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Chapter 1. Introduction 

1.1 Introduction to Problem 

 

The Support Vector Machine (SVM) is a universal approach for solving the 

problems of multidimensional function estimation. Those approaches are all 

based on the Vapnik–Chervonenkis (VC) theory. Initially, it was designed to 

solve pattern recognition problems, where in order to find a decision rule 

with good generalization capability, a small subset of the training data, called 

the support vectors are selected. Experiments showed that it is easy to 

recognize high-dimensional identities using a small basis constructed from 

the selected support vectors. Recently, SVM has also been applied to various 

fields successfully such as classification, time prediction and regression. When 

SVM is employed to tackle the problems of function approximation and 

regression, the approaches are often referred to as the Support Vector 

Regression (SVR). The SVR type of function approximation is very effective, 

especially for the case of having a high-dimensional input space. 

In general, for real-world applications, observations are always subject 

to noise or outliers. The intuitive definition of outliers is that “an observation 

which deviates so much from other observations as to arouse suspicions that 

it was generated by a different mechanism”. Outliers may occur due to various 

reasons, such as erroneous measurements or noisy phenomenon appearing in 

the tail portion of some noise distribution functions. However, the traditional 

SVR is not effective in dealing with outliers in training data commonly 

encountered in practical applications. Thus, even a few outliers result in a 

poor regression. The basic idea of the proposed method consists in gradually 

partitioning data into outliers and inliers, and thus refining the estimation 

with the inliers. 
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1.2 Brief Overview: 

-Linear Regression 

Regression analysis includes any techniques for modeling and analyzing 

several variables, when the focus is on the relationship between a dependent 

variable and one or more independent variables. More specifically, regression 

analysis helps us understand how the typical value of the dependent variable 

changes when any one of the independent variables is varied, while the other 

independent variables are held fixed. Most commonly, regression analysis 

estimates the conditional expectation of the dependent variable given the 

independent variables — that is, the average value of the dependent variable 

when the independent variables are held fixed.                                   

      Regression analysis is widely used for prediction and forecasting, where 

its use has substantial overlap with the field of machine learning. Regression 

analysis is also used to understand which among the independent variables 

are related to the dependent variable, and to explore the forms of these 

relationships. 

Regression models involve the following variables: 

 The unknown parameters denoted as β; this may be a scalar or a vector 

of length k. 

 The independent variables X. 

 The dependent variable, Y. 

A regression model relates Y to a function of X and β. 

 

http://en.wikipedia.org/wiki/Independent_variable
http://en.wikipedia.org/wiki/Conditional_expectation
http://en.wikipedia.org/wiki/Average_value
http://en.wikipedia.org/wiki/Prediction
http://en.wikipedia.org/wiki/Forecast
http://en.wikipedia.org/wiki/Machine_learning
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In linear regression, the model specification is that the dependent variable, yi 

is a linear combination of the parameters (but need not be linear in the 

independent variables). 

Suppose we are given a data set of n statistical units, a 

linear regression model assumes that the relationship between the dependent 

variable yi and the p-vector of regressors xi is approximately linear. This 

approximate relationship is modeled through a so-called “disturbance term” εi 

— an unobserved random variable that adds noise to the linear relationship 

between the dependent variable and regressors. Thus the model takes form 

 

where ′ denotes the transpose, so that xi′β is the inner product between 

vectors xi and β. 

Often these n equations are stacked together and written in vector form as 

 

where 

 

 

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Statistical_unit
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Inner_product
http://en.wikipedia.org/wiki/Coordinate_vector
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Example of linear regression with one independent 

variable.  

 

-Support Vector Regression 

Support vector machine (SVM) has been first introduced by Vapnik. 

There are two main categories for support vector machines: support vector                        

classification (SVC) and support vector regression (SVR). SVM is a learning 

system using a high dimensional feature space. It yields prediction functions 

that are expanded on a subset of support vectors. A version of a SVM for 

regression has been proposed in 1997 by Vapnik, Steven Golowich, and Alex 

Smola . This method is called support vector regression (SVR). The model 

produced by support vector classification only depends on a subset of the 

training data, because the cost function for building the model does not care 

about training points that lie beyond the margin. Analogously, the model 

produced by SVR only depends on a subset of the training data, because the 

cost function for building the model ignores any training data that is close 

(within a threshold ε) to the model prediction.  

Support Vector Regression (SVR) is the most common application form 

of SVMs. An overview of the basic ideas underlying support vector   machines 

for regression and function estimation is also given in this paper.   
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In regression problems, we are given a training data set {(xi; yi)|i = 1,….., 

n} where  Ryi  is called the observation and 
n

i Rx   is called the input 

data. These might be, for instance, exchange rates for some currency 

measured at subsequent days together with corresponding econometric 

indicators. The main goal of regression problems is to find a function f(x) that 

can  correctly predict the observation values, y, of new input data points, x, by 

learning from the given training data set, S. 

   Here, learning from a given training data set means finding a linear or 

nonlinear surface that tolerates a small error in fitting this training data set.  

In  -SV regression, our goal is to find a function f(x) that has at most   

deviation from the actually obtained targets yi for all the training data, and at 

the same time is as flat as possible. In other words, we do not care about 

errors as long as they are less than , but will not accept any deviation larger 

than this. This may be important if you want to be sure not to lose more than 

  money when dealing with exchange rates, for instance. 

Also, applying the idea of support vector machines (SVMs) the function f(x) is 

made as flat as possible in fitting the training data. This problem is called  -

support vector regression ( -SVR) and a data point 
n

i Rx   is called a 

support vector if  |f(xi)−yi|≥ .  

Conventionally,   -SVR is formulated as a constrained minimization problem , 

namely, a convex quadratic programming problem or a linear programming 

problem . Such formulations introduce 2m more nonnegative variables and 

2m inequality constraints that enlarge the problem size and could increase 

computational complexity for solving the problem. 

 

For pedagogical reasons, we begin by describing the case of linear functions f, 

taking the form   f(x)=<w,x>+b 
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where <. , .> denotes the dot product in X. Flatness in the case of (1) means 

that one seeks a small w. One way to ensure this is to minimize the norm i.e. 
2|||| w =<w,w>. We can write this problem as a convex optimization problem. 

minimize     
2

1 2|||| w  

subject to     yi −<w,xi>−b ≤  ; 

  <w,xi>+b− yi ≤  ; 

The tacit assumption was that such a function f actually exists that 

approximates all pairs (xi; yi) with    precision, or in other words, that the 

convex optimization problem is feasible. Sometimes, however, this may not be 

the case, or we also may want to allow for some errors. Analogously to the 
 soft margin. loss function  which  was adapted to SV machines, one can 

introduce slack variables i  and i * to cope with otherwise infeasible 

constraints of the optimization problem . Hence we arrive at the formulation 

stated in  

*,,,
min

iibw 
   R(w,b , i , i *)=C



n

i 1

( i + i *) + 
2||||

2

1
w                              

Subject to    yi −<w,xi>−b ≤  + i  ;                                    

  <w,xi>+b− yi ≤  + i * ;                                                                                                                                                 

  i ≥0;   i *≥0; 

The constant C > 0 determines the trade-off between the flatness of f and the 

amount up to which deviations larger than   are tolerated. 

After solving this optimization problem one can get the function f(x)  

as            bxxxf i

n

i

ii 


,)*()(
1


 

and this is the equation of hyper plane. 
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-Multivariate Regression Method: 

 The general purpose of multiple regression  is to learn more about the 

relationship between several independent or predictor variables and a 

dependent or criterion variable. For example, a real estate agent might record 

for each listing the size of the house (in square feet), the number of bedrooms, 

the average income in the respective neighborhood according to census data, 

and a subjective rating of appeal of the house. Once this information has been 

compiled for various houses it would be interesting to see whether and how 

these measures relate to the price for which a house is sold. For example, you 

might learn that the number of bedrooms is a better predictor of the price for 

which a house sells in a particular neighborhood than how "pretty" the house 

is (subjective rating). You may also detect "outliers," that is, houses that 

should really sell for more, given their location and characteristics.  

Regression is a generic term for all methods attempting to fit a model to 

observed data in order to quantify the relationship between two groups of 

variables. The fitted model may then be used either to merely describe the 

relationship between the two groups of variables, or to predict new values. 

Personnel professionals customarily use multiple regression procedures to 

determine equitable compensation. You can determine a number of factors or 

dimensions such as "amount of responsibility" (Resp) or "number of people to 

supervise" (No_Super) that you believe to contribute to the value of a job. The 

personnel analyst then usually conducts a salary survey among comparable 

companies in the market, recording the salaries and respective characteristics 

(i.e., values on dimensions) for different positions. This information can be 

used in a multiple regression analysis to build a regression equation of the 

form: 

Salary = .5*Resp + .8*No_Super  
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Once this so-called regression line has been determined, the analyst can now 

easily construct a graph of the expected (predicted) salaries and the actual 

salaries of job incumbents in his or her company. Thus, the analyst is able to 

determine which position is underpaid (below the regression line) or 

overpaid (above the regression line), or paid equitably. 

In the social and natural sciences multiple regression procedures are very 

widely used in research. In general, multiple regression allows the researcher 

to ask (and hopefully answer) the general question "what is the best predictor 

of ...". For example, educational researchers might want to learn what are the 

best predictors of success in high-school. Psychologists may want to 

determine which personality variable best predicts social adjustment. 

Sociologists may want to find out which of the multiple social indicators best 

predict whether or not a new immigrant group will adapt and be absorbed 

into society. 

The general computational problem that needs to be solved in multiple 

regression analysis is to fit a straight line to a number of points. 

                                 

An example of regression 
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 In the more general multiple regression model, If there are n 

observation  and  p independent variables: 

      for i=1,2,……,n 

The least square parameter estimates are obtained by p normal equations. 

The residual can be written as 

           for i=1,2,……,n 

 

 

The normal equations are 

 

Note that for the normal equations depicted above, 

 

That is, there is no β0. Thus in what follows,  

In matrix notation, the normal equations for k responses (usually k = 1) are 

written as 

 

with generalized inverse ( − ) solution, subscripts showing matrix dimensions: 
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Chapter 2.Support Vector Regression 

 

Problem Statement:  

In Support Vector Regression method , our goal is to find a function f(x) that 

has at most   deviation from the actually obtained targets yi for all the 

training data, and at the same time is as flat as possible. In other words, we do 

not care about errors as long as they are less than , but will not accept any 

deviation larger than this. 

  

Procedure: 

 As computationally powerful tools for supervised learning, support 

vector machines (SVMs) are widely used in classification and regression 

problems. Let us suppose that a data set D = {f(xi; yi)|i = 1,….., n} is given for 

training, where the input vector 
d

i Rx   and yi is the target value. SVMs take 

the idea to map these input vectors into a high dimensional, where a linear 

machine is constructed by minimizing a regularized functional. The linear 

machine takes the form of  

f(x)=<w,x>+b,  where , b is known as the bias, and <w,x> denotes the inner 

product. 

The regularized functional is usually defined as 

2

1

||||
2

1
))(,(.),( wxfylCbwR

n

i

ii  


                                   (1) 

Where the C > 0 is the regularization parameter and ))(,(
1




n

i

ii xfyl  is 

empirical loss term. In standard SVMs, the regularized functional can be 
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minimized by solving a convex quadratic programming optimization problem 

that guarantees a unique global minimum solution.          

Various loss functions can be used in SVMs that result in quadratic 

programming. There are four popular loss functions widely used for 

regression problems.  They           are                              

1. Laplacian loss function:  ||)(1  l  

2. Huber’s loss function:         
   o.w.      | |  )(

||        ,
4

)(
2













h

h

l

ifl
 

 

3.  -insensitive loss function:    o.w.    ||  )(

||if    ,  0)(













l

l
 

 

4. Gaussian loss function:   
2

2

1
)(  gl  

 

We will make use of  -insensitive loss function for our problem. 

We introduce  -insensitive loss function into the regularized functional (1) 

that will leads to a quadratic programming problem that could work as a 

general framework. As usual, two slack variables are i  and i * introduced as  

i ≥ yi −<w,xi>−b−  

i *≥ <w,xi>+b− yi −  
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The minimization of the regularized functional (1) with  -insensitive loss 

function as loss function could be rewritten as the following equivalent 

optimization problem, which is usually called primal problem: 

*,,,
min

iibw 
   R (w,b , i , i *)=C



n

i 1

( i + i *) + 
2||||

2

1
w                              

Subject to    yi −<w,xi>−b ≤  + i  ;                                    

  <w,xi>+b− yi ≤  + i * ;                        (2)                                                                                                                         

  i ≥0;   i *≥0; 

The constant C>0 determine the trade-off between the flatness of f and 

amount up to deviations larger than     are tolerated.   

 

 

Fig. 1. The soft margin loss setting for a linear SVM 

Figure 1 depicts the situation graphically. Only the points outside the shaded 

region contribute to the cost insofar, as the deviations are penalized in a linear 

fashion. It turns out that in most cases the optimization problem (2) can be 

solved more easily in its dual formulation.  

Dual Problem and Quadratic: 
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The key idea is to construct a Lagrange function from the objective function (it 

will be called the primal objective function in the rest of this article) and the 

corresponding constraints, by introducing a dual set of variables. It can be 

shown that this function has a saddle point with respect to the primal and 

dual variables at the solution. For details see e.g. Mangasarian (1969), 

McCormick (1983) [22]  and the explanations in appendix. We proceed as 

follows:              

 

 

),* (*         

), (        

*)*(*)(||||
2

1

n

1i

i

n

1i
i

11

2

bxwy

bxwy

CwL

iii

iii

iiii

n

i

n

i

ii

























                     (3) 

 

Here L is the Lagrangian  and i  , i * , i , i * are Lagrange multipliers. Hence 

the dual variable in (3) has to satisfy positivity constraints, i.e. 

i , i *,  i  , i * ≥ 0                                                                                     (4) 

It follows from the saddle point condition that the partial derivatives of L with 

respect to the primal variables (w, b,  i  , i * )  have to vanish for optimality  

i.e. The KKT conditions for the primal problem require 
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0)*(
1








n

i

ii
b

L


 

i.e.                
0)*(

1




n

i

ii 
                                                                       (5) 

 

 

0)*(
1








i

n

i

ii xw
w

L


 

i.e.               i

n

i

ii xw )*(
1




 
                                                                        (6) 

0



iiC

L


  

i.e.                   iiC                                                                              (7a) 

0**
*





iiC

L


  

i.e.                   ** iiC                                                                                            (7b) 

 

Substituting the values from (5) ,(6) ,(7a) and (7b) into (3) yields the dual 

optimization problem. 
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minimize       
{













n

i

iii

n

i

ii

n

ji

jijjii

y

xx

11

1,

*)(*)(    

*)*)((
2

1
    





                            (8) 

subject to           
0)*(

1




n

i

ii 
                     

and αi , αi*  € [0,C] 

In deriving  (8) we already eliminated the dual variables i , i * through 

equation (7a) and (7b) which can be reformulated as  

ii C    

And     ** ii C    

The dual problem (30) is also a constrained convex quadratic programming 

problem. Let us denote 

T

nn *].,*,........*,,,......,,[ 2121

^

    

T

nn yyyyyyP ]...,,.........,,.,.........,[ 2121

^

 

 

Q=  

Where K is the n by n matrix whose entry is of the form <xi , xj>  

Then equation (8) can be rewritten as  
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Min   

^^^

2

1
 TT PQ 

 

             li ≤ αi ≤ ui           for all i . 

      and  

^2

1

0


i

n

i

  

li =0 , ui = C         for 1 ≤ i ≤n 

 li =-C , ui = 0     for n+1 ≤ i ≤2n 

And this is a simple quadratic programming problem which can solved easily. 

After solving this problem one can get w and b and then find the equation of 

hyper plane f(x) as described below. 

 

i

n

i

ii xw )*(
1




 
 

Thus    
bxxxf i

n

i

ii 


,)*()(
1


 

This is the so-called Support Vector expansion, i.e. w can be completely 

described as a linear combination of the training patterns xi. In a sense, the 

complexity of a function’s representation by SVs is independent of the 

dimensionality of the input space X, and depends only on the number of SVs. 

Moreover, note that the complete algorithm can be described in terms of dot 

products between the data. Even when evaluating f (x) we need not compute 

w explicitly. These observations will come in handy for the formulation of a 

nonlinear extension.     
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When there are no outlier present in the data set then usual Support Vector 

Regression give good results for the given value of epsilon. 

In the figure 3a , we have a regression line with the given value of epsilon.We 

can find  perpendicular distances of each point from the line and find the 

maximum distance among these.The  value of this maximum perpendicular 

distance is taken as the value of epsilon and do the regression again. 

If all the points are within epsilon tube then we say the value of epsilon to Max  

epsilon and is denoted as 0 . 

                                 Fig.(3a)   
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     Fig (3b) 

Suppose the dataset contains outliers then Support Vector Regression will 

give poor regression. 

 



24 
 

 

 

 



25 
 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Remarks: 

1. In the regression method it is necessary to select both a representative 

loss function and any additional capacity control that may be required. As we 

have used    -insensitive loss function here. 

2.   We could have added the constraints that 0i  and  0'i . However, 

it is not hard to see that the final solution will have that requirement 

automatically and there is no sense in constraining the optimization to the 

optimal solution as well. To see this, imagine some i  is negative, then, by 

setting 0i  the cost is lower and none of the constraints is violated, so it is 

preferred.  

3. For several reasons (model selection, controlling the number of support 

vectors, etc.) it may happen that one has to train a SV machine with different 

regularization parameters C, but otherwise rather identical settings. Value of C 

controls the flatness of the regression line.  
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Chapter 3: Support Vector Regression for Outlier 

Removal 

 

 

3.1 Problem Statement: 

An outlier is an observation that is numerically distant from the rest of 

the data. In larger samplings of data, some data points will be further away 

from the sample mean than what is deemed reasonable. This can be due to 

incidental systematic error or flaws in the theory that generated an assumed 

family of probability distribution, or it may be that some observations are far 

from the center of the data. Outlier points can therefore indicate faulty data, 

erroneous procedures, or areas where a certain theory might not be valid. 

However, in large samples, a small number of outliers is to be expected (and 

not due to any anomalous condition). 

Grubbs [17] defined an outlier as:   “An outlying observation, or outlier, is 

one that appears to deviate markedly from other members of the sample in 

which it occurs.” Outliers can occur by chance in any distribution, but they are 

often indicative either of measurement error or that the population has a 

heavy-tailed distribution.  

In the case of normally distributed data, roughly 1 in 22 observations will 

differ by twice the standard deviation or more from the mean, and 1 in 370 

will deviate by three times the standard deviation; In a sample of 1000 

observations, the presence of up to five observations deviating from the mean 

by more than three times the standard deviation is within the range of what 

can be expected, being less than twice the expected number and hence within 

1 standard deviation of the expected number. 

As we have seen earlier Usual Support Vector Regression method is not 

good for the data set with outliers and gives a poor regression in result. So 

how to tackle this type of situation ?  

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Systematic_error
http://en.wikipedia.org/wiki/Theory
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Heavy-tailed_distribution
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3.2 Suggested Method: 

 In usual Support Vector Regression technique our goal is to estimate an 

unknown continuous valued estimation function based on the finite number 

of noisy samples. 

In Support Vector Regression approach, a linear model is constructed in the 

input space. The linear model f(x,w) is give by 

bxwwxf i

n

i

i 


.),(
1

 

Where w is the parameter that needs to be determine, b is the bias term. 

The quality of estimation is measured by the Loss function. SVR approach uses 

the  -insensitive loss function. 

L(y,f(x,w)    =       
{

  o.w.         -|w)f(x,-y|

|w)f(x,-y|if           0




 

An    is defined as that if the value of e within the zone, the loss is zero. 

Otherwise, the loss is the magnitude of the difference between the absolute 

value of e and   zone. 

The SVR approach performs a linear regression in the input space and tries to 

reduce model complexity by minimizing ||w||2. This can be described by 

introducing (non –negative) slack variables i , i  *    for i=1,…..n , to measure 

the deviation of the training samples outside   -insensitive zone. Thus SVR is 

formulated as minimization of the following functional: 
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iibw 
   R (w,b , i , i *)=C
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n

i 1
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2||||

2

1
w                              

Subject to    yi −<w,xi>−b ≤  + i  ;                                    

  <w,xi>+b− yi ≤  + i * ;                                                                                                                                                 

  i ≥0;   i *≥0; 

The optimization problem can be transformed into the dual problem and its 

solution is given by  

bxxxf i
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Where nSV is the number of support vector for the original training data 

The points outside the  -insensitive zone are known as support vectors or 

outliers. To determine which the support vectors are regarded as outlier, the 

criteria is build as follows: 

If  i  or i * ≥ “4*standard deviation of slack variables”,   then corresponding 

support vectors are treated as outliers otherwise Support Vectors.                                                    

Where the slack variables are nothing but the perpendicular distance of the 

support vectors from the regression line. i.e. the standard deviation is taken 

upon the distances of the support vectors. 

After getting these outliers, we can remove them from original data set and 

find the appropriate regression line with the use of SVR.     
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Main Programming Steps: 

 

data1 = textread('x1.txt');%,'','delimiter','\t');                                                              
data2 = textread('x2.txt');%,'','delimiter','\t');                                                               
data3 = textread('x3.txt');%,'','delimiter','\t');                                                           
data4 = textread('x4.txt');%,'','delimiter','\t');                                                                 
x=[data1 data2 data3 data4];                                                              
Y=textread('Y.txt');                                                                                        
y=textread(‘y.txt');                                                                                                                                                                      
C = 100;                                                                                                                                     
epsilon = .5;                              
kernel =’linear;                                                                                                                               
svrreg ( SVR Regression) function calling                                      
 
function: [xsuport, ysuport ,w, b,newposition,nsupport]=svrreg(x,y,C,epsilon);                                                                                                                                             
 
       n = length(y); 
   

        %Construct the matrix and a vector       
                                                                                                                                                                                          
pp  =  zeros(n,n);                                                                   
pp=svmkernel(x,kernel);                                                                                                        
H = pp;                                                                                                                                             
I = eye(n);                                                           
Idif = [I  -I];                                                 
H = Idif'*H*Idif;                               
c = [-epsilon+y ; -epsilon-y];                             
A = [ones(1,n)  -ones(1,n) ]';                      
b=0;                                 

 
[alpha,bias,position]=qp(H,c,A,b,C, x,pp);                    

 

aix=zeros(length(H),1); 
aix(pos)=alpha; 
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alpha=aix;                                                                                      
w = alpha(newpos)-alpha(n+newpos);                            

ysupport = y(newposition); 
nsupport =length(newposition);                          
b=bias;               

obj=-0.5*alpha'*H*alpha + c'*alpha; 
 

function :    [k]=svmkernel(x,kernel,xsup); 
[n1 n2]=size(x); 
[n n3]=size(xsup); 
pp =  zeros(n1,n); 
K=x*xsup'; 
 

svrval( SVR Value) function calling: 
 

function : f(x)=svmval(x,xsup,w,b,kernel); 
pp=svmkernel(x,kernel,kerneloption,xsup,framematrix,vector,dual); 
y=pp*w+b; 

dispf(x); % display function value f(x) 
disp(xsup);% display support vector 4 dimensional 
disp(ysup);% display corresponding  y value to the support vector 
dlmwrite('f(x).txt',f(x),'\n'); 
x0=ones(400,1); 
 
  
x=[x0 data1 data2 data3 data4]; 
yy=textread(‘f(x).txt'); 
z=x\yy; 
% finding the perpendicular distance of the support vector from the line 
sq=sqrt(z(1)^2+z(2)^2+z(3)^2+z(4)^2+z(5)^2); 
Dist_pts=x*z/sq; 
%std(Dist_pts); 
c=zeros(2,400); 
for i=1:numel(newpos) 
    c(1,i)=Dist_pts(newpos(i)); 
    c(2,i)=newpos(i); 
end 
std1=std(c(1,:)) 
j=1; 
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    out1=zeros(2,1); 
for i=1:numel(c(1,:)) 
    if c(1,i)>= 4*std1 
        out1(1,j)=c(1,i); 
        out1(2,j)=c(2,i); 
        j=j+1; 
    end 
end 
 
    output=zeros(2,j); 
 output=out1; 
% Display the outliers 
    disp(output); 
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Chapter 4: Results and Comparisons 

 

4.1 Data set generation with and without outliers 

 Here we are working on 4 dim artificial data. To generate the data we 

need x1, x2, x3, x4 and a linear relationship between them.  We generate      

x1  from a uniform distribution on the unit interval i.e. on the interval [0,1],            

x2  from a uniform distribution  on the interval [1,4],                    

x3  from a uniform distribution  on the interval [-1,2], and                        

x4  from a uniform distribution on the unit interval i.e. on the interval [0,1]. 

Y=2-3*x1+4*x2+x3+0*x4  is the linear relationship between x1,x2,x3 and x4 

and our regression function y is given by normal distribution with the mean of 

Y and variance of 1. 

To get some outliers in the dataset we add three points in the data set that are 

not match with the other points of the dataset. 

4.2 Usual Method 

Run the multivariate program on the dataset without outliers, then we get the 

equation of regression hyper plane with coefficients a0=1.8151   a1=-2.9282    

a2=4.0346    a3=1.0147    a4=0.2789 and the average distance of the points to 

the hyper plane is 4.458307. 

Run the multivariate program on the dataset with outliers, then we get the 

regression hyper plane and the average distance of the points to the hyper 

plane is 4.4034. 
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4.3 SVR  

Run the SVR program on the dataset with outliers with value of epsilon to be 

0.5, then we get the equation of regression hyper plane with coefficients        

a0=2.0307, a1 =-2.9217,       a2=3.9882, a3=0.9641,   a4=0.1209 and the 

average distance of the points to the hyper plane is 4.768815 which is quite 

large in compare to multivariate regression. 

4.4 SVR for outlier removal   

Now run the Usual SVR program on the dataset with outliers with value of 

epsilon to be 0.5, then we get regression hyper plane with coefficients        

a0=2.0307, a1 =-2.9217,       a2=3.9882, a3=0.9641,   a4=0.1209 the maximum 

perpendicular distance of the points from the hyper plane which is 7.7887. We 

find that there are three vectors which are outliers, and then we remove those 

points and run the SVR on rest of the points. And we find that the equation of 

the hyper plane has been change and the value of the coefficients are   

a0=2.0045 ,  a1=-3.0331 ,   a2=3.9651,    a3=1.0625 ,    a4=0.2672  and the 

average distance of the points to the hyper plane is 4.306906 ,  which is less 

small in compare to multivariate and usual SVR both. 

 

So therefore if data sets contain outliers and we do usual support vector 

regression on that dataset then we will get the poor regression hyper plane in 

compare to multivariate regression. But if we first remove outliers then the 

line will get shifted to the very fit hyper plane.  
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Chapter 5. Conclusion and Discussion 

 

In the above approach, we are finding the value of maximum epsilon by using 

the usual Support Vector Regression Method. And for value of epsilon less 

than maximum epsilon see the performance. If outliers are not present in the 

data set, then usual Support Vector do the better regression in compare to 

Multivariate Regression. But if outliers are present in the dataset then first we 

will have to remove that outlier by the above method and then do the 

regression on the inliers data points. So ultimately we are using Support 

Vector Regression Method twice so its complexity will increase by the factor 

of 2.  SVR performance depends on a good setting of meta-parameters 

parameters C,    and the kernel parameters. Parameter C determines the 

tradeoff between the model complexity (flatness) and the degree to which 

deviations larger than  are tolerated in optimization formulation for 

example, if C is too large (infinity), then the objective is to minimize the 

empirical risk only, without regard to model complexity part in the 

optimization formulation.  

As mentioned above, this method provides solution gradually. One can 

develop a different way to combine the twice using of Support Vector 

Regression method. 
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Appendix 

 

Most algorithms rely on results from the duality theory in convex 

optimization. For the sake of convenience, briefly review without proof the 

core results.  

Uniqueness Every convex constrained optimization problem has a unique 

minimum. If the problem is strictly convex then the solution is unique. This 

means that SVs are not plagued with the problem of local minima as Neural 

Networks. 

 Lagrange Function The Lagrange function is given by the primal objective 

function minus the sum of all products between constraints and 

corresponding Lagrange multipliers. Optimization can be seen as 

minimization of the Lagrangian wrt the primal variables and simultaneous 

maximization wrt the Lagrange multipliers, i.e. dual variables. It has a saddle 

point at the solution. Usually the Lagrange function is only a theoretical device 

to derive the dual objective function.  

Dual Objective Function It is derived by minimizing the Lagrange function 

with respect to the primal variables and subsequent elimination of the latter. 

Hence it can be written solely in terms of the dual variables.  

Karush–Kuhn–Tucker (KKT) conditions A set of primal and dual variables 

that is both feasible and satisfies the KKT conditions is the solution (i.e. 

constraint ・ dual variable = 0). The sum of the violated KKT terms 

determines exactly the size of the duality gap (that is, we simply compute the 

constraint. This allows us to compute the latter quite easily. A simple intuition 

is that for violated constraints the dual variable could be increased arbitrarily, 

thus rendering the Lagrange function arbitrarily large. This, however, is in 

contradition to the saddlepoint property.  


