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                                  Abstract       
 
 
 
 
 

We propose a novel approach for solving the perceptual grouping problem in 
vision. Rather than focusing on local features and their consistencies in the 
image data, our approach aims at extracting the global impression of an 
image. We treat image segmentation as a graph partitioning problem and 
propose a novel global criterion, the normalized cut, for segmenting the graph. 
The normalized cut criterion measures both the total dissimilarity between the 
different groups as well as the total similarity within the groups. We show that 
an efficient computational technique based on a generalized eigen value 
problem can be used to optimize this criterion. We have applied this approach 
to segmenting static images, as well as motion sequences, and found the 
results to be very encouraging. 
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 Chapter 1 

  Introduction 

 
 
 

Since there are many possible partitions of the domain I of an image into 
subsets, how do we pick the right one?.There are two aspects to be considered here. 
The first is that there may not be a single correct answer. A Bayesian view is 
appropriate-there are several possible interpretations in the context of prior world 
knowledge. The difficulty, of course, is in specifying the prior world knowledge. Some of 
it is low level, such as coherence of brightness, color, texture, or motion, but equally 
important is mid- or high level knowledge about symmetries of objects or object models. 
The second aspect is that the partitioning is inherently hierarchical. Therefore, it is more 
appropriate to think of returning a tree structure corresponding to a hierarchical partition 
instead of a single “flat” partition. 
 

This suggests that image segmentation based on low level cues cannot and 
should not aim to produce a complete final “correct” segmentation. The objective should 
instead be to use the low-level coherence of brightness, color, texture, or motion 
attributes to sequentially come up with hierarchical partitions. Mid- and high-level 
knowledge can be used to either confirm these groups or select some for further 
attention. This attention could result in further repartitioning or grouping. The key point is 
that image partitioning is to be done from the big picture downward, rather like a painter 
first marking out the major areas and then filling in the details. 
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1.1    Equivalent to Graph Theoretic Problem. 

Our approach is most related to the graph theoretic formulation of grouping.  The 
set  of points in an arbitrary feature space are represented as a weighted undirected 
graph G =(V,E) where the nodes of the graph are the points in the feature space, and 
an edge is formed between every pair of nodes. The weight on  each edge, w(i,j)  is a 
function of the similarity between nodes i and j. In grouping,  we seek to partition the set 
of vertices into  disjoint sets V1,V2, . . . ,Vm. where by some measure the similarity 
among the vertices in a set Vi is high and, across  different sets Vi, Vj is low. 

 

1.2 How to Partition The Graph. 
 

      To partition a graph, we need to also ask the following  questions: 
          1. What is the precise criterion for a good partition? 
          2. How can such a partition be computed efficiently? 
In the image segmentation and data clustering community, there has been much      
previous  work using variations of the minimal spanning tree or limited neighborhood      
set approaches. Although those use efficient computational methods, the  segmentation 
criteria used in most of them are based on local properties of the graph. Because 
perceptual grouping is about extracting the global impressions of a scene, as we saw 
earlier, this partitioning criterion often falls short of this main goal 
. 
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1.3  Brief review of  the work. 

    we propose a new graph-theoretic criterion for measuring the goodness of an 
image partition-the normalized cut. We introduce and justify this criterioninSection2.The  
minimization of this criterion can be formulated as a generalized eigen value problem.   
The eigenvectors can be used to construct good partitions of the image and the    
process can be continued recursively as desired (Section 2.1). Section 3 gives a    
detailed explanation of the steps of our grouping algorithm. In Section 4, we show    
experimental results. The formulation and minimization of the normalized cut criterion    
draws on a body of results from the field of  graph theory (Section 5). We conclude in     
section 6.  
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Chapter 2 

Grouping in Graph Partition 

2.1 Cut Of The Graph. 

       A graph G =(V,E).can be partitioned into two disjoint sets, A,B: A ∪ B = V , 
A∩ B = ∅.  by simply removing edges connecting the two parts. The degree of 
dissimilarity      between these two pieces can be computed as total weight of the edges 
that have       been removed. In graph theoretic language it is called Cut: 
 
                           
                              
                                                      ���	
, � = ∑ �	�, ��∈�,�∈�    ……………………………..(1)  

 
             
 

2.2 Optimal Bipartition. 

      The optimal bi-partitioning of a graph is the one that minimizes this cut value.      
Although there are an exponential number of such partitions, finding the minimum      
cut of a graph is a well-studied problem and there exist efficient algorithms for      
solving it 
 

2.3   Wu and Leahy Method. 

       Wu and Leahy  proposed a clustering method based on this minimum cut criterion. 
In particular, they seek to partition a graph into k-sub graphs such that the maximum cut 
across the subgroups is minimized. This problem can be efficiently solved by recursively 
finding the minimum cuts that bisect the existing segments. As shown in Wu and 
Leahy's work, this globally optimal criterion can be used to produce good       
segmentation on some of the images. 
 

However, as Wu and Leahy also noticed in their work, the minimum cut criteria      
favors cutting small sets of isolated nodes in the graph. This is not surprising since      
the cut defined in (1) increases with the number of edges going across the two      
partitioned parts. Fig. 1 illustrates one such case. Assuming the edge weights are       
inversely  proportional to the distance between the two nodes, we see the cut that     
partitions out node n1 or n2 will have a very small value. In fact, any cut that attritions     
out individual nodes on the right half will have smaller cut value than the cut that     
partitions the nodes into the left and right halves. 
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2.4 Normalized Cut: 

      To avoid this unnatural bias for partitioning out small sets of points, we 
propose a      new measure of disassociation between two groups. Instead of looking at 
the value  of total edge weight connecting the two partitions, our measure computes the 
cut  cost as a fraction of the total edge connections to all the nodes in the graph. We call  
this disassociation measure the normalized cut (Ncut): 
 
                        
                                  ����	
, � = ���	�,������	�,� + ���	�,������	�,� ……………………………………(2) 

                        
  

                                               ��� �	
, ! = ∑ �	�, ��∈�,�∈� . 

 

      Where assoc(A,V) is  the total connection from nodes in A to all nodes in the 
graph and  assoc(B, V) is similarly defined. With this definition of the disassociation 
between   the groups, the cut that partitions out small isolated points will no longer have 
small Ncut value, since the cut value will almost certainly be a large percentage of the 
total connection from that small set to all other nodes. In the case illustrated in Fig. 1, 
we see that the cut1 value across node n1 will be 100 percent of the total connection       
from  the node. 
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we can define a measure for total normalized association within groups for a given 
partition. 
    

                                 ���� �	
, � = �����	�,������	�,� + ���	�,������	�,� …………………..(3) 

 

   where assoc(A,A) and assoc(B,B)are total weights of edges connecting nodes 
within A  and B, respectively. We see again this is an unbiased measure, which reflects 
how  tightly on average nodes within the group are connected to each other. 
 

Another important property of this definition of association and disassociation of a  
partition is that they are naturally related. 

 ����	
, � = ���	
, ���� �	
, ! + ���	
, ���� �	�, ! 

                                                           =
�����	�,�"�����	�,������	�,� + �����	�,�"�����	�,������	�,�  

                                                           =#2 − &�����	�,������	�,� + �����	�,������	�,�'( 

                                                            =	2 − ���� �	
, � 

   
Hence, the two partition criteria that we seek in our grouping algorithm, 

minimizing the disassociation between the groups and maximizing the association 
within the groups, are in fact identical and can be satisfied simultaneously. In our 
algorithm, we will use this normalized cut as the partition criterion. 
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2.5    Computing the Optimal Partition 

Given a partition of nodes of a graph, V, into two sets A and B, let x be an N 
.=total number of node of the graph  dimensional indicator vector, xi = 1 if node i is in A 
and -1, otherwise. Let . d(i) be the total connection from node i to all other nodes. With 
the definitions x and d, we can rewrite Ncut (A,B) as: 

 ����	
, � = ���	
, ���� �	
, ! + ���	
, ���� �	�, ! 

                                                            =
∑ ")*,+,*,+,*-.,,+/.∑ 0*,*-. + ∑ ")*,+1*1+,*/.,,+-.∑ 0*,*/.  

                                          Where     2	3 = ∑ �3,44  

       Let D be an N X N diagonal matrix with d on its diagonal be an N XN 
symmetrical matrix with �	5,6= 75,6 
                                          
                                                     

8 = ∑ 251*9:∑ 255  

          
   and 1 be an N X 1 vector of all ones. Using the fact   

  ;<1=    and  ;"1=    are indicator  

   vectors for >5 > 0 and >5< 0, respectively, we can rewrite 4[Ncut(x)] as: 
                       

             
= 	1 + >@	A − �	1 + >81@A1 + 	1 − >@	A − �	1 − >	1 − 81@A1  

                      = 1B	C")1<;B	C");D	;"D;BC; + =	;"=D;B	C")1D	;"D;BC;  
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Let  

                E	> = >@	A − �>  
                F	> = 1@	A − �>  

                G	> = 1@	A − �1 

 

And  M =  1@A1   ,we can then  further  expand the above the above equation as : 

                     =    
	H	1<I<=	;"=DJ	1D	;"DK  

                           =
	H	1<I<=	;"=DJ	1D	;"DK − =	H	1<IK + =H	1K + =IK  

Dropping the last constant term ,which in this case equal to 0,we get 

                

                 =
	;"=D<=DL	H	1<I<=	;"=DJ	1D	;"DK + =H	1K  

               

               =

	MNLOPLOL	MNOL 	H	1<I<L	MNLO	MNOL J	1
O	MNO	MNOLK + =H	1K  
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Letting  b = 
D;"D   and  since G = 0   it becomes, 

     = 
R;<SLT	H	1<I<=R;"SLTJ	1SK + =SH	1SK  

    =    
R;<SLT	H	1<ISK + =R;"SLTJ	1SK + =SH	1SK − =SISK  

   = R;<SLT	1B	C")1<;B	C");S;BC; + =R;"SLT;B	C")1S;BC; +
        =S1B	C")1S;BC; −       =S;B	C");S;BC;  

 

   =      
	;<1B	C")	;<1S;BC; + SL	;"1B	C")	;"1S;BC; − =S	;"1B	C")	;<1S;BC;  

 

    =       [&1+>'−V	1−>W]&A−�'[&1+>'−V&1−>']V1WA1  

Setting  y =(1=x)-b(1-x)  it is easy to see that   

                     Y@A1 = ∑ 23>3>0 − V ∑ 23>3<0  =0………………………………..(4) 

 

Since  b =   
∑ 23>3>0∑ 23>3<0               and  

                       Y@AY = ∑ 23>3>0 + V2 ∑ 23>3<0  

                                             = V ∑ 251*9: + V= ∑ 251*\:  

                               =b(∑ 251*\: + V ∑ 251*\:  

                                              = b1@A1 
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Putting  everything  together we have 

                                               ]3^1Ncut(x)= ]3^_ 
_B	C")__BC_     …………………………………………………(5) 

With the condition y(i)  ∈ {1, V} Y@A1 = 0. 
           Note that the above expression is the Rayleigh Quotient. If y is relaxed to 

take on real values, We can minimize (5) by solving the generalized eigen value 

system, 

                                              (D-W)y=c Dy………………………………………………….(6) 

            However, we have two  constraints on y which come from the condition on 

the corresponding  indicator vector x. First consider the constraints  Y@D1=0.We 

can show this constraints on y automatically satisfied by the  solution of the 

generalized  eigensystem. We will do first transforming  (6) into a standard eigen 

system and showing the corresponding  is satisfied there. Rewrite (6) as  

                                             A"ML	A − �A"MLd = λz ………………………………….(7) 

            Where  z=AMLY. One can easily verify that  d:=AML 1 is an eigen vector of (7) 

with eigen value of 0. Furthermore , A"ML	A − �A"ML   is symmetric positive 

semidefinite matrix. since (D-W) ,also called the Laplacian matrix is known to be 

positive semidefinite. Hence d:  is the smallest eigen vector of (7) and all eigen 

vector are perpendicular to each other. In particular d; is the second smallest 

eigen vector  is perpendicular to d:  . Hence Y:=1 is the smallest eigen vector with 

eigen value 0 in (6). 
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Theorem: 

               Let  A be a real symmetric matrix. Under the constraints that x is 

orthogonal to the j-1 smallest eigen vector >; >= >e …..>6";  the quotient 
1B�11B1    is 

minimized by the second smallest eigen vector >6 and its minimum value is the 

corresponding  eigen value c6.    
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Chapter 3 
 

3. Grouping Algorithm 

 

3.1 Algorithm 

       

Our grouping algorithm consists of the following steps. 

 

1. Given image I we partition the image into some number of region by  

watershed algorithm.  After that for each region  we are  taking mean value 

of that region and each mean value is node of  the constructed weighted 

graph.  

 
2. The weighted graph G =(V,E)  and set the weight on the edge connecting two  

nodes to be a measure of the similarity between the two nodes. 
 

3.    Solve (D-W)x =λDx for eigenvectors with the smallest eigen values. 
 

    4.   Use the eigenvector with the second smallest eigen value to bipartition the graph. 
 
    5.   Decide if the current partition should be subdivided and recursively repartition the  

 segmented parts if necessary. 
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3.2  Example Of Brightness Image 

 

1. Construct a weighted graph G =(V,E) by taking each pixel as a node and  
connecting each pair of pixels by an edge. The weight on that edge should          
reflect the likelihood that the two pixels belong to one object. Using just the          
brightness value of the pixels and their spatial location, we can define the          
graph edge weight connecting the two nodes i and j  as: 

     
      

�5,6 = fgh*"h+gL
iML   ∗ kfg1*"1+gL

i,L                        3l      g>5 − >6g= < mn 

                                                          0                                otherwise  

                          

   2.  Solve for the eigenvectors with the smallest eigen values of the system. 

     

                                        A"ML	A − �A"ML> = λx             

 
   3.  Once the eigenvectors are computed, we can partition the graph into two pieces 
         using the second smallest eigenvector. In the ideal case, the eigenvector should     
         only take on two discrete values and the signs of the values can tell us  exactly  
         how to partition the graph. However, our eigenvectors can  take on continuous  
         values and we need to choose a splitting point to partition it into two parts. 
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4. After the graph is broken into two pieces, we can recursively run our algorithm on          
     the two partitioned  parts. Or, equivalently, we could take advantage of the special        
     properties of the other top eigenvectors as explained in the previous section to      
    subdivide the graph based on those eigenvectors. The recursion stops once the Ncut      
    value exceeds certain limit. 
 
. 
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Chapter 4 

 

Experiment 

 

4.1  How To Construct The Graph. 

 
   We have applied our grouping algorithm to image segmentation based on 

brightness, color, texture, or motion information. In the monocular case, we construct 
the graph   G=(V,E) by taking the mean of each region  as a node and define the edge 
weight   �	5,6  between node i and j as the product of a feature similarity term and 
spatial   proximity term 
 
: 

       

�5,6 = fgh*"h+gL
iML   ∗ kfg1*"1+gL

i,L                        3l      g>5 − >6g= < mn 

                                                           0                                otherwise.        

      
where X(i) is the spatial location of node i, and F(i) is a feature vector based on 
intensity, color, or texture information at that node defined as: 
 

1. F(i)= 1, in the case of segmenting point sets, 

 
2. F(i)= I(i), the intensity value, for segmenting brightness images, 

 

3. F(i)= [v, v. s. sin(h), v. s. cos(h)](i) where h, s, v are the HSV values, for color 
 segmentation, 

     
 
. Note that the weight �	5,6 = 0 for any pair of nodes i and j that are more than r pixels   
  apart 

 

4.2 Computation Time 
      

      The running time of the normalized cut algorithm is O(m,n) where n is the total      
number  of region  segmented by watershed algorithm, and m is the number of       
steps Lanczos takes to converge 

. 
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Chapter:5 

                            

 Result 1: 

 

  

              Fig: 5.1.(a)                                                   Fig 5.1.(b)                                              Fig 5.1.(c) 

   

                   Fig 5.1.(w)                                               Fig 5.1.(d)                                                 Fig  5.1.(e) 

                  

                            Fig 5.1.(f)                                    Fig 5.1.(g)     

                                                      
5.1.(a) Input Image.5.1.(b) to 5.1.(g) are the output image .Here o5 = 50, o1 = 40,r=50. 

Fig 5.1.(w) is the image segmentation after watershed algorithm. 
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Result 2: 

 

 

                 Fig 5.2.(a)                                                   Fig 5.2.(b)                                                   Fig 5.2.(c)       

      

                  Fig 5.2.(w)                                                  Fig 5.2.(d)                                                   Fig  5.2.(e)                                                

            

                     Fig 5.2.(f)                                  Fig 5.2.(g)                                          

 
Fig 5.2.(a) Input image. Fig 5.2.(b) to Fig 5.2.(g) are output image. Here o5 = 23, o1 = 8, m = 75. 
Fig 5.2.(w) is the image segmentation after watershed algorithm. 
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Chapter 6. 

 

Conclusion    

 
    We developed a grouping algorithm based on the view that perceptual grouping     

should be a process that aims to extract global impressions of a scene and provides     
a hierarchical description of it. By treating the grouping problem as a graph    
partitioning problem, we proposed the normalized cut criteria for segmenting the    
graph. Normalized cut is an unbiased measure of disassociation between  subgroups of 
a graph and it has the nice property that minimizing normalized cut leads directly to 
maximizing the  normalized association, which is an unbiased measure for total 
association within the subgroups. In finding an efficient algorithm for computing the 
minimum normalized cut, we showed that a generalized eigenvalue system provides a 
real valued solution to our problem. A computational method based on this idea has 
been developed and applied to segmentation of brightness, color, and texture images. 
Results of experiments on real and synthetic images are very encouraging and illustrate 
that the normalized cut criterion does indeed satisfy our initial goal of extracting the “big 
picture” of a scene. 
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