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Chapter 1

Introduction

Multi-collision in a function means a set of r distinct points for r ≥ 2 in the domain of the function
such that all of them map to a single point in the range of the function. In this thesis we will be mainly
concerned with multi-collisions in random functions. Random functions are very important objects in
modern cryptography, since MAC, hash functions and many other basic cryptographic primitives can
be derived from them. In particular, ‘secure’ hash functions are often theoretically modeled as random
functions. We know that collision-resistance is a desired property of any ‘secure’ hash function. ‘Fast’
collisions in a hash function is viewed as a certificational weakness of the construction. In the light of
this discussion we can easily understand that algorithms for finding collisions in random function are of
prime importance in cryptanalysis. Whereas efficient algorithms for finding two-collisions in random
functions are well known and well studied, surprisingly, very little is mentioned about the more general
problem of finding multi-collisions in existing literature. In this dissertation thesis we survey the existing
literature on this subject as well as present our own contribution towards obtaining improved algorithms
for finding multi-collisions.

Here we provide a brief outline of the thesis. In next chapter we formally introduce all the basic
concepts and background necessary to understand the recent developments. In section 2.3 we start with
the well known algorithms for finding two-collisions and then move on to provide the background for the
main topic of this thesis, i.e. finding multi-collisions. In section 2.2 we introduce a seemingly unrelated
topic – time/memory tradeoff attacks for inverting a one-way function, but later in section 2.3.6 we
show how these same techniques can be used for obtaining new improved algorithms for finding three-
collisions. In the last chapter we present our improvements. In section 3.1 we give the first efficient
sequential algorithm for finding r-collisions for r ≥ 3. Then we present an improved parallel algorithm
for the same problem (in section 3.2) and provide the analysis in section 3.2.2. In the next section
(section 3.3) we provide a new time/processor tradeoff for this problem.
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Chapter 2

Part I: Preliminaries and Background

2.1 One-way Functions

Intuitively one-way function is a function that is ‘easy’ to compute in one direction but ‘hard’ to in-
vert. We define the concept formally later in this section and explain the proper meaning of the terms
like ‘easy’ and ‘hard’ used in the above informal definition. One-way functions have rather strong im-
plications in modern cryptography. It is quite surprising to know that existence of one-way function
is the necessary and sufficient assumption for achieving all of non-trivial private key cryptography. In
fact there are well known constructions of pseudorandom generator, pseudorandom function and strong
pseudorandom permutation given a one-way function. In a theoretical sense these combinatorial objects
form all of the private key cryptography since ‘secure’ stream cipher are nothing but pseudorandom
generators, ‘secure’ MAC and hash functions are pseudorandom functions and ‘secure’ block ciphers
are essentially strong pseudorandom permutations. We should also mention that apart from private key,
one-way functions also find very important place in public key cryptography also.

Now we define one-way function in a formal way. Let f : {0, 1}∗ → {0, 1}∗ a function. Consider
the following experiment for any algorithm A and any value n for the security parameter.

Definition 1 (The inverting experiment: InvertA,f (n)). We define the experiment in the following 3
steps:

1. Choose input x
$← {0, 1}n. Compute y := f(x)

2. Compute x′ := A(1n, y)

3. The output of the experiment is defined to 1 if f(x′) = y, otherwise, 0.

Now we define what we meant by the informal terms ‘easy’ and ‘hard’ in the preceding discussion.

Definition 2 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two
conditions hold:

1. There exists a polynomial time algorithm for computing f(x). (this is what we described as ‘easy’
to compute)

2. For all probabilistic polynomial time algorithmA there exists a negligible function negl, such that

Pr[InvertA,f (n) = 1] ≤ negl(n) (2.1)

(This is what we meant by ‘hard’ to invert)
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Quite unfortunately no function has yet been proven unconditionally one-way according to this
definition. Such a proof will constitute a major breakthrough for complexity theory. But we conjecture
the existence of one-way functions. These are based on some very natural problems which have been
given much attention but yet to yield any probabilistic polynomial time algorithm. Here we give some
examples:

• Perhaps the most famous one is the ‘integer factorization’ problem i.e. define f(p, q) = pq, then
f is conjectured to be one-way where p and q are ‘suitably’ large primes.

• Another famous one is the ‘discrete log problem’: let q be a large prime factor of p−1 and let 〈h〉
be a subgroup of Z∗p of order q. Define f(a) = ha mod p, where a ∈ Zq. Again, f is conjectured
to be a one-way function.

Taking into account the huge significance of one-way functions in cryptography, it is an important
task of a cryptanalyst to see how efficiently a one-way function can be inverted (certainly this inver-
tion cannot be done in time less than exponential, but still the question is how good we can do?). We
discuss different approaches and algorithms for achieving this task in section 2.2.4. Although this in-
vertion problem is in itself a very interesting problem that demands much attention, we mention here
the algorithms and related techniques like time/memory tradeoff with another motive. In later sections
(sections 2.3.6, 3.1) we show that these techniques find interesting application in the problem of finding
multi-collisions in random functions.

2.1.1 Random Functions

Random function is a very important concept in cryptography since many ‘secure’ cryptographic schemes
use random functions as a building block. Typically after proving the security of this schemes assuming
a random function is used in the construction one replaces it by a pseudorandom function i.e. a function
that looks like a random function to any polynomially bounded adversary. Therefore, random functions
naturally capture the ideal behavior of many important cryptographic primitives. In this section we in-
troduce the concept of random functions and briefly discuss the theoretical methods used to investigate
different properties of such functions. We also list a few useful properties of the random functions.

Let us consider the set of all functions from a set X of cardinality n to a set Y of cardinality m. Let
us denote this set by Fm

n . A random function is nothing but a random variable with uniform probability
distribution over Fm

n . Another way of looking at random functions is to think of them as oracles. These
oracles, when queried with a value not queried previously, return a value from the range of the function
chosen uniformly at random. But these oracles are consistent, i.e. when queried with a value that has
been queried already, they return the same value returned previously. We mention here that the model
of random functions can be either ‘exact’ or ‘heuristic’ - in which case on the basis of simulation, we
postulate that the properties of a special class of functions (e.g. quadratic function models) should be
the same as the properties of the class of all functions.

We will be interested in the case where |X| = |Y| = n (since in most of the cases, the functions that
we model by random functions are length preserving functions). In general we will not view a random
function as a direct represention of the mapping as a sequence of choices but instead we will consider
their decomposition as a functional graph (basically a random functional graph). Mostly we will be
interested in the properties of the random functions that arise from its iteration structure. Functional
graph representation of a random mapping gives an excellent insight into these properties.

Let, ϕ ∈ Fn
n . Consider the directed graph whose nodes are [1, . . . , n] and whose edges are ordered

pairs 〈x, ϕ(x)〉, ∀x ∈ [1, . . . , n]. Suppose, we start with u0 and keep iterating ϕ, i.e. u1 = ϕ(u0), u2 =
ϕ(u1), . . . , then before n iterations we find a value uj , such that, it is equal to one of u1, u2, . . . , uj−1.
So, in the graphical term every simple path in a functional graph connects to a cycle. The length of the
path, measured in the number of the edges, is called the tail length of u0 and denoted by λ(u0), and
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the length of the cycle is called - quite expectedly - cycle length and denoted by µ(u0). We define the
rho length of u0 by ρ(u0) = λ(u0) + µ(u0). As is clear from this discussion that functional graphs
like many other objects have a very nice combinatorial structure that can be specified by a collection
of other more fundamental combinatorial constructions (we give such a specification shortly). It is well
known that many of the counting problems of such combinatorial objects can be directly translated
into generating functions. Then we recover the asymptotic information from the singularities of such
generating function using complex analysis. Here we illustrate only the first step. More details about
the second step and the complete methodology can be found in [7].

As discussed above, a functional graph can be decomposed in a top-down approaching in terms of
more basic combinatorial objects in the following way:

FunGraph = set(Component);
Component = cycle(Tree);
Tree = Node * set(Tree);
Node = labelled atom.

Combinatorial theory guarantees direct translation of this specification into generating function
equations:

FunGraph(z) = exp(Component(z));
Component(z) = log(1− Tree(z))−1;
Tree(z) = Node(z)× exp(Tree(z));
Node(z) = z.

In the following theorem we mention some of the important properties of random graphs that can
be obtained by following the above methodology. Complete proof of all the statements are given in [7].
Some these properties will be useful later in our analysis.

Theorem 1. We can prove the following statements about a random functional graph:

(i) The expectation of the following parameters in a random function of size n have the following
asymptotic forms as n→∞ ,

(a) # connected components: 1
2 log n.

(b) # nodes belonging to a cycle:
√

πn/2.

(c) # nodes with no preimage (terminal nodes): e−1n.

(d) # image points: (1− e−1)n

(e) # k-th iterate image points: (1− τk)n.

where τk satisfies the recurrance τ0 = 0 and τk+1 = e−1+τk

(ii) Expectation of the following parameters have the asymptotic form shown below:

(a) Tail length (λ):
√

πn/8.

(b) Cycle length (µ):
√

πn/8.

(c) Rho length (ρ):
√

πn/2.

(d) Tree size (the maximal tree containing a vertex): n/3.

(e) Component size: 2n/3.

(f) Predecessor size (i.e. the size of the tree rooted at a vertex):
√

πn/8.
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(iii) For any fixed integer r, the asymptotic form of the expectation of the following parameters are:

1. # r-nodes (nodes with r preimages): ne−1/r!.

2. # r-predecessor tree (any arbitrary tree): ntre
−1/r!

3. # r-cycle tree (tree rooted on a cycle): (
√

πn/2).tre−r/r!.

4. # r-cycles: 1/r.

5. # r-components: cre
−1/r!

where tr is the number of trees having r nodes, tr = rr−1, and cr is the number of connected mappings
of size r.

2.2 Inversion of One-way Function

2.2.1 Basic Idea: Time/Memory Tradeoff

As we mentioned earlier that inverting a one way function is a worthy goal for the cryptanalyst, in this
section we will introduce the basic ideas and concepts related to this problem. Our setting is a chosen
plaintext attack scenario on a block cipher Ek(x), where encryption is being done for a fixed block B.
So the function Ek(B) can be thought of as a function f(k) which maps key space to the ciphertext
space. Formally, let us assume that f : X → Y. Clearly, if the block cipher Ek(.) is ‘secure’ then the
function f behaves like a one-way function.

One trivial approach of inverting any one way function that maps from one finite set to another finite
set is to evaluate the value of the function for all the inputs and store it in a tabular form where each row
consists of an ordered pair (x, f(x)) and then sort it on the second column. This can be termed as a ‘pre-
processing stage’, as the calculation is done once only and before one tries to actually invert a function.
Next in the ‘online stage’, when the value y to be inverted is given, one has to search the second column
of the table prepared in the pre-processing stage and return the value which appears in the first column
of the row where the given value y occurs in the second column. Õ(N) time and space is required in
the pre-processing stage, where |X| = N and online stage requires Õ(1) time and negligible memory. 1

We will later refer to this method of inversion of one way function as ‘exhaustive table method’.
Another trivial approach is to avoid the pre-processing stage completely and given the value y start

evaluating f(x) for all x ∈ X sequentially, until an x is found s.t. f(x) = y. Here no memory is
required in the preprocessing stage but Õ(N) time is required in online stage. We will call this method
’exhaustive search’ method.

These two methods are at two extremes of time/memory trade off (TMTO) methods of one way
function inversion. We will next discuss this TMTO attacks.

2.2.2 Hellman Scheme

In 1980 M. Hellman introduced the first TMTO attack which later came to be known as Hellman’s
method. The general idea behind the scheme is very simple. If |X| = |Y | = N and we assume that
the cryptanalyst is only allowed random oracle access of the one way function then under repeated
evaluation of the oracle the underlaying function can be modeled as a random graph. Hellman’s idea
was to cover the graph by chains of certain length. In the preprocessing stage m random points on the
graph is chosen as starting points for m chains, each of length t. For each starting point we repeatedly

1we use Õ notation instead of O since we want do not want to concern ourselves with logarithmic factors as these are
comparably negligible in cryptanalytic scenario. f = Õ(g) if there exists c s.t. f = O(g.logc(g))
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evaluate the function for t times, each time on the value obtained in the previous evaluation. We store
the m start and end points in a table, sorted on the end points and pass it to the online phase. In the
online phase for inverting the given value y we first check whether y appears in the second column of
the table. If it does not then we query the random oracle with the given value and check whether the
output is present in the second column of the preprocessing table. If it is not found in the table then we
again query the random oracle with the recent output value and perform the table search. We repeat this
process until the value is found in the table or at most t times. If the value is found in the table then
we go back to the corresponding start point and continually apply the function on it until a value x is
found s.t. f(x) = y. However, it should be noted that finding a matching end point does not necessarily
mean that the preimage of y is covered in the table since there may be collisions in the random graph.
This situation is known as ‘false alarm’. False alarm increases the running time of the online phase.
Hellman showed that under suitably chosen parameters, the expected number of false alarms per table
can bounded from above by 1

2 . The memory requirement in the preprocessing stage is mt and time
required in the online phase to invert the given value is t.

m chains





◦f() −→ ◦f() −→ ◦f() −→ · · · → ◦f() −→ ◦
◦f() −→ ◦f() −→ ◦f() −→ · · · → ◦f() −→ ◦

...
◦f() −→ ◦f() −→ ◦f() −→ · · · → ◦f() −→ ◦︸ ︷︷ ︸

t times

The probability of the success of such a scheme depends on the coverage of the underlaying random
graph by the chains. Hellman showed that unless m and t is chosen s.t. mt2 ≤ N , the probability of
collision among chains of the table becomes very high. This is known as the ‘table stopping rule’. Thus
by indiscriminately increasing the number of chains in the table we cannot guarantee full coverage of the
graph. To increase the coverage of the random graph Hellman considered t related functions f1, f2, ..., ft

obtained by simple output modification of the given function f , instead of a single function f . He
assumed all the t different functions to be random and independent of each other. This assumption is not
theoretically rigorous and has since encouraged much work in this area. Now in the preprocessing stage
we make t tables, one for each of the functions fi and in the online phase repeat the procedure described
above for all the t tables. Now the memory required for the preprocessing stage is M = mt and the
running time T = t2. These two equations together with the table stopping rule give the time/memory
trade off curve TM2 = N2. If we set the parameters m = t = N

1
3 then we get T = M = N

2
3 . The

idea of distinguished points can be used here to reduce the number of disk accesses.

2.2.3 Rainbow Scheme

P. Oeschlin proposed a method which is known as the Rainbow scheme. Here we randomly choose mt
start points and for each start point apply f1, f2, ..., ft sequentially and store the start point and the end
point in a table and then sort the table on the end points. In the online stage first we check whether the
given value y appears in the table. If this does not then we apply ft on the given y and check whether the
value appears in the table. If it does not appear then we apply ft−1 and ft on y and check in the table.
We proceed in this way, each time starting from one link behind. At any point if the value appears in
the table we go back to the start point and finish the chain to find out the preimage of y. Here also false
alarms can occur.
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mt chains





◦f1() −→ ◦f2() −→ ◦f3() −→ · · · → ◦ft() −→ ◦
◦f1() −→ ◦f2() −→ ◦f3() −→ · · · → ◦ft() −→ ◦

...
◦f1() −→ ◦f2() −→ ◦f3() −→ · · · → ◦ft() −→ ◦︸ ︷︷ ︸

length t

The time/memory trade off curve for Rainbow scheme is same as that of Hellman’s scheme, but the
running time for Rainbow is approximately half of Hellman’s scheme. But as Barkan, Biham and Shamir
has pointed out in their paper this gain in running time is offset by the fact that memory requirement of
Hellman’s scheme is half of the Rainbow scheme and that accounts for a four-fold decrease in running
time for Hellman’s scheme due to the form of the trade off curve TM2 = N2.

2.2.4 Parallelization of Time/Memory Tradeoff Schemes

In this section we give a brief overview of the parallel implementation of Oechslin’s ‘Rainbow’ scheme.
More details and various other implementations can be found in [8]. Here the attacker builds a circuit
that can compute f1(f2(. . . (ft(x)) . . . )). This takes a little more time than t function evaluations. Each
circuit has a constant memory. So each circuit can hold a constant number of inputs and outputs. Now
the attacker builds a machine with appropriate numbers of these circuits arranged in a mesh architecture,
i.e. each circuit is connected to its immediate neighbours (north, south, east and west). Most of the
circuits are initialized with random starting points (these are the chains in rainbow table). But t circuits
are initialized with the given value y which is to be inverted. These t circuits compute the following
chains: f1(y), f1(f2(y)), . . . , f1(f2(. . . (ft(x)) . . . )). After all these chain computations are done, a
sorting is applied on the output values of the circuits. We discuss a very efficient sorting algorithm
suited for this situation – called Schimmler’s sorting algorithm in the next paragraph. If the sorting finds
collision between one of those t chains and any of the chains from the rest of the circuits then we redo
the chain calculations and do the usual checks to find whether we have found a preimage of y. Here the
size of the mesh (i.e. the number of the circuits) is an important parameter. [8] discusses choice of this
parameter for the specific case of AES. This method can also be used for time/processor/data tradeoff.

Next we discuss the Schimmler’s sorting algorithm which can sort n2 items arranged in a mesh like
network in time O(n) time. We will show in later sections that this sorting algorithm is very important
tool for our improved parallel algorithm for finding multi-collisions.

Schimmler’s sorting:
Schimmler’s sorting can sort n2 numbers in 8n − 8 steps on two-dimensional machine, when n is a
power of 2.

The machine consists of n2 cells in an n × n mesh where each cell contains one number.and each
cell is connected to its adjacent cells. There are several natural ordering of the cells in an n × n mesh.
Schimmler’s algorithm can sort using the left-to-right order:
(1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n), (3, 1), (3, 2), . . . , (3, n), . . . ;
the right-to-left order:
(1, n), (1, n− 1), . . . , (1, 1), (2, n), (2, n− 1), . . . , (2, 1), (3, n), (3, n− 1), . . . , (3, 1), . . .
or the snake-like order:
(1, 1), (1, 2), . . . , (1, n), (2, n), (2, n− 1), . . . , (2, 1), (3, 1), (3, 2), . . . , (3, n), . . .

Schimmler’s algorithm works as follows. Recursively sort the top-left quadrant of the mesh left-
to-right; the top-right quadrant left-to-right; the bottom-left quadrant of the mesh right-to-left and the
bottom-right quadrant right-to-left. Sort each column independently top to bottom with odd-even trans-
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position sort. Sort each row independently, snakelike. Sort each column independently top to bottom.
Finally sort each row independently, using the desired order - left to right, right to left or snakelike.

2.2.5 Fiat-Naor’s Scheme

Given the t output modification functions in Hellman’s scheme, one may devise a function with a very
high indegree point and rest inducing a permutation such that the Hellman’s scheme fails with a very high
probability. A. Fiat and M. Naor [2] gave a scheme which instead of t independent random functions
as in the case of Hellman’s table works with t, t − wise independent functions and can invert any one
way function with a constant probability. But the trade off curve TM3 = N3 is worse than Hellman’s
scheme.

In the preprocessing phase the scheme builds a table of the high indegree points and then in the later
part when it creates chains to cover the graph, it uses this table and t − wise independent functions to
avoid the high indegree points. This way it can guarantee a better coverage of the graph. In the online
phase it first checks whether the given point appears in the first table to decide if it is a high indegree
point. If the given point is not a high indegree point then it performs a Hellman style search to locate the
point in the second table.

2.3 Collision Finding in Random Functions

2.3.1 Two-collision Finding: Birthday Bound

Collision-resistance is usually cited as a desired property of a ‘secure’ hash function. It can be shown by
using basic probability calculations that in a hash function with range size N a collision can be found
with probability at least 1

2 if we evaluate the hash function on
√

N points in its domain. This seemingly
surprising result is sometimes referred as ‘The Birthday Paradox’ or more technically ‘The Birthday
Bound’. According to this result in a group of only 22 people two persons will share a common birthday
with more that 50% chance. In this section we discuss two very efficient (in terms of memory) algorithms
for collision detection in hash functions. In this context we consider random functions represented as
a random graph. In many cryptographic applications we are interested in the behavior of the random
function under iteration. This behavior can be visualized as traversing a random path in the random
graph. As mentioned earlier, usually this paths starts with a straight segment called the tail and ends in
a cycle. There are many interesting algorithmic questions in this setting, like finding some point on the
cycle, finding the length of the cycle or finding the cycle entry point etc. These algorithms are used in
many other problems. Pollard Rho algorithm for finding small factors of a large prime uses the cycle
length finding algorithm. Cycle entry points in such random paths denote a collision for the random
function. Naturally collision detection algorithms for hash functions use this cycle detection algorithms.
Here we discuss two cycle detection algorithms.

2.3.2 Floyd’s Two Finger Algorithm

The basic intuition behind the algorithm is very simple. Suppose two persons start a race where the first
person runs two times faster than the second person. After the starting point they will meet once again
if and only if they are running in a circular track. This fact can be used to decide whether the track
is circular or straight. Similarly in the random path we keep two pointers and move one at speed two
times faster than the other until they collide. After the collision we place one of the pointers back to
the starting point and move both the pointers at the same speed. The point where they collide (they will
indeed collide) is the entry point of the cycle. It should be noted that this method of collision finding
requires N

1
2 time, no better than the birthday bound but very little memory. Floyd’s algorithm is suitable
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for finding cycles if the tail is short, but if the tail is long then the faster pointer reaches the cycle very
early and traverses it many times before the slower pointer actually arrives at the cycle.

2.3.3 Nivasch’s Stack Algorithm

In 2004 Nivasch [6] proposed a new algorithm which uses a single pointer and negligible amount of
memory and stops immediately after recycling. The basic idea is to maintain a stack and insert new
values at the time of traversing, forcing the values in the stack to be monotonically increasing. When
a value is repeated at the top of the stack we stop the algorithm and find a cycle. It can be shown that
the maximum size of the stack will be logarithmic in the path length. Unfortunately, though we can
determine the cycle length using this algorithm, we can use it neither for Pollard’s Rho nor for collision
detection.

2.3.4 Multi-collision: Generalized Birthday Bound

The idea of two-collision extends to the idea of more general r-collision quite naturally. We Define
an r-collision to be a set of r distinct values in the domain of a random function such that all of them
map to the same value under that function. In case of arbitrary r, it is well known that finding an r-
collision requires at least (r!)

1
r ·N r−1

r function evaluations. For small values of r we can approximate
it by O(N

r−1
r ). This is in fact the generalized version of the birthday bound discussed in section 2.2.

Just like two-collisions, arbitrary r-collisions also pose as security problem for hash functions and many
researchers consider faster multi-collisions in a hash function as a certificational weakness.

Recent application of multi-collisions in cryptography can be found in the cryptanalysis of SHA-
3 candidates Aurora-512 and JH-512. The problem of finding multi-collisions in random mapping is
therefore of fundamental importance in cryptography.

The important point to note here is that the generalized birthday bound puts a lower bound on the
time required in a sequential machine for finding multi-collision. It does not imply a lower bound
for memory, although the most trivial algorithm will certainly require N

r−1
r amount of memory - this

simple algorithm involves evaluating the random function at N
r−1

r distint points and storing the images
in an associated array followed by a sorting step on the images to find the r-collision. But in case of two
collisions, efficient algorithms with negligible memory are known (see section 2.3.2 and 2.3.3). It should
be suspected that the memory requirement of the general r-collision finding algorithm can be brought
down from N

r−1
r . In fact, [5] presents an sequential algorithm for r = 3 that that uses N

1
3 memory and

N
2
3 time. They conjecture that the general task of finding an r-collision can be done in N

r−1
r time and

N
r−2

r space. We present this general algorithm in section 3.1. [5] also presents a parallel algorithm for
finding r-collision. We present an improved version of this algorithm in section 3.2. But for now we
describe the known algorithms and algorithms presented in [5] for finding multi-collision.

2.3.5 Simple Algorithms for Three-collision

The sequential algorithms described in [5] for finding 3-collisions fits into the paradigm of time/memory
tradeoff, i.e. the algorithm is divided into two phases – precomputation phase and online phase. In
precomputation phase we limit the memory requirement by Õ(Nα) and in the online phase we bound
the running time by Õ(Nβ) where α, β < 1. Since we want the running time of the online phase to
dominate, we will require that the running time of the precomputation phase be less than that of online
phase. Ofcourse, it will be nice to have α < β.

The first algorithm that we describe is named ‘folklore’ algorithm in [5]. It is very simple and
straightforward but not as efficient as the ones to be described next. In the precomputation phase it just
computes the map on Nα random points and stores the images in an associated array. Then it sorts the
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array based on the column of the image values. In the online phase it again computes the map on Nβ

random points and checks whether the image is present in the image column of the precomputed table.
Whenever a hit occurs the new preimage is stored together with the old preimage in the sorted table. The
algorithm succeeds in finding a three-collision if one of the Nα images computed in the precomputation
phase is hit twice in the online phase and all the three preimages are distinct.

Now we do a heuristic analysis of the algorithm ignoring constants and logarithmic factors. The
running time of the precomputaion phase is Nα (actually O(α·Nα log N) – the logarithmic factor comes
due to sorting – but in this calculations it is customary to ignore the logarithmic and constant factors).
Similarly, the running time of the online phase is Nβ (actually O(α ·Nβ log N) – the logarithmic factor
comes due to searching operation performed on the precomputed table). Now, on average, out of the Nβ

values computed in online phase, we expect Nα+β−1 values to hit the Nα values of the precomputation
phase. Due to the birthday paradox, after N

α
2 hits, we expect a double hit to occur. At that point, the

algorithm succeeds if the three known preimages corresponding to the double hit are distinct, which
occurs with constant probability. Therefore for the algorithm to succeed, we need:

α + β − 1 ≥ α

2
to minimize the running time we enforce the condition:

α + 2β = 2 (2.2)

Since, we put the constraint that the running time of online phase should dominate the overall run-
ning time, we have:

α ≤ β (2.3)

solving equation (2.2) and (2.3) we get α ≤ 2
3 and β ≥ 2

3 . So both the time and memory complexity
of this ‘folklore’ algorithm is Õ(N2/3) – same as the trivial algorithm, though it gives a time/memory
trade off according to equation (2.2). We note another point on the tradeoff curve – α = 1/2 and
β = 3/4. We will use it for comparison with the next algorithm.

The next algorithm uses a new idea to improve the time/memory tradeoff. Instead of initializing the
array with Nα images, this algorithm initializes it with Nα two-collisions of the random function in
the precomputation phase. To make this efficient in terms of memory use, each collision in the array
is generated using a cycle finding algorithm on a (pseudo-)randomly permuted copy of the random
function. Since each collision is found in time N

1
2 the total running time of this new precomputation

phase is N
1
2
+α.

The online phase is left unchanged, we simply create Nβ images of random points until we hit one
of the known collisions. It now suffices to hit only once on a known point to succeed. As a consequence,
we can replace condition (2.2) by the weaker condition:

α + β = 1 (2.4)

Since, the running time of the online phase is greater than or equal to precomputation phase, we
have:

α +
1
2
≤ β (2.5)

again, solving equations (2.4) and (2.5), we get α ≤ 1
4 and β ≥ 3

4 . Comparing this with the tradeoff
given by the ‘folklore’ algorithm we notice an improvement in the space complexity.

An important issue neglected in the heuristic analysis is what fraction of the candidates stored in
the array in precomputation phase can be completed into a three-collision. In above analysis we tacitly

10



assumed that all the Nα entries would yield three-collisions. This is certainly not the case. We know
from section 2.1.1 and [7] that expected fraction of points with exactly k preimages is e−1

k! . If Pk

denotes the fraction of points with at least k preimages then we have P1 = 1 − e−1, P2 = 1 − 2e−1

and P3 = 1 − 5
2e−1. The images stored in the precomputed table has at least one preimage in the

‘folklore’ algorithm and at least two preimages in the second algorithm. Clearly the expected fraction of
entries that can be correctly completed into a three-collision is P3

P1
≈ 0.127 for the ‘folklore’ algorithm

and P3
P2
≈ 0.304 for the second algorithm. To make for this loss, it suffices to increase the size of the

precomputed table by a factor of 8 in the ‘folklore’ algorithm and a factor of 3 in the second algorithm.
In the analysis we assumed that if the algorithm returns a hit then the probability that all the three

preimages of the image point will be distinct is constant. To see this, we consider only those points
in the precomputed table that can be completed into a three-collision. Since in the online phase we
are sampling points uniformly at random, the a posteriori probability of having chosen one of the two
already known preimages in the second algorithm is at most 2/k, where k is the number of distinct
preimages for this point. Since k ≥ 3, the a posteriori probability of choosing a new preimage is, at
least, 1/3. Similarly, for the ‘folklore’ algorithm, the a posteriori probability of choosing a preimage
distinct from the single originally known one is at least 2/3. To offset this loss of probability, Nβ should
be multiplied by a constant factor of 3.

2.3.6 Improvement Using Time/Memory Tradeoff Ideas

[5] cleverly uses Hellman’s time/memory tradeoff technique for inversion of one-way functions to
achieve significant improvement in the space complexity of the second algorithm. The overall struc-
ture of the algorithm remains essentially same. But Hellman’s technique is used to reduce the space
requirement of the Nα two-collision finding step in the precomputation phase.

The idea is to build Nα Hellman style chains with random start points, each of length Nγ . The
end-point of each chain is stored together with its corresponding start-point n Hellman style table. Once
the chains have been built, we sort them by end-point values as usual. Then, starting with Nα new
random points, we once again compute chains of length Nγ , the difference is that we now test after
each evaluation of the function whether the current value is one of the known end-points. In that case,
we know that the chain we are currently computing has merged with one chain from the first step.
Such merge may correspond to a collision (the false alarm situation discussed in section 2.2.2) , but
certainly exception occurs when the start-point of the current chain already belongs to a precomputed
chain (exactly the situation we would prefer when inverting a random function). Backtracking to the
beginning of both chains, we can easily decide whether it is a collision or not and in case of collision we
can construct the corresponding collision.

Since each of the two sets of chains we are constructing contains Nα+γ points, the expected number
of collisions is O(N2α+2γ−1). Remembering that we wish to construct Nα collisions, we need to let
γ = (1−α)/2. The running time necessary to compute these collisions is Nα+γ = N (1+α)/2. So using
Hellman’s technique we can compute Nα collisions in time N (1+α)/2 instead of N

1
2
+α.

The tradeoff equation remains the same as (2.4),

α + β = 1 (2.6)

But, the constraint on the running time yields

1 + α

2
≤ β (2.7)

Solving (2.6) and (2.7), we have α ≤ 1
3 and β ≥ 2

3 , a considerable improvement in the space
complexity over the ‘folklore’ algorithm.
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2.3.7 Parallel Algorithm for Multi-collision

[5] provides a parallelizable multi-collision search algorithm. First we describe their algorithm for
three-collision. The aim of the algorithm is to find three-collision using a network of low-end processor
having constant amount of memory. Assume, number of processors available, NP ≈ N

1
3 and we aim at

a running time of Õ(N
1
3 ). The overlay network that we assume is a complete graph, i.e. each processor

can efficiently communicate with every other processor.
The key idea behind the algorithm is distinguished points. By definition, a set of distinguished points

is a set of points together with an efficient procedure for deciding membership. For example, the set of
elements in [0,M −1] can be used as a set of distinguished points since membership can be tested using
a single comparison. Moreover, with this choice, the fraction of distinguished points among the whole
set is simply M/N . Here, since we wish to have chains of average length N1/3, we choose for M an
integer near N2/3. In hardware, we can simply check whether the first 1/3 of the leading bits are zero
or not to decide the membership.

The distinguished point algorithm works in two steps. During the first step, each processor starts
from a random start-point s and iteratively applies the function until a distinguished point d is encoun-
tered. It then transmits a triple (s, d, L), where L is the length of the path from s to d, to the processor
whose number is d(modNP ). We abort any processor if it doesn’t find a distinguished point within a
reasonable amount of time. Once all the paths have been computed, we start the second step. Each pro-
cessor looks at the triples it now holds. If a given value of d appears three or more times, the processor
recomputes the corresponding chains, using the known length information to synchronize the chains. If
three of the chains merge at a common position, a 3-collision is obtained.

There are a few points to note about this algorithm:

• The interconnection network that this algorithm uses is that of a complete graph. It induces a
high connection cost and it does not scale as efficiently as other interconnection structures as the
the amount of communication or the number of processors connected increases. In a networked
system we may use Ethernet type bus architecture to connect the processors, but due to the huge
number of processors in any real application of this algorithm, very soon communication cost
will dominate the runtime. The underlaying broadcast media performs very poorly under this
kind of situation where the number of processors is so huge. However, if we want to implement
this algorithm in a shared memory based multi-processor environment then the interconnection
structure is certainly a bad one, since it scales very poorly with the number of processors. In
section 3.2 we give a new version of this algorithm using a interconnection structure which is
particularly well suited for VLSI implementation.

• The parallel algorithm mentioned above apparently simulates the precomputation phase of the
sequential algorithm given in section 2.3.6. The total number of map evaluation is N

2
3 in this

algorithm. But the important point to notice here is that according to the generalized birthday
bound N

2
3 map evaluation is a necessary condition for obtaining a three-collision but it is not

a sufficient condition. For example, if we compute a single chain of length N
2
3 starting from a

random point, we will never get a three-collision (however, we may get a two collision because
such long chains usually end up in a cycle). So, irrespective of the method of evaluating, N

2
3 map

evaluation does not guarantee a three-collision. We need a proof of correctness for this algorithm.
We provide a formal proof of the fact that indeed this method will yield a three-collision with
constant probability in section 3.2.

The extension of the above algorithm from three-collision to r-collision is quite straightforward.
Assume, number of processors, NP ≈ N

r−2
r . Each processor has a constant amount of memory. The

integer M that defines distinguished points should be near N
r−1

r . Each processor first build a chain
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of average length N
1
r (as before we abort after a reasonable number of steps), described by a triple

(s, d, L). Each chain is sent to the processor whose number is d(modNP ). During the second step, any
processor that holds a value of d that appears in r or more triples recomputes the corresponding chains.
If r chains merge at the same position, an r-collision is obtained.

We mention here that [5] stresses the use of number of processor, NP ≈ N
r−2

r and length of the
chain N

1
r . But we that believe this is just a point in the general time/processor tradeoff curve and it is as

good as any other point on the curve. We argue this point in section 3.3 and provide the time/processor
tradeoff curve.
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Chapter 3

Part II: Our Contribution

A. Joux and S. Lucks [5] give a space efficient sequential algorithm for finding three-collisions in hash
functions. We extend this algorithm for r-collision for values of r ≥ 3. We describe the algorithm and
give a heuristic analysis in sections 3.1. [5] also presents a parallel algorithm for finding r-collisions.
We give an improved version of that algorithm using a better interconnection structure in section 3.2.
Both our algorithm and the parallel algorithm presented in [5] make an implicit assumption. We for-
mally prove this assumption and present a coherent theory in section 3.2.2. Also we provide a new
time/processor tradeoff for finding multi-collisions of hash function in section 3.3.

3.1 General Sequential Algorithm for Multi-collision

Just like three-collisions, in the problem of finding r-collision, for values of r greater than 3, one has
a number of alternative options of organizing the algorithm in precomputation and online phase. To
make the discussion concrete, let us take the value r as 4. Now in case of four-collisions, there are five
alternative ways of dividing the algorithm in two parts:

1. In the first phase prepare a list of image points. In the second phase take random points and
compute the map until 3 points hit one of the precomputed images in the first phase.

2. The first phase is same as the previous one. But in the second phase prepare a list of three-
collisions and seek one hit between the two lists.

3. In the first phase compute a list of two collisions. In the second phase also compute a list of fresh
two-collision and seek a hit between the items of the two lists.

4. The first phase is same as the previous one. But, in the second phase compute the map on randomly
chosen points until two of the images hit one of the precomputed two-collisions.

5. First phase consists of computing a list of three-collisions. In the second phase we evaluate the
map on randomly chosen points until one image hit one of the precomputed three-collisions.

Clearly, number of such alternative options increase with the value of r. In general, it may appear
that dividing the precomputation and online phase in a balanced way (i.e. d r

2e-collision in first phase
and b r

2c-collision in the second phase) may give the optimum efficiency. However, this intuition is not
correct as we show in the next section.

3.1.1 Description and Analysis

First, we describe the algorithm for r = 4. For four-collision, in the precomputation phase we compute
Nα two-collisions using the Hellman’s time/memory tradeoff technique. As discussed in section 2.3.6,
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this can be done in time N
1+α

2 using space Nα. We make a table where each image is stored with its
two preimages and sort the table on the image values. In the online phase we take Nβ randomly chosen
points and evaluate the map on them. After each map evaluation we check whether this image is already
present in the precomputed image table. Following the line of analysis presented in [5], we can expect
Nα+β−1 of the new images to hit the precomputed table. Now if this number of hit is at least as big
as N

α
2 , then by birthday bound we can expect two of the new values to hit one of the precomputed

image values. If all the preimages are distinct, the probability of which is again constant, then will find
a four-collision. Therefore, we have

α + β − 1 ≥ α

2
So to minimize the running time we have the following equation:

α + 2β = 2 (3.1)

And the running time constraint gives:

β ≥ 1 + α

2
(3.2)

Solving (3.1) and (3.2) gives α ≤ 1
2 and β ≥ 3

4 .
For general r-collision, the scheme is same. In the precomputation phase we compute Nα two-

collisions in time N
1+α

2 and space Nα. We store the two-collisions together with their two preimages
in a table, sorted on the image values. Next in the online phase, we compute the map on Nβ randomly
chosen points. We want (r− 2) of them to hit the same value in the precomputed two-collision table. If
all the r preimages are distinct then we will have an r-collision. Since, the probability of the event that
all the peimages are distinct is constant, we can ignore its effect for the time being and proceed with the
analysis.

Clearly the number of hits between the two lists will be Nα+β−1. To make (r − 2) of this values to
hit a particular value of the precomputed table, by generalized birthday bound, we have:

Nα+β−1 ≥ Nα· r−3
r−2

To minimize the running time we take the equality and after simplifying we get:

α + (r − 2)β = r − 2 (3.3)

The usual constraint on running time gives:

β ≥ 1 + α

2
(3.4)

Now, solving equations (3.3) and (3.4), we have α ≤ r−2
r and β ≥ r−1

r . That means that we can compute
r-collisions in time roughly N

r−1
r using space roughly N

r−2
r . This is a considerable improvement over

the naive algorithm in terms of space efficiency.

3.2 A New Improved Parallel Algorithm for Multi-collision

In this Section we will describe an improvement of the parallel algorithm due to A. Joux and S. Lucks
[5] described in section 2.3.7. We will use techniques developed in [8]. Particularly we will use the
mesh/grid interconnection structure for interconnecting the processors. This is better interconnection
structure than the complete graph structure proposed in [5] in terms of interconnection cost as well as
efficient VLSI implementation. Our algorithm requires same number of processors as the algorithm in
[5] and asymptotic running time of our algorithm is also same as their algorithm.
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3.2.1 Description

First we describe our algorithm for finding three-collision. An important observation is that the message
passing step where each processor sends its (s, d, L) triple to the processor numbered d(modNP ) in the
algorithm given in [5] is equivalent to sorting the triples on the d values. Our algorithm builds around
this idea.

Suppose, NP ≈ N
1
3 processors with constant memory are arranged in a two-dimensional mesh

structure of size N
1
6 × N

1
6 . Each processor is connected to its immediate neighbours only (i.e. north,

south, east and west neighbours). We take our M to be N
2
3 , such that the average length of the chains

be N
1
3 . Each processor starts from a random start-point s and iteratively applies the function until a

distinguished point d is encountered. Each processor makes a triple (s, d, L), where L is the length
of the path from s to d. Then we apply Schimmler’s sorting algorithm (or any other efficient parallel
sorting algorithm) on the output distinguished points d. One point to note here is that though we sort
on d, during the sorting we actually exchange the whole triple (s, d, L) between the processors. If there
are three or more processors with same terminating distinguished points (i.e. merging between two or
more chains), then this sorting step reveals them. Moreover, the sorting arranges these triples with same
d value along a single row (or a column, if sorting is done in the column major way). So, now each
processor checks the value of d of its east and west neighbour (assuming row-major sorting) and if the
value is same as its own d value then it borrows their tuple and recomputes the corresponding chains,
using the known length information to synchronize the chains. If three of the chains merge at a common
position, a three-collision is obtained.

This algorithm is conceptually same as the first algorithm except that it replaces the message passing
step of the first algorithm by Schimmler’s sorting step. Consequently, we can use the more efficient mesh
structure than the complete graph structure used in the first algorithm. Clearly, this algorithm uses same
number of processors as the first one. But here we incur extra cost in terms of running time for the
Schimmler’s sorting step. But, as discussed in section 2.2.4 this takes only 8 · N 1

6 time. So the chain
computation time O(N

1
3 ) dominates. Hence the asymptotic time complexity of our algorithm is same

as the first algorithm.
The structure of the general version of this algorithm for finding r-collisions is essentially same. It

also involves chain computation and sorting steps followed a chain recomputation step to see whether
r or more chains merge at the same point to yield an r-collision. We discuss this algorithm in more
details with the choice of the appropriate parameter values (like number of processors and average chain
length) after we describe the time/processor tradeoff in section 3.3.

3.2.2 Analysis

We have now seen two parallel algorithms for finding three-collisions – the first one due to [5] described
in section 2.3.7 and our new algorithm presented in the previous section. Both the algorithms make the
implicit assumption that computing N

1
3 chains of length N

1
3 with random starting-points will yield at

least one three-collision (i.e. at least three chains will merge at a common point). We give a formal proof
of this fact in this section.

In the following analysis we make the following two assumptions:

• A single chain contains all distinct points. During the computation of a chain repetition of any
value implies that the chain has entered a cycle. Since we are using distinguished point method
for computing the chains, repetition of any value implies that this chain will not encounter a
distinguished point. So the chains with repeated values will be discarded.

• Chain lengths are equal. Though it will not be the case in DP method, the probability that the
chain length of a particular chain is far away from the average chain length will be too small to
affect our analysis.
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Suppose, we choose m random points and starting with each of them we calculate chains of length
t. We are interested in calculating the expected number of r-collisions for r ≥ 3. Here we make an
important observation – the i-th chain can lead to at most one r-collision for all values of r ≤ i, since
once a collision occurs the new chain merges with an old chain.

Let, Xr be a random variable that denotes the number of r-collisions under this setting. We define the
following useful events:
Ar

i : the i-th chain will lead to an r-collision. r ≥ 3

Cr
i : After the computation of the i-th chain we will have at least one r-collision where r ≥ 2. Simi-

larly, C̄r
i denotes the probability that upto the completion of computation of the i-th chain no r-collision

occurs.

Br
i,j : xi,j i.e. the j-th value of the i-th chain will lead to an r-collision. r ≥ 3

Let, I(Ar
i ) denote the indicator random variable of the event Ar

i . Then ∀r ≥ 2 we have:

Xr =
m∑

i=1

I(Ar
i )

Therefore, we have, due to linearity of expectation:

E(Xr) =
m∑

i=1

E(I(Ar
i ))

=
m∑

i=1

Pr[Ar
i ] (3.5)

Now, Pr[Ar
i ] = 0, ∀i < r. Similarly ∀i ≥ r, we have the following relation:

Pr[Ar
i ] = 1−Pr[∧t

j=1B̄
r
i,j ] (3.6)

Using the chain rule of compound probability we get:

Pr[∧t
j=1B̄

r
i,j ] =

t∏

j=1

Pr[B̄r
i,j |B̄r

i,1, . . . , B̄
r
i,j−1] (3.7)

Let us denote the conditional event B̄r
i,j |B̄r

i,1, . . . , B̄
r
i,j−1 by Dr

i,j . Therefore Dr
i,j denotes the event

that given none of xi,1, . . . , xi,j−1 has led to an r-collision, xi,j will also not lead to an r-collision.

Pr[B̄r
i,j |B̄r

i,1, . . . , B̄
r
i,j−1] = Pr[Dr

i,j ]

= Pr[Dr
i,j ∧ C̄r−1

i−1 ] + Pr[Dr
i,j ∧ Cr−1

i−1 ] (3.8)

= Pr[C̄r−1
i−1 ] ·Pr[Dr

i,j |C̄r−1
i−1 ] + Pr[Cr−1

i−1 ] ·Pr[Dr
i,j |Ci−1

r−1]

≤ Pr[C̄r−1
i−1 ] + (1−Pr[C̄r−1

i−1 ])(1− 1
N

)

= 1− 1
N

+
Pr[C̄r−1

i−1 ]
N

(3.9)

We make an important observation here – the step (3.8) cannot be derived for r = 2. So the inequality
(3.9) is valid only for r ≥ 3. Clearly, the probability Pr[Dr

i,j |C̄r−1
i−1 ] = 1, since, if there are no (r − 1)-

collision upto the (i−1)-st chain, then xi,j cannot yield an r-collision. At any stage to get an r-collision
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we need an existing (r−1)-collision. Pr[Dr
i,j |Ci−1

r−1], i.e. given that upto (i−1)-st chain there is at least
one (r− 1)-collision and the i-th chain has not yet led to an r-collision, the probability that xi,j will not
lead to an r-collision can be upper bounded by (1− 1

N ).
Next we prove a recurrence relation for the quantity Pr[C̄r

i ].

Lemma 1. Pr[C̄r
i ] ≤

∏i
k=r(1− 1

N +
Pr[C̄r−1

i−1 ]

N )t, for all r ≥ 3

Proof: The proof is straightforward. From the definition, we get the following relation:

Pr[C̄r
i ] = Pr[∧i

k=1Ā
r
k] (3.10)

Now, using the chain rule of compound probability we get:

Pr[C̄r
i ] = Pr[∧i

k=1Ā
r
k]

=
i∏

k=1

Pr[Ār
k|Ār

1, . . . , Ā
r
k−1]

=
i∏

k=1

Pr[∧t
j=1B̄

r
k,j |Ār

1, . . . , Ā
r
k−1]

=
i∏

k=1

t∏

j=1

Pr[B̄r
k,j |B̄r

k,1, . . . , B̄
r
j−1, Ā

r
1, . . . , Ā

r
k−1]

=
i∏

k=1

t∏

j=1

Pr[Er
k,j ]

≤
i∏

k=1

t∏

j=1

(1− 1
N

+
Pr[C̄r−1

k−1]
N

) (3.11)

=
i∏

k=1

(1− 1
N

+
Pr[C̄r−1

k−1]
N

)t (3.12)

=
i∏

k=r

(1− 1
N

+
Pr[C̄r−1

k−1]
N

)t (3.13)

The event Ār
k is equivalent to the event [∧t

j=1B̄
r
k,j ]. We have denoted the event [B̄r

k,j |B̄r
k,1, . . . , B̄

r
j−1,

Ār
1, . . . , Ā

r
k−1] by the shorter notation Er

k,j which is in turn same as the event Dr
k,j . Hence in the step

(3.11) we have used the inequality (3.9). For all i < r, Pr[C̄r
i ] = 1. Therefore for k < r the quantity

(1− 1
N +

Pr[C̄r−1
k−1]

N ) has value 1. So, we can derive step (3.13) from (3.12)
Here we make a few observations about the probability Pr[C̄r

i ]. As a corollary of lemma 1 we have,

Corollary 1. For r ≥ 3, Pr[C̄r
r] ≤ (1− 1

N +
Pr[C̄r−1

r−1]

N )

Since, the lemma 1 and corollary 1 are valid for r ≥ 3 we have to calculate these probabilities
explicitly for r = 2. Since, according to our assumption all the points in a chain are distinct and the
chain length is t, we have:

Pr[C̄2
2] = (1− t

N
)t

= 1−O(
t2

N
) (3.14)
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Similarly, we have,

Pr[C̄2
i ] = (1− t

N
)t · (1− 2t

N
)t · · · (1− (i− 1)t

N
)t

= (1− (1 + 2 + · · ·+ i− 1) · t

N
+ . . . )t

= 1−O(
i2t2

N
) (3.15)

Next, we prove an important lemma,

Lemma 2. Pr[C̄r
i ] = 1−O( irtr

Nr−1 ), for r ≥ 2 and i ≥ r.

Proof: We apply induction on both r and i. The base cases for r = 2 and i = 2 have already been
proved. Here we show the induction step which follows directly from the recurrence relation derived in
lemma 1.

Pr[C̄r
i ] ≤

i∏

k=r

(1− 1
N

+
Pr[C̄r−1

k−1]
N

)t

=
i∏

k=r

(1−O(
(k − 1)r−1tr−1

N r−1
))t (3.16)

= (1−O((r − 1)r−1 + rr−1 + · · ·+ (i− 1)r−1) · tr−1

N r−1
+ · · · )t

= 1−O(
irtr

N r−1
) (3.17)

We replace Pr[C̄r−1
k−1] by (1−O( (k−1)r−1tr−1

Nr−2 )) following the induction hypothesis and simplify in
step (3.16).

Next, we state and prove the main result of this analysis:

Theorem 2. E(Xr) = O( mrtr

Nr−1 ), for ∀r ≥ 3

Proof: From equation (3.7) and inequality (3.9), we get

Pr[∧t
j=1B̄

r
i,j ] ≤

t∏

j=1

(1− 1
N

+
Pr[C̄r−1

i−1 ]
N

)

= (1− 1
N

+
Pr[C̄r−1

i−1 ]
N

)t

= (1−O(
(i− 1)r−1tr−1

N r−1
))t (3.18)

= 1−O(
(i− 1)r−1tr

N r−1
) (3.19)

In step (3.18) we have used lemma 2 to replace Pr[C̄r−1
i−1 ] by (1 − O( (i−1)r−1tr−1

Nr−2 )). Now, from
equation (3.6) and (3.19), we get,

Pr[Ar
i ] = 1−Pr[∧t

j=1B̄
r
i,j ]

= O(
(i− 1)r−1tr

N r−1
) (3.20)
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So, from equation (3.5), we have,

E(Xr) =
m∑

i=1

Pr[Ar
i ]

=
m∑

i=1

O(
(i− 1)r−1tr

N r−1
)

= O(
mrtr

N r−1
) (3.21)

As a corollary of theorem 2, we have,

Corollary 2. If we use m = N
1
3 chains with random starting points in distinguished point method with

average chain length N
1
3 , then the expected number of three-collisions is constant.

Proof: Setting m = N
1
3 , t = N

1
3 and r = 3 in equation (3.21), we have,

E(X3) = O(
(N

1
3 )3(N

1
3 )3

N2
)

= O(1) (3.22)

(3.23)

Corollary 2 justifies our choice of N
1
3 processors which computes chains of length N

1
3 to find three-

collision in our parallel algorithm.

3.3 Time/Processor Tradeoff for Multi-collision

In this section we give a time/processor tradeoff for finding r-collisions based on theorem 2 and describe
how our mesh-based parallel algorithm can be used to find r-collisions efficiently for r > 3.

Suppose, we are using m = Nα processors to find an r-collision and we have chosen our distin-
guished points in a way such that the average chain length has become t = Nβ . Clearly, to make the
expected number of r-collisions among the chains constant, according to theorem 2, α and β should
satisfy the following tradeoff equation.

α + β =
r − 1

r
(3.24)

Where, α > 0 and β ≥ 0.
Now suppose, in our mesh based parallel algorithm for finding r-collision, we have arranged Nα

processors in an array of size N
α
2 × N

α
2 . The average chain length has been fixed to Nβ according to

the tradeoff equation (3.24). So the average chain computation time is Nβ and the Schimmler’s sorting
of the Nα outputs takes time N

α
2 . But we want the chain computation time to dominate the overall

running time instead of the sorting time. Therefore, we have the following constraint:
α

2
≤ β (3.25)

Solving equation (3.24) and (3.25), we have, α ≤ 2
3 · r−1

r and β ≥ 1
3 · r−1

r . Therefore our new algorithm
can work with less number of processors than the parallel algorithm given in [5]. Our algorithm can
find an r-collision with 2

3 · r−1
r processors running for time 1

3 · r−1
r . So, our algorithm can be used in

situations where only limited number of processors are available.
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3.4 Conclusion

As outlined in the beginning, we have discussed the problem of finding multi-collisions in random
functions in details and have shown different approaches towards this problem. We have been able to
provide an efficient algorithm for finding r-collisions for values of r ≥ 3. We have also succeeded
in improving the existing parallelization of the algorithm. Moreover, we we have given a theoretical
foundation to the assumptions employed in the previous algorithms. But still there are many interesting
and unanswered questions. Consider the most important one – we have mentioned in section 2.3.4 that
we can prove a lower bound on the number of map evaluations (i.e. the sequential time complexity)
necessary to find an r-collision in a random function. Can we prove such a lower bound for sequential
space complexity also? Answer to this question will naturally be of very much importance since we will
then know whether we already have the most efficient algorithm for the task or we should keep on trying
to improve the space complexity. Same type of questions also arise in the setting of parallel algorithms
also. We can ask, whether we can get improved time/processor tradeoff and better overall performance
by using some other architecture. In that case which architecture will give the optimum result? We
will conclude this thesis by saying that although we know a few interesting things about the problem
of finding multi-collisions in random functions, there are still many important questions to be answered
and settling these questions will require further intensive research in this subject.
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