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Chapter 1

Introduction

Geometric intersection graphs are intensively studied both for their practical moti-
vations and interesting theoretical properties. Map labelling, frequency allocation
in wireless network, resource allocation in line network are some of the areas where
geometric intersection graphs play an important role in formulating problems. Here
two types of problems are usually considered: (i) characterization problems, and (i)
solving some useful optization problems. In the characterization problem, given an
arbitrary graph, one needs to check whether it belongs to the intersection graph of
a desired type of objects. The second kind of problem deals with designing efficient
algorithm for solving some useful optization problems for an intersection graph of
a known type of objects. It is to be noted that several practically useful optization
problems, for example, finding the largest clique, minimum vertex cover, maximum
independent set, etc. are NP-hard for general graph. There are some problems
for which getting an efficient approximation algorithm with good approximation
factor is also very difficult. In this area of research, the geometric properties of
the intersecting objects are used to design efficient algorithm for these optimization
problems. The characterization problem is important in the sense that for the in-
tersection graph of some types of objects, efficient algorithms are sometimes already
available for solving the desired optimization problem.

The simplest type of geometric intersection graph is the interval graph, which is
obtained by the overlapping information of a set of intervals on a real line. The
characterization problem can be easily solved in O(|V| + |E|) time by showing that
the graph is chordal and its complementary graph is a comparability graph [Gol04].
All the standard graph-theoretic optimization probelms, for example, finding min-
imu vertex cover, maximum independent set, largest clique, minimum clique cover,
minimum coloring, etc, can be solved in polynomial time for the interval graph

[Gol04].



Any graph G = (V| E) can be represented as the intersection graph of a set of axis
parallel boxes in some dimension. The boxicity of a graph with n nodes is the min-
imum dimension d such that the given graph can be represented as an intersection
graph of n axis parallel boxes in dimension d. A graph has boxicity at most one if
and only if it as an interval graph. Many optimization problems can be solved or
approximated more efficiently for graphs with bounded boxicity. For instance, the
maximum clique problem for the intersectio graph of axis parallelrectangles in 2D
can be computed in O(nlogn) time using a plane sweep strategy [NB95].The max-
imum independent set of rectangle intersection graph is extensively used in map
labelling. The maximum independent set for equal height rectangle intersection
graph are shown to admit a PTAS. A 2-factor approximation algorithm is very easy
to get in O(nlogn) time [AvKS98]. In Chapter 4 we propose that piercing set for
bounded height rectangles is fixed parameter tractable.

A graph G = (V| E) is said to be a disk graph if it is obtained from the intersection
of a set of disks. Unit disk graphs play important role in formulating different
important problems in mobile ad hoc network. In mobile network, the base stations
can be viewed as nodes on unit disk graph; the range of each base station is the
same. Different problems on this network can be formulated as the graph-theoretic
problems on unit disk graph. Recognizing whether an arbitrary graph is unit disk
graph is NP-cmplete [BK98]. Maximum clique can be computed in polynomial time
for unit disk graph[{CCJ90].

In Chapter 3 we propose a PTAS for maximum independent set of unit disk graph.
A 3-factor approximation algorithm for minimum clique cover of unit disk graph is
also described in that chapter. We also propose a 4-factor approximation algorithm
for the minimum piercing set of points for a set of unit disks distributed randomly
on the plane. Here the piercing points can be chosen to be any point on the plane.
In the discrete piercing set problem, a point set P is given. The unit circles are all
centered at the points in P. The objective is to choose the minimum set of points
in P to pierce all the circles. We propose a 15-factor approximation algorithm for
this problem.



Chapter 2

Preliminaries

2.1 Geometric Intersection Graph

Definition 2.1 (Geometric Intersection Graph). The geometric intersection graph
G = (V, E) of a set of geometric ob jects S is a graph whose nodes V' correspond to
the set of objects in S. Between a pair of nodes v; amd v;, there is an edge (v;, v;)
if the corresponding objects in S intersect.

In this defination the tangent objects are assumed to intersect. Now let us formally
define Disk Graph:

Definition 2.2 (Disk Graph). A graph G is called Disk Graph if and only if there
exists a set of disk D = {D;|i = 1,...,n} , such that G is the Intersection Graph of
D . The set of disks is called the disk representation of G.

Definition 2.3 (Rectangular Intersection Graph). A graph G is called Rectangular
Intersection Graphh if and only if there exists a set of rectangle R = {R;|i =
1,...,n} , such that G is the Intersection Graph of R . The set of rectangles is
called the rectangular representation of G.

In this thesis, we will consider all the rectangles defining a rectangle intersection
graph, are axis parallel. If we take height of all rectangles same then that would be
referred to as unit height azis parallel rectangular intersection graph. Similarly, we
will also assume that all the disks defining a disk graph, are of same radii. Such a
disk graph will be referred to as unit disk graph.



2.2 Approximation Algorithms

As we focus on proposing approximation algorithms for several useful optimization
problems on different geometric intersection graphs, we now define the various types
of approximation schemes to be considered in our work.

Definition 2.4 (Approximation Algorithms). Let P be a maximization (resp. min-
imization) problem. Then an algorithm A is an « -factor approximation algorithm
for P if and only if for any instance x of P, A(x) runs in time polynomial in |X|
(size of X) and delivers a feasible solution SOL(X), such that SOL(X) > a x OPT
(resp. SOL(X) < a x OPT). Here OPT denotes the optimum solution of the
problem P for the given instance X.

Definition 2.5 (Polynomial Time Approximation Schemes). Let P be a maximiza-
tion (resp. minimization) problem. An algorithm A is a polynomial-time approx-
imation scheme(PTAS) for P if and only if for any instance X of P and for any
(fixed ) € > 0, A(X, €) runs in time polynomial in | X| and delivers a feasible solution
SOL(X,¢€), such that SOL(X,¢) > (1—€)xOPT (resp. SOL(z,€) < (14¢€)xOPT).

Definition 2.6 (Fully Polynomial Time Approximation Schemes). Let P be a max-
imization (resp. minimization) problem. An algorithm A is a fully polynomial-time
approximation scheme(FPTAS) for P if and only if for any instance X of P and
for a (fixed) ¢ < 0, A(X,€) runs in time polynomial in |X| and %, and deliv-
ers a feasible solution SOL(X,e€), such that SOL(X,e) > (1 — ¢) x OPT (resp.
SOL(X,e) < (1+¢€) x OPT).

2.3 Fixed Parameter Algorithm

In this thesis, we will also discuss fixed parameter tractable algorithms, as defined
below, for some geometric optimization problems.

Definition 2.7 (Parameterized Problem). A parameterized problem is a subset of
o*x N, where o is a finite alphabet and N is the set of natural numbers. An instance
of a parameterized problem is a pair (X, k), where X is the given instance of the
problem and k is called the parmeter.

Definition 2.8 (Fixed Parameter Tractable). A problem P is said to be fixed-
parameter tractable (FPT) if and only if for any instance (X, k) of P there exists
an algorithm that delivers a feasible solution in time O(f(k)poly(|X|), where f(k)
is an arbitrary (may be exponential) function on k that does not at all involve | X|,
and poly(|X]) is a polynomial function in | X|.

4



Thus, if k is assumed to be a constant, then the fixed-parameter tractable problems
can be solved in polynomial time.



Chapter 3

Algorithms on Unit Disk Graphs

3.1 Introduction

In this chapter, we focus on proposing approximation algorithms for different opt-
mization problems on unit disk graphs. An unit disk graph is the intersection graph
of a set of disks of same radius (see Figure 3.1). We start with the mazimum inde-
pendent set problem for the unit disk graph in Section 3.2. In Sections 3.3, 3.4 and
3.5 we give approximation algorithms for minimum clique cover, minimum piercing
set and minimum discrete piercing set problems respectively.

Figure 3.1: Unit disk graph



3.2 Maximum Independent Set for Unit Disk Graph

The problem of finding maximum independent set for unit disk graph is known to
be NP-Complete [CCJ90]. So research in this topic is focused on getting an efficient
approximation algorithm. In Section 3.2.2, we propose a polynomial time approxi-
mation scheme for the maximum independent set problem of unit disk graphs. This
improves the currently known best time complexity for the problem. It borrows
the idea of the O(n?) time 2-factor approximation algorithm for unit disk graph
appeared in [KNSK]. For the self-completeness of this thesis, we first decribe that
algorithm in Section 3.2.1.

3.2.1 A 2-factor Approximation Algorithm

Lemma 3.1. For a given set D of n unit disks (of radius 1) with centres lying in a
horrizantal strip of width 2, the mazimum independent set (non-overlapping subset
of unit disks of maximum cardinality) can be optimally computed in O(n*) time.

Proof. Let D be a set of n unit disks whose centres lie in the horrizantal strip H of
width 2. We split the horrizantal strip into 1 x 1 squares by drawing a horizontal
line and a set of vertical lines segments spanning the strip unit distance apart. Next,
we delete all the vertical line segments that do not intersect any disk in D. Let us
denote the z-coordinates of the remaining vertical line segments as 1, ft2, . . ., g,
where 1o, < pigq for all @« = 1,2,...,g — 1. Let D, be the set of disks whose
centres lie inside the strip H and are intersected by the vertical line at p,, i.e.,
D, ={d = (z,y)|d € H and p1o—1 < T > piqa—1}. Now, consider the following two
observations.

(i) The size of the maximum independent set among the set of disks D, may be
1 or 2.

(ii) If we consider a pair of vertical lines at p, and g, then there exists no pair
of intersecting disks d € D, and d' € Dg if |y — pp| > 1

We now define a directed graph G = (V, E') whose nodes are the disks in D. The
nodes V. =V, UV, U...UV,, where V, consists of two sets of nodes, namely A,
and B,. Each unit disk in D, contributes a node in A,, and each pair of non-
intersecting disks of D, contribute a node in B,. A node ¢, is also added to V,, for
each a = 1,2,...,q. This corresponds to no disk in D,. The weight of each node in
V., is equal to the number of disks it represents, Thus, ¢, is assigned a weight equal
to 0. The weights of the node in A, and B, are 1 or 2 respectively. Next, we define
the edges E of the graph G.



No two nodes in V,, are connected.

There is a directed edge from ¢, to each node in V.

Each pair of vertices u € V,, and v € V,,; are connected by a directed edge
(u,v) if disk(s) in node u do not intersect the disk(s) in node v.

There is no need to add edges (u,v) where u € V,, and v € Vp, and f —a > 1.
The reason is that the vertex v is reachable from w via a directed path of
weight 0 through ¢ marked vertices of the sets V41, Vogo, ..., Va_1.
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Figure 3.2: Assignment of edges among the nodes in V,, and V.,

Figure 3.2 illustrates the edges among the nodes in two set V,, and V,, 1, in the graph
G. The graph G, defined thus, is a g-partite graph, where ¢ is the number of vertical
lines in the strip H. Finally, a source node s and a sink node ¢ are added. The node
s is connected with each node in V; by directed edge. Similarly, the nodes in V, are
connected to a sink node ¢ by directed edges. Both the nodes s and t are assigned
with weight 0. As the number of centres in the strip H is n, so |V| = O(n?) and
|E| = O(n*) in the worst case.

The maximum independent set of unit disks in the strip H corresponds to the longest
path in the directed acyclic graph G, and it can be found in time O(|E|) [CLRO7],
which is O(n*) in our case. O

Theorem 3.2. Given a set C' of n unit disks in a 2D plane, a subset of C' of size at
least %OPT of non-intersecting disks can be obtained in O(n*) time, where OPT is
the mazimum number of mutually non-intersecting disks pesent in the set C' [KNSK].



Proof. We draw a set of horizontal lines [y, 1,3, ....,l,,+1 such that separation be-
tween each pair of consecutive lines is equal to the diameter of unit disks.

These lines partition the set C into subsets Ci, Cs, ...., C,,, where C; is the set of
unit disks in C' whose centres lie between the strip bounded by the horizontal lines
li and li—i-l'

For each set C;, we can compute the maximum independent set [; using Lemma 3.1
in O(n}) time where n; = |C;|. This is to be noted that C; N Cy = ¢ if |i — k| > 1,
but C; N C;11 may not be empty. Thus, the members in IS,qq = [ U I3 U ...
are all non-intersecting, and also IS¢, = Io U I4 U ... are non-intersecting. We
report the independent set IS = max{|lSeqal,|ISeven|}. It is to be noted that
|1S0ad| + |ISeven| > OPT. Thus 2 x max{|ISsqa|, |ISeven|} = OPT. Thus, the size
of the reported answer IS is greater than %OPT.

The total time required for computing IS,qq or ISeen| is O(n?), where n is the
number of disks in the set C'. Thus the time complexity result follows. n

3.2.2 PTAS

In this section, we first explain the problem of optimally solving the maximum
independent set for a set of unit disks C' (of radii 1) whose centres lie within a pair
of parallel lines of a distance k apart, where k is a positive integer. The case k =1
is handled in Section 3.2.1. Here we consider the case where k > 1. Next, we use
this result to propose a PTAS.

Lemma 3.3. The mazimum independent set for a set of unit disks C whose centres
lie inside a strip of width k can be computed in O(kn**) time using O(n**) space.

Proof. We split the region into k horizantal strips Hy, Hs, ..., Hy, each of width
1, using k& + 1 horizantal lines, and consider a set of vertical lines at unit dis-
tance apart. We denote the z-coordinate of the vertical lines by 1, pig, . . ., pty af-
ter eliminating those vertical lines that do not intersect any members in C. Let
Caj = {c1,¢2,...cy,, } be the set of unit disks whose centres lie inside the strip Hj
and are intersected by the vertical line at u,. It is to be noted that in any in-
dependent set of C, at most two members of C,; can be present. For each strip
Jj = 1,2,...,k, we form a set Cn;" = {o} U{ci,i = 1,2,... v} U{(ci,c1),i =
1,2,...,Vj,l =i+ 1,...1,;, ¢; and ¢; are not intersecting}. The numbers of ele-
ments in this set is 1 + M = O(Vas?).

Next, we construct a node-weighted ¢-partite digraph G = (VU VLU ... UV, E),
where the set of nodes V,, correspond to the vertical line at u,, and its members are
formed as follows:



Consider all possible k-tuples with one element from each of the k sets C,;*,j =
1,2,...,k. There is a node in V, for a particular k-tuple if and only if the disks
corresponding to the elements in that k-tuple are mutually non-intersecting.
The weight of a node is the number of unit disks it represents.

Between a pair of vertices u € V,and v € V,,41, there is a directed edge(u, v) if the
disks corresponding to u and v do not intesect. As in Lemma 3.1, here also we
do not have to consider edges (u,v), where u € V,, and v € Vj3, where f—a > 1.
The digraph G is acyclic and g¢-partite, and the maximum weight path in G
corresponds to the largest set of disks in C' that are mutually non-overlapping.

The number of nodes in V,, is the number of k-tuples formed by the elements in
Cojyj =1,2,...,k. Since |C,;| can be at most O(v,;?), we have

Val = O, vei®) < O((E 55, va®)) < Oa?),

where v, = 25:1 Vo; is the number of disks stabbed by the vertical line at ji. The
time for creating a node in V,, is O(k) since each element (disk) of the corresponding
k-tuple needds to be checked with at most 4 disks in the same k-tuple with centres
lying in its neighbouring strips. This, the time for computing the nodes in V, is
O(kvy2*). Again, since the disks participating in the formation of nodes in V,, and
V(o # B) are disjoint and ¢, = n, the total number of nodes in the graph G is
O(>2%_, va*) = O(n*). The number of edges |E| = O(n**). Deciding whether a
pair of vertices in two sets u € V,, and w € V,, 41 form an edge (u, w) may take O(k)
time, since each node of u needs to be checked with at most 6 disks of node w (in the
same and adjacent layer) for possible intersection. Thus the computation of all the
edges in the graph G needs O(kn?*) time in the worst case. The maximum weighted
path in the graph G can be obtained in O(|E|) time. The space complexity follows
from the number of edges in G.

]

Theorem 3.4. For a given integer k > 1, one can obtain an (1 — ﬁ)—f&ctor
approzimation algorithm for finding maximum independent set for unit disk graph

in O(k*n**) time using O(n**) space.

Proof. As in Theorem 3.2, here also we split the whole region into strips Hy, Ho, . . .,
H,,, in top to bottom order by drawing horrizontal lines 1 distance apart.Let C;
denotes the set of disks whose centres lie in the strip H;, and C' = |J*, C;. Let
Ci/ =C,uCi1U...U C’Z-+j+1;C’Z-0 = ¢. We use 1S/ to denote the maximum
independent set of the set of unit disks C;/. We now form k distinct maximum
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independent set problems, namely MIS;,5 = 1,2,...,k, where each of the problem
M1IS; denotes the problem of finding the the maximum independent set for the unit
disks C7 71U Uiso Ci(k+1)+j+1k = C\ U;>0 Ci(k+1)+j, lying within a strip of width k.
It is to be noted that the subset of unit disks C’i(kﬂ)ﬂk N C’i/(kﬂ)ﬂ-k = ¢, for i # 7/,
and also the subset C;771 N C’i(kﬂ)ﬂﬂk = ¢, for each j = 1,2,..., k. By Lemma
3.3, we can optimally compute 157!, and IS,-(Hl)Hk for all © > 1, and then by
concatenating the solutions we can get the optimum solution /.S for the problem
Finally, we report ma:vé?zll S;.
Then from the shifting lemma of Hochhbaum and Maass [nWM85] we get (1 — k+r1)—
factor approximation algorithm. Time complexity result follows from the fact that
the time for solving MIS; is O(kn**) for each j = 1,2,...,k, and we need to solve
all the problems MIS;,5=1,2,... k.

m

3.3 Minimum Clique Cover for Unit Disk Graph

We have a unit disk graph G = (V, E'), where the set of nodes V' corresponds to a
set of unit disks placed on a 2D plane; an edge between a pair of vertices implies
that the corresponding two disks mutually intersect. The disk-layout of the graph
G is given. Our objective is to identify minimum number of cliques that can cover
all the nodes in the graph G. Cerioli et al. [CFFF04] proved that the problem is
NP-Complete, and proposed a 3-approximation algorithm for this problem. Very re-
cently Dumitrescu and Pach [DP09] proposed a randomized algorithm that produces
solution with approximation ratio 2.16. We also propose a 3-factor approximation
algorithm for this problem using the shifting paradigm as used in Subsection 3.2.1.

Lemma 3.5. If the centres of the disks of radius 1 lie inside a strip bounded by a pair
of parallel lines at a distance 1 then the unit disk graph becomes a co-comparability
graph.

Proof. We have to show that If the centres of the disks of radius 1 lie inside a strip
bounded by a pair of parallel lines at a distance 1 then the complement of the unit
disk graph becomes a comparability graph. So we will give edge between two disks
if they are not connected. And we will have to show that in this graph all the edges
are transitively oriented. To show that transitive orientation exist , we give the
directed edge from disk a to disk b if disk a and disk b are not connected and disk
a lies left to the disk b.

11



Let a, b, c be three disks of radius 1 lying left to right inside a strip bounded by a
pair of parallel straight lines at a distance 1 and. We will have to prove that if disk
a and disk b do not intersect, disk b and disk ¢ do not intersect, then disk a and
disk c also do not intersect.

d

Figure 3.3: Demonstration for the proof of co-comparability graph

In Figure 3.3, let dist(a,b) = 2 + € and dist(b,c) = 2 + €. Let [b,d] be the
perpendicular on [a,c]. As a,b,c lie inside a strip bounded by a pair of parallel
straight lines at a distance 1, let dist(b,d) = 1 — e3. Let dist(a,d) = z; and
dist(d, c) = x5, we need to prove that x; + x5 > 2.
From traingular inequality, we get dist(a,d) + dist(b,d) > dist(a,b)
e, 1 +1—€e32>2+ ¢
le, x> 1
Similarly, we get o > 1, which leads x; 4+ x5 > 2.

0

Lemma 3.6. If the centres of the disks of radius 1 lie inside a strip bounded by
a pair of parallel lines at a distance 1 then minimum clique cover can be found in
O(n?) time.

Proof. By Lemma 3.5, the graph G is a co-comparability graph. We consider the
complemetary graph G = V, E, where a pair of vertices u,v € V are connected in
E if the edge (u,v) € E, and a pair of vertices u,v € V are not connected in E
if the edge (u,v) € E. The graph G is a comparability graph, and its maximum
sized clique can be found optimally in O(|V| + |E|) time [Gol04]. The size of the
minimum clique cover in GG is the same as the size of the maximum sized clique in
G. Hence the lemma is true. ]

Now, we will prove the main result in this section.

Theorem 3.7. For the problem of finding mimimum clique cover for unit disk graph,
a 3-factor approzimation solution can be obtained in O(n?) time.

12



Proof. Let D be the disk layout corresponding to the unit disk graph G. We draw
a set of horizontal lines [y, s, (3, ...., l,,+1 such that separation between each pair of
consecutive lines is equal to the common radius of disks.

These lines partition the set D into subsets Dy, Do, ...., D,,, where D, is the set of
unit disks in D whose centres lie in the strip bounded by the lines I; and [;;.

We can compute the minimum clique cover ¢; for each set D; using Lemma 3.6 in
O(n?) time where n; = |D;].

The disks D; may intersect some disk(s) in D;_1, D;_s and D;;1, D; 2, but they never
intersect any disk in D\{D;UD;_1UD;_sUD;1UD;,5}. So, we consider three disjoint
sets of disks D1UD,UD;U. .., DoUDsUDgU. .. and D3sUDgUDgU. .. and compute
their clique covers C7, Cy and C5 separately. Clearly C; U Cs U C5 will be a clique
cover of D. If C, is the minimum clique cover then |C,,| > max{|Ci|, |Cs|, |Cs]}.
Thus, |C|+ |Ca| +|Cs] < 3|Copt|. Thus, we have a 3-factor approximation algorithm
for computing the minimum clique cover of an unit disk graph.

Since the algorithm runs in each strip independently, and there is no common disk
in any pair of strips, the total time complexity of the algorithm is obtained by
adding the time complexities of running the algorithm in each strip. Thus, the time
complexity of the proposed algorithm is O(n2+ny%+...) = O(n?), where n; = |D;],
fori=1,2,...,m,and Y ;" n; = n. O

3.4 Minimum Piercing Set for a set of Unit Disks
in the plane

Here, we focus on the geometric version of the mimimum clique cover problem for
the unit disk graph. As Helly property does not hold for a set of disks, there may
exist a clique in the unit disk graph, but the corresponding disks may not have any
common region as shown in Figure 3.4(a). Thus, unlike the rectangle intersection
graph, the problem of finding minimum piercing set for a set of unit disks is not the
same as finding minimum clique cover in the unit disk graph. We can get a 4-factor
approximation algorithm for unit disks as follows.

Theorem 3.8. For the problem of finding mimimum piercing set for a set of unit
disks in the plane, a 4-factor approximation algorithm can be computed.

Proof. We split the region using horizontal lines such that every pair of consecutive
lines are at 2 units apart. Let k& be the number of horizontal lines needed to split
the given region R. This ensures that each disk will be intersected by exactly one
line. For each strip, we compute the minimum size set of piercing points for the set

13



B B
Figure 3.4: Demonstration of our algorithm for piercing set of unit disks

of unit disks such that a portion of each of these disks lies inside that strip. We
present a 2-factor approximation algorithm for this problem.

Let C be the set of circles intersected by a horizontal line. We consider the circle
¢ € C having center with minimum x-coordinate, and all the circles C| C C' that
intersect it. If we consider the arrangement of circles in C;U{c}, we may have to put
at most two piercing points to pierce the circles in Cy U {c} (see Figure 3.4). In the
optimal piercing set, one of these clique points must be chosen for piercing the circle
c. In our algorithm, we select both these piercing points, and discard all the circles
in C; U {c}. We repeat the same steps until all the members in C' are exhausted.
Thus we have a 2-factor approximation algorithm for piercing the members in C.
Let the optimum piercing set for the unit disks intersected by the i-th horizontal
line by K;. Thus, U, K; is a 2-factor approximation of the optimum solution of
the minimum piercing set. But, we could not compute K;, instead we computed
a piercing set K/ such that |K!| < 2|K;|. So, Uf_|K! is a 4-factor approximation
solution for the minimum piercing set problem. O

3.5 Minimum Discrete Piercing Set for Unit Disk
Graph

A set of point P is given in a plane. The minimum discrete piercing set problem for
unit disks is to select minimum number of points that pierces (lies inside) all the unit
disks centered at the points in P. No polynomial time algorithm for this problem
is known to date for this problem. We will propose an approximation algorithm for
this problem. The approximation factor of our algorithm is 15.
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Observation 3.1. The points which will be covered by putting a disk (of radius 1
unit) at a point are inside that disk.

Observation 3.2. Unit Disk at a point will be intersected by those disks whose
centres lie inside a circle of radius 2 unit.

3.5.1 Algorithm

We choose the disk L having leftmost center. We need to cover this disks, and the
best possible performance would be to cover all the disks that intersect L by a single
point. But, this may not always be feasible. In the following lemma, we show that
we may need at most 15 points to cover L and all other disks that intersect L.

Lemma 3.9. All the disks intersected by the disk at left most point can be covered
by at most 15 disks.

Proof. Let L be the disk having left most center o (see the half-disk having smaller
radius (1 unit) in Figure 3.5(a)). All the disks having center inside L must contain
the point 0. Thus, if we choose o, we can cover all these circles. But, there area
several other circles that may also intersect L. These have center inside the half-
circle having radius 2 in Figure 3.5(a). It needs to be observed that if we consider
a rectangle of size 3v/2 x % with o at the middle of the leftmost vertical line as in

Figure 3.5(b), and divide the region into 18 equal parts each of size \% X \%, then
the outer circle does not enter into the squares C' and D. Also the squares A and B
are completely inside of the inner circle. Thus the annulus R can be covered by 14
squares each of size \/Li X \% Since the size of the diagonal of each square is equal
to 1, the maximum distance between any two points inside the square, so choosing
a single point inside each square at the center, one can cover all the disks centered
inside that square. ]

Now, we have the main theorem.

Theorem 3.10. A 15-factor approximation algorithm for the problem of minimum
discrete piercing set for unit disks centered on a given set of points can be computed
in O(n?) time.

Proof. We sort all the points by their z-coordinates. Take the left most point (here
the point is o), i.e, whose z-coordinate value is least. By Lemma 3.9, all the disks
that intersect the disk L centered at o can be covered by at most 15 points. We
remove L, and all the disks that intersect L. As the other disks do not intersect L,

15
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Figure 3.5: Demonstration of our algorithm for Discrete Piercing Set of Unit Disk
Graph

there is no chance to cover any of them with L using a single point. We repeat the
same process. Thus, the approximation factor of the result is justified.

Choosing left-most point needs O(n) time. Removing o and the other points inside
the larger half-circle needs another O(n) time in the worst case. Thus, the time
comlexity is justified.

]
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Chapter 4

Algorithms on Rectangle
Intersection Graph

In this chapter, we consider the minimum clique cover problem for the rectangu-
lar intersection graph of unit height axis-parallel rectangles (see Figure 4.1). Note
that, the length of the rectangles can be arbitrary. In Section 4.1, we describe
a 2-factor approximation algorithm for the unit-height axis-parallel rectangle in-
tersection graph. In section 4.2 we propose a fixed-parameter tractable algorithm
for computing the decision version of the piercing set problem for bounded height
rectangles in grid.

Figure 4.1: A set of unit height axis-parallel rectangle, and the corresponding rect-
angle intersection graph

17



4.1 Minimum Piercing Set for Unit Height Rect-
angles

We have a set of axis parallel rectangles in the plane. Our objective is to find
minimum piercing set for these rectangles. The problem is NP-hard. So we try
to design an efficient algorithm that is guaranteed to produce solution close to the
optimum size. We now show that we can have a 2-factor approximation algorithm
for the problem.

Let R be a set of n unit-height rectangles in the plane. We draw a set of horizontal
lines Iy, ls, I3, ..., [, satisfying the following properties

(i) separation between each pair of consecutive lines is more than 1,
(ii) each line intersects at least one rectangle, and

(iii) each rectangle is intersected by some line.

The minimum separation condition implies that a rectangle cannot be intersected
by more than one line. These lines can be drawn in an incremental approach. These
lines partition the set R into subsets of rectangles Ry, R, ...., R,,, where R; is the
set of rectangles in R that are intersected by the line ;.

We compute the minimum clique cover C; for each set R; using the method of
optimally computing the minimum clique cover for an interval graph [Gol04].

The rectangles in R; may intersect some rectangle(s) in R;_; and Ry, but they
never intersect any rectangle in R\ {R; U R;_1 U R;41.

So, we consider two disjoint sets of rectangles R UR3UR5U. .. and RoOUR,URgU. . .,
and compute their clique covers C' and C’. Clearly C' U C” will be a clique cover. If
Copt is the minimum clique cover then |C,,| > max{|C|, |C’|}. Thus, |C|+ |C'| <
2|Cypt|. Thus, we have the following theorem.

The time complexity of this algorithm is O(nlogn), since getting the set of rectangles
in one of the groups, say R UR3UR5U. .., is O(n). Computing the minimum clique
cover of the interval graph needs O(nlogn) time. Thus, we have the following
theorem.

Theorem 4.1. For the problem of finding mimimum piercing set for unit height
rectangle intersection graph, a 2-factor approximation algorithm can be computed in
O(nlogn) time.

18



4.2 Piercing Set for Bounded Height Rectangles
in Grid

Let us consider a set of rectangles R in a grid of unit 1, i.e, the boundaries of all the
rectangles are along the grid lines. We also assume that the height of each rectangle
is same, and is qual to b. We have to pierce all the rectangles with minimum
number of points. We now consider the decision version of the problem, i.e., can all
the rectangle be pierced by k points 7 We proceed as follows:

We will consider a rectangle p whose right side is the left-most among all the rect-
angles in R. There is at most b possible points which are topologically equivalent
with respect to piercing the rectangle p. Let these be the points of intersection of
the right boundary of p and the b horizontal lines of the grid. We consider a tree,
whose root nodes have at most b children corresponding to each of these points. We
explore each child of the root. While considering a child of the root, it is considered
as the root of a subtree. We delete p and all the rectangles that are overlapped on
p. Again, choose a rectangle having left-most right boundary among the remaining
rectangles. The search proceeds in a depth first manner. After exploring k levels
in a path of the tree, if all the rectangles are not pierced, then the chosen piercing
points along this path can not pierce all the rectangles in R. We need not have
to proceed further. We return the set of rectangles deleted for progressing in the
current node, and backtrack.

If any of these paths show a complete piercing of the set of rectangles in R, we
return an affirmative answer, otherwise, the answer is negative.

As the depth of the tree is bounded by k, and each node of the tree has at most b
children, size of the tree is bounded by b*+1.

For each node we need only to remove all the rectangles pierced by the chosen point.
This will take some O(n) time. So our proposed algorithm takes O(b*"'n) time in
the worst case. Thus, we have the following theorem:

Theorem 4.2. The problem of finding mimimum piercing set for bounded height
rectangles in a grid is fixed-parameter tractable.
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