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Abstract

The SMART information retrieval system is a sophisticated open-source text processing
system based on the vector space model, developed over the last thirty five years. The
SMART system automatically generates vectors for any given text collection and a set of
queries and then uses the notion of vector similarity in computing the ranks of document
vectors.[9]
The divergence from randomness (DFR) model of information retrieval was proposed in
the year 2002 by Amati and Rijsbergen.[4] Amati reported his experimental findings in his
PhD. thesis, which showed that his framework produces different nonparametric models
forming baseline alternatives to the standard tf − idf model. The DFR model is widely
used as a benchmark model for testing the performance of other information retrieval
models. Keeping in mind the need of the IR community for an open-source implementation
of the DFR model, we decided to extend the SMART system by implementing the DFR
modeled IR policy within its framework. This, we hope would enable IR researchers to
do newer experiments on the DFR model, and possibly improve it.
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Chapter 1

Introduction to IR

The meaning of the term information retrieval can be very broad. Just getting the credit
card out of your wallet so that you can type in the card number is a form of informa-
tion retrieval. Surveys show that about 85% of the users of the internet use popular
interactive search engines to formulate queries, retrieve references of documents, inspect
the documents(typically the top ranked ones) and possibly reformulate the queries, for
buying goods, looking for vocation in companies, finding research papers and for so many
other reasons. This is a good indication of the impact of search engines and information
retrieval technology on ordinary people’s life. If a technology is important enough, many
people will adopt the discipline’s technical vocabulary and new words eventually end up
in language dictionaries. Infact people often say ‘Google out the information’ indicating
the impact of Google on our everyday life.
Many modern information retrieval systems, like internet search engines, are specifically
designed for users who are not familiar with the collection, the representation of the docu-
ments, and the use of Boolean operators. The main requirements for these systems are the
following. Firstly, users should be able to enter any natural language word(s), phrase(s) or
sentence(s) to the system, without the need to enter operators. This usually implies a full
text information retrieval system, which is a system that potentially indexes every word
in a document automatically. Secondly, the system should rank the retrieved documents
by their estimated degree or probability of usefulness for the user. Thirdly, though not as
important as the former two, the system should support automatic reformulation of the
search statement from user feedback. However as an academic field of study information
retrieval is defined as:

Information retrieval (IR) is finding material (usually documents) of an unstructured
nature (usually text) that satisfies an information need from whithin large collections
(usually stored on computers).[1]

1.1 Basic Processes of Information Retrieval

There are three basic processes an information retrieval system has to support:

1. Representation of the content of the documents

2. Representation of the user’s information need

3. comparison of the two representations.

The processes are visualised in figure (Croft 1993)[10]. In the figure 1.1, rectangles rep-
resent data and ovals represent processes.
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Figure 1.1: Information retrieval process

Representing the documents is usually called the indexing process. The process takes
place off-line, that is, the end user of the information retrieval system is not directly
involved. The indexing process results in a formal representation of the document: the
index representation or document representation.The indexing process may include the
actual storage of the document in the system, but often documents are only stored partly,
for instance only title and abstract, plus information about the actual location of the
document.
The process of representing the information problem or need is often referred to as the
query formulation process. The resulting formal representation is the query. In a broad
sense, query formulation might denote the complete interactive dialogue between system
and user, leading not only to a suitable query but possibly also to a better understanding
by the user of his information need. The retrieved set of documents can be further
improved by a process known as relevance feedback, which iteratively tunes the parameters
of the system, with reference to a set of documents, being judged as relevant by a group
of experienced linguists. The aim of relevance feedback is to fetch more documents, which
are relevant to a particular query, within the retrieved set.

1.2 Organization Of the Report

In the section to follow, we speak briefly about the tasks as performed by a standard
IR engine followed by a section on evaluation methodologies and standard metrics for IR
evaluation. These sections are very introductory and a reader aware of the IR terminolo-
gies can skip these sections and move onto chapter 2 (or directly to chapter 3 if he is
aware of the vector space model). The rest of the report is organized as follows:

1. Chapter 2 introduces the vector space model of IR, the underlying model used in
the SMART We also give a brief description of the SMART system. [9, 11, 12, 13].
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Figure 1.2: An example text - the opening lines of Agenda 21

2. Chapter 3 introduces the DFR model of IR with a mathematical description of
the theory underneath this model and then follow it up with a discussion on the
intuition for this model by which has been developed recently[4].

3. Chapter 4 reports the performance of our implemented DFR through experimental
results followed by a suggestion on future experiments.

4. Chapter 5 summarization of our work and our future plans with extended SMART.

1.3 How an IR system works

With the emergence in the 1970’s of models of ranked retrieval that process unstructured
queries, automatic query systems became a fact. The main philosophy of automatic query
systems is that indexing and query formulation should result in a representation that is
closer to the actual meaning of the text, ignoring as many of the irregularities of natural
language as possible. A typical approach to indexing and query formulation selects the
query terms as follows. First a tokenisation process takes place, then stop words are
removed, and finally the remaining words are stemmed. Additionally, natural language
processing modules might provide the identification of phrases or splitting of compounds.
Figure [1.2] shows an example text that will be used to illustrate the typical approach to
query term selection.

1.3.1 Tokenization

As a first step in processing a document or a query, it has to be determined what the
processing tokens are. One of the most simple approaches to tokenisation defines word
symbols and inter-word symbols. In the example of figure [1.3] all characters that are non
letters and non digits are considered to be inter-word symbols. The inter-word symbols
are ignored during this phase, and the remaining sequences of word symbols are the
processing tokens.

1.3.2 Stop word removal

Stop words are words with little meaning that are removed from the index and the query.
Words might carry little meaning from a frequency (or information theoretic) point of
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Figure 1.3: The Agenda 21 text after tokenization

Figure 1.4: The Agenda 21 text after stop word removal by Smart list

view, or alternatively from a linguistic point of view. Words that occur in many of the
documents in the collection carry little meaning from a frequency point of view. If words
carry little meaning from a linguistic point of view, they might be removed whether their
frequency in the collection is high or low. In fact, they should especially be removed if their
frequency is low, because these words affect document scores the most. Removing stop
words for linguistic reasons can be done by using a stop list that enumerates all words
with little meaning, like for instance “the”, “it” and “a”. Stop lists are used in many
systems, but the lengths of the various stop lists may vary considerably. For instance, the
Smart stop list contains 571 words[8], whereas the Okapi system uses a moderate stop list
of about 220 words (Robertson and Walker)[14].

1.3.3 Stemming

A stemmer applies morphological ’rules of the thumb’ to normalise words. The stemmers
commonly used are those by Lovins[15] and Porter[12]. A stemmer can produce undesir-
able effects, for it may conflate two words with very different meanings to the same stem.
For example ’operate’, ’operating’ and ’operations’ are all stemmed to ’oper’. As a result,
a query ’operating systems’ can fetch documents related to ’operations research’. Figure
1.5 shows the result of Porter Stemmer on our sample text.

1.3.4 Phrase extraction

During indexing and automatic query formulation, multiple words may be treated as one
processing token. The meaning of phrases might be quite different from what the two
words independently suggest. A user who enters the query ‘Stanford University’ is less
likely to be happy with a document which says ‘Mr. Stanford never went to a university’.
Maintaining the positional information of the terms is a generalized approach to deal with
n-grams where a document is retrieved from the index if the positional information of the
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Figure 1.5: The Agenda 21 text after stemming by Porter’s stemmer

Figure 1.6: Merging two postings list

query terms conforms with itself. For example the query ‘To be or not to be’ is less likely
to fetch Shakespeare’s ‘Hamlet’ without positional information.

1.3.5 Index file structure

Within a document collection, we assume that each document has a unique number known
as the document identifier(DocID). A weighted list of documents is constructed for every
term in the collection, where the weight assigned to a document might be the number of
occurences of that term in it. The terms, which act as keys to their corresponding lists
are kept sorted and are typically kept in memory whereas the associated lists (commonly
refered to as postings are kept sorted by the list members’ weights and are typically stored
on secondary storage. For each query term, their postings are merged to give the final set
of documents. Figure [1.6] shows merging of two postings list.

1.4 Evaluation of IR systems

To measure ad hoc information retrieval effectiveness in the standard way, we need a test
collection consisting of three things:

1. A test document collection.

2. A test suite of information needs, expressible as queries.

3. A set of relevance judgements, normally a binary assessment of either relevant or
not relevant for each query-document pair.

The standard approach to information retrieval system evaluation revolves around the
notion of relevant and not relevant documents. With respect to a user information need,
a document is given a binary classification as either relevant or not relevant. To do a
system evaluation, we require an overt expression of an information need, which can be
used for judging returned documents as relevant or not relevant.
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1.4.1 Evaluation of unranked retrieval sets

We define two standard metrics as follows:

1. Precision(P) is the fraction of retrieved documents that are relevant.

# relevant documents retrieved

# retrieved documents

2. Recall(R) is the fraction of relevant documents retrieved.

# relevant documents retrieved

# relevant documents

For binary valued relevance, retrieval performance is usually measured by the combination
of precision and recall.

1.4.2 Evaluation of ranked retrieval sets

If the system ranks the documents in decreasing order of some document score, then the
precision and recall measures should somehow be averaged over the number of documents
retrieved. A number of fixed recall levels are chosen, for instance 10 levels {0.1, 0.2.....1.0}.
The levels mimick users who are satisfied with 10%, 20%, ... 100% relevant documents. For
each of these levels, the corresponding precision is determined by averaging the precision
on that level over the topics.

Another common measure used is the Mean Average Precision (MAP), which provides
a single-figure measure of quality across recall levels. It is the average of the precision
value obtained for the top set of k documents existing after each relevant document is
retrieved. That is, if the set of relevant documents for a query qj ∈ Q is {d1, d2, ...dm}
and Rk is the set of ranked retrieval results from the top result upto dk,then

MAP (Q) =
1

Q

|Q|∑
j=1

1

m

m∑
k=1

P (Rk) (1.1)

Our experimental findings reported in chapter 4 use both the above mentioned mea-
sures.
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Chapter 2

Vector Space Model

The vector space model of information retrieval was developed by Gerard Salton and his
students in the late 1960’s and the early 1970’s[13]. This model transforms any given
text such as an article, a query, a portion of an article etc. into a vector in a very
high-dimensional vector space. The main power of this model comes from its ability to
measure the proximity between any two vectors, i.e., the ’closeness’ between any two texts.
In terms of information retrieval, when two vectors are close, then the corresponding texts
are semantically related. The documents can then be ranked in decreasing order of their
closeness to the query, yielding a semantic relatedness ranking, as desired in modern in-
formation retrieval systems.
Salton and his students also implemented a information retrieval system based on the
vector space model, the SMART system[8]. SMART has had an enormous impact on IR
research over the last thirty years. Many theories and techniques in the field of informa-
tion retrieval, for example, automatic indexing and term weighting, evaluation of ranked
systems, boolean models, relevance feedback, document clustering, use of a thesaurus
etc. were either developed directly on the SMART system, or were first tested for their
applicability to IR tasks on the SMART system. Research out of the SMART group at
Cornell has contributed numerous important results, and has stimulated lots of new work
in the field of information retrieval. Through SMART, the vector space model has had a
tremendous influence on IR.

2.1 The model

Let us introduce the model with an example. Imagine a hypothetical three word world
with only three words in its vocabulary information, retrieval, and research (probably an
IR graduate student’s world). If we assign an independent dimension to every word in the
vocabulary (a total of three), assuming that the terms are mutually independent of each
other, any utterance in this world can now be represented by a vector in this three dimen-
sional space. Assuming that the number of occurrences of a word indicate the length of
the sub-vector in the dimension corresponding to the word, Figure [2.1] shows the vectors
for some texts in this three word world. We see that the utterance ‘information research’
is a vector with a zero ‘retrieval component and a unit component in the information and
the research dimensions. Similarly, the utterance ‘retrieval information information’ is a
vector with zero research component, a unit retrieval component, and a component of
length two in the information dimension. In a real world, however, the vector space will
have a very high dimensionality - equal to the size of the vocabulary of the text collection
at hand. Since words that are not used in a text have a zero length sub-vector in the
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Figure 2.1: A three dimensional vector space

corresponding dimension, and any text uses a very small subset of the entire vocabulary
most text vectors will be sparse, i.e., they will have many zero components.

The dot product of two vectors which is directly proportional to the cosine of the angle
between the vectors, and hence inversely proportional to the angle value between the two
and hence provides a suitable measure of similarity between two vectors. Given two text
vectors ~P = (p1, p2, ..., pn) and ~Q = (q1, q2, ..., qn) in an ‘n’ dimensional vector space, their
inner product is defined as

sim(~P , ~Q) = ~P · ~Q =
n∑
i=1

pi · qi (2.1)

Thus, the documents can be ranked by the above similarity measure which ensures
that the documents in the top rank have a higher degree of vocabulary overlap with the
user query and hence potentially more relevant to the users information need.

2.1.1 Term weights

The importance of a term increases with the number of occurrences of the term in a
text. Therefore one can use some monotonically increasing function of the number of
occurrences of a term in a text to estimate the term weight. The number of occurrences
of a term in a text is called the term frequency of the term. The function of the term
frequency used to compute a term’s importance is called the term frequency factor or the
tf factor in term weights. Some commonly used tf factors are:

1. The raw tf factor - This factor is simply the number of occurrences of a term in
an article.

2. The logarithmic tf factor - This factor is computed as

8



1 + log(tf ) (2.2)

The justification of using this term weight is that the very high occurence of a single
matching term in a document shoudn’t outperform another document which has
two matching query terms with somewhat lower term frequencies. Consider as an
example the query ‘recycling of tires’, and two documents - D1 with ten occurrences
of the word ‘recycling’, and D2 which uses both the words ‘recycling’ and ‘tires’
three times each. Everything else being equal, if raw tf s are used, D1 gets a higher
similarity (proportional to 10) than D2 (which gets a similarity proportional to 3
+ 3 = 6). But it is intuitive that D2 addresses the needs of the query much better
than D1 because it addresses both recycling and tires, and not just recycling (like
D1 ).

3. The augmented term factor - This factor reduces the range of the contributions
from the term frequency of a term. This is done by compressing the range of the
possible tf factor values (say between 0.5 and 1.0). The augmented tf factor is used
with a belief that mere presence of a term in a text should have some default weight
(say 0.5); additional occurrences of a term could increase the weight of the term to
some maximum value (usually 1.0). Typically this factor is:

0.5 + 0.5 · tf

max tf
(2.3)

2.1.2 Inverse Document Frequency

With reference to the discussion on stop words in section 1.4.2, we can say that such
words occur with very high term frequencies across numerous articles and hence are not
very informative. A match between a query and an article on words like ‘put’ does not
mean much in terms of the semantic relationship between the query and the article. For
this reason we also need to differentiate between the goodness of a matching term.
An inverse function of the number of articles a word appears in, has an intuitive appeal
to be used to judge the importance of a word. The number of articles a word appears in
is often called the document frequency of the word. An inverse function of the document
frequency is used in term weights, and is called the inverse document frequency factor
or the idf factor in term weights. The most commonly used inverse document frequency
formulation is

log

(
N

df

)
(2.4)

where N is the total number of articles in a collection and df is the document frequency
of the word.

2.1.3 Document length normalization

tf ·idf weights don’t always suffice as good estimates to term importance in a text, because
it ignores the document lengths often leading to prioritizing longer documents due to the
possiblity of presence of higher term frequencies on a per term basis and also due to

9



Table 2.1: Term weights in SMART

Term frequency Inverse document frequency Document length normalization

First letter f(tf ) Second letter f

(
1
df

)
Third letter f(length)

n(natural) tf n(no) 1 n(no) 1
l(logarithmic) 1 + ln(tf ) t(full) log(N

df
) c(cosine) ‖ D ‖

a(augmented) 0.5 + 0.5 · tf
maxm.tf

the mere presence of more terms. Hence as a compensation, the weights of the terms in
longer documents are depressed giving the shorter documents a chance to compete with
the longer ones. This technique is called ‘document length normalization’. Following is a
review of some commonly used length normalization schemes:

1. Cosine normalization - It is the most common and perhaps most intuitive nor-
malization technique of the vector space model. The inner-product equation as
defined in (2.1) can be modified to compute the actual cosine of the angle between
the two vectors, which is independent of the length of the vectors.

cos(Q,D) =
~Q · ~D
||Q||||D||

(2.5)

2. Maximum tf Normalization - Another popular normalization technique is nor-
malization of individual tf weights for a document by the maximum tf in the doc-
ument. The SMART system’s augmented tf factor see eqn. (2.3) is an example of
such normalization.

2.2 The SMART system

The SMART system is an open source IR engine[8]. The processing steps are the same
as described in section 1.4. Most of the functionalities in general and term weighting in
particular are configurable in SMART. The subsections to follow contain some digression
materials on the SMART system from an engineering point of view. If the reader is
already aware of the technical details, he can skip to the beginning of the next chapter.

2.2.1 Term weighting

Term weights are configured with three letters - the first is a short hand for the tf , the
second denotes the idf , and the third corresponds to the document length normalization.

A retrieval experiment can now be characterized by a pair of triples ddd.qqq where the
first triple corresponds to the term weighting used for the documents, and the second triple
corresponds to the query term weights. For example, when ltc.nnn is used to symbolize
a retrieval run, the document term weights used in the run are

(1 + log(tf )) · log(N/df)√
n∑
i=1

d2i

(2.6)
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and the query weights are tf .

2.2.2 Code overview

Since the SMART is an open source system of about 1,50,000 lines of code, the person
contributing to its developement is expected to follow the original design so as to ensure
future maintainability. This demands that any new functionalities has to be plugged in
proper places without violating the original design goals.

The directory structure of the smart/src is as follows:

• libconvert: Contains the conversion routines from one term weighting scheme to
another.

• libevaluate: Evaluation measures are computed by these procedures.

• libfeedback: Various feedback strategies are implemented here.

• libfile: Contains low level routines for manipulating file structures.

• libgeneral: Contains some utility routines like reading from configuration files,
logging, reading, writing and copying vector etc. These procedures are used almost
everywhere throughout the rest of the code.

• libindexing: Contains indexing procedures for documents and queries. Strategies
during the indexing steps to be taken are all implemented as separate procedures and
are invoked through the configuration file. For example the default configuration
file spec.default suggests that document vectors are to be stored as inverted lists
and queries are to be stored in the vector format. The user can override this default
behavior by configuring the parameters doc.store and query.store. Please refer to
the ‘libproc’ section where we discuss the function calling mechanism in SMART.

• liblocal: This directory, structure-wise is an exact replica of the src folder, adopting
the convention that any small changes necessary to be done in the any of the files
(say a file in the libconvert folder), is done by copying the file in the corresponding
folder inside liblocal (i.e. liblocal/libconvert in our example) and then making the
necessary changes instead of changing the original file.

• libprint: Contains procedures to print the file structures as an aid for debugging.

• libproc: Each file in this folder defines a procedure hieararchy providing a top
level action to take, and a choice of configurable sub-actions to be chosen from the
implemented available options. If for example the user wants to index documents,
he simply invokes the program as follows:

smart index.doc spec.default

The file spec.default is provided by the system and below we provide a small snippet
of that file for quick reference relevant to our discussion.

store index.store.store vec
doc.store index.store.store aux
index.doc index.top.doc coll

11



Since the top level action is specified as index.doc, the function invoked is doc coll
defined as a member of the array of function pointers named top which in turn is
a member of an array of function pointers named index, in accordance with the
configuration of the third line of spec.default.

• libretrieve: The functions in this procedure compute the similarity measures of
a given query with the documents in the collection and forms a list of retrieved
documents ordered by decreasing similarity measures.
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Chapter 3

Divergence from Randomness Model

This is a probabilistic model of Information Retrieval based on measuring the divergence
from randomness. The models are nonparametric models of IR. Term-weighting models
are derived by measuring the divergence of the actual term distribution from that obtained
under a random process. Among the random processes, the binomial distribution and
Bose-Einstein statistics are studied. Two types of term frequency normalization are used
for tuning term weights in the document query matching process. The first normalization
assumes that documents have the same length and measures the information gain with the
observed term once it has been accepted as a good descriptor of the observed document.
The second normalization is related to document length and other statistics. We have
incorporated five other normalizations based on the DFR model currently implemented
in Terrier-3.0.[16]

3.1 Analytical Charaterization

The DFR model proposed by Amati and Rijsbergen is currently one of the most success-
ful IR models [4]. It is based on the informative content provided by the occurrence of
terms in a document, a quantity that is then corrected by the risk of accepting a term as
a descriptor for the document (first normalization principle) and by normalizing the raw
occurrences by the length of the document (second normalization principle). The weight
of a term in a document is expressed as the function of two probabilities Prob1 and Prob2.
The following terms appear frequently in subsequent discussion so for convenience they
are described below.

Speciality words: Words belonging to technical vocabulary, which being informa-
tive, tend to appear more densely in some elite documents.

Non Speciality words: Words that usually are included in a stop list and are ran-
domly distributed over the collection.

Elite Set: The documents containing the speciality words.

Non Elite Set: All the documents in the collection excepting the elite documents.

Prob1: It is derived mainly from the work of Harter[17,18] on automatic keyword in-
dexing. It is supposed that words that bring little information are randomly distributed
on the whole set of documents. In other words it defines the notion of randomness in the
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context of information retrieval.

Prob2: It is the probability of occurrence of the term whithin a document with re-
spect to its elite set and is related to the risk 1 − Prob2 of accepting a term as a good
descriptor of the document when the document is compared with the elite set of the term.

w = (1− Prob2) · (− log2 Prob1) (3.1)

or alternatively

w = Inf 1 · Inf 2 (3.2)

where

Inf 1 = − log2 Prob1 (3.3)

and

Inf 1 = (1− log2 Prob2) (3.4)

3.2 Models for Prob1

The intution behind Inf1 is simple. If Prob1 is low for a term t in a document d then
the distribution of t in d deviates from its distribution in the collection and thus t is
useful to describe the contents of d. In this case, Inf 1 will be high. On the contrary if
Prob1 is high then the distribution of t in d is same as that in the collection and thus
does not provide much information about d. Inf1 thus captures the importance of a term
in a document through its deviation from an average behaviour estimated on the whole
collection. Amati and Rijsbergen[4] consider five basic probability models for estimating
Prob1. A brief description of the model and the corresponding formulae for Prob1 are
given, in the following sections.

3.2.1 The Bernoulli Model of Randomness

Here the assumption is that the tokens of a nonspecialty word should distribute over the
N documents according to the binomial law. The problem in estimating probabilities
using this model is that the factorials are too large to calculate and hence need to be
approximated. The first approximation of the Bernoulli process is the Poisson process;
the second is obtained by means of the information theoretic divergence D. The first
method gives the basic model P where the factorials are approximated using Stirling’s

14



Table 3.1: Description of various terms involved in the formulae

N The total number of documents in the collection
F The total number of occurrences of observed term t in collection
n The total number of documents containing term t in collection
tf Number of occurrences of term t in given document
tfn Normalized version of term frequency
avg l Average length of documents in collection
l Length of a specific document
c An experimental constant
ne Expected size of elite set if total F tokens are assumed

formula

Inf 1(tf) = tf · log2

tf

λ
+

(
λ+

1

12 · tf
− tf

)
· log2 e+ 0.5 · log2(2π · tf) (3.5)

The second method uses Renyi’s approximation[19] to get the model D where

Φ =
tf

F
(3.6)

p =
1

N
(3.7)

D(Φ, p) = Φ · log2

(
Φ

p

)
+ (1− Φ) · log2

(
1− Φ

1− p

)
(3.8)

Inf 1(tf) = F · (D(Φ, p)) + 0.5 log2(2π · tf(1− Φ)) (3.9)

3.2.2 The Bose-Einstein Model of Randomness

In this model it is supposed that the F tokens of a word are randomly placed in N
documents. Once the random allocation of tokens to documents is completed, this event
is completely described by its occupancy numbers: tf1, · · · , tfN where tfk stands for the
term frequency of the word in the kth document. So a solution of the occupancy problem
is found under the assumption that N � tf and taking λ = F

N
to be the mean frequency

of the term t in the collection D. Then the probability that a term occurs tf times in a
document is

Prob1(tf) =

(
1

1 + λ

)
·
(

λ

1 + λ

)tf
(3.10)

The right side of the above equation is known as the geometric distribution with
probability p = 1

1+λ
. This model of randomness is called G and the corresponding equation

is
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Inf 1(tf) = − log2

(
1

1 + λ

)
− tf · log2

(
λ

1 + λ

)
(3.11)

The second operational model associated with the Bose-Einstein statistics is con-
structed by approximating the factorials by Stirling’s formula. Thus we have

Inf 1(tf) = − log2(N −1)− log2(e) +f(N +F −1, N +F − tf −2)−f(F, F − tf) (3.12)

where

f(n,m) = (m+ 0.5) · log2(
n

m
) + (n−m) · log2 n (3.13)

3.2.3 The tf-idf and tf-itf Model of Randomness

The probability Prob1(tf) is obtained by first computing the unknown probability p of
choosing a document at random and then computing the probability of having tf occur-
rences of that term in that document.

We suppose that any token of the term is independent of all other tokens both of the
same and different type, namely, the probability that a given document contains tf tokens
of the given term is

Prob1(tf) =

(
n+ 0.5

N + 1

)tf
(3.14)

Hence we obtain the basic model I(n):

Inf1(tf) = tf · log2

N + 1

n+ 0.5
(3.15)

A different computation can be obtained from Bernoulli’s law. Let ne be the expected
number of documents containing the term under the assumption that there are F tokens
in the collection. Then

ne = N · (Prob(tf 6= 0)) = N ·
(

1−
(
N − 1

N

)F)
(3.16)

The third basic model is the tf-Expected idf model I(ne):

Inf1(tf) = tf · log2

N + 1

ne + 0.5
(3.17)
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Again from the term independence assumption, we obtain with a smoothing of the
probability, the tf − itf basic model I(F )

Inf1(tf) = tf · log2

N + 1

F + 0.5
(3.18)

3.3 Models for Prob2

Inf1 thus captures the importance of a term in a document through its deviation from
average behaviour estimated on the whole collection. The question is that why do we need
to normalize it. The answer lies in the fact that there are certain principles or heuristics
that seem to cause good retrieval performance. Such heuristics are discussed extensively
by Fang [5]. However for the purpose of DFR we need to know four heuristics that are
given below.

We consider here matching functions (denoted RSV), of the form:

RSV (q, d) =
∑

w∈q∩d
h(tf, l(d), zw, θ) (3.19)

where θ is a set of parameters and h depends on the form of the IR model considered;
zw can take the value n or F normalized by N . In particular the following four principles
should be necessarily satisfied:

Principle 1: Documents with more occurrences of query terms should get higher
scores than documents with less occurrences.

Principle 2: However the increase in the retrieval score should be smaller for larger
term frequencies, in as much as the difference between say 110 and 111 is not as important
as the increase from 1 to 2.

Principle 3: Longer documents when compared to shorter ones with exactly the same
number of occurrences of the query term should be penalized as they are likely to cover
additional topics beyond the ones that are present in the query.

Principle 4: It is important when evaluating the retrieval score of a document, to
down-weight terms occurring in many documents i.e which have a high document/collection
frequency as these terms have a lower discriminating power.

The above four principles can be mathematically stated as

∀(l(d), zw, θ),
∂h(tf , l(d), zw, θ)

∂tf
> 0 (3.20)

∀(l(d), zw, θ),
∂2h(tf , l(d), zw, θ)

∂2tf
< 0 (3.21)
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∀(tf , zw, θ),
∂h(tf , l(d), zw, θ)

∂l(d)
< 0 (3.22)

∀(tf , l(d), θ),
∂h(tf , l(d), zw, θ)

∂zw
< 0 (3.23)

Here equation (3.20), (3.21) and (3.23) directly state that h should be increasing
with term frequency and decreasing with the document length and document collection
frequency. Equations (3.20) and (3.21) state that h should be an increasing concave
function of term frequency, the concavity ensuring that the increase in retrieval score will
be smaller for large term frequency. If we base a retrieval function solely on the above
formulation of Inf1 only then we can see that model I(n), I(F ) and I(ne) verify conditions
(3.20), (3.22) and (3.23) and the model for geometric distribution verifies condition (3.20)
and (3.22) but partially (3.23) as the derivative may be positive for some values. All the
models fail to satisfy (3.21) however as for each of them

∀(l(d), zw, θ),
∂2h(tf , l(d), zw, θ)

∂2tf
= 0 (3.24)

Hence Inf1 alone for the geometric distribution and the models I(n), I(F ) and I(ne)
is not able to give a valid IR model which satisfies the above four principles. The role of
Inf2 is thus to make the IR model a valid one by satisfying equation (3.21) Two models
have been proposed for Inf2. These are discussed in the following sections.

3.3.1 The Normalization L

The first model is given by Laplace’s law of succession. The law of succession in this
context is used when we have no advance knowledge of how many tokens of a term should
occur in a relevant document of arbitrarily large size. For understanding this model we
need to understand the phenomenon of aftereffect in the elite set. A short description is
given below.

Aftereffect in elite set: If we are searching for tokens of a term and after a long
unsuccessful search we find a few of them in a portion of a document. It is quite likely
that we have finally reached a document in which we expect increased success in our
search. The more we find, the higher is the expectation. This expectation is given by
Prob2(tf ) in formula (3.1), and has been called by statisticians an apparent aftereffect of
future sampling. [20]

In other words aftereffect is satisfying formula (3.21). The probability Prob2 modeling
the aftereffect in the elite set in formula (3.1) is given by the conditional probability
of having one more token of the term in the document (i.e., passing from tf observed
occurrences to tf + 1) assuming that the length of a relevant document is very large.

Prob2(tf ) =
tf + 1

tf + 2
(3.25)

Similarly, if tf ≥ 1 then Prob2(tf ) can be given by the conditional probability of
having tf occurrences assuming that tf − 1 have been observed. Equation (3.23) with tf 1
instead of tf leads to the following equation,
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Prob2(tf ) =
tf

tf + 2
(3.26)

So the corresponding value of Inf2 is

Inf2(tf ) = 1− Prob2(tf ) =
1

tf + 1
(3.27)

3.3.2 The Normalization B

The disadvantage of the Bernoulli model is that it lacks memory i.e. previous successes
and failures do not influence successive outcomes. So for estimating Prob2 with Bernoulli
trial we use the following urn model. We add a new token of the term to the collection,
thus having F+1 tokens instead of F . We then compute the probability B(n, F+1, tf +1)
that this new token falls into the observed document, thus having a within document term
frequency tf +1 instead tf . Similarly we calculate B(n, F, tf ). Therefore we can calculate
the incremental rate α of term occurrence in the elite set which is given by

α =
B(n, F, tf )−B(n, F + 1, tf + 1)

B(n, F, tf )
= 1− B(n, F + 1, tf + 1)

B(n, F, tf )
(3.28)

On simplifying we get

α = 1− F + 1

n · (tf + 1)
(3.29)

So the corresponding value for Inf2 is

Inf2(tf ) = 1− α =
F + 1

n · (tf + 1)
(3.30)

3.4 Length Normalization

The next concern is to introduce an additional methodology that can normalize the ran-
dom variables tf by the length of the document. In other words, we would like to obtain
the expected number of tokens of a term in a document and in the collection if the lengths
of the documents in the collection were equal to a fixed value, for example, to their average
length.

Here a density function ρ(l) of the term frequency is defined and then for each docu-
ment d of length l(d) the term frequency is computed on the same interval [l(d), l(d)+∆l]
of given length l as a normalized term frequency. l can be chosen as either the median or
the mean avg l of the distribution. Experiments show that normalization with l = avg l
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is the most appropriate choice.

Hypothesis 1: The distribution of a term is uniform in the document. The term
frequency density ρ(l) is a constant ρ. So the normalized term frequency tfn is given by

tfn = tf · avg l
l(d)

(3.31)

Hypothesis 2: The term frequency density ρ(l) is a decreasing function of the length
l. So the normalized term frequency tfn is given by

tfn = tf · log2

(
1 +

avg l

l(d)

)
(3.32)
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Chapter 4

Experimental Results

4.1 New First Normalization Models

These models are implemented in the DFR model of another IR system Terrier 3.0. So
for comparison purpose they have also been implemented in SMART. A brief description
of these normalization techniques follows:

4.1.1 Log of Laplace law of succession

This is the same as the Laplace model except that negative logarithm of the corresponding
Inf1 value is taken. The formula is as follows:

tfn = log2

1 + tf

tf
(4.1)

4.1.2 Laplace law of succession with prior

This is an extension of the Laplace model where the prior information is used as a function
of term frequency and average length. The formula is as follows:

prior =
tf

c · avg l
(4.2)

tfn =
(1 + prior)2

1 + tf
(4.3)

4.2 New Length Normalization Models

Amati and Rijsbergen have suggested that along with the two assumptions in Hypothesis
1 and 2 other choices are equally possible and that they think this is a crucial research
issue which should be extensively studied and explored. So we have implemented some of
the length normalization techniques that are implemented in the DFR model of another
IR system TERRIER 3.0. A brief description of these normalization techniques follows:
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4.2.1 No Normalization

This implements an empty normalisation. It does no frequency normalisation but returns
the original raw term frequency.

tfn = tf (4.4)

4.2.2 BM25 Normalization

It is also known as Okapi BM25 normalization and is based on the probabilistic retrieval
framework developed in the 1970s and 1980s by Stephen E. Robertson, Karen Sparck
Jones, and others [21]. The formula is as follows:

tfn =
tf

1− c+ c · avg l/l(d)
(4.5)

4.2.3 Increasing density function

As in Hypothesis 2, the DFR model assumed ρ(l) to be a decreasing function of the length.
Here we assume it as an increasing function of l. The formula is as follows:

tfn = c · tf · avg l
l(d)

(4.6)

4.2.4 Pareto Distribution Normalization

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power
law probability distribution that coincides with social, scientific, geophysical, actuarial,
and many other types of observable phenomena. Outside the field of economics, it is at
times referred to as the Bradford distribution. The formula is as follows:

tfn = tf ·
(
avg l

l(d)

)c
(4.7)

4.2.5 Jelinek - Mercer smoothing

It is a smoothing technique which is primarily used in language models and is considered
as an interpolation between the unigram and the bigram model. Since DFR is also
considered as an extension of the language model approach so it is used here. The formula
is as follows:

tfn =

(
(1− c) · tf

l(d)
+ c · n

N

)
· l(d) (4.8)
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4.2.6 Normalization with natural logarithm

This is same as the normalization of Hypothesis 2 in DFR model except that here the
logarithm is to the base e and there it was to the base 2. The formula is as follows:

tfn = tf · log

(
1 + c · avg l

l(d)

)
(4.9)

4.3 Naming convention followed in SMART

Here we give a table 4.1 of the naming convention that is used in SMART and the
corresponding model in Amati’s paper alongwith that of TERRIER. The nil fields indicate
that the model is absent in the current implementation.

Table 4.1: Naming Convention Table

Type DFR SMART code TERRIER Model Description
Inf1 I(F ) f IF Approximation of I(ne)

I(n) n In Inverse document frequency
I(ne) e In exp Mixture of Poisson and inverse document frequency
G g - Geometric as limiting form of Bose Einstein
BE b - Limiting form of Bose-Einstein
P p P Poisson approximation of the binomial model
D d D Approximation of the binomial model with divergence

Inf2 L L L Laplace law of succession
- M LL Log of Laplace law of succession
- P L5 Laplace law of succession with prior
B B B Ratio of two Bernoulli processes

tfn - 0 0 Raw term frequency
H1 1 1 Uniform distribution of the term frequency
H2 2 2 The term frequency density is decreasing function
- - 3 Drichlet’s Prior
- 3 B BM25 normalization
- 4 F Increasing density function
- - J Jelinek Mercer smoothing
- 5 P Pareto Distribution
- 6 JN Jelinek Mercer smoothing 2
- 7 C Same as 2 but with natural log

4.4 Results

The experiments models such as I(F )B2, I(n)L2, I(ne)B2, I(ne)L2 showed good results
as reported in Amati’s implementation of the DFR model. So these models were checked
against the TREC-6 collection. It consisted of 556,000 documents, from the Congressional
Record, Federal Register, Financial Times, Foreign Broadcast Information Service, and
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Table 4.2: Disks 4 and 5 of TREC 6,Topics 301− 350 Rel. Doc: 4290
SMART

Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 0.2458 0.5080 0.4220 0.3213 0.1990 2476
I(n)L2 0.2440 0.5080 0.4400 0.3120 0.1974 2394
I(ne)B2 0.2488 0.5200 0.4420 0.3273 0.2010 2497
I(ne)L2 0.2446 0.4840 0.4300 0.2980 0.1896 2325

Amati
Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 - - - - - -
I(n)L2 0.2705 0.5560 0.4840 0.3267 0.2088 2510
I(ne)B2 0.2622 0.5680 0.4680 0.3373 0.2100 2566
I(ne)L2 0.2751 0.5440 0.4620 0.3213 0.2044 2493

Table 4.3: Disks 4 and 5 of TREC 7, Topics 351− 400 Rel. Doc: 4674
SMART

Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 0.2458 0.5720 0.5020 0.3733 0.2314 2818
I(n)L2 0.2312 0.5440 0.4880 0.3513 0.2216 2700
I(ne)B2 0.2486 0.5800 0.5100 0.3680 0.2316 2799
I(ne)L2 0.2287 0.5240 0.4740 0.3507 0.2134 2656

Amati
Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 0.2484 0.5800 0.5200 0.3813 0.2374 2833
I(n)L2 0.2360 0.5400 0.4960 0.3687 0.2278 2845
I(ne)B2 0.2482 0.5800 0.5100 0.3813 0.2386 2881
I(ne)L2 0.2320 0.5400 0.4980 0.3613 0.2174 2810

LA Times collections. Differently from TREC-6, in TREC-7 and TREC-8, the collection
CR (about 28,000 transcripts from the Congressional Record) was not indexed.

Each of the 50 topics consists of three fields: a title (from one to three words), a
description (one or two sentences), and a narrative (a paragraph listing specific criteria
for accepting or rejecting a document). In our experiments we used all these three fields.
The value of the constant c is taken as 1.
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Table 4.4: Disks 4 and 5 of TREC 8, Topics 401− 450 Rel. Doc: 4728
SMART

Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 0.2747 0.5560 0.4980 0.3720 0.2300 2959
I(n)L2 0.2640 0.5440 0.4980 0.3653 0.2262 2861
I(ne)B2 0.2764 0.5600 0.4940 0.3753 0.2310 2967
I(ne)L2 0.2644 0.5320 0.4880 0.3507 0.2246 2880

Amati
Model AvegPr Pr5 Pr10 Pr30 Pr100 Rel Ret
I(F )B2 0.2833 0.5520 0.5060 0.3967 0.2528 3189
I(n)L2 0.2792 0.5360 0.5040 0.3927 0.2492 3073
I(ne)B2 0.2841 0.5520 0.5080 0.3967 0.2532 3178
I(ne)L2 0.2769 0.5200 0.4940 0.3887 0.2452 3067

Table 4.5: Comparison of Average Precision Values
TREC 6

Model SMART TERRIER Amati
I(F )B2 0.2458 0.2338 -
I(ne)C2 0.2451 0.2293 -
I(n)L2 0.2312 0.2357 0.2705
I(ne)B2 0.2486 0.2342 0.2662
I(ne)L2 0.2287 - 0.2751

TREC 7
Model SMART TERRIER Amati
I(F )B2 0.2458 0.2465 0.2484
I(ne)C2 0.2447 0.2421 -
I(n)L2 0.2312 0.2306 0.2360
I(ne)B2 0.2486 0.2457 0.2482
I(ne)L2 0.2287 - 0.2320

TREC 8
Model SMART TERRIER Amati
I(F )B2 0.2747 0.2753 0.2833
I(ne)C2 0.2672 0.2654 -
I(n)L2 0.2640 0.2645 0.2792
I(ne)B2 0.2764 0.2760 0.2841
I(ne)L2 0.2644 - 0.2769
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Some observations from the results obtained in SMART are as follows:

• We could not match performance reported by Amati and Rijsbergen[4] in many
cases. This is possibly owing to the other components (besides term-weighing)
involved in a full IR system.

• We therefore compared against TERRIER which may be taken as an authoritative
implementation. Our implementation performs at par with TERRIER as can be
seen in the Table 4.5 with the default parameter settings.

• We have inferred that model I(ne)B2 performs consistently better than other models
in our implementation.
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Chapter 5

Future Work

We discussed various aspects for the divergence from randomness model and its present
implementation in Smart system. The future work will involve the following:

1. Different Query Expansion Models need to be tried out and the performance eval-
uated.

2. The two length normalization procedures namely Drichlet’s Prior and Jelinek Mercer
Smoothing for language modelling needs to be implemented.

3. The DFR system needs to be validated under the TREC 10 data to compare retrieval
with and without query expansion.
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