross the road. If the

velocity of a moving vehicle in positive y direction is greater than 20

pixels per frame we’ll ignore that frame since this vehicle is moving in

left to right direction relative to the figure 4.5. If the collision time of

each moving vehicle present in the current frame as calculated from the

previous section is greater than time required for robot to cross the road

plus a safety time of 2 seconds then we’ll say this is a safe time for the

robot to journey to cross the road.

.

 33

Chapter 5

Results

Result of the procedure stated in section 4.2.1.1(Calculation

of length of the path to travel)

Original image

 Image1 Image2 Image3 Image4

Corresponding edge detected images:

 Edge_im1 Edge_im2 Edge_im3 Edge_im4

 Img1 is captured perpendicular to the z axis. Other frames are also

captured as described in the section 4.2.1.1.The remaining sex images are

not given in the picture. The final result of the procedure is Image4.

Results of the procedure stated in section 4.2.2

 1st frame of a video 5th frame of a video 8th frame of a video

 34

10th frame of a video

Results of calculation of collision time for the vehicle shown

in the image are given below

 Frame number Collision time

calculated by the

algorithm

Collision time in reality

4th frame

 0.66 second

0.54 sec

5
th

 frame

0.53 second

.51 second

6
th

 frame

0.54 sec

0.48 second

7
th

 frame

0.52 sec

0.46 second

8
th

 frame

0.43 second

0.36 second

10
th

 frame

0.29 second

0.30 second

This shows the algorithm works fine.

 35

Chapter 6

Summary and Future work

 The current algorithm is able to identify vehicles in one lane. Multiple

vehicles can be found travelling in that lane. In this algorithm no vehicle

can pass through the robot path. During crossing we are not making any

decision we have only detected the starting time of the robot.

 Extensions to the current system could include multilane and

intersection crossings. For these extensions, other scene features could be

used as clues to find safe crossing locations and safe crossing times. For

example, the robot could decide to follow a pedestrian across the street.

Traffic light changes could also be used to help the system reason about

safe crossing times.

 36

Appendices

Some codes

Bounding box computation:

bounding_box1.m

function k=bounding_box1(BW1)
 global record
 global component
 [row11 column11]=size(BW1);
 k=0;
 col_arr11=zeros(row11,1);
 %'1................................'
 %a_row11=row11
 %a_column11=column11
 tmp_arr=zeros(1,4);
 tmp1=0;
 tmp2=0;
 tmp3=0;
 tmp4=0;
 tmp_count=0;
 tmp_flag=0;
 for i11=1 : row11
 col_arr11(i11,1)=sum(BW1(i11,:));
 %'2........................'
 %col_arr11(i11)=col_arr11(i11)/255;
 end
 count11=0;
 row_mat=zeros(row11,2);
 i12=1;
 %'3...............................'
 while(i12<= row11)
 %'4............................'
 if(col_arr11(i12,1)>7)
 row12=i12;
 %row_mat(1,1)=row12;
 %flag11=0;
 i13=i12;
 count11=count11+1;
 row_mat(count11,1)=row12;
 %'5.............................'
 %b_i12=i12
 %b_count11=count11
 while (i13<=row11)
 %'6......................'
 if(((i13+5)<=row11)&&(col_arr11(i13+1,1)==0)&&

(col_arr11(i13+2,1)==0)&&(col_arr11(i13+3,1)==0)&&

(col_arr11(i13+4,1)==0)&& (col_arr11(i13+5,1)==0))
 % flag11=1;
 row13=i13;
 row_mat(count11,2)=row13;
 i12=i13+5;
 %'7...................'
 break;
 else
 row13=i13;

 37

 row_mat(count11,2)=row13;
 i13=i13+1;
 i12=i13;
 %'8.......................'
 end
 %'9..............................'
 end
 %'10......................'
 else
 i12=i12+1;
 %'11...........................'
 end
 %'12................'
 end
 %'13.............'
 row_arr11=zeros(count11,column11);
 %c_count11=count11
 for i14=1 : count11
 for j14=1: column11

row_arr11(i14,j14)=sum(BW1(row_mat(i14,1):row_mat(i14,2),j14));
 %'14....................'
 end
 count12=0;
 col_mat=zeros(column11,2);
 j15=1;
 while(j15<= column11)
 if(row_arr11(i14,j15)>5)
 col12=j15;
 %row_mat(1,1)=row12;
 %flag11=0;
 j13=j15;
 count12=count12+1;
 col_mat(count12,1)=col12;
 while (j13<=column11)

if(((j13+5)<=column11)&&(row_arr11(i14,j13+1)<=6)&&

(row_arr11(i14,j13+2)<=6)&&(row_arr11(i14,j13+3)<=6)&&

(row_arr11(i14,j13+4)<=6)&& (row_arr11(i14,j13+5)<=6))
 % flag11=1;
 col13=j13;
 col_mat(count12,2)=col13;
 if (((row11-(row_mat(i14,2)-

row_mat(i14,1)+1))<5)&&((column11-(col_mat(count12,2)-

col_mat(count12,1)+1))<5))
 component=component+1;
 %'15..................'
 %d_record_component_1=record(component,1)
 %d_record_component_2=record(component,2)
 %d_record_component_3=record(component,3)
 %d_record_component_4=record(component,4)

record(component,1)=record(component,1)+row_mat(i14,1);

record(component,2)=record(component,2)+row_mat(i14,2);

record(component,3)=record(component,3)+col_mat(count12,1);

record(component,4)=record(component,4)+col_mat(count12,2);
 k=1;
 %'16..................'

 38

 %d_k=k
 %d_record_component_1=record(component,1)
 %d_record_component_2=record(component,2)
 %d_record_component_3=record(component,3)
 %d_record_component_4=record(component,4)
 %k
 return ;
 else
 %size(BW1)
 %row_mat(i14,1)
 %row_mat(i14,2)
 %col_mat(count12,1)
 %col_mat(count12,2)
 %'17............'
 %if(component>0)

%e_record_component_1=record(component+1,1)

%e_record_component_2=record(component+1,2)

%e_record_component_3=record(component+1,3)

%e_record_component_4=record(component+1,4)
 %end
 if(tmp_count==0)
 tmp_arr(1,:)=record(component+1,:);

 end
 tmp_count=tmp_count+1;
 tmp1=tmp_arr(1,1);
 tmp2=tmp_arr(1,2);
 tmp3=tmp_arr(1,3);
 tmp4=tmp_arr(1,4);

if((tmp_count~=1)&&((record(component+1,1)>0)||(record(component+1,2)

>0)||(record(component+1,3)>0)||(record(component+1,4)>0)))
 record(component+1,1)=0;
 record(component+1,2)=0;
 record(component+1,3)=0;
 record(component+1,4)=0;
 end
 if(tmp_count~=1)

record(component+1,1)=record(component+1,1)+tmp_arr(1,1)+row_mat(i14,

1)-1;

record(component+1,2)=record(component+1,2)+tmp_arr(1,2)+row_mat(i14,

1)-1;

record(component+1,3)=record(component+1,3)+tmp_arr(1,3)+col_mat(coun

t12,1)-1;

record(component+1,4)=record(component+1,4)+tmp_arr(1,4)+col_mat(coun

t12,1)-1;
 else

record(component+1,1)=record(component+1,1)+row_mat(i14,1)-1;

record(component+1,2)=record(component+1,2)+row_mat(i14,1)-1;

record(component+1,3)=record(component+1,3)+col_mat(count12,1)-1;

 39

record(component+1,4)=record(component+1,4)+col_mat(count12,1)-1;
 end
 %tmp_arr(1,:)=record(component+1,:);

%e_record_component_1=record(component+1,1)

%e_record_component_2=record(component+1,2)

%e_record_component_3=record(component+1,3)

%e_record_component_4=record(component+1,4)

BW2=BW1(row_mat(i14,1):row_mat(i14,2),col_mat(count12,1):col_mat(coun

t12,2));
 p=1;
 %p
 k=bounding_box1(BW2);
 %k
 % if (k==3)

if((k==3)&&((record(component+1,1)>0)||(record(component+1,2)>0)||(re

cord(component+1,3)||(record(component+1,4)>0))))
 %'18.........'
 %if(component>0)

%f_record_component_1=record(component+1,1)

%f_record_component_2=record(component+1,2)

%f_record_component_3=record(component+1,3)

%f_record_component_4=record(component+1,4)
 %end
 if(tmp_count~=1)

record(component+1,1)=record(component+1,1)-tmp1-row_mat(i14,1)+1;

record(component+1,2)=record(component+1,2)-tmp2-row_mat(i14,1)+1;

record(component+1,3)=record(component+1,3)-tmp3-

col_mat(count12,1)+1;

record(component+1,4)=record(component+1,4)-tmp4-

col_mat(count12,1)+1;
 else

record(component+1,1)=record(component+1,1)-row_mat(i14,1)+1;

record(component+1,2)=record(component+1,2)-row_mat(i14,1)+1;

record(component+1,3)=record(component+1,3)-col_mat(count12,1)+1;

record(component+1,4)=record(component+1,4)-col_mat(count12,1)+1;
 end

%f_record_component_1=record(component+1,1)

%f_record_component_2=record(component+1,2)

 40

%f_record_component_3=record(component+1,3)

%f_record_component_4=record(component+1,4)
 end
 j15=j13+5;
 break;
 end

 else
 col13=j13;
 col_mat(count12,2)=col13;
 if (j13== column11)
 if (((row11-(row_mat(i14,2)-

row_mat(i14,1)+1))<5)&&((column11-(col_mat(count12,2)-

col_mat(count12,1)+1))<5))
 component=component+1;
 %'19.............'
 %d_record_component_1=record(component,1)
 %d_record_component_2=record(component,2)
 %d_record_component_3=record(component,3)
 %d_record_component_4=record(component,4)

record(component,1)=record(component,1)+row_mat(i14,1);

record(component,2)=record(component,2)+row_mat(i14,2);

record(component,3)=record(component,3)+col_mat(count12,1);

record(component,4)=record(component,4)+col_mat(count12,2);
 k=2;
 %k
 %'20.................'

 %d_record_component_1=record(component,1)
 %d_record_component_2=record(component,2)
 %d_record_component_3=record(component,3)
 %d_record_component_4=record(component,4)
 return ;
 else
 %'21................'
 %if(component>0)

%d_record_component_1=record(component+1,1)

%d_record_component_2=record(component+1,2)

%d_record_component_3=record(component+1,3)

%d_record_component_4=record(component+1,4)
 %end
 if(tmp_count==0)
 tmp_arr(1,:)=record(component+1,:);

 end
 tmp_count=tmp_count+1;
 tmp1=tmp_arr(1,1);
 tmp2=tmp_arr(1,2);
 tmp3=tmp_arr(1,3);
 tmp4=tmp_arr(1,4);

 41

if((tmp_count~=1)&&((record(component+1,1)>0)||(record(component+1,2)

>0)||(record(component+1,3)>0)||(record(component+1,4)>0)))
 record(component+1,1)=0;
 record(component+1,2)=0;
 record(component+1,3)=0;
 record(component+1,4)=0;
 end
 if(tmp_count~=1)

record(component+1,1)=record(component+1,1)+tmp_arr(1,1)+row_mat(i14,

1)-1;

record(component+1,2)=record(component+1,2)+tmp_arr(1,2)+row_mat(i14,

1)-1;

record(component+1,3)=record(component+1,3)+tmp_arr(1,3)+col_mat(coun

t12,1)-1;

record(component+1,4)=record(component+1,4)+tmp_arr(1,4)+col_mat(coun

t12,1)-1;
 else

record(component+1,1)=record(component+1,1)+row_mat(i14,1)-1;

record(component+1,2)=record(component+1,2)+row_mat(i14,1)-1;

record(component+1,3)=record(component+1,3)+col_mat(count12,1)-1;

record(component+1,4)=record(component+1,4)+col_mat(count12,1)-1;
 end
 p=2;
 %p
 %'22..................'

%d_record_component_1=record(component+1,1)

%d_record_component_2=record(component+1,2)

%d_record_component_3=record(component+1,3)

%d_record_component_4=record(component+1,4)

BW3=BW1(row_mat(i14,1):row_mat(i14,2),col_mat(count12,1):col_mat(coun

t12,2));
 k=bounding_box1(BW3);
 % if(k==3)

if((k==3)&&((record(component+1,1)>0)||(record(component+1,2)>0)||(re

cord(component+1,3)||(record(component+1,4)>0))))
 %'23..............'
 %if(component>0)

%d_record_component_1=record(component+1,1)

%d_record_component_2=record(component+1,2)

%d_record_component_3=record(component+1,3)

%d_record_component_4=record(component+1,4)
 %end

 42

 if(tmp_count~=1)

record(component+1,1)=record(component+1,1)-tmp_arr(1,1)-

row_mat(i14,1)+1;

record(component+1,2)=record(component+1,2)-tmp_arr(1,2)-

row_mat(i14,1)+1;

record(component+1,3)=record(component+1,3)-tmp_arr(1,3)-

col_mat(count12,1)+1;

record(component+1,4)=record(component+1,4)-tmp_arr(1,4)-

col_mat(count12,1)+1;
 %'24................'
 else

record(component+1,1)=record(component+1,1)-row_mat(i14,1)+1;

record(component+1,2)=record(component+1,2)-row_mat(i14,1)+1;

record(component+1,3)=record(component+1,3)-col_mat(count12,1)+1;

record(component+1,4)=record(component+1,4)-col_mat(count12,1)+1;
 end

%d_record_component_1=record(component+1,1)

%d_record_component_2=record(component+1,2)

%d_record_component_3=record(component+1,3)

%d_record_component_4=record(component+1,4)
 end

 end

 end
 j13=j13+1;
 j15=j13;
 end
 end
 else
 j15=j15+1;
 end
 end
 %col_arr11(i11)=sum(BW(i11,:));
 %col_arr11(i11)=col_arr11(i11)/255;
 end

 if(k==0)
 k=3;
 %'25.................'
 %k
 end
end

**************************end********************

 43

Main program:

Main.m

global record
global component
image=strvcat('m1.jpg

','m2.jpg','m3.jpg','m4.jpg','m5.jpg','m6.jpg','m7.jpg','m8.jpg','m9.

jpg','m10.jpg');
o_image=strvcat('im_m1.jpg

','im_m2.jpg','im_m3.jpg','im_m4.jpg','im_m5.jpg','im_m6.jpg','im_m7.

jpg','im_m8.jpg','im_m9.jpg','im_m10.jpg');
canny_image=strvcat('canny1_m1.jpg

','canny1_m2.jpg','canny1_m3.jpg','canny1_m4.jpg','canny1_m5.jpg','ca

nny1_m6.jpg','canny1_m7.jpg','canny1_m8.jpg','canny1_m9.jpg','canny1_

m10.jpg');
readerobj =

mmreader('C:\Users\SOMNATH\Desktop\sparrow\obj_detection\dissertation

\100_5042.avi');

vidFrames = read(readerobj,[830 842]);
%numFrames=get(readerobj, 'numberOfFrames');
%disp(numFrames) ;
no_frames=10;
comp_mat=zeros(no_frames,1);
info_mat=zeros(2,15,4,4);
dfx_arr=zeros(2,15,1);
rec=zeros(2,15,4);
poly=zeros(1,3);
length=15 ;
scale_factor=51.95;
length_in_pixel=length*scale_factor;
row_max=720;
column_max=1280;
robot_cross_time=3;
frame_rate=30;

for i1=1: no_frames
 imwrite(vidFrames(:,:,:,i1),o_image(i1,:),'jpg');
 prev_im=rgb2gray(vidFrames(:,:,:,i1));
 %imshow(prev_im)

 next_im=rgb2gray(vidFrames(:,:,:,i1+1));
 %imshow(next_im)
 next_next_im=rgb2gray(vidFrames(:,:,:,i1+2));
 diff_im1 = imabsdiff(next_im,prev_im);
 diff_im2 = imabsdiff(next_next_im,next_im);
 diff_im=diff_im1 & diff_im2;
 %diff_im(1,1);
 %diff_im=double(diff_im);
 diff_im=immultiply(diff_im1 , diff_im);
 %diff_im(200:300,:)
 %pause
 %for i2=1: 2
 diff_im = medfilt2(diff_im, [5 5]);
 %end
 imwrite(diff_im,image(i1,:),'jpg');
 %BW = edge(diff_im,'canny');
 %BW = edge(diff_im,'log');
 %BW = edge(diff_im,'prewitt');

 44

 BW = edge(diff_im,'sobel');
 %imwrite(BW,'canny_edge_053.jpg');
 imwrite(BW,canny_image(i1,:),'jpg');
 if(i1==5)
 BW140 = edge(diff_im,'sobel');
 imwrite(diff_im,'image_140.jpg');
 imwrite(BW140,'canny_edge140_053.jpg');
 end

 BW1=BW;
 [row col]=size(BW);
 %BW1=BW1(296:458,482:704);
 %global record
 record=zeros(20,4);
 component=0;
 k=bounding_box1(BW1);%, component,record);
 BW11=BW;
 BW12=next_im;
 comp_mat(i1,1)=component;
 rec(2,1:component,:)=record(1:component,:);
 maximal_bounding_boxes=record(1:component,:)
 %i1

%**

**
 for i21=1: component
 %%sum=0;
 sum3=0;
 for var_counter=record(i21,3): record(i21,4)

sum3=sum3+sum(BW(record(i21,1):record(i21,2),var_counter));
 end
 sum1=0;
 sum2=0;
 for i22=record(i21,1) : record(i21,2)
 sum1=sum1+(sum(BW(i22,record(i21,3) :

record(i21,4)))).*i22;

 end
 for i23=record(i21,3) : record(i21,4)
 sum2=sum2+(sum(BW(record(i21,1) :

record(i21,2),i23))).*i23;

 end
 cx=sum1./sum3;
 cy=sum2./sum3;
 value_i21=i21;
 info_mat(2,i21,1,1)=cx;
 info_mat(2,i21,1,2)=cy;
 %info_mat(2,i21,1,1)
 %info_mat(2,i21,1,2)
 mat=zeros(record(i21,2)-record(i21,1)+1,record(i21,4)-

record(i21,3)+1);
 for i24=1 : record(i21,2) - record(i21,1) +1
 for i25=1 : record(i21,4) - record(i21,3) +1
 mat(i24,i25)=sqrt((i24 +record(i21,1)-1 -cx)^2 +(i25

+ record(i21,3) -1 -cy)^2);
 end

 end

 45

D=mat.*BW(record(i21,1):record(i21,2),record(i21,3):record(i21,4));
 disp=sum(D(1:record(i21,2)-record(i21,1)+1,1:record(i21,4)-

record(i21,3)+1));
 disp=sum(disp(1,:))./sum3;
 info_mat(2,i21,2,1)=disp;
 mat11=zeros(1,(record(i21,2)-record(i21,1)+1)*(record(i21,4)-

record(i21,3)+1));
 i27=record(i21,4)-record(i21,3)+1;
 for i26=1 : (record(i21,2)-record(i21,1)+1)
 mat11(1,(i26-1)*i27+1:i26*i27)=BW12(record(i21,1)+i26-

1,record(i21,3):record(i21,4));
 end
 %clear mat11;
 avg=mean(mat11);
 D21=sort(mat11);
 i28=(record(i21,2)-record(i21,1)+1)*(record(i21,4)-

record(i21,3)+1);
 i29=int32(i28/10);
 avg1=mean(D21(1,i28-i29:i28));
 avg2=mean(D21(1,1:i29));
 info_mat(2,i21,3,1)=avg;
 info_mat(2,i21,3,2)=avg1;
 info_mat(2,i21,3,3)=avg2;
 for i26=1 : (record(i21,2)-record(i21,1)+1)
 mat11(1,(i26-1)*i27+1:i26*i27)=BW11(record(i21,1)+i26-

1,record(i21,3):record(i21,4));
 end
 d22=sort(mat11);
 avg4=mean(d22(1,i28-i29:i28));
 info_mat(2,i21,4,1)=avg4;
 end
 if((i1>=2)&&(component>0))
 rel_mat=zeros(component,comp_mat(i1-1,1));
 for i30=1: component
 for i31=1: comp_mat(i1-1,1)
 count5=0;
 if(i1>=5)
 displacement=sqrt((info_mat(2,i30,1,1)-

info_mat(1,i31,4,2))^2 + (info_mat(2,i30,1,2)-

info_mat(1,i31,4,3))^2);
 if(displacement-info_mat(2,i30,1,3) < 100)
 count5=count5+1;
 end
 end
 if(abs(info_mat(2,i30,2,1)-info_mat(1,i31,2,1))<100)
 count5=count5+1;
 end
 if ((abs(info_mat(2,i30,3,1)-

info_mat(1,i31,3,1))<20)&&(abs(info_mat(2,i30,3,2)-

info_mat(1,i31,3,2))<20)&&(abs(info_mat(2,i30,3,3)-

info_mat(1,i31,3,3))<20))
 count5=count5+1;
 end
 if (abs(info_mat(2,i30,4,1)-info_mat(1,i31,4,1))<10)
 count5=count5+1;
 end
 rel_mat(i30,i31)=count5;
 end
 end
 previous_track=zeros(component,1);

 46

 next_object=zeros(comp_mat(i1-1,1),1);
 flag36=0;
 while(flag36==0)
 flag30=0;
 for i32=1 : component
 count6=0;
 prob_col=-1;
 for i33=1 : comp_mat(i1-1,1)
 if(rel_mat(i32,i33)>=3)
 count6=count6+1;
 prob_col=i33;
 end
 end
 if(count6==1)
 count7=0;
 for i34=1: component
 if(rel_mat(i34,prob_col)>=3)
 count7=count7+1;
 end
 end
 if (count7==1)
 rel_mat(i32,1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);

rel_mat(1:component,prob_col)=ones(component,1).*(-1);
 previous_track(i32,1)=prob_col;
 next_object(prob_col,1)=i32;
 flag30=1;
 end
 if (count7>1)
 flag35=0;
 for i35=1: component
 if((i35~=i32)&& (rel_mat(i35,prob_col)>=3))
 count8=0;
 %for i36=1: comp_mat(i1-1,1)
 % if(rel_mat(i35,))
 %end
 arr30=find(rel_mat(i35,:)>2);
 [row30 col30]=size(arr30);
 if(col30==1)
 flag35=1;
 break;
 end
 end
 end
 if (flag35==0)
 rel_mat(i32,1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);

rel_mat(1:component,prob_col)=ones(component,1).*(-1);
 previous_track(i32,1)=prob_col;
 next_object(prob_col,1)=i32;
 flag30=1;
 end
 end
 end

 end
 for j32=1 : comp_mat(i1-1,1)
 count10=0;
 prob_row=-1;

 47

 for j33=1 : component
 if(rel_mat(j33,j32)>=3)
 count10=count10+1;
 prob_row=j33;
 end
 end
 if(count10==1)
 count11=0;
 for j34=1: comp_mat(i1-1,1);
 if(rel_mat(prob_row,j34)>=3)
 count11=count11+1;
 end
 end
 if (count11==1)
 rel_mat(prob_row,1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);
 rel_mat(1:component,j32)=ones(component,1).*(-

1);
 previous_track(prob_row,1)=j32;
 next_object(j32,1)=prob_row;
 flag30=1;
 end
 if (count11>1)
 flag45=0;
 for j35=1: comp_mat(i1-1,1)
 if((j35~=j32)&& (rel_mat(prob_row,j35)>=3))
 count20=0;
 %for i36=1: comp_mat(i1-1,1)
 % if(rel_mat(i35,))
 %end
 arr31=find(rel_mat(:,j35)>2);
 [row31 col31]=size(arr31);
 if(row31==1)
 flag45=1;
 break;
 end
 end
 end
 if (flag45==0)
 rel_mat(prob_row,1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);

rel_mat(1:component,j32)=ones(component,1).*(-1);
 previous_track(prob_row,1)=j32;
 next_object(j32,1)=prob_row;
 flag30=1;
 end
 end
 end

 end
 if(flag30==0)
 flag36=1;
 end
 end
 %diff_matrix=zeros(15,15);
 %row_count=0;
 %col_count=0;
 %row_arr10=0;
 [row_dif,col_dif,v_dif]=find(rel_mat>=3);
 size_dif=size(row_dif);

 48

 dif_count=size_dif(1);
 %dif_count
 dif_count_2=size_dif(2);
 %row_dif(1)
 if((dif_count>0) && (dif_count_2>0))
 diff_matrix=zeros(dif_count,1);
 for i50=1 : dif_count
 row_dif(1)
 diff_matrix(i50,1)=(abs(info_mat(2,row_dif(i50),1,1)-

info_mat(1,col_dif(i50),1,1))+abs(info_mat(2,row_dif(i50),1,2)-

info_mat(1,col_dif(i50),1,2))+abs(info_mat(2,row_dif(i50),2,1)-

info_mat(1,col_dif(i50),2,1))+abs(info_mat(2,row_dif(i50),3,1)-

info_mat(1,col_dif(i50),3,1))+abs(info_mat(2,row_dif(i50),3,2)-

info_mat(1,col_dif(i50),3,2))+abs(info_mat(2,row_dif(i50),3,3)-

info_mat(1,col_dif(i50),3,3))+abs(info_mat(2,row_dif(i50),4,1)-

info_mat(1,col_dif(i50),4,1)))*(.25);
 end
 max_column=max(col_dif);
 for i51=1 : max_column
 index=find(col_dif==i51);
 size_index=size(index);
 size_count_index=size_index(1);
 if(size_count_index>0)
 min_diff=diff_matrix(index(1),1);
 min_index=1;
 i52=1;
 for i52=1: size_count_index
 if(min_diff>diff_matrix(index(i52),1))
 min_diff=diff_matrix(index(i52),1);
 min_index=i52;
 end
 end

if((previous_track(row_dif(index(min_index)),1)==0) &&

(next_object(col_dif(index(min_index)),1)==0))

previous_track(row_dif(index(min_index)),1)=col_dif(index(min_index))

;

next_object(col_dif(index(min_index)),1)=row_dif(index(min_index));

rel_mat(row_dif(index(min_index)),1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);

rel_mat(1:component,col_dif(index(min_index)))=ones(component,1).*(-

1);
 end
 end
 end
 end
 [row_dif1,col_dif1,v_dif1]=find(rel_mat>0);
 size_dif1=size(row_dif1);
 dif_count1=size_dif1(1);
 dif_count1_2=size_dif1(2);
 if((dif_count1>0)&&(i1>1)&&(dif_count1_2>0))
 for i60=1: dif_count1
 %a=1
 if(sqrt((info_mat(2,row_dif1(i60),1,1)-

info_mat(1,col_dif1(i60),4,2)^2+info_mat(2,row_dif1(i60),1,2)-

info_mat(1,col_dif1(i60),4,3)^2))<500)

 49

 if((previous_track(row_dif1(i60),1)==0) &&

(next_object(col_dif1(i60),1)==0))
 previous_track(row_dif1(i60))=col_dif1(i60);
 next_object(col_dif1(i60),1)=row_dif1(i60);
 rel_mat(row_dif1(i60),1:comp_mat(i1-

1,1))=ones(1,comp_mat(i1-1,1)).*(-1);

rel_mat(1:component,col_dif1(i60))=ones(component,1).*(-1);
 elseif(next_object(col_dif1(i60),1)==0)
 next_object(col_dif1(i60),1)=row_dif1(i60);

rel_mat(1:component,col_dif1(i60))=ones(component,1).*(-1);
 end
 end
 end
 end

 previous_track
 next_object

%***
 vehicle_count=0;
 flag_distance=0;

 for i21=1: component
 if(previous_track(i21,1)~=0)
 %vx=(info_mat(2,i21,1,1)-

info_mat(1,previous_track(i21,1),1,1))*frame_rate;
 %vy=(info_mat(2,i21,1,2)-

info_mat(1,previous_track(i21,1),1,2))*frame_rate;
 %cx_result=info_mat(2,i21,1,1)
 %cy_result=info_mat(2,i21,1,2)
 vx=(info_mat(2,i21,1,1)-

info_mat(1,previous_track(i21,1),1,1));
 vy=(info_mat(2,i21,1,2)-

info_mat(1,previous_track(i21,1),1,2));
 %info_mat(2,i21,1,1)
 %info_mat(1,previous_track(i21,1),1,1)
 %info_mat(2,i21,1,2)
 %info_mat(1,previous_track(i21,1),1,2)
 %vx
 %vy
 if(info_mat(1,previous_track(i21,1),1,4)<0)

vx=(.5)*vx+(.5)*info_mat(1,previous_track(i21,1),1,3);

vy=(.5)*vy+(.5)*info_mat(1,previous_track(i21,1),1,4);
 end
 %vx
 %vy
 info_mat(2,i21,1,3)=vx;
 info_mat(2,i21,1,4)=vy;
 poly(1,2)=vy;
 if(i1>=3)
 %fx=(info_mat(2,i21,1,3)-

info_mat(1,previous_track(i21,1),1,3))*frame_rate;
 %fy=(info_mat(2,i21,1,4)-

info_mat(1,previous_track(i21,1),1,4))*frame_rate;
 fx=(info_mat(2,i21,1,3)-

info_mat(1,previous_track(i21,1),1,3));

 50

 fy=(info_mat(2,i21,1,4)-

info_mat(1,previous_track(i21,1),1,4));
 if(info_mat(1,previous_track(i21,1),2,3))

fx=(.5)*fx+(.5)*info_mat(1,previous_track(i21,1),2,2);

fy=(.5)*fy+(.5)*info_mat(1,previous_track(i21,1),2,3);
 end
 %fx
 %fy
 info_mat(2,i21,2,2)=fx;
 info_mat(2,i21,2,3)=fy;
 poly(1,1)=(.5)*fy;
 if(i1>=4)
 %dfx=(info_mat(2,i21,2,2)-

info_mat(1,previous_track(i21,1),2,2))*frame_rate;
 %dfy=(info_mat(2,i21,2,3)-

info_mat(1,previous_track(i21,1),2,3))*frame_rate;
 dfx=(info_mat(2,i21,2,2)-

info_mat(1,previous_track(i21,1),2,2));
 dfy=(info_mat(2,i21,2,3)-

info_mat(1,previous_track(i21,1),2,3));
 if(info_mat(1,previous_track(i21,1),4,4))

dfx=(.5)*dfx+(.5)*dfx_arr(1,previous_track(i21,1),1);

dfy=(.5)*dfy+(.5)*info_mat(1,previous_track(i21,1),4,4);
 end
 %dfx
 %dfy
 dfx_arr(2,i21,1)=dfx;
 info_mat(2,i21,4,4)=dfy;
 %poly(1,1)=(1/6)*dfy;

%predicted_cx=info_mat(2,i21,1,1)+((1./6)*dfx*(1/30)^3+(.5)*fx*(1/30)

^2+vx*(1/30));

%predicted_cy=info_mat(2,i21,1,2)+((1./6)*dfy*(1/30)^3+(.5)*fy*(1/30)

^2+vy*(1/30));

%predicted_cx=info_mat(2,i21,1,1)+((1/6)*dfx+(.5)*fx+vx);

%predicted_cy=info_mat(2,i21,1,2)+((1/6)*dfy+(.5)*fy+vy);
 predicted_cx=info_mat(2,i21,1,1)+((.5)*fx+vx);
 predicted_cy=info_mat(2,i21,1,2)+((.5)*fy+vy);
 info_mat(2,i21,4,2)=predicted_cx;
 info_mat(2,i21,4,3)=predicted_cy;
 %cx_1=info_mat(2,i21,1,1)
 %cy_1=info_mat(2,i21,1,2)

predicted_cx_1=info_mat(1,previous_track(i21,1),4,2);

predicted_cy_1=info_mat(1,previous_track(i21,1),4,3);
 x=((row_max-(column_max/2)+length_in_pixel

)*(info_mat(1,previous_track(i21,1),1,1)-info_mat(2,i21,1,1))-

info_mat(2,i21,1,1)*info_mat(1,previous_track(i21,1),1,2)+info_mat(1,

previous_track(i21,1),1,1)*info_mat(2,i21,1,2))/(info_mat(2,i21,1,2)-

info_mat(1,previous_track(i21,1),1,2)+info_mat(1,previous_track(i21,1

),1,1)-info_mat(2,i21,1,1));
 y=x-(row_max-(column_max/2)+length_in_pixel);
 %x

 51

 %y
 if((y<700)&&(y>-1000) && (x > 100) && (x<1600))
 if(info_mat(1,previous_track(i21,1),2,4)>0)

avg_x=(.2)*x+(.8)*info_mat(1,previous_track(i21,1),2,4);

avg_y=(.2)*y+(.8)*info_mat(1,previous_track(i21,1),3,4);
 info_mat(2,i21,2,4)=avg_x;
 info_mat(2,i21,3,4)=avg_y;
 else
 info_mat(2,i21,2,4)=x;
 info_mat(2,i21,3,4)=y;
 end
 else

info_mat(2,i21,2,4)=info_mat(1,previous_track(i21,1),2,4);

info_mat(2,i21,3,4)=info_mat(1,previous_track(i21,1),3,4);
 end
 x_avg=info_mat(2,i21,2,4);
 y_avg=info_mat(2,i21,3,4);
 %x;
 %y;

 %intersection_count=0;

 v=sqrt((vx)^2+(vy)^2);
 poly(1,2)=v;
 %v
 f=sqrt((fx)^2+(fy)^2);
 poly(1,1)=(.5)*f;
 %f
 df=sqrt((dfx^2)+(dfy^2));
 %df
 if(info_mat(2,i21,2,4)>0)

collision_distance=(sqrt((info_mat(2,i21,2,4)-

info_mat(2,i21,1,1))^2+(info_mat(2,i21,3,4)-info_mat(2,i21,1,2))^2)-

(info_mat(2,i21,1,2)-rec(2,i21,3)));
 %collision_distance=abs(info_mat(2,i21,3,4)-

info_mat(2,i21,1,2))-(info_mat(2,i21,1,2)-rec(2,i21,3));
 poly(1,3)=-collision_distance;
 %avg_y1=info_mat(2,i21,3,4)
 %cy1=info_mat(2,i21,1,2)
 %c1=rec(2,i21,3)
 %collision_distance
 syms t;
 %1sol=solve(df*(t^3)+3*f*(t^2)+6*v*t-

6*collision_distance);
 sol=roots(poly);
 [row_root col_root]=size(sol);
 required_time=-10;
 for i100=1: row_root
 if((isreal(sol(i100)))&&(sol(i100)>0))
 required_time=sol(i100);
 break;
 end
 end
 s=-10;
 if(required_time~=-10)
 s=double(required_time);

 52

 collision_time=s
 end
 if(vy>20)
 vehicle_count=vehicle_count+1;
 elseif((s>=0)&&

((double(s))>((robot_cross_time+2)*30)))
 vehicle_count=vehicle_count+1;

 end
 else
 flag_distance=1;
 end
 end
 end
 end
 end
 if((vehicle_count==component)&&(flag_distance==0))
 'The frame and the time that that robot starts walking to

cross the road safely'
 imshow(vidFrames(:,:,:,i1));
 pause(10)
 vidFrames_final = read(readerobj,[720+i1+89 720+i1+91]);
 imshow(vidFrames(:,:,:,1));
 pause(10)
 imshow(vidFrames_final(:,:,:,2));
 break;
 end
 end
 if(component==0)
 'The frame and the time that that robot starts walking to cross

the road safely'
 imshow(vidFrames(:,:,:,i1));
 pause(10)
 vidFrames_final = read(readerobj,[720+i1+89 720+i1+91]);
 imshow(vidFrames(:,:,:,1));
 pause(10)
 imshow(vidFrames_final(:,:,:,2));
 break;
 end
 info_mat(1,:,:,:)=info_mat(2,:,:,:);
 rec(1,:,:)=rec(2,:,:);
 dfx_arr(1,:,:)=dfx_arr(2,:,:);
end

 53

References:

[1] H. A. Yanco, “Shared user-computer control of a robotic wheelchair

system, ” Ph.D. Thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology, September

2000.

[2] D. Wang, Unsupervised Video segmentation Based On Watersheds

And Temporal Tracking, IEEE Trans. Circuits Syst. Video Technol.,

8(5):539-546, September 1998.

[3] G. L. Foresti, Object Recognition And Tracking For Remote Video

Surveillance, IEEE Trans. Circuits Syst. Video Technol., 9(7):1045-1062,

October 1999.

 [4] A. J. Lipton, H. Fujiyoshi, R. S. Patil, Moving Target Classification

And Tracking From Real-time Video, Applications of Computer Vision,

1998. WACV ’98. Proceedings., Fourth IEEE Workshop on, pp. 8-14,

1998.

[5] Y. Wang, R.E. Van Dyck, J. F. Doherty, Tracking Moving Objects in

Video Sequences, Proc. Conference on Information Sciences and

Systems, Princeton, NJ, March 2000.

[6] N. M. Charkari, K. Ishii, and H. Mori, “Proper selection of sonar and

visual sensors for vehicle detection and avoidance,” Proceedings of the

IEEE/RSJ/GI International Conference on Intelligent Robots and

Systems, Vol. 2 , 12-16 Sept. 1994, pp. 1110 –1117.

[7] N. M. Charkari and H. Mori, “A new approach for real time moving

vehicle detection,” Proceedings of the 1993 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Vol. 1, 26-30 July 1993,

pp. 273 – 278.

[8] H. Mori and N. M. Charkari, “Shadow and rhythm as sign patterns of

 54

obstacle detection,” International Symposium on Industrial Electronics,

1993, pp. 271--277.

[9] H. Mori, N. M. Charkari, T. Matsushita, “On-line vehicle and

pedestrian detection based on sign pattern,” IEEE Trans. on Industrial

Electronics, Vol. 41, No. 4, pp. 384-391, Aug. 1994.

[10] M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision

based vehicle detection,” IEEE Intelligent Vehicles Symposium, Detroit,

MI, October 2000, pp. 39-44.

[11] M. Betke, E. Haritaoglu, and L. Davis, “Highway scene analysis in

hard real-time,” Intelligent Transportation Systems, IEEE, July 1997.

[12] F. Dellaert and C. Thorpe, “Robust car tracking using Kalman

filtering and Bayesian templates,” Proc. of the SPIE - Int. Soc. Opt. Eng.,

Vol. 3207, October 1997.

[13] U. Regensburger and V. Graefe, “Visual recognition of obstacles on

roads,” Proc. IROS '94, pp. 980–987, Munich, Germany, 1994.

[14] M. B. van Leeuwen and F. C. A. Groen, “A platform for robust real-

time vehicle tracking using decomposed templates,” Intelligent

Autonomous Systems Group, Faculty of Science, University of

Amsterdam, Amsterdam, The Netherlands, unpublished.

[15] M.B. van Leeuwen and F.C.A. Groen, “Vehicle detection with a

mobile camera,” Intelligent Autonomous Systems Group, Faculty of

Science, University of Amsterdam, Amsterdam, The Netherlands,

unpublished.

[16] L. Zhao and C. Thorpe. “Qualitative and quantitative car tracking

from arange image sequence,” Computer Vision and Pattern Recognition,

pages 496-501, 1998.

[17] L. A. Alexandre and A. C. Campilho, “A 2D image motion detection

method using a stationary camera,” RECPAD98, 10th Portuguese

Conference on Pattern Recognition, Lisbon, Portugal, 1998.

 55

[18] E. Atkociunas and M. Kazimianec, “Aspects in traffic control system

development,” Vilnius University, Faculty of Mathematics and

Informatics, Jyvaskyla, 2002.

[19] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. “A real-time

computer vision system for vehicle tracking and traffic surveillance,”

Transportation Research: Part C, vol 6, no 4, 1998, pp 271-288.

[20] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A realtime

computer vision system for measuring traffic parameters,” Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 1997.

[21] R. Cucchiara, M. Piccardi, A. Prati, and N. Scarabottolo, “Real-time

detection of moving vehicles,” Proc International Conference on Image

Analysis and Processing, Venice, Italy, pp. 618 – 623, September 1999.

[22] D.J. Dailey and L. Li, “Video image processing to create a speed

sensor,” ITS Research Program, Final Research Report, College of

Engineering, University of Washington, Seattle, Washington, March

1999.

[23] N. Ferrier, S. Rowe, and A. Blake, “Real-time traffic monitoring,”

Proc. 2nd IEEE Workshop on Applications of Computer Vision, pp. 81–

88, 1994.

[24] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, S.

Russel, “Towards robust automatic traffic scene analysis in real-time,”

Proc. Int'l Conf. Pattern Recognition, pp. 126–131, 1994.

[25] D. R. Magee, “Tracking multiple vehicles using foreground,

background and motion models,” University of Leeds, School of

Computer Studies, Research Report Series, (Submitted to European

Conference on Computer Vision, May 2002), December 2001.

 56

[26] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik. “A real-time

computer vision system for vehicle tracking and traffic surveillance,”

Transportation Research: Part C, vol 6, no 4, 1998, pp 271-288.

[27] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A realtime

computer vision system for measuring traffic parameters,” Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 1997.

[28] N. Ferrier, S. Rowe, and A. Blake, “Real-time traffic monitoring,”

Proc. 2nd IEEE Workshop on Applications of Computer Vision, pp. 81–

88,1994.

[29] M. Betke and H. Nguyen, “Highway scene analysis from a moving

vehicle under reduced visibility conditions,” Proc. of the International

Conference on Intelligent Vehicles, IEEE Industrial Electronics Society,

Stuttgart, Germany pp. 131–136. Oct. 1998.

[30] C. Tzomakas and W. von Seelen, “Vehicle detection in traffic scenes

using shadows,” Internal Report IRINI 98-06, Institut fur

Neuroinformatik, Ruhr-Universitat Bochum, Germany, August 1998.

[31] Yiwei Wang and John F. Doherty, Robert E. Van Dyck “Moving

Object Tracking in Video

[32] Michael Baker and Holly A. Yanco “A Vision-Based Tracking

System for a Street-Crossing Robot” Submitted to ICRA-04.

