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Abstract

Predicate encryption is a new paradigm generalizing, among other things, identity-

based encryption. In a predicate encryption scheme, secret keys correspond to

predicates and ciphertexts are associated with attributes; the secret key SKf cor-

responding to a predicate f can be used to decrypt a ciphertext associated with at-

tribute I if and only if f(I) = 1. Constructions of such schemes are currently known

for relatively few classes of predicates.In 2008 Jonathon Katz et. al [14]. proposed

Predicate Encryption scheme Supporting Disjunctions, Polynomial Equations, and

Inner Products in [5]. In 2010 Angelo De Caro et. al [7]. proposed three secure

Hidden Vector Encryption Scheme and demonstrated their security under certain

hard Assumptions in [7].

In this work we have pointed out some redundancy in the security proof of the

Hierarchical Hidden Vector Encryption given in [7] and have given a new security

proof for the scheme that removes the flaw. We have also done a brief survey

on some important schemes of Attribute Based Encryption and Predicate Based

Encryption.
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Chapter 1

Introduction

In a traditional Public Key Cryptosystem (PKC), the association between a user’s identity and

his public key is obtained through a digital certificate issued by a Certifying Authority (CA).

The CA checks the credentials of a user before issuing a certificate to him. If Alice wants to

send a signed message to Bob, first she obtains a digital certificate for her public key from

a CA. Alice then signs a message using her private key and sends the signed message along

with her certificate to Bob. Bob first verifies the validity of the certificate by checking the

certificate revocation list published by the CA, then he verifies the signature using public key

in the certificate. If many CAs are involved between Alice and Bob the entire certificate path

has to be verified. Hence, the process of certificate management requires high computational

and storage efforts.

To simplify the certificate management process, Shamir [18] introduced the concept of

Identity-based cryptosystem in 1984. In such cryptosystems the public key of a user is derived

from his identity information and his private key is generated by a trusted third party called

Private Key Generator (PKG). The advantage of ID-based cryptosystems is that it simplifies

the key management process which is a heavy burden in the traditional certificate based cryp-

tosystems. In these cryptosystems Alice can send an encrypted message to Bob by using Bob’s

identity information even before Bob obtains his private key from the PKG. In the case of sig-

nature Bob can verify Alice’s signature just by using her identity information. In general, an

identity based cryptosystem has the following properties:

1



2 1. Introduction

1) user’s public key is his identity (or derived from identity).

2) no requirement of public key directories

3) message encryption and signature verification processes require only receivers’ and sign

ers’ identity respectively along with some system parameters.

These properties make ID-based cryptosystems advantageous over the traditional PKCs, as

key distribution is far simplified. It needs a directory only for authenticated public system pa-

rameters of the PKG, which is clearly less burdensome than maintaining a public key directory

for total users. This setup is also much more secure than traditional PKC because Adversary

can always forge the Public Key Directory by updating some entry with his public key and can

easily get the secret message (The message is encrypted with Adversary’s public key) and de-

crypt it with his own key. However, PKC also suffer from an inherent drawback of key escrow

i.e. PKG knows the users’ private keys. They also require a secure channel for key issuance be-

tween PKG and user. The ID-based cryptosystems require the users to authenticate themselves

to their PKG in the same way as they would authenticate themselves to a CA in traditional

PKC.

Identity-Based Encryption (IBE) allows for a sender to encrypt a message to an identity

without access to a public key certificate. The ability to do public key encryption without

certificates has many practical applications. For example, a user can send an encrypted mail to

a recipient, e.g. avikchkrbrti@yahoo.co.in, without the requiring either the existence of a

Public-Key Infrastructure or that the recipient be on-line at the time of creation.

One common feature of all previous Identity-Based Encryption systems is that they view

identities as a string of characters. But Amit Sahai and Brent Waters proposed a new IBE

scheme at EuroCrypt, 2005 called Fuzzy Identity Based Encryption [16] where identities of a

user as a set of descriptive attributes. In a Fuzzy Identity-Based Encryption scheme, a user with

the secret key for the identity ω is able to decrypt a ciphertext encrypted with the public key ω′

if and only if ω and ω′ are within a certain distance of each other as judged by some metric.

Therefore, our system allows for a certain amount of error-tolerance in the identities.

Fuzzy-IBE gives rise to two interesting new applications. The first is an Identity-Based

En- cryption system that uses biometric identities. That is we can view a user’s biometric, for

example an iris scan, as that user’s identity described by several attributes and then encrypt to
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the user using their biometric identity. Secondly, Fuzzy IBE can be used for an application that

we call attribute-based encryption. In this application a party will wish to encrypt a document

to all users that have a certain set of attributes. For example, in an Institute, the director might

want to encrypt a document to all the ”Professors” who are in the ”Placement Committee” in the

department of ”Computer Science” in his institute. In this case he would encrypt to the identity

{”Professor”, ”PlacementCommittee”, ”ComputerScience”}. Any user who has an

identity that contains all of these attributes could decrypt the document.

Here, we describe a much richer type of attribute-based encryption cryptosystem due to

Goyal et al. and demonstrate its applications. In this system each ciphertext is labeled by the

encryptor with a set of descriptive attributes. Each private key is associated with an access

structure that specifies which type of ciphertexts the key can decrypt.This scheme is called

Key-Policy Attribute Based Encryption (KP ABE) [11] since the access structure is speci-

fied in the private key, while the ciphertexts are simply labeled with a set of descriptive at-

tributes. This setting is also reminiscent of secret sharing schemes . Using known techniques

one can build a secret sharing scheme that specifies that a set of parties must cooperate in order

to reconstruct a secret. For example, one can specify a tree access structure where the interior

nodes consist of AND and OR gates and the leaves consist of different parties. Any set of

parties that satisfy the tree can reconstruct the secret.

Another possibility is to have the reverse situation: user keys are associated with sets of

attributes, whereas ciphertexts are associated with policies. Such systems are called Ciphertext
Policy Attribute Based Encryption (CP ABE) [17] systems. The construction of Sahai and

Waters [SW05] was most naturally considered in this framework. CP-ABE systems that allow

for complex policies (like those con- sidered here) have a number of applications. An important

example is a kind of sophisticated Broadcast Encryption, where users are described by various

attributes. Then, one could create a ciphertext that can be opened only if the attributes of a user

match a policy. For example, in a military setting, one could broadcast a message that is meant

to be read only by users who have a rank of Lieutenant or higher, and who were deployed in

South Korea in the year 2005.

Further modification on CP-ABE systems is presented by Goyal et al. [12]. Previous CP-

ABE systems could either support only very limited access structures or had a proof of security

only in the generic group model. This construction can support access structures which can be
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represented by a bounded size access tree with threshold gates as its nodes. The bound on the

size of the access trees is chosen at the time of the system setup represented by a tuple (d, num)

where d represents the maximum depth of the access tree and num represents the maximum

number of children each non-leaf node of the tree might have.

In 2007 Ling Chuang et al [8]. observed that attributes can be arranged into logical hierar-

chies, which in turn can be used to improve the efficiency of the scheme. Essentially, a hier-

archy allows us to use fewer group elements to represent all attributes in the system, thereby

reducing the ciphertext size, the number of exponentiations in encryption and the number of

pairings in decryption.

Clearly Their are two types of secrecy Payload Hiding and Attribute Hiding. Roughly

speaking attribute hiding requires that the ciphertext conceal the attribute as well as the plain-

text, while payload hiding only requires that the ciphertext conceals the plaintext The current

constructions of Attribute Based Encryptions do not hide the set of attributes under which the

data is encrypted. Hence they exhibits Payload hiding not attribute hiding. However, if it were

possible to hide the attributes, then viewing attributes as keywords in such a system would lead

to the first general keyword-based search on encrypted data [1]. A search query could poten-

tially be any monotone boolean formula of any number of keywords. Some progress towards

this goal has been made in [2] [6], in a notion generalizing ABE called Functional Encryp-

tion (or Predicate Encryption). In Functional Encryption, secret keys correspond to functions

that can be used to decrypt a ciphertext (with attributes) if and only if the attributes satisfy the

function. The works [2] [6] construct schemes that answer this problem for certain classes of

functions.

In 2007 Jonathon Katz et al. [14] proposed Predicate Encryption Supporting Disjunctions,

Polynomial Equations, and Inner Product for predicates corresponding to the evaluation of

inner products over ZN (for some large integer N ). This, in turn, enables constructions in

which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF for-

mulae, or threshold predicates. In 2010 Angelo De Caro et al. proposed fully secure im-

plementations for Conjunctions (also called Hidden Vector Encryption in the literature), Dis-

junctions and k−CNF/DNF predicates that guarantee the security of the plaintext and of

the attribute.Their constructions for Disjunctions and Conjunctions are linear in the number of

variables in contrast to the previous fully secure constructions for Disjunction required time
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exponential in the number of variables while for Conjunctions the best previous construction

was quadratic in the number of variables.

The thesis is organized as follows :

• Chapter2: This chapter discusses the existing important works in Attribute Based En-

cryption. Specifically, the existing Ciphertext Policy Attribute Based Encryption systems

are discussed stating their construction and security achieved .

• Chapter3: This chapter discusses the existing important works in Predicate Based En-

cryption by stating their construction and security achieved .

• Chapter4: This chapter discusses the redundancy of existing security proof for Hi-

erarchical Hidden Vector Encryption(HHVE) and our improved security proof for that

scheme.

• Chapter5: This chapter gives a brief conclusion to the thesis .



Chapter 2

A Brief Survey on Attribute Based
Encryption

In this chapter we are giving a brief survey on Attribute Based Encryption.

The main properties of Attribute Based Encryption are

1) Which users can decrypt a ciphertext will be decided by the attributes and policies asso-

ciated with the message and the user.

2) A central authority will create secret keys for the users based on attributes/policies foreach

user.

3) Ciphertexts can be created (by anyone) by incorporating attributes/policies.

In the next sections we are describing some important schemes in Attribute Based Encryption

with their properties .

2.1 Some Important Definitions

In this section we are giving some important definitions

6
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Definition 1 (Access Structure) Let {P1, P2, ..., Pn} be a set of parties. A collection A ⊆
2{P1,P2,...,Pn} is monotone if ∀ B, C : if B ∈ A and B ⊆ C then C ∈ A. An access structure

(respectively, monotone access structure) is a collection (respectively, monotone collection) A
of non-empty subsets of {P1, P2, ..., Pn}, i.e., A ⊆ 2P1,P2,...,Pn \ {∅}. The sets in A are called

the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Bilinear group) Let G0 and G1 be two multiplicative cyclic groups of prime or-

der p. Let g be a generator of G0 and e be a bilinear map, e : G0 × G0 → G1 . The bilinear

map e has the following properties:

1. Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp , we have e(ub , vb ) = e(u, v)ab .

2. Non-degeneracy: e(g, g) 6= 1.

We say that G0 is a bilinear group if the group operation in G0 and the bilinear map

e : G0 × G0 → G1 are both efficiently computable. Notice that the map e is symmetric since

e(ga , gb ) = e(g, g)ab = e(gb , ga ).

2.2 Fuzzy Identity-Based Encryption

2.2.1 Construction

Recall that identities are viewed as sets of attributes and let d represent the error-tolerance in

terms of minimal set overlap. When an authority is creating a private key for a user, he will

associate a random d− 1 degree polynomial, q(x), with each user with the restriction that each

polynomial have the same valuation at point 0, that is q(0) = y.

For each attributes associated with a user’s identity the key generation algorithm will issue

a private key component that is tied to the user’s random polynomial q(x). If the user is able

to ”match” at least d components of the ciphertext with their private key components, then

they will be able to perform decryption. However, since the private key components are tied
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to random polynomials, multiple user’s are unable to combine them in anyway that allows for

collusion attacks.

Recall that an IBE scheme has to create such that a ciphertext created using identity ω can

be decrypted only by a secret key ω′ where |ω ∩ ω′| ≥ d.

Let G1 be bilinear group of prime order p, and let g be a generator of G1. Additionally, let

e : G1 ×G1 → G2 denote the bilinear map. A security parameter, k, will determine the size of

the groups.

The Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of element in Zp is defined as:

∆i,S(x) =
∏

j∈S,j 6=i

x− j
i− j

Identities will be element subsets of some universe, U , of size |U |. Each element is associ-

ated with a unique integer in Z∗p.

Setup(d). First, the universe, U of elements are defined. For simplicity, the fist |U | elements of

Zp are taken to be the universe. Namely, the integers 1, ..., |U |(modp).

Next, choose t1, ..., t|U | uniformly at random from Zp. Finally, choose y uniformly at ran-

dom in Zp. The published public parameters are:

PP =< T1 = gt1 , ...,T|U| = gt|U| ,Y = e(g,g)y >

The master key is:

MK =< t1, ..., t|U|,y >

KeyGen(MK, ω) To generate a private key for identity ω ⊆ U , the following steps are taken.

A (d− 1) degree polynomial q is randomly chosen such that q(0) = y. The private key consists

of component, (Di)i∈ω, where Di = g
q(i)
ti for every i ∈ ω. That is secret key Sk is given by

SK =< Di, ∀i ∈ ω >

Encryption(PP,M, ω′) Encryption with public key ω′ and message M ∈ G2 proceed as fol-

lows. First, a random value s ∈ Zp is chosen. The ciphertext is then published as:
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E = (ω′,E′ = MYs, {Ei = Ts
i}i∈ω′)

Decryption(E,SK) Suppose that a ciphertext, E, is encrypted with a key for identity ω′ and

the identity ω corresponding to the private key SK satisfies the d-component matching i.e,

|ω∩ω′| ≥ d. An arbitrary d-element subset, S, of ω∩ω′. Then the ciphertext can be decrypted

as:

E ′/
∏
i∈S

(e(Di, Ei))
∆i,S(0)

= Me(g, g)sy/
∏
i∈S

(e(g
q(i)
ti , gsti))∆i,S(0)

= Me(g, g)sy/
∏
i∈S

(e(g, g)sq(i))∆i,S(0)

= M (using polynomial interpolation)

2.2.2 Proof of Security

(Decisional Bilinear Diffie-Hellman (BDH) Assumption). Suppose a challenger chooses

a, b, c, z ∈ Zp at random. The Decisional BDH assumption is that no polynomial-time ad-

versary is to be able to distinguish the tuple(A = ga, B = gb, C = gc, Z = e(g, g)abc) from

the tuple(A = ga, B = gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

(Decisional Modified Bilinear Diffie-Hellman (MBDH) Assumption). Suppose a challenger

chooses a, b, c, z ∈ Zp at random. The Decisional BDH assumption is that no polynomial-time

adversary is to be able to distinguish the tuple(A = ga, B = gb, C = gc, Z = e(g, g)
ab
c ) from

the tuple(A = ga, B = gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

Theorem 2.2.1 Assume that MBDH assumption holds. Then The Fuzzy Identity Based En-

cryption is IND-CPA secure.
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2.3 Large Universe Construction

In the previous section the size of the public parameters grows linearly with the number of

possibles attributes in the universe. In this second scheme which uses all elements of Z∗p as the

universe, yet the public parameters only grow linearly in a parameter n, which is fixed as the

maximum size identity, it can be decrypted to.

In addition to decreasing the public parameter size, having a large universe allows us to

apply a collision-resistant hash functionH : {0, 1}∗ → Zp and use arbitrary string as attributes.

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. Additionally,

let e : G1 × G1 → G2 denote the bilinear map. The length of encryption identity is restricted

to be n for some fixed n.

The Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of element in Zp is defined as:

∆i,S(x) =
∏

j∈S,j 6=i

x− j
i− j

Identities will be sets of n elements of Z∗p. Alternatively an identity can be described as a col-

lection of n strings of arbitrary length and a collision resistant hash function H is used to hash

strings into members of Z∗p. The construction is given below.

Setup(n, d) First, choose g1 = gy, g2 ∈ G1.

Next, choose t1, ..., tn+1 uniformly at random from G1. Let N be the set {1, ..., n+ 1} and

a function, T is defined as:

T (x) = gx
n

2

n+1∏
i=1

t
∆i,N (x)
i

The function can be viewed as the function gxn2 gh(x) for some n degree polynomial h. The

public parameter PP is published as: g1, g2, t1, ..., tn+1 and the master key MK is y.

KeyGen(MK, ω). To generate a private key for identity ω the following steps are taken. A

d − 1 degree polynomial q is randomly chosen such that q(0) = y. The secret key SK will

consist of two sets. The first set, {Di}i ∈ ω, where the elements are constructed as

Di = g
q(i)
2 T (i)ri
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where ri is a random member of Zp defined for all all i ∈ ω.

The other set is {di}i ∈ ω where the elements are constructed as

di = gri

Encryption(PP,M, ω′). Encryption with the public key ω′ and message M ∈ G2 proceeds as

follows.

First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E ′ = Me(g1, g2)s, E ′′ = gs, {Ei = T (i)s}i∈ω′)

Decryption(E,SK) The ciphertext, E, is encrypted with a key for identify ω′ and the secret

key SK is associated with identity ω such that |ω ∩ ω′| ≥ d. An arbitrary d-element subset, S,

of ω ∩ ω′. Then, the ciphertext can be decrypted as:

E ′/
∏
i∈S

(
e(di, Ei)

e(Di, E ′′)

)∆i,S(0)

= Me(g1, g2)s/
∏
i∈S

(
e(gri , T (i)s)

e(g
q(i)
2 T (i)ri , gs)

)∆i,S(0)

= Me(g1, g2)s/
∏
i∈S

(
e(gri , T (i)s)

e(g
q(i)
2 , gs)e(T (i)ri , gs)

)∆i,S(0)

= Me(g1, g2)s/
∏
i∈S

1

e(g, g2)q(i)s∆i,S(0)

= M (using polynomial interpolation)

2.3.1 Proof of Security

Theorem 2.3.1 Assume that Decisional BDH assumption holds. Then the Fuzzy Identity Based

Encryption is IND-CPA secure.
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2.4 Attribute-Based Encryption for Fine Grained Access Con-

trol of Encrypted Data(Key-Policy Attribute Based En-

cryption)

2.4.1 Access Trees

In this construction, user decryption keys will be identified with a set γ of attributes. A party

who wishes to encrypt a message will specify through an access tree structure, a policy that

private keys must satisfy in order to decrypt.

Access Tree

Let τ be a tree representing an access structure. Each non-leaf node of the tree represents

a threshold gate, described by its children and a threshold value. If numx is the number of

children of a node x and kx is its threshold value, then 0 < ks ≤ numx. Each leaf node x of the

tree is described by an attribute and a threshold value kx = 1

The parent of a node x in the tree is denoted by parent(x). The access tree τ also defines an

ordering between the children of every node, that is, the children of a node x are numbered from

1 to numx. The function index(x) returns such a number associated with a node x, where the

index values are uniquely assigned to nodes in an arbitrary manner for a given access structure.

Also for a leaf-node x, index is defined as index(x) = attr(x) and attr(x) is the attribute

associated with it.

2.4.2 Satisfying an Access Tree

Let τ be an access tree with root r. denote by τx the sub-tree of τ rooted at the node x. Hence

τ is the same as τr. If a set of attribute γ satisfies the access tree τx, it is denoted as τx(γ) = 1.

τx(γ) is computed recursively as follows. If x is a non-leaf node, evaluate τz(γ) for all children

z of a node x. τx(γ) returns 1 if and only if at least kx children return 1. If x is leaf node, then

τx(γ) returns 1 iff att(x) ∈ γ.
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2.4.3 Construction

Let G1 be a bilinear group of order p, and let g be a generator of G1. In addition, let e :

G1×G1 → G2 denote the bilinear map. A security parameter, k, will determine the size of the

groups. The Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of elements in Zp is defined:

∆i,S(x) =
∏

j∈S,j 6=i
x−j
i−j . Each attribute will be associated with a unique element in Z∗p. Here

the construction has four algorithms given below. Setup The universe of attribute is defined by

U = {1, 2, ..., n}. Now, for each attribute i ∈ U , choose a number ti uniformly at random from

Zp. Finally, choose y uniformly at random in Zp. The published public parameter PP are

PP = T1 = gt1 , ..., T|U | = gt|U| , Y = e(g, g)y The master key MK is:

MK = t1, ..., t|U |, y.

Encryption(M,γ,PP). To encrypt a message M ∈ G2 under a set of attributes γ, choose

a random value s ∈ Zp and publish the ciphertext as:

E = (γ,E ′ = MY s, {Ei = T si }i∈γ).

Key Generation(γ,MK) The algorithm outputs a key that enables the user to decrypt a mes-

sage encrypted under a set of attribute γ if and only if (γ) = 1. The algorithm proceed as

follows. First choose a polynomial qx for each node x(including the leaves) in the tree T .

These polynomials are chosen in the following way in a top-down manner, starting from the

root node r

For each node x in the tree, set the degree dx of the polynomial qx to be one less that the

threshold value kx of that node, that is, dx = kx − 1. Now, for the root node r, set qr(0) = y

and dr other points of the polynomial qr randomly to define it completely. For any other node

x, set qx(0) = qparent(x)index(x) and choose dx other points randomly to completely define qx.

Once the polynomial have been decided, for each leaf node x, the following secret value is

given to the user:

Dx = g
qx(0)
ti where i = attr(x).
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The set of above secret values is the decryption key D.

Decryption(E, D)The decryption procedure is a recursive algorithm. First a recursive al-

gorithm DecryptNode(E,D,x) at a node x is defined that takes as input the ciphertext E =

(γ,E ′, {Ei}i∈γ), the private key D(it is assumed that the access tree T is embedded in the

private key), and a node x in the tree. It outputs a group element of G2 or ⊥.

Let i = attr(x). If the node x is a leaf node then:

DecryptNode(E,D, x)

{
e(Dx, Ei) = e(g

qx(0)
ti ) = e(g, g)s.qx(0) if i ∈ γ

⊥ otherwise

Now the recursive case is considered when x is a non leaf node. The algorithmDecryptNo-

de(E,D,x) then proceeds as follows: For all nodes z that are children of x, it callsDecryptNo-

de(E,D, z) and stores the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z

such that Fz 6=⊥. If no such set exists then the node was not satisfied and the function returns

⊥.

Otherwise, it is computed as:

Fx =
∏
z∈Sx

F
∆i,s′x

(0)
z , where i = index(z), S ′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)s.qz(0))∆i,s′x
(0)

=
∏
z∈Sx

(e(g, g)s.qparent(z)(index(z)))∆i,s′x
(0) (by construction)

=
∏
z∈Sx

e(g, g)s.qz(0).∆i,s′x
(0)

= e(g, g)sqx(0) (using polynomial interpolation)

and return the result.

Now, the decryption algorithm simply calls the function on the root of the tree. DecryptNo-

de(E,D, r) = e(g,g)ys = Ys if and only if the ciphertext satisfies the tree. Since, E ′ = MY s

the decryption algorithm simply divides out Y s and recovers the message M
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2.4.4 Proof of Security

Theorem 2.4.1 Assume that Decisional BDH assumption holds. Then Key-Policy Attribute

Based Encryption is IND-CPA secure.

2.5 Ciphertext-Policy Attribute-Based Encryption

2.5.1 Construction of CP-ABE scheme

In this section construction of the CP-ABE scheme in [ [17] will be provided. First we describe

the model of access trees and attributes for describing ciphertexts and private keys respectively.

Next, the scheme will be described. Finally, we discuss security, efficiency, and key revocation

of the scheme.

In this scheme private keys are attached with a set S of attributes. A party who wants to

encrypt a message must specify an access structure along with the ciphertext and the attribute

set corresponding to the private key must satisfy the access tree to decrypt the ciphertext.

Each interior node of the tree is a threshold gate and the leaves are associated with attributes.

A user will be able to decrypt a ciphertext with a given key if and only if his/her attribute set

satisfy the access tree. In this construction the attributes are used to identify the keys.

Access tree (τ ) . Let τ be a tree representing an access structure. Clearly each non-leaf

node of τ represents a threshold gate( described by its children and a threshold value.) If numx

is the number of children of a node x and kx is its threshold value, then 0 ¡ kx ≤ numx (For

example kx = 1, describes an OR gate). Each leaf node x of the tree is described by an attribute

and a threshold value kx = 1. We also denote the parent of the node x in the tree by parent(x).

The function att(x) is defined for a leaf node x and denotes the attribute associated with the

leaf node x in τ . The access tree τ also defines an ordering between the children of every node,

that is, the children of a node are numbered from 1 to num. The function index(x) returns
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such a number associated with the node x which assigns unique value to nodes in an arbitrary

manner.

Satisfying an access tree. Let τ be an access tree with root r. Denote by τx the subtree of

τ rooted at the node x. Hence τ is the same as τr . If a set of attributes γ satisfies the access tree

τx , we denote it as τx(γ) = 1. We compute τx() recursively as follows. If x is a non-leaf node,

evaluate τx′ (γ) for all children x′ of node x. τx(γ) returns 1 if and only if at least kx children

return 1. If x is a leaf node, then τx(γ) returns 1 if and only if att(x) ∈ γ.

Construction. Let G0 be a bilinear group of prime order p, and let g be a generator of

G0 . In addition, let e : G0 × G0 →G1 denote the bilinear map. A security parameter, , will

determine the size of the groups. We also define the Lagrange coefficient ∆i,S for i ∈ Zp and a

set, S, of elements in Zp : ∆i,S(x) =
∏

j∈S,j 6=i
x−j
i−j . We will additionally employ a hash function

H : {0, 1}∗→ G0 that we will model as a random oracle.

Setup. The setup algorithm will choose a bilinear group G0 of prime order p with genera-

tor g. Next it will choose two random exponents α, β ∈ Zp . The public key is published

as:

PK = ( G0, g, h =gβ , f = g1/β , e(g, g)α)

MK = ( β, gα) is the master key

Encrypt(PK, M, τ ). The encryption algorithm encrypts a message M under the tree ac-

cess structure . The algorithm first chooses a polynomial qx for each node x (including the

leaves) in the tree τ . These polynomials are chosen in the following way in a topdown manner,

starting from the root node R. For each node x in the tree, set the degree dx of the polynomial

qx to be one less than the threshold value kx of that node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses a random s ∈ Zp and sets qR(0) = s.

Then, it chooses dR other points of the polynomial qR randomly to define it completely. For
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any other node x, it sets qx(0) = qparent(x) (index(x)) and chooses dx other points randomly to

completely define qx .

Let, Y be the set of leaf nodes in τ . The ciphertext is then constructed by giving the tree

access structure τ and computing

CT =( τ , C̃ = Me(g, g)αs , C = hs , ∀y ∈ Y : Cy = gqy(0) , C ′y = H(att(y))qy(0) ).

KeyGen (MK, S). The key generation algorithm will take as input a set of attributes S and

output a key that identifies with that set. The algorithm first chooses a random r ∈ Zp , and

then random rj ∈ Zp for each attribute j ∈ S.

Then it computes the key as

SK = ( D = g(α+r)/β , ∀j ∈ S : Dj = gr · H(j)rj , D′j = grj ) .

Delegate(SK, S̃). The delegation algorithm takes in a secret key SK, which is for a set S

of attributes, and another set S̃ such that S̃ ⊆ S. The secret key is of the form SK = ( D, ∀j ∈ S

: Dj , D′j ). The algorithm chooses random r̃ and r̃k ∀k ∈ S. Then it creates a new secret key as

S̃K = (D̃ = Df r̃, ∀k ∈ S̃ : D̃k = Dkg
r̃H(k)r̃k ,D̃′k = D

′gr̃k
k )

The resulting secret key is a secret key for the set S̃. Since the algorithm re-randomizes

the key, a delegated key is equivalent to one received directly from the authority.

Decrypt(CT,SK). First a recursive algorithm DecryptNode(CT,SK,x) is defined that

takes as input a ciphertext CT = (τ, C̃,C,∀y ∈ Y : Cy,C
′
y), a private key SK, which is

associated with a set S of attributes, and a node x from .

If the node x is a leaf node and if i = att(x) then DecryptNode(CT,SK,x) is defined

follows: If i ∈ S, then
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DecryptNode(CT, SK, x) =
e(Di, Cx)

e(D′i, C
′
x)

=
e(gr.H(i)ri , gqx(0))

e(gri , H(i)qx(0))

= e(g, g)rqx(0)

If i /∈ S, then DecryptNode(CT, SK, x) =⊥.

Let x is a non-leaf node. The recursive algorithm DecryprNode(CT,SK,x) is proceeded

as follows: For all nodes z that are children of x, it callsDecryprNode(CT,SK,x) and stores

the output as Fz. Let Sx be an arbitrary kx-sized set of child nodes z such that Fz 6=⊥.If no

such set exists then the node was not satisfied and the function returns ⊥.

Otherwise Fx is computed as follows.

Fx =
∏
z∈Sx

F
∆i,s′x

(0)
z , where i = index(z), S ′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)r.qz(0))∆i,s′x
(0)

=
∏
z∈Sx

(e(g, g)r.qparent(z)(index(z)))∆i,s′x
(0) (by construction)

=
∏
z∈Sx

e(g, g)r.qz(0).∆i,s′x
(0)

= e(g, g)rqx(0) (using polynomial interpolation)

and return the result.

Now the algorithm begins by simply calling the function on the root node R of the tree τ .

If the tree is satisfied by S, set A = DecryptNode(CT,SK,x)=e(g, g)rqR(0) = e(g, g)rs. The

algorithm now decrypts by computing

C̃/(e(C,D)/A) = C̃/(e(hs, g(α+r)/β)/e(g, g)rs) = M

2.6 Security Intuitions

As in prior attribute based encryption schemes the main challenge in designing this scheme was

to prevent against attacks from colluding users.The scheme randomizes users private keys such
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that they cannot be combined. However the secret sharing must be embedded into the ciphertext

instead to the private keys. In order to decrypt an attacker clearly must recover e(g, g)s . In order

to do this the attacker must pair C from the ciphertext with the D component from some user’s

private key. This will result in the desired value e(g, g)s, but blinded by some value e(g, g)rs

. This value can be blinded out if and only if enough the user has the correct key components

to satisfy the secret sharing scheme embedded in the ciphertext. Collusion attacks won’t help

since the blinding value is randomized to the randomness from a particular user’s private key.

While we described this scheme to be secure against chosen plaintext attacks, the security

of the scheme can efficiently be extended to chosen ciphertext attacks by applying a random

oracle technique such as that of the the Fujisaki-Okamoto transformation [13]. Alternatively,

delegation mechanism can be leverged and Cannetti, Halevi, and Katz [6] method can be

applied for achieving CCA-security.

The generic bilinear group model and the random oracle model are used to argue that no

efficient adversary that acts generically on the groups underlying this scheme can break the

security of the scheme with any reasonable probability.

The generic bilinear group model. We consider two random encodings ψ0, ψ1 of the ad-

ditive group Fp , that is injective maps ψ0, ψ1 : Fp → {0, 1}m , where m > 3log(p). For i =

0, 1 we write Gi = ψi (x) : x ∈ Fp . We are given oracles to compute the induced group action

on G0,G1 and an oracle to compute a non-degenerate bilinear map e : G0 × G0→ G1 . We

are also given a random oracle to represent the hash function H. We refer to G0 as a generic

bilinear group.

The following theorem gives a lower bound on the advantage of a generic adversary in breaking

our CP- ABE scheme.

Theorem 2.6.1 Let ψ0, ψ1 , G0,G1 be defined as above. For any adversaryA, let q be a bound

on the total number of group elements it receives from queries it makes to the oracles for the

hash function, groups G0 and G1 , and the bilinear map e, and from its interaction with the CP-

ABE security game. Then we have that the advantage of the adversary in the CP-ABE security

game is O( q
2

p
).
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2.7 Bounded Ciphertext-Policy Attribute-Based Encryption

2.7.1 Access Trees

In this construction, user decryption keys will be identified with a set γ of attributes. A party

who wishes to encrypt a message will specify through an access tree structure, a policy that

private keys must satisfy in order to decrypt.

Access Tree

Let τ be a tree representing an access structure. Each non-leaf node of the tree represents

a threshold gate, described by its children and a threshold value.If numx is the number of

children of a node x and kx is its threshold value, then 0 < kx ≤ numx. Each leaf node x of

the tree is described by an attribute and a threshold value kx = 1.

Let Φτ denote the set of all the non-leaf nodes in the tree τ . Further, let Ψτ be the set of all

non-leaf nodes at depth d − 1, where d is the depth of τ . The parent of a node x in the tree is

denoted by parent(x). The access tree τ also defines an ordering between the children of every

node, that is, the children of a node x are numbered from 1 to numx. The function index(x)

returns such a number associated with a node x, where the index values are uniquely assigned

to nodes in an arbitrary manner for a given access structure. Also for a leaf-node x, index is

defined as index(x) = att(x) and att(x) is the attribute associated with it.

2.7.2 Satisfying an Access Tree

Let τ be an access tree with root r. denote by τx the sub-tree of τ rooted at the node x. Hence

τ is the same as τr. If a set of attribute γ satisfies the access tree τx, it is denoted as τx(γ) = 1.

τx(γ) is computed recursively as follows. If x is a non-leaf node, evaluate τz(γ) for all children

z of a node x. τx(γ) returns 1 if and only if at least kx children return 1. If x is leaf node, then

τx(γ) returns 1 iff att(x) ∈ γ.
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2.7.3 Universal Access Tree

Given a pair of integers values (d, num), defines complete num-ary tree τ of depth d, where

each non-leaf has a threshold value of num. The leaf nodes in τ are empty, i.e, no attributes are

assigned to the leaf nodes. Next, num− 1 new leaf nodes are attached to each non-leaf node x,

thus increasing the cardinality of x to 2.num − 1 while the threshold value num is left intact.

Choose an arbitrary assignment of dummy attributes to these newly added leaf nodes for each

x. the resultant tree τ is called a (d, num)-universal access tree.

2.7.4 Bounded Access Tree

A tree τ ′ is a (d, num)-bounded access tree if it has depth d′ ≤ d, and each non-leaf node in τ ′

exhibits a cardinality at most num.

2.7.5 Normal Form

Consider a (d, num)-bounded access tree τ ′. τ ′ is said to be in (d, num)-normal form if

(a) it has depth d′ = d and

(b) all the leaves in τ ′ are at depth d.

2.7.6 Map between Access Tree

Consider a (d, num)-universal access tree τ and another tree τ ′ that is in (d, num)-normal form.

A map between the nodes of τ ′ and τ is defined in the following way in a top down manner.

First, the root of τ ′ is mapped to the root node of τ . Now suppose that x′ in τ ′ is mapped to x in

τ . Let z′1, z
′
2, ..., z

′
numx′

be the child nodes of x′, ordered according to their index values. Then,

for each child z′i(i ∈ [1, numx′) of x′ in τ ′, set the corresponding child zi (i.e. with index

value index(z′i)) of x in τ as the map of z′. This procedure is performed recursively, until each

non-leaf node in τ ′ is mapped to a corresponding node in τ .
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2.7.7 Construction

Let G1 be a bilinear group of order p and let g be a generator of G1. In addition, let e : G1×G1 → G2

denote the bilinear map. A security parameter, k, will determine the size of the groups. The

Lagrange coefficient ∆i,s for i ∈ Zp and a set, S of elements in Zp is defined as:

∆i,s(x) =
∏

j ∈ S, j 6= i

x− j
i− j

Each attribute is associated with a unique element in Z∗p. The construction follows.

Setup(d, num). The algorithm takes as input two system parameters, namely, (a) the maxi-

mum tree depth d, and (b) the maximum node cardinality num. The algorithm proceeds as

follows. Define the universe of real attribute U = {1, 2, ...n} and (num - 1)-sized universe of

dummy attribute U∗ = {n+ 1, ..., n+num− 1}. Next, define a (d, num)-universal access tree

τ .

Now, for each real attribute j ∈ U , choose a set of |Ψτ | numbers { tj,x}x∈Ψτ uniformly

at random from Zp. Further for each dummy attribute j ∈ U∗, choose a set of |Φτ | numbers

{ t∗j,x}x∈Φτ uniformly at random from Zp. Finally, choose y uniformly at random from Zp. The

public parameters PP are :

PP = Y = e (g, g)y , {Tj,x = gtj,x}j∈U,x∈Ψτ , {Tj,x∗ = gt
∗
j,x}j∈U∗,x∈Φτ

The master key MK is:

MK = y , {tj,x}j∈U,x∈Ψ , {t∗j,x}j∈U∗,x∈Φτ

KeyGen(γ, MK). Consider a user A with an attribute set γ. The key generation algorithm out-

puts a private key D that enable A to decrypt a message encrypted under a (d, num)-bounded

access tree τ ′ iff τ ′ (γ) = 1.

The algorithm proceeds as follows. for each user, choose a random polynomial qx for each

non leaf node x in the universal access tree τ . These polynomials are chosen in the following

way in a top down manner, starting from the root node r. For each x, set the degree cx of the

polynomial qx to be one less than the threshold value, i.e., cx = num − 1. Now, for the root
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node r, set qr (0) = y and choose cr other points of the polynomial qr randomly to define it

completely. For any other non-leaf node x, set qx (0) = qparent(x) (index (x)) and choose cx
other points randomly to completely define qx. Once the polynomials have been decided, the

following secret values are given to the user:

{Dj,x = g
qx(j)
tj,x }j∈γ,x∈Ψτ , {D∗j,x = g

qx(j)
t∗
j,x }j∈U∗,x∈Φτ

The set of above secret values is the decryption key D.

Encryption(M , PP, τ ′). To encrypt a message M ∈ G2, the encrypter ε first choose a

(d, num)-bounded access tree τ ′. ε then chooses an assignment of real attributes to the leaf

nodes in τ ′.

Now, to be able to encrypt the message M with the access tree τ ′, the encrypter first converts it

to the normal form(if required). Next, ε defines a map between the nodes in τ ′ and the universal

access tree τ . Finally, for each non-leaf node x in τ ′, ε chooses an arbitrary (num - kx)-sized

set wx of dummy child nodes of map(x) in τ .

Let f(j, x) be a boolean function such that f (j, x) = 1 if a real attribute j ∈ U is associ-

ated with a leaf child of node x ∈ Ψτ ′ and 0 otherwise. Now, choose a random value s ∈ Zp
and publish the encryption E as:

< T ′ , E ′ = M.Y s , {Ej,x = T sj,map(x)}j∈U,x∈Ψτ ′ :f(j,x)=1 , {E∗j,x = Tj,map(x)∗s}j=att(x):z∈wx,x∈Φτ ′
>

Decryption(E,D). They define a recursive algorithm DecryptNode(E,D,x) that takes as

input the ciphertext E, the private key D, and a node x in τ ′. It outputs a group element of G2

or ⊥. First, consider the case when x is a leaf node. Let j = att (x) ans w be the parent of x.

Then value of the function:

DecryptNode(E,D, x) =

e(Dj,map(w), Ej,w) = e(g
qmap(w)(j)

tj,map(w) , gs.tj,map(w)) ifj ∈ γ

⊥ Otherwise

which reduces to e(g, g)s.qmap(w)(j) when j ∈ γ. Now consider the recursive case when x is a

non-leaf node in τ ′. The algorithm proceeds as follows: For all nodes z that are children x, it

calls DecryptNode(E,D, z) and stores the output as Fz. additionally, for each dummy node

z ∈ ωx, it invokes a function DecryptDummy(E,D, z) that is defined below, and stores

the output as Fz. let j be the dummy attribute associate with z. Then value of the function
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DecryptDummy(E,D, z):

DecryptDummy(E,D, z) = e(D∗j,map(x), E
∗
j,x) = e(g

qmap(x)(j)

t∗
j,map(x) , gs.t

∗
j,map(x))

which reduces to e(g, g)s.qmap(x)(j). Let Ωx be an arbitrary kx-sized set of child nodes z such

that Fz 6= ⊥. Further, let Sx be the union of the sets Ωx and ωx. Thus |Sx| = num. Let

ĝ = e(g, g). If no kx-sized set Ωx exists, then the node x was not satisfied and the function

returns ⊥. Otherwise, compute:

Fx =
∏
z∈Sx

F
∆i,S′x

(0)
z

=
∏
z∈Ωx

F
∆i,S′x

(0)
z

∏
z∈ωx

F
∆i,S′x

(0)
z

=

{ ∏
z∈Ωx

(ĝs.qmap(x)(i))∆i,S′x
(0) ∏

z∈ωx (ĝs.qmap(x)(i))∆i,S′x
(0) if x ∈ ΨT ′∏

z∈Ωx
(ĝs.qmap(z)(0))∆i,S′x

(0) ∏
z∈ωx (ĝs.qmap(x)(i))∆i,S′x

(0) else

=

{ ∏
z∈Sx (ĝs.qmap(x)(i))∆i,S′x

(0) if x ∈ Ψτ ′∏
z∈Ωx

(ĝs.qmap(parent(z))index(map(z))))∆i,S′x
(0) ∏

z∈ωx (ĝs.qmap(x)(i))∆i,S′x
(0) else

=
∏
z∈Sx

(ĝs.qmap(x)(i))∆i,S′x
(0)

= ĝs.qmap(x)(0)

= e(g, g)s.qmap(x)(0) (Using polynomial interpolation)

Where

i =

{
att(z) if z is a leaf node

index(map(x)) otherwise

and S ′x = {i : z ∈ Sx} and return the result.

Now that DecryptNode has been defined, the decryption algorithm simply involves it on

the root r′ of τ ′. It is observed that DecryptNode(E,D, r′) = e(g, g)sy iff τ ′(γ) = 1 (It

is noted that Fr′ = e(g, g)s.qmap(r′)(0) = e(g, g)s.qr(0) = e(g, g)sy, where r is the root of

the universal tree τ ). Since E ′ = M.e(g, g)sy, the decryption algorithm simply divides out

e(g, g)sy and recovers M .
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2.7.8 Proof of Security

Theorem 2.7.1 Assume that Decisional BDH assumption holds. Then the Bounded Ciphertext-

Policy Attribute Based Encryption is IND-CPA secure.

2.8 Provably Secure Ciphertext Policy Attribute Based En-

cryption

This is a CP-ABE schemes proposed in [8] in which access structures are AND gates on

positive and negative attributes. This scheme has been proved to be chosen plaintext(CPA)

secure under the decisional bilinear Diffie-Hellman(DBDH) assumption.

2.8.1 Basic Construction

For notational simplicity, let the set of attributes be N :=1, . . . , n for some natural number n.

We refer to attributes i and their negations ¬i as literals. In this section, we con- sider access

structures that consist of a single AND gate whose inputs are literals. This is denoted ∧i∈I i,
where I ⊆ N and every i is a literal (i.e., ior¬i).

Setup. This algorithm selects:

• A bilinear group G0 of prime order p, with bilinear map e : G0 × G0→ G1 ,

• Random elements y, t1, ..., t3n in Zp and a random generator g of G0.

Let Y := e(g, g)y and k := gtk for each k ∈ 1, . . . , 3n.

The public key is

PK := ( e, g, Y, T1, ..., T3n ).

The master secret key is
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MK :=( y, t1, ..., t3n ) .

Intuitively, the public key elements Ti, Tn+i and T2n+i correspond to the three types of occur-

rences of i: positive, negative and don’t care.. Because of the technique we use to randomize

secret key components, we must provide a don’t care element for each attribute i not appearing

in the AND gate. This should become clear after we introduce KeyGen and Decrypt.

Encrypt. Given a message M ∈ G1 and an AND gate W =∧i∈I i the Encrypt algorithm first

selects a random s ∈ Zp and sets C̃ := M ·Y s and C := gs . For each i ∈ I , let Ci be Tis if i = i

and Tn+i if i = ¬i. For each i ∈ N \ I, let Ci be Tis T2n+i .

The ciphertext is CT := ( W, C̃, Ĉ, Ci‖i ∈ N) .

In total, Encrypt performs n + 1 exponentiations in G0, one exponentiation in G1 and one

multiplication in G1 . The ciphertext contains n + 1 elements of G0, one element of G1 and the

description of W .

KeyGen. Let S denote the input attribute set. Every i ∈ S is implictly considered a nega-

tive attribute. First, KeyGen selects random ri from Zp for every i ∈ N and sets r=:
∑n

i=1 ri.

Let D̂ be gy−r.For each i ∈ N let Di be g
ri
ti if i ∈ S;otherwise, let it be g

ri
tn+i . Finally, let Fi be

g
ri

t2n+i . for every i ∈ N.

The secret key is defined as

SK:= ( D̂, Di, Fi ‖i ∈ N).

Note that we use the equation r=:
∑n

i=1 ri. to bind together the Di elements. (Similarly for

the Fi elements.) This is a key difference between our scheme and the BSW scheme, and it is

crucial in our reduction proof. The Fi elements are provided because every ri must be recov-

ered in order to decrypt. If i is a don’t care for a particular encryption operation (i.e., i does not

occur in the AND gate W ), then Fi will be used for decryption, instead of Di .

Decrypt. Suppose the input ciphertext is of the form CT = (W, C̃, Ĉ, Ci‖i ∈ N ) where
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W = ∧i∈I i. Also, let S denote the attribute set used to generate the input

secret key SK.

SK = (D̂, { Di, Fi‖i ∈ N}).
For each i ∈ I , Decrypt computes the pairing e(Ci, Di ).

If i = i and i ∈ S, then

e(Ci, Di ) = e(gtis, g
ri
ti ) = e(g, g)ris .

Similarly, if i = ¬i and i /∈ S, then

For each i ∈ I , Decrypt computes the pairing e(Ci, Di ) = e(gtn+is , g
ri

t2n+i ) = e(g, g)ris .

For each i /∈ I , Decrypt computes the pairing

e(Ci, Di ) = e(gt2n+is , g
ri

t2n+i ) = e(g, g)ris.

Decrypt finishes as follows: M = C̃
Y s

= C̃
e(g,g)ys

, where

e(g, g)ys = e(gs, gy−r)e(g, g)r∆s = e(Ĉ, D̂).
∏n

i=1 e(g, g)ris

2.8.2 Proof of Security

Theorem 2.8.1 If a probabilistic polynomial-time adversary wins the CP-ABE game with non-

negligible advantage, then we can construct a simulator that distinguishes a DBDH tuple from

a random tuple with non-negligible advantage.



Chapter 3

A Brief Survey on Predicate Based
Encryption

Predicate encryption scheme(or Functional Encryption Scheme) is an encryption system where

secret keys of an user are associated with predicates (i.e., boolean functions) in some class

F , and a sender associates a ciphertext with an attribute in a set Σ; a ciphertext associated

with the attribute I ∈ Σ can be decrypted by a secret key SKf corresponding to the predicate

f ∈ F if and only if f(I) = 1. The “basic” level of security achieved by such schemes

guarantees, informally, that a ciphertext associated with attribute I hides all information about

the underlying message unless one is in possession of a secret key giving the explicit ability to

decrypt. I.e., if an adversary A holds keys SKf1 , ...,SKfl , then A learns nothing about the

message if f1(I) = ... = fl(I) = 0. This security notion is called payload hiding. Attribute

hiding,where ciphertext hide the message as above,is another strong notion of security but it

additionally requires that the ciphertext hide all information about the associated attribute I

except that which is explicitly leaked by the keys in one’s possession; i.e., an adversary holding

secret keys as above learns only f1(I), ..., fl(I) , and learns nothing else about I .

28
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3.1 Definitions

In this section we define the syntax of predicate encryption and the security properties of pred-

icate encryption system. Σ denotes an arbitrary set of attributes and F denotes an arbitrary set

of predicates over Σ.

Definition 1: (PredicateEncryptionScheme). A predicate encryption scheme for the class of

predicatesF over the set of attributes Σ consists of four ppt algorithms Setup, GenKey, Enc, Dec
such that:

• The Setup algorithm takes as input the security parameter 1n and outputs a (master) public

parameter PP and a (master) secret key SK.

• The GenKey algorithmtakes as input the master secret key SK and a (description of a)

predicate f ∈ F. It outputs a key SKf .

• The Enc algorithm takes as input the public key PP , an attribute I ∈ Σ, and a mes-

sage M in some associated message space. It returns a ciphertext C. We write this as C ←
EncPP , (I,M).

• The Dec algorithm takes as input a secret key SKf and a ciphertext C. It outputs either a

message M or the distinguished symbol ⊥.

For correctness, we require that for all n, all (PP,SK) generated by Setup(1n ), all f ∈ F,

any key SKf ← GenKeySK(f), and all I ∈ Σ:

• If f(I) = 1 then DecSKf (EncPP (I,M)) = M .

• If f(I) = 0 then DecSKf (EncPP (I,M)) =⊥ with all but negligible probability.

Definition 2: A predicate encryption scheme with respect to F and Σ is attribute hiding if

for all ppt adversaries A, the advantage of A in the following experiment is negligible in the

security parameter n:

1) A(1n) outputs I0, I1 ∈ Σ.
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2) Setup(1n) is run to generate PP and SK, and the adversary is given PP.

3) A may adaptively request keys for any predicates f1, ..., fl ∈ F subject to the restriction

that fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys

SKfi ← GenKeySK(fi).

4) A outputs two equal-length messages M0,M1 . If there is an i for which

fi(I0) = fi(I1) = 1, then it is required that M0 = M1 . A random bit b is chosen, and A is

given the ciphertext C ← EncPP (Ib,Mb).

5) The adversary may continue to request keys for additional predicates, subject to the same

restrictions as before.

6) A outputs a bit b′ , and succeeds if b = b′ .

The advantage ofA is the absolute value of the difference between its success probability and 1/2.

For predicate-only encryption schemes, attribute hiding is define by simply omitting the mes-

sages in the above experiment. Payload hiding, a strictly weaker notion of security, is defined

by forcing I0 = I1 = I in the above experiment (in which case A has no possible advantage if

it ever holds that fi(I) = 1).

3.2 Brief Background on Pairings and Assumptions

In this section we concentrate mainly on bilinear group of composite order first used in crypto-

graphic applications by [3]. Here we use groups whose order N is a product of three distinct

primes. Let G be an algorithm that takes as input a security parameter 1n and outputs a tuple

(p, q, r, G,GT , ê) where p, q, r are distinct primes, G and GT are two cyclic groups of order

N = pqr, and ê : G × G→ GT is a non-degenerate bilinear map, ∀u, v ∈ G and ∀a, b ∈ ZN
we have ê(ua, vb) = ê(u, v)ab , and if g generates G then ê(g, g) generates GT . We assume mul-
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tiplication in G and GT , as well as the bilinear map ê, are all computable in time polynomial

in n.

We use the notation Gp,Gq,Gr to denote the subgroups of G having order p, q, and r,

respectively. Clearly G is isomorphic to Gp × Gq × Gr . Note also that if g is a generator

of G, then the element gpq is a generator of Gr ; the element gpr is a generator of Gq ; and

the element gqr is a generator of Gp . Furthermore, if hp ∈ Gp and hq ∈ Gq then ê(hp, hq) =

ê((gqr)α1 , (gpr)α2) = ê(gα1 , grα2)pqr= 1,

where α1 = loggqrhp and α2 = loggprhq . A similar rule holds whenever ê is applied to

elements in distinct subgroups.

We now state the assumptions which are used to prove security of the construction

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the advantage

of any ppt algorithm A in the following experiment is negligible in the security parameter n:

1) G(1n) is run to obtain (p, q, r,G,GT , ê). Set N = pqr, and let gp, gq, gr be generators of

Gp,Gq , and Gr , respectively.

2) Choose random Q1, Q2, Q3 ∈ Gq , random R1, R2, R3 ∈ Gr , random a, b, s ∈ Zp , and a

random bit b. Give to A the values (N,G,GT , ê) as well as:

gp, gr, gqR1, g
b
p, g

b2

p , g
a
pgq, g

ab
p Q1, g

s
p, g

bs
p Q2R2

If b = 0 give A the value T = gb2sp R3 , while if b = 1 give A the value T = gb2sp Q3R3 .

3) A outputs a bit b′ , and succeeds if b = b′ .

The advantage of A is the absolute value of the difference between its success probability

and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the advantage

of any ppt algorithm A in the following experiment is negligible in the security parameter n:

1) G(1n) is run to obtain (p, q, r,G,GT , ê). Set N = pqr, and let gp, gq, gr be generators of

Gp,Gq , and Gr, respectively.
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2) Choose random h ∈ Gp and Q1, Q2 ∈ Gq , random s, ψ ∈ Zq , and a random bit b. Give to

A the values (N, G,GT , ê) as well as

gp, gq, gr, h, g
s
p, h

sQ1, g
γ
pQ2, ê(gp, h)γ .

If b = 0 then give A the value ê(gp, h)γs , while if b = 1 then give A a random element of

GT .

3) A outputs a bit b′ , and succeeds if b = b
′ .

The advantage of A is the absolute value of the difference between its success probability

and 1/2.

Both the above assumptions imply the hardness of finding any non-trivial factor of N .

3.3 Predicate Only Encryption Scheme

We first describe the construction of the scheme in detail then we go to the security proof for

the scheme.

3.3.1 Construction of Predicate Only Encryption Scheme

Setup(1n) : The setup algorithm first runs G(1n) to obtain (p, q, r,G,GT , ê) with G = Gp ×
Gq ×Gr . Next, it computes gp , gq , and gr as generators of Gp , Gq , and Gr , respectively. It

then chooses R1,i , R2,i ∈ Gr and h1,i , h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈
Gr uniformly at random. The public parameters include (N = pqr, G, GT , ê) along with:

PP = (gp, Q = gqR0, gr, {H1,i = h1,iR1,i, H2,i = h2,iR2,i}ni=1)

The master secret key SK is

SK = (p, q, r, gq, {h1,i, h2,i}ni=1) .

Enc(PP,−→x ): Let x = (x1, ..., xn ) with xi ∈ ZN . This algorithm chooses random s, α, β
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∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. ( a random element R ∈ Gr can be sampled, even

without knowing the factorization of N , by choosing random δ ∈ ZN and setting R = gδr .) It

outputs the ciphertext

C = ( C0 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i}ni=1).

GenKey(SK,−→v ): Let −→v = (v1, ..., vn). This algorithm chooses random r1,i, r2,i ∈ Zp for

i = 1 to n, random R5 ∈ Gr , random f1, f2 ∈ Zq , and random Q6 ∈ Gq . It then outputs

SK−→v = (K = R5Q6h
−γ∏n

i=1 h
r1,i
1,i h

r2,i
2,i , {K1,i = g

r1,i
p g

f1,vi
q , K2,i = g

r2,i
p g

f2,vi
q }ni=1)

Dec(SK−→v , C): Let C = (C0, {C1,i, C2,i}ni=1) and SK−→v = (K, {K1,i, K2,i}ni=1) be as above.

The decryption algorithm outputs 1 iff

ê(C0, K)
∏n

i=1 ê(C1,i, K1,i)ê(C2,i, K2,i) = 1

3.3.2 Correctness of Predicate Only Encryption Scheme

To see that correctness holds, let C and SK−→v be as above.

ê(C0, K)
∏n

i=1 ê(C1,i, K1,i)ê(C2,i, K2,i)

= ê(gsp, R5Q6

∏n
i=1 h

r1,i
1,i h

r2,i
2,i )

∏n
i=1 ê(H

s
1,iQ

αxiR3,i, g
r1,i
p g

f1,vi
q )ê(Hs

2,iQ
βxiR4,i, g

r2,i
p g

f2,vi
q )

= ê(gsp,
∏n

i=1 h
r1,i
1,i h

r2,i
2,i )

∏n
i=1 ê(h

s
1,ig

αxi
q , g

r1,i
p g

f1,vi
q )ê(hs2,ig

βxi
q , g

r2,i
p g

f2,vi
q )

=
∏n

i=1 ê(gq, gq)
(αf1+βf2)xivi

=
∏n

i=1 ê(gq, gq)
(αf1+βf2 mod q)<

−→x ,−→v >

Where α, β chosen randomly from ZN and f1, f2 are random in Zq

If < −→x ,−→v > = 0 then the above value evaluates to 1. If < −→x ,−→v >6= 0 mod N but

< −→x ,−→v > = 0 mod q, then the above would evaluate to 1 and reveals a non trivial factor of N

which is assumed to be hard. So this occurs with negligible probability. If < −→x ,−→v >6= 0 mod
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N and < −→x ,−→v > 6= 0 mod q then with all but negligible probability the above evaluates to an

element other than identity.

3.3.3 Security Proof for Predicate Only Encryption Scheme

The scheme has been proved to be IND-CPA Assumption 1 (By proving the theorem below)

by constructing a sequence of Games GameReal,Game1,Game2,Game3,Game4 played

by a Challenger C with the Adversary A.

GameReal,Game1,Game2,Game3,Game4 are defined as follows:

GameReal : This is the Real game where the challenge ciphertext is generated as a proper en-

cryption using−→x . (Clearly−→x ,−→y denote the two vectors output by the adversary.) s, α, β ∈ ZN
and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C1 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i}ni=1).

Game1 : In this game the C2,i component is generated as a proper encryption using
−→
0 .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C1 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iR4,i}ni=1).

Game2 : In this game the C2,i component is generated as a proper encryption using −→y .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C1 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i}ni=1).

Game3 : In this game the C1,i component is generated as a proper encryption using
−→
0 .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C1 = gsp, {C1,i = Hs
1,iR3,i, C2,i = Hs

2,iQ
βyiR4,i}ni=1).

Game4 : In this game the C1,i component is generated as a proper encryption using −→y .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as
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C = ( C1 = gsp, {C1,i = Hs
1,iQ

αyiR3,i, C2,i = Hs
2,iQ

βyiR4,i}ni=1).

The proof of the theorem 3.5.1 is done by proving the indistinguishability (Using only As-

sumption 1.) of (GameReal and Game0), (Game1 and Game2), (Game2 and Game3)

and (Game3 and Game4) .

Let (−→a ,
−→
b ) denote a ciphertext encrypted using vector −→a in the first sub-system and

−→
b in

the second sub-system. To prove indistinguishability between the case when the challenge ci-

phertext is associated with −→x (which corresponds to (−→x , −→x )) and the case when the challenge

ciphertext is associated with −→y (which corresponds to (−→y , −→y )), Here a sequence of interme-

diate hybrid games (−→x ,
−→
0 ), (−→x , −→y ), (

−→
0 , −→y ), has been used showing indistinguishability in

each case. That is, it has been shown

(−→x , −→x ) ≈ (−→x ,
−→
0 ) ≈ (−→x , −→y ) ≈ (

−→
0 , −→y ) ≈ (−→y , −→y ),

To prove the desired following theorem.

Theorem 3.3.1 If G satisfies Assumption 1 ( In Section 3.2 ) then the scheme described (In

Section 3.3.1) is an attribute hiding predicate-only encryption scheme.

3.4 A Full-Fledged Predicate Encryption Scheme

Here,the scheme is the extension on Predicate only scheme in the sense of Definition 1 in

section 3.1 .

3.4.1 Construction of A Full-Fledged Predicate Encryption Scheme

Setup(1n) : The setup algorithm first runs G(1n ) to obtain (p, q, r,G,GT , ê) with G = Gp ×
Gq ×Gr . Next, it computes gp , gq , and gr as generators of Gp , Gq , and Gr , respectively. It

then chooses R1,i , R2,i ∈ Gr and h1,i , h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈
Gr uniformly at random. It also chooses random γ ∈ Zp and h ∈ Gp . The public parameters

include (N = pqr, G, GT , ê) along with:
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PP = (gp, Q = gqR0, gr, P = ê(gp, h)γ, {H1,i = h1,iR1,i, H2,i = h2,iR2,i}ni=1)

The master secret key SK is (p, q, r, gq, h−γ, {h1,i, h2,i}ni=1) .

Enc(PP,−→x ): Let x = (x1, ..., xn ) with xi ∈ ZN . This algorithm chooses random s, α, β

∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. ( a random element R ∈ Gr can be sampled, even

without knowing the factorization of N , by choosing random δ ∈ ZN and setting R = gδr .)

It outputs the ciphertext C = (C ′ = M.P s, C0 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i}ni=1).

GenKey(SK,−→v ): Let v = (v1, ..., vn). This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1

to n, random R5 ∈ Gr , random f1, f2 ∈ Zq , and random Q6 ∈ Gq . It then outputs

SKv = (K = R5Q6h
−γ∏n

i=1 h
r1,i
1,i h

r2,i
2,i , {K1,i = g

r1,i
p g

f1,vi
q , K2,i = g

r2,i
p g

f2,vi
q }ni=1)

Dec(SK−→v , C): Let C = (C0, {C1,i, C2,i}ni=1) and SK−→v = (K, {K1,i, K2,i}ni=1) be as above.

The decryption algorithm outputs

C ′ê(C0, K)
∏n

i=1 ê(C1,i, K1,i)ê(C2,i, K2,i)

decryption never returns an error (i.e, 0). In this scheme when < −→v . −→x > = 0 then the

output is essentially a random element in the order-q subgroup of GT .

3.4.2 Security Proof for Full-Fledged Predicate Encryption Scheme

The scheme has been proved to be IND-CPA-secure under Assumption 1 and Assumption 2

(By proving the theorem below) by constructing a sequence of Games GameReal, Game1,

Game2, Game3, Game4, Game5, Game6 played by a Challenger C with the Adversary

A.
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GameReal,Game1,Game2,Game3,Game4,Game5,Game6 are defined as follows:

GameReal : This is the Real IND-CPA security game where the challenge ciphertext is gener-

ated as a proper encryption of M0 using −→x . (Clearly −→x ,−→y denote the two vectors output by

the adversary.) s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is

computed as

C = ( C ′ = M0Ṗ
s, C0 = gsp, {C1,i = Hs

1,iQ
αxiR3,i, C2,i = Hs

2,iQ
βxiR4,i}ni=1).

Game1 : The challenge ciphertext is generated as a proper encryption of a random element of

GT , but still using −→x . I.e., the ciphertext is formed as above except that C is chosen uniformly

from GT .

Game2 : In this game the C2,i component is generated as a proper encryption using
−→
0 .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C ′ , C0 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iR4,i}ni=1).

Game3 : In this game the C2,i component is generated as a proper encryption using −→y .That is

s, α, β ∈ ZN and {R3,i, R4,i} ∈ Gr are chosen randomly and the ciphertext is computed as

C = ( C ′ , C0 = gsp, {C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i}ni=1).

Game4 and Game5: These games are defined symmetrically to Game2 and Game3 , as

discussed in the Security definition of the previous scheme. We continue to let C ′ be a random

element of GT . Note that Game5 corresponds to a proper encryption of a random element of

GT using −→y .

Game6: The challenge ciphertext is generated as a proper encryption of M1 using −→y .

The proof of the theorem 3.4.1 is done by proving the indistinguishability (Using both

Assumption 1. and Assumption 2.) of (GameReal and Game1), (Game1 and Game2),

(Game2 and Game3), (Game3 and Game4), (Game4 and Game5) and (Game5 and

Game6)
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To prove the desired following theorem.

Theorem 3.4.1 If G satisfies Assumptions 1 and 2( In Section 3.2 ) then the scheme described

(In Section 3.4.1) is an attribute-hiding predicate encryption scheme.

3.5 Hidden vection Encryption(HVE)

Let −→x be vector of length over the alphabet 0, 1 and −→y vector of the same length over the

alphabet {0, 1, ∗}. Define the predicate Match(−→x ,−→y ) = TRUE if and only if for any i ∈ [l], it

holds that xi = yi or yi = ∗ . That is, the two vectors must match only in the positions j where

yj 6= * . This predicate is called Hidden Vector Encryption (henceforth, abbreviated in HVE)

A Hidden Vector Encryption scheme is a tuple of four efficient probabilistic algorithms

(Setup, Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1l): Outputs the public parameters Pp and the master secret key Msk.

KeyGen(Msk,−→y ): Takes as input the master secret key Msk and a vector −→y ∈ {0, 1, ∗} ,

and outputs a secret key Sk−→y .

Encrypt(Pp,−→x ): Takes as input the public parameters Pp and a vector −→x ∈ {0, 1}l and

outputs a ciphertext Ct.

Test(Pp,Ct, Sk−→y ): takes as input the public parameters Pp, a ciphertext Ct encrypting −→x
and a secret key Sk−→y and outputs Match(−→x ,−→y ).

Correctness of HVE. For correctness we require that for all pairs (Pp, Msk) output by Setup(1,1l),

it holds that for vectors −→x ∈ {0, 1}l and −→y ∈ {0, 1, ∗}l , we have that
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Test(Pp,Encrypt(Pp, x), KeyGen(Msk, y)) = Match(x, y) except with negligible in λ prob-

ability.

3.5.1 Security Definition for Hidden Vector Encryption Scheme

We give two security notions depending on the type of queries A is allowed to ask. We for-

malize the two notions by means of security games GameReal(ε), with ε ∈ {0, 1}, between an

Adversary A and a Challenger C. GameReal is defined as follows:

Setup. C runs the Setup algorithm on input ( 1λ, 1l) (given in unary) to generate public pa-

rameters Pp and master secret key Msk. C starts the interaction with A on input Pp.

Key Query Answering. Upon receiving a query for vector −→y , C returns KeyGen(Msk,−→y ).

Challenge Construction. Upon receiving a pair x0, x1 ∈ {0, 1}l , C randomly picks η ∈ {0, 1}
and return Encrypt(Pp, −→xη ).

At the end of the game, A outputs a guess η′ for η. We say that A wins if η′= η and for

all −→y for which A has seen a secret key, it holds that Match(x0,
−→y ) = Match(x1,

−→y ) = ε.

The advantage AdvAHHV E(λ) of A is defined to be the prob[ A wins the game] - 1/2 . We are

now ready for the following definition.

Definition 3. A Hidden Vector Encryption scheme is ε− secure if for all probabilistic poly-

nomial time ε adversaries A, we have that AdvAHV E(λ) is a negligible function of λ.

3.5.2 Complexity Assumptions

The third assumption that we state is a subgroup-decision type assumption for bilinear settings

with groups of order product of four primes. Specifically, Assumption 1 posits the difficulty of

deciding whether an element belongs to one of two specified subgroups, even when generators

of some of the subgroups of the bilinear group are given. More formally, we have the following
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definition. For a generator G returning bilinear settings of order product of four primes, we

define the following distribution. First pick a random bilinear setting

I = (N = p1p2p3p4,G,GT , e) by running G(1λ) and then pickA3 ← Gp3 , A13 ← Gp1p3 , A12 ←
Gp1p2 , A4 ← Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 . and set D = (I, A3, A4, A13, A12). We define the

advantage of an algorithm A in breaking Assumption 1 to be AdvA3 (λ) = |Prob[A(D,T1) =

1]− Prob[A(D,T2) = 1]|

Assumption 3: We say that Assumption 1 holds for generator G if for all probabilistic polynomial-

time algorithms A, AdvA3 (λ) is a negligible function of λ.

Our fourth assumption can be seen as the Decision Diffie-Hellman Assumption for compos-

ite order groups. Specifically, Assumption 4 posits the difficult of deciding if a triple of ele-

ments constitute a Diffie-Hellman triplet with respect to one of the factors of the order of the

group, even when given, for each prime divisor p of the group order, a generator of the sub-

group of order p. Notice that for bilinear groups of prime order the Diffie-Hellman assumption

does not hold. More formally, we have the following definition. For a generator G returning

bilinear settings of order product of four primes, we define the following distribution. First

pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) by running G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β ← Zp1 , T2 ← Gp1p4 and set

T1 = Aαβ1 D4 and D = (I, A1, A2, A3, A4, A
B
4 , A

C
4 ).

We define the advantage of an algorithmA in breaking Assumption 4 to beAdvA4 (λ) = |Prob[A(D,T1) =

1]− Prob[A(D,T2) = 1]|

Assumption 4: We say that Assumption 3 holds for generator G if for all probabilistic polynomial-

time algorithms A, AdvA4 (λ) is a negligible function of λ.

Assumption 5 is a generalization of Assumption 4 in the sense it posits the difficult of decid-

ing if two triplets sharing an element are both Diffie-Hellman (looking at the formal definition

below, the two triplets are the one composed of elements whose Gp1 parts are respectively

(Aα1 , A
β
1 , A

αβ
1 ) and (Aγ1 , A

αβ
1 , Aαβγ1 )) given a third related Diffie-Hellman triplets (composed
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of elements whose Gp1 parts are respectively (Aαγ1 , Aβ1 , A
αβγ
1 )). More formally, we have the

following definition.

For a generator G returning bilinear settings of order N product of four primes, we define

the following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)

by running G(1λ) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4, E4, F4, G4 ← Gp4 , α, β, γ ← Zp1 ,

T2 ← Gp1p4 and set T1 = Aαβ1 G4 andD = (I, A1, A2, A3, A4, A
α
1B4, A

β
1C4, A

γ
1D4, A

αγ
1 E4, A

αβγ
1 F4).

We define the advantage of an algorithmA in breaking Assumption 5 to beAdvA5 (λ) = |Prob[A(D,T1) =

1]− Prob[A(D,T2) = 1]|

Assumption 5: We say that Assumption 3 holds for generator G if for all probabilistic polynomial-

time algorithms A, AdvA5 (λ) is a negligible function of λ.

Our final assumption is, like Assumption 3, a subgroup-decision type of assumption. More for-

mally, for a generator G returning bilinear settings of order N product of five primes, we define

the following distribution. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e)

by running G(1λ) and then pick :

A2 ← Gp2 , A3 ← Gp3 , A4, B4 ← Gp4 , A14, B14 ← Gp1p4

and set T1 = B14, T2 = B4 and D = (I, A2, A3, A4, A14).We define the advantage of an algo-

rithmA in breaking Assumption 6 to be AdvA6 (λ) = |Prob[A(D,T1) = 1]−Prob[A(D,T2) =

1]|

Assumption 6: We say that Assumption 3 holds for generator G if for all probabilistic polynomial-

time algorithms A, AdvA6 (λ) is a negligible function of λ.
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3.5.3 0-Secure HVE

Construction of 0-Secure HVE Scheme

we describe the construction for a 0-secure (also called match revealing) HVE scheme below.

We assume without loss of generality that the vectors −→y of the keys have at least two indices i,

j such that yi, yj 6= * .

Setup(1λ, 1l): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4

, G,GT , e) with known factorization by running a generator algorithm G on input 1λ . The setup

algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [l] and b ∈ {0, 1},
the algorithm chooses random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 Ri,b .

The public parameters are Pp = [N, g3, (Ti,b)i∈[l],b∈{0,1}] and

The master secret key is Msk = [g12, g4, (ti,b)i∈[l],b∈{0,1}], where g12 = g1g2

KeyGen(Msk,−→y ): Let S−→y be the set of indices i such that yi 6= ∗ The key generation al-

gorithm chooses random ai ∈ ZN for i ∈ S−→y under the constraint that Σi∈S−→y Σi∈[l]ai = 0. For

i∈S−→y , the algorithm chooses random Wi ∈ Gp4 (the Wi are chosen by raising g4 to a random

power) and sets Yi = g

ai
ti,yi
12 Wi . The algorithm returns the tuple (Yi)i∈S−→y .

Notice that here we used the fact that S−→y has size at least 2.

Encrypt(Pp,−→x ): The encryption algorithm chooses random s ∈ ZN . For i ∈ [l], the al-

gorithm chooses random Zi ∈ Gp3 (the Zi are chosen by raising g3 to a random power) and

sets Xi = T si,xiZi , and returns the tuple (Xi)i∈[l] .

Test(Ct,Sk−→y ): The test algorithm computes T =
∏

i∈S−→y
e(Xi, Yi) and returns TRUE iff T =

1.
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Security of 0-Secure HVE Scheme

The security proof of 0-Secure HVE is based on Assumption 3 and 4. For a probabilistic

polynomial-time 0-adversary A which makes q queries for KeyGen, the proof of security

will contain a sequence of (q + 2) games GameReal,Game0, . . . , Gameq between a prob-

abilistic polynomial time 0-Adversary A and a Challenger C.

GameReal is the real security game defined in the security definition of HVE( Section 3.5.1

)

Game0 is almost same as GameReal except that C uses g2 instead of g1 to construct the public

parameters Pp given to A. Specifically C constructs,

Pp= [N, g3, (Ti,b)i∈[l],b∈{0,1}] , Pp
′= [N, g3, (T

′

i,b)i∈[l],b∈{0,1}] and Msk = [g12, g4, (ti,b)i∈[l],b∈{0,1}]

where C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1g2

. For each i ∈ [l] and b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 Ri,b and T ′i,b = g

ti,b
1 Ri,b .

Gamek for 1 ≤ k ≤ q is almost equivalent to Game0 except that the first k key queries is-

sued by A are answered with keys whose Gp1 parts are random. The remaining key queries

(that is, from the (k + 1)-st to the q-th) are answered like in the previous game. The Gp2 parts

of all the answers to key queries are like in Game0 .

Specifically for the first k -queries C chooses random ai, ci ∈ ZN for i ∈ S−→y (where −→y is

the input vector), under the constraint that Σi∈S−→y Σi∈[l] ai = 0. For i∈S−→y , the algorithm chooses

random Wi ∈ Gp4 and sets

Yi = gci1 g

ai
ti,yi
2 Wi . The algorithm returns the tuple (Yi)i∈S−→y .

The remaining (q − k) queries are answered like in Game0 .

The security Proof is based on the follwing two Lemmas.
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Lemma 3.1. Suppose there exists a PPT algorithm A such that AdvAGameReal − AdvAGame0 =

ε , for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage ε in breaking Assump-

tion 3.

Lemma 3.2. Suppose there exists a PPT algorithm A such that AdvAGamek−1
− AdvAGamek =

ε , for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage atleast ε
2l

in breaking

Assumption 4.

Following the Lemmas it has been proved that the Gameq has no advantage i.e, AdvAGameq
= 0 which proves the following Theorem.

Theorem 3.5.1 If Assumptions 3 and 4 hold for generator G, then the HVE scheme presented

is 0-secure .

3.5.4 1-Secure HVE

Construction of 1-Secure HVE Scheme

Setup(1λ, 1l): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4

, G,GT , e) with known factorization by running a generator algorithm G on input 1λ . The setup

algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [l] and b ∈ {0, 1},
the algorithm chooses random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 gvi4 Ri,b .

The public parameters are Pp = [N, g3, (Ti,b)i∈[l],b∈{0,1}] and

The master secret key is Msk = [g12, g4, (ti,b)i∈[l],b∈{0,1}, (vi)i∈[l]], where g12 = g1g2

KeyGen(Msk,−→y ): Let S−→y be the set of indices i such that yi 6= ∗ The key generation al-

gorithm chooses random ai ∈ ZN for i ∈ S−→y under the constraint that
∑

i∈S−→y
ai = 0. For i∈S−→y
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, the algorithm sets Yi = g

ai
ti,yi
12 g

ai
vi
4 .

The algorithm returns the tuple (Yi)i∈S−→y .

Notice that here we used the fact that S−→y has size at least 2.

Encrypt(Pp,−→x ): The encryption algorithm chooses random s ∈ ZN . For i ∈ [l], the al-

gorithm chooses random Zi ∈ Gp3 (the Zi are chosen by raising g3 to a random power) and

sets Xi = T si,xiZi , and returns the tuple (Xi)i∈[l] .

Test(Ct, Sk−→y ): The test algorithm computes T =
∏

i∈S−→y
e(Xi, Yi) and returns TRUE iff T = 1.

Security of 1-Secure HVE Scheme

The security proof of 1-Secure HVE is based on Assumption 3 and 6. The proof of security

contains a sequence of three games between a polynomial-time 1-Adversary A and a Chal-

lenger C. The first game, GameReal is the real HVE security game. The remaining games are

Game0 and Game1

GameReal is the real security game defined in the security definition of HVE( Section 3.5.1

)

Game0 is almost same as GameReal except that C uses g2 instead of g1 to construct the public

parameters Pp given to A. Specifically C constructs,

Pp = [N, g3, (Ti,b)i∈[l],b∈{0,1}] , Pp
′= [N, g3, (T

′

i,b)i∈[l],b∈{0,1}] and Msk = [g12, g4, (ti,b)i∈[l],b∈{0,1}]

where C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1g2

. For each i ∈ [l] and b ∈ {0, 1}, C chooses random ti,b ∈ ZN , vi ∈ ZN and Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 ġvi4 Ri,b and T ′i,b = g

ti,b
1 ġvi4 Ri,b .

Game1 is almost like Game0 except in the query phase C answers the queries in the following
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way.

On input vector −→y , for i ∈ S−→y , C chooses random ai, bi ∈ ZN under the constraint that

i∈S−→y Σi∈S−→y ai = Σi∈S−→y bi = 0. C sets, for i ∈ S−→y ,

Yi = g

ai
ti,yi
2 ġ

bi
vi
4 Ẇ i

The security Proof here also is based on the follwing two lemmas.

Lemma 3.3. Suppose there exists a PPT algorithm A such that AdvAGameReal − AdvAGame0 =

ε , for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage ε in breaking Assump-

tion 3.

Lemma 3.4. Suppose there exists a PPT algorithm A such that AdvAGame0 − AdvAGame1 = ε

, for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage ε in breaking Assump-

tion 6.

Following the Lemmas it has been proved that the Game1 has no advantage i.e, AdvAGame1
= 0 which proves the following Theorem.

Theorem 3.5.2 If Assumptions 3 and 6 hold for generator G, then the HVE scheme presented

is 1-secure.

3.5.5 Hierarchical HVE

A Hierarchical HVE scheme (HHVE) consists of five efficient algorithms (Setup, Encrypt,

KeyGen, Test, Delegate).

Setup(1λ, 1l): The setup algorithm chooses a description of a bilinear group I = (N = p1p2p3p4

, G,GT , e) with known factorization by running a generator algorithm G on input 1λ . The

setup algorithm chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3, R ∈ Gp3 , g4 ∈ Gp4 . For i ∈ [l]
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and b ∈ {0, 1}, the algorithm chooses random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
1 gvi4 Ri,b .

The public parameters are Pp = [N, g3, g4, g1.R, (Ti,b)i∈[l],b∈{0,1}] and

The master secret key is Msk = [g12, (ti,b)i∈[l],b∈0,1], where g12 = g1g2

KeyGen(Msk,−→y ): Let S−→y be the set of indices i such that yi 6= ∗ The key generation al-

gorithm chooses random ai ∈ ZN for i ∈ S−→y under the constraint that
∑

i∈[l] ai = 0.

Yi =

 g

ai
ti,yi
12 Ri for i ∈ S−→y
gai12Ri for i /∈ S−→y

The algorithm also sets for i /∈ S−→y and b ∈ {0, 1} Di,b = g
ai
ti,b

12 Ri,b

The algorithm returns the tuple Sk−→y = [(Yi)i∈[l], (Di,b)i/∈S−→y ,b∈{0,1}] . Notice that here we

used the fact that S−→y has size at least 2.

Encrypt(Pp,−→x ): The encryption algorithm chooses random s ∈ ZN and Z ∈ Gp3 . For

i ∈ [l], the algorithm chooses random Zi ∈ Gp3 (the Zi are chosen by raising g3 to a random

power) and sets X0 = (g1R)sZ and Xi = T si,xiZi for each i ∈ [l] , and Returns the Tuple

Ct= [X0, (Xi)i∈[l]].

Test(Ct, Sk−→y ): The test algorithm computes T =e(X0,
∏

i/∈S−→y
Yi)
∏

i∈S−→y
e(Xi, Yi) and returns

TRUE iff T = 1 and FALSE otherwise.

Delegate(Pp, Sk−→y ,
−→y ,−→w ): On a input of Sk−→y = [(Y

′
i )i∈[l], (Di,b)

′

i/∈S−→y ,b∈{0,1}
] for vector −→y the

delegation algorithm chooses random z ∈ ZN . For i ∈ S−→w , the algorithm chooses random

Ri ∈ Gp4 and, for i /∈ S−→w and b ∈ {0, 1}, random Ri,b ∈ Gp4 .

The Delegation algorithm computes Yi for i ∈ S−→w as
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Yi =

{
Y
′z
i Ri for i ∈ S−→y
D
′
i,wi

zRi for i /∈ S−→y

and

Di,b = D′i,b
z
Ri,b for i /∈ S−→w and b ∈ {0, 1}

and returns the Secret Key as Sk−→w = [(Yi)i∈[l], (Di,b)i/∈S−→y ,b∈{0,1}]

Remark 1. Let Pp =[N, g3, g4, g1Ṙ, (Ti,b)i∈[l],b∈{0,1}] and Msk = [g1g2, (ti,b)i∈[l],b∈{0,1} ] be a

pair public parameter and master secret key output by Setup algorithm and consider Pp
′ =

[N, g3, g4, ĝ1R, (T
′

i,b)i∈[l],b∈{0,1}] and Msk
′ = [ĝ1g2, (ti,b)i∈[l],b∈{0,1} ] with T ′i,b = ĝ

ti,b
1 Zi,b where

ĝ1 ∈ Gp1andZi,b ∈ Gp3 .

Then we have the following easy observation.

1. For every y ∈ {0, 1, ∗}l , the distributions Genkey(Msk, y) and Genkey(Msk
′ , y) are

identical.

2. Similarly, for every x ∈ {0, 1}l, the distributions Encrypt(Pp, x) and Encrypt(Pp′ , x)

are identical.

Security for Hierarchical HVE

The security proof of Hierarchical HVE is based on Assumption 3 and 5. For a probabilistic

polynomial-time adversary A which makes q Reveal queries for , the proof of security will

contain a sequence of (q + 2) games GameReal,Game0, . . . , Gameq between a probabilistic

polynomial time Adversary A and a Challenger C.

GameReal consists of the Setup Phase followed by a Query Phase. The Query Phase

consists of several Key Queries and one Challenge Construction Query. We stress that the Chal-

lenge Construction Query is not necessarily the last query of the Query Phase. More precisely,

we have the following game.

Setup. C runs the Setup algorithm on input ( 1λ, 1l) (given in unary) to generate public pa-
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rameters Pp and master secret key Msk. C starts the interaction with A on input Pp.

Key Query Answering. Key queries can be of three different types. C answers these queries

in the following way. C starts by initializing the set S of private keys that have been created but

not yet given to A equal to ∅.

• Create. To make a Create query, A specifies a vector −→y ∈ {0, 1, ∗}l . In response, C
creates a key for −→y by running the KeyGen algorithm on input Msk and −→y . C adds this key to

the set S and gives A only a reference to it, not the actual key.

• Delegate. To make a Delegate query, A specifies a reference to a key Sk−→y in the set S

and a vector −→w ∈ {0, 1, }l such that −→w ≺ −→y . In response, C makes a key for −→w by executing

the Delegate algorithm on input Pp, Sk−→y , −→y and −→w . C adds this key to the set S and again

gives A only a reference to it, not the actual key.

• Reveal. To make a Reveal query, A specifies an element of the set S. C gives the cor-

responding key to A and removes it from the set S. We note that A needs no longer make any

delegation queries for this key because it can run the Delegate algorithm on the revealed key

by itself.

Challenge Construction. To make a Challenge Construction query, C specifies a pair x0, x1 ∈
{0, 1}l . C answers by picking random η ∈ {0, 1} and returning Encrypt(Pp, −→xη ).

At the end of the game, A outputs a guess η′ for η. We say that A wins if η′= η and for all
−→y for which A has seen a secret key, it holds that Match(x0,

−→y ) = Match(x1,
−→y ) = 0. The

advantage AdvAHHV E(λ) of A is defined to be the probability that A wins the game minus 1/2.

We are now ready for the following definition.

Definition 4. A Hierarchical Hidden Vector Encryption scheme is secure if for all probabilistic

polynomial time adversaries A, we have that AdvAHHV E(λ) is a negligible function of λ.
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Game0 is almost same as GameReal except that C uses g2 instead of g1 to construct the public

parameters Pp given to A. Specifically C constructs,

Pp= [N, g3, g4, g1Ṙ, (Ti,b)i∈[l],b∈0,1] , Pp
′= [N, g3, g4, g1Ṙ(T

′

i,b)i∈[l],b∈0,1] and

Msk = [g12, g4, (ti,b)i∈[l],b∈{0,1}]

where C chooses random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1g2

. For each i ∈ [l] and b ∈ {0, 1}, C chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 Ri,b and T ′i,b = g

ti,b
1 Ri,b .

Gamek for 1 ≤ k ≤ q is almost equivalent to Game0 except among the The first k Reveal

queries issued by A are instead answered by C by returning keys whose Gp1 parts are random.

All remaining Reveal queries are answered like in Game0 . We stress that the Gp2 parts of all

answers are like in Game0 . More precisely, the Key Query are handled by C in the following

way. C starts by initializing the set S to the empty set and the query counter v and the reveal

query counter Rv equal to 0.

• Create(−→y ): C increments v and, for each i ∈ [l], chooses random av,i ∈ ZN such that∑l
i=1 av,i = 0 and adds the tuple (v, −→y , (av,1, ..., av,l)) to the set S. C returns v to A.

• Delegate(v′ ,−→w ): For Delegate key query on vector w,C increments v and adds the tu-

ple (v,−→w , v′) to the set S. C returns v to A.

• Reveal(v′ ): Suppose entry v′ in S refers to key Sk−→w which is the the result of a delega-

tion path −→w = −→w0 ≺ −→w1... ≺ −→wn = −→y of length n ≥ 0 starting from key Sk−→y created as result

of the v′′ -th Create key query.

C chooses random z ∈ ZN and, for each i ∈ [l], random ci ∈ ZN and Ri ∈ Gp4 . Moreover

for each i /∈ S−→w and b ∈ {0, 1}, C chooses random Ri,b ∈ Gp4 .

C increments Rv. If Rv ≤ k then for i ∈ [l] C sets

Yi =

 gci1 g

za
v
′′
,i

ti,wi
2 Ri for i ∈ S−→w

gci1 g
za
v
′′
,i

2 Ri for i /∈ S−→w
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and for each i i /∈ S−→w and for b ∈ {0, 1} C sets

Di,b = gci1 g

za
v
′′
,i
ti,wi

R i,b

2

If instead Rv > k then for each i ∈ [l] C sets

Yi =

 g

za
v
′′
,i

ti,wi
12 Ri for i ∈ S−→w
g
za
v
′′
,i

12 Ri for i /∈ S−→w
and for each i i /∈ S−→w and for b ∈ {0, 1} C sets

Di,b = g

za
v
′′
,i
ti,wi

R i,b

12

Finally C returns the key Sk−→w consisting of the Yi’s and the Di,b’s

The security Proof is based on the follwing two lemmas.

Lemma 3.5. Suppose there exists a PPT algorithm A such that AdvAGameReal − AdvAGame0 =

ε , for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage ε in breaking Assump-

tion 3.

Lemma 3.6. Suppose there exists a PPT algorithm A such that AdvAGamek−1
− AdvAGamek =

ε , for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage atleast ε
2l

in breaking

Assumption 5.

Following the Lemmas it has been proved that the Gameq has no advantage i.e, AdvAGameq
= 0 which proves the following Theorem.

Theorem 3.5.3 If Assumptions 3 and 5 hold, then the HHVE scheme is secure.



Chapter 4

An Improved Security Proof for
Hierarchical HVE Scheme

The previous definitions for security of Hierarchical IBE (HIBE) are incomplete which makes

bulding delegation into encryption systems difficult. In the previous definitions of HIBE secu-

rity, the attacker plays a game where he receives all his private key queries directly from the

HIBE authority; Hence, this does not accurately model an adversary’s view in a real system

because an adversary might get the private key ISI:MTech:Avik directly from an authority or

might choose to get it from a user with the key ISI:Mtech in a real system. Beside this, pri-

vate keys received directly from the authority and delegated private keys may have different

distribution or forms. For example, in the Gentry and Silverberg [10] and Boneh and Boyen

HIBE [4] schemes if a HIBE private key of depth l is received directly from an authority, the

authority will create l newly random elements of Z∗p in creating the key; however, if the key

is generated by another user, only one new degree of randomness will be added and the rest

will be in common with the previous key. Hence in the security game, delegated privte key

and private keys from authority may have different distribution and we should not assume that

delegated keys have the same distribution as keys directly computed by the authority.

Alison Lewko et al. [15] first pointed the difficulty in and created a general framework

and definitions for delegation in predicate encryption systems. To do this a general definition

has been proposed that accounts for how predicate capabilities are created. In particular, the

definition allows for the adversary to make queries both for capabilities that are created by an

52
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authority and for capabilities delegated by users. The adversary may then ask for some subset

of these capabilities to be revealed to him.

In the security for delegation in predicate encryption systems a query security game be-

tween a challenger C and an adversary A has been described. This game formally captures the

notion that the tokens reveal no unintended information about the plaintext. A asks the chal-

lenger for a number of tokens. For each queried token, A gets to specify its path of derivation:

whether the token is directly generated by the root authority, or delegated from another token.

If the token is delegated, the adversary also gets to specify from which token it is delegated.

The game proceeds as follows:

Setup. C runs the Setup algorithm and gives the adversary the public key PP.

Query1. A adaptively makes a polynomial number of queries of the following types:

• Create token. A asks the challenger to create a token for a set of functions G ⊆ F . C
creates a token for G without giving it to A.

• Create delegated token. A specifies a token for function family G that has already been

created, and asks the challenger to perform a delegation operation to create a child token for G ′

⊆ G. C computes the child token without releasing it to A.

• Reveal token. A asks the challenger to reveal an already-created token for function fam-

ily G.

Challenge. A outputs two strings X∗0 , X
∗
1 ∈ {0, 1}l subject to the following constraint: For

any token revealed to the adversary in the Query1 stage, let G denote the function family

corresponding to this token. For all f ∈ G, f (X∗0 ) = f (X∗1 ).

Next, C flips a random coin b and encrypts X∗b . It returns the ciphertext to A.

Query2. Repeat the Query1 stage. All tokens revealed in this stage must satisfy the same

condition as above.

Guess. A outputs a guess b′ of b. The advantage of A in the above game is defined to be
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AdvA = |Pr[b = b
′
]− 1/2|.

Definition 4 : We say that a delegatable predicate encryption system is secure if for all poly-

nomial time adversaries A attacking the system, its advantage AdvA is a negligible function of

λ.

Clearly this security definition is complete in the sense that in the query phase, A gets to

specify, for each queried token, its path of derivation: whether the token is generated by the

root authority, or from whom the token has been delegated. In prior work on delegation in

identity-based encryption systems (e.g., Hierarchical Identity-Based Encryption (HIBE) [9],

Anonymous Hierarchical Identity-Based Encryption (AHIBE) [10] [5]), the security game

was under-specified. In these definitions, the adversary did not get to specify from whom each

queried token is delegated.One way to deal with this is to create systems where all tokens

are generated from the same probability distribution. But under this security definition, the

delegated token need not be picked from the same probability distribution as the nondelegated

tokens.

Now in the HHVE scheme given in [7] we observed that actual key generated by KeyGen

algorithm( Run by PKG ) are in the same distribution with the key generatedby running a Del-

egate(Run by user) algorithm. But Angelo De Caro et al. in [7] has proved the security of

their HHVE scheme by using Delegate(Run by user) algorithm in the key query phase which

is redundant. Hence we have given a new security proof for the HHVE scheme which removes

the flaw of the previous security proof given in [7] by removing the importance of Delegate

algorithm in the Key Query phase and the Delegate algorithm just acts like Create algorithm

of the Key Query phase. Since in the Lemma 4.1(Section 4.1.1) it has been proved that actual

key generated by KeyGen algorithm( Run by PKG ) are in the same distribution with the key

generated by running a Delegate(Run by user) algorithm, so the adversary A can not distin-

guish between the keys( Generated by delegate and create respectively). Hence uselessness of

Delegate algorithm in HHVE scheme is verified. Hence our new proof becomes much more

simpler.

Angelo de caro [7] has proved the IND-CPA security of the HHVE scheme under the as-

sumption 3 and 5(Section 3.5.2). But we have proved the security of the scheme under the

assumptions 3 and 4(Section 3.5.2) where assumption 4 is weaker than assumption 5.
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4.1 Improved Security Proof for HHVE Scheme

We prove the security of Hierarchical HVE scheme by introducing a sequence of games GameReal,
GameReal′ , Game0, Game1, . . . Gameq i.e, we are constructing a sequencce of ( q+3 ) games.

Our security definition requires that no PPT adversaryA has non-negligible advantage over
1
2

in game GameReal against a challenger C. GameReal consists of the Setup Phase followed

by a Query Phase. The Query Phase consists of several Key Queries and one Challenge

Construction Query. We stress that the Challenge Construction Query is not necessarily the

last query of the Query Phase. More precisely, we have the following game.

Setup. C runs the Setup algorithm on input ( 1λ, 1l) (given in unary) to generate public pa-

rameters Pp and master secret key Msk. C starts the interaction with A on input Pp.

Key Query Answering. Key queries can be of three different types. C answers these queries

in the following way. C starts by initializing the set S of private keys that have been created but

not yet given to A equal to ∅.

• Create. To make a Create query, A specifies a vector −→y ∈ {0, 1, ∗}l . In response, C
creates a key for −→y by running the KeyGen algorithm on input Msk and −→y . C adds this key to

the set S and gives A only a reference to it, not the actual key.

• Delegate. To make a Delegate query, A specifies a reference to a key Sk−→y in the set S

and a vector −→w ∈ {0, 1, }l such that −→w ≺ −→y . In response, C makes a key for −→w by executing

the Delegate algorithm on input Pp, Sk−→y , −→y and −→w . C adds this key to the set S and again

gives A only a reference to it, not the actual key.

• Reveal. To make a Reveal query, A specifies an element of the set S. C gives the corre-

sponding key to A and removes it from the set S. We note that A needs no longer make any

delegation queries for this key because it can run the Delegate algorithm on the revealed key

by itself.

Challenge Construction. To make a Challenge Construction query, C specifies a pair x0, x1 ∈
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{0, 1}l . C answers by picking random η ∈ {0, 1} and returning Encrypt(Pp, −→xη ).

At the end of the game, A outputs a guess η′ for η. We say that A wins if η′= η and for all
−→y for which A has seen a secret key, it holds that Match(x0,

−→y ) = Match(x1,
−→y ) = 0. The

advantage AdvAHHV E(λ) of A is defined to be the probability that A wins the game minus 1/2.

We are now ready for the following definition.

Definition 1. A Hierarchical Hidden Vector Encryption scheme is secure if for all probabilistic

polynomial time adversaries A, we have that AdvAHHV E(λ) is a negligible function of λ.

GameReal′ is almost same as GameReal except the Reveal algorithm in the Query phase

acts differently . In stead of giving Delegated Key in some specific query by A for some −→w
, where −→w ≺ −→y for some existing Sk−→y stored in S, the Algorithm directly gives Secret key

Sk−→w by using KeyGen algorithm.

Game0 is almost same as GameReal′ except in Game0 the challenger C givesA the Public

Parameters as

Pp = [N,g3,g4,g2.R, (Ti,b)i∈[l],b∈{0,1}] where Ti,b = g
ti,b
2 Zi,b.

C also constructs Pk
′ and Msk where

Pp
′
= [N,g3,g4,g1.R, (T

′

i,b)i∈[l],b∈{0,1}] where T ′i,b = g
ti,b
1 Zi,b.

Msk = [g12, (t
′

i,b)i∈[l],b∈{0,1}]

Gamek for 1 ≤ k ≤ q is almost equivalent to Game0 except among the q key queries by A
, for the first k queries C sets the secret key components

Yi =

 gci1 g

ai
ti,yi
2 Ri for i ∈ S−→y

gci1 g
ai
2 Ri for i /∈ S−→y
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and Di,b = gci1 g
ai
ti,b

2 Ri,b for i /∈ S−→y and b ∈ {0, 1}

and gives Sk−→y = [(Yi)i∈[l], (Di,b)i/∈S−→y ,b∈{0,1}] to A

4.1.1 Proof of Indistinguishability of GameReal and GameReal′

Lemma4.1 GameReal and GameReal′ are indistinguishable

Proof: Let C be a challenger and A be an adversery.

Let us consider two vectors such that −→y and −→w such that −→w ≺ −→y

Clearly we have to show that Sk−→w= Delegate(Pk, Sk−→y , −→y , −→w ) in GameReal and Sk−→w= Key-

gen(Msk, −→w ) in GameReal′ are from same distribution.

Clearly during Query phase of GameReal C runs Keygen algorithm (If Create query is

called) and produce

Yi′ =

 g

ai
ti,yi
12 Ri for i ∈ S−→y
gai12Ri for i /∈ S−→y

and

D
′

i,b = g
ai
ti,b

12 Ri,b for i /∈ S−→y and b ∈ {0, 1}

C runs Delegation algorithm (If Delegate query is called) and produce

Yi =

{
Y
′z
i Ri for i ∈ S−→y
D
′
i,wi

z
Ri for i /∈ S−→y

and

D
′

i,b = D′i,b
zRi,b for i /∈ S−→y and b ∈ {0, 1}
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the individual components of the keys are described in section 3.5.4

Clearly during Query phase of GameReal′ C runs Keygen algorithm and produce

Yi =

 g

ai
ti,yi
12 Ri for i ∈ S−→y
gai12Ri for i /∈ S−→y

and

Di,b = g
ai
ti,b

12 Ri,b for i /∈ S−→y and b ∈ {0, 1}

This shows that Sk−→w= Delegate(Pp, Sk−→y , −→y , −→w ) in GameReal and Sk−→w= Keygen(Msk,
−→w ) in GameReal′ are from same distribution.(Yi ’s are from Gp1p2p4 and Di,b for i /∈ S−→y and

b ∈ {0, 1} are from Gp1p2p3

4.1.2 Proof of Indistinguishability of GameReal′ and Game0

Lemma 4.2. Suppose there exists a PPT algorithm A such that AdvAGameReal′ −Adv
A
Game0

= ε .

Then, there exists a PPT algorithm B with advantage ε in breaking Assumption 3( section 3.5.2

).

Proof: The proof is constructive. We prove the lemma by showing a PPT algorithm B which

receives (I, A3, A4, A13, A12, T ) and, depending on the distribution of T , simulatesGameReal′

or Game0 with A.

Setup. B starts by constructing public parameters Pp and Pp
′

in the following way. B
sets g3 = A3 , g12 = A12 , g4 = A4 and, for i ∈ [l] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN
and sets Ti,b = T ti,b and T ′i,b = A

ti,b
13 . Then B sets
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Pp = [N, g3, g4, T, (T
′

i,b)i∈[l],b∈{0,1}], and

Msk = [g12, (ti,b)i∈[l],b∈{0,1}]

B constructs Pp′ = [N, g3, g4, A13, (T
′

i,b)i∈[l],b∈{0,1} ], and keeps it to itself for the Challenge

phase and initiallize S = ∅ and starts the interaction with A on input Pp.

KeyQueryAnswering. B handles this phase in the following way

• Create. To make a Create query, A specifies a vector −→y ∈ {0, 1, ∗}l . In response, B
creates a key for −→y by running the KeyGen algorithm on input Msk and −→y . B adds this key to

the set S and gives A only a reference to it, not the actual key.

•Delegate. In this phase B handles A’s query just like in Create query phase. Clearly A
specifies a reference to a key Sk−→y in the set S and a vector −→w ∈ {0, 1, }l such that −→w ≺ −→y . B
runs the KeyGen algorithm on input Msk and −→w . B adds this key to the set S and gives A only

a reference to it, not the actual key.

• Reveal. To make a Reveal query, A specifies an element of the set S. B gives the corre-

sponding key to A and removes it from the set S. We note that A needs no longer make any

delegation queries for this key because it can run the Delegate algorithm on the revealed key

by itself.

ChallengeConstruction. The challenge is created by B by picking one of the two vec-

tors provided by A, let us call it −→x , and by encrypting it by running the Encrypt algorithm on

input −→x and Pp′ .

This concludes the description of the algorithm B.

Now suppose that T ∈ Gp1p3 . Then T can be written as T = h1h3 for some h1 ∈ Gp1 and
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h3 ∈ Gp3 . So the public parameter Pp received by A in the interaction with B has the same

distribution in GameReal′ . Moreover, by writing A13 as A13 = ĥ1ĥ3 for ĥ1 ∈ Gp1 and

ĥ3 ∈ Gp3 , we notice that Pp and Pp
′ are as in the hypothesis of Remark, where with g1 = h1

and ĝ1 = ĥ1 .Therefore the answers to key queries and the challenge ciphertext given by B
to A have the same distribution as the answers and the challenge ciphertext received by A in

GameReal
′ . Therefore if T ∈ Gp1p3 , B simulates GameReal

′ for A Similarly if T ∈ Gp2p3 ,

B simulates Game0 for A. This concludes the proof of the lemma.

4.1.3 Proof of Indistinguishability of Gamek and Gamek−1

Lemma 4.3. Suppose there exists a PPT algorithm A such that AdvAGamek−1
− AdvAGamek = ε

, for 1 ≤ k ≤ q. Then, there exists a PPT algorithm B with advantage atleast ε
2l

in breaking

Assumption 4( section 3.5.2 ).

Proof: The proof is constructive. We prove the lemma by showing a PPT algorithm B which

receives (I, A1, A2, A3, A4, A
α
1B4, A

β
1C4, T ) and, depending on the distribution of T , simulates

Gamek−1 or Gamek with A.

B guesses the index j such that the j-th bit w(k)
j of the k-th Reveal query −→w (k) is different

from * and different from xj of the challenge vectors given by A that is used by B to construct

the challenge ciphertext. Clearly such index j always exists and that the probability that B
correctly guesses j and w(k)

j for which xj = 1 − w(k)
j is at least 1

(2l)
. Notice that, if during the

simulation this is not the case, then B aborts the simulation and fails. So we assume that B’s

initial guess is correct to prove the correctness of the simulation.

Setup. B sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1A2. B chooses random

R ∈ Gp3 and, for i ∈ [l] \ {j} and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and Zi,b ∈ Gp3 .

Then B sets Ti,b = g
ti,b
2 Zi,b .

Moreover, B chooses random tj,xj ∈ ZN , Zi,xj ∈ Gp3 , rj,y(k)j
∈ ZN , Zj,y(k)j

∈ Gp3 . B then sets

Tj,xj = g
tj,xj
2 Zj,xj and T

j,y
(k)
j

= g
r
j,y

(k)
j

2 Z
j,y

(k)
j
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B sets Public Parameters as Pp = [N, g3, g4, g2R, (Ti,b)i∈[l],b∈{0,1}] and give it to A

B also set master Secret Key Msk = [g12, (ti,b)i∈[l],b∈{0,1}, ti,xj , rj,y(k)j
]

In addition for each i ∈ [l] \ {j}, b ∈ {0, 1} B chooses Z ′i,b ∈ Gp3 .

Then B sets T ′i,b = g
ti,b
1 Z

′

i,b and Tj,xj = g
tj,xj
1 Zj,xj for Zi,xj ∈ Gp3 .

In answering Key Queries B will implicitly set T
j,y

(k)
j

= g
1
β

1 Z
′

j,y
(k)
j

for Z ′
j,y

(k)
j

∈ Gp3

and constructs Pp
′ = [N, g3, g4, g1R, (T

′

i,b)i∈[l],b∈{0,1}], and keeps it to itself for the Challenge

phase and initiallize S = ∅ to start the interaction with A on input Pp.

Key Query Answering. B handles the first (k-1) queries as follows.

Clearly as in the definition of Gamek the Delegate algorithm in the key query phase is same

with the Create algorithm in the key query phase.

Suppose A requests the key for −→y (corresponding input vector).

For i ∈ [l], B chooses ci ∈ ZN , Ri ∈ Gp4 , ai ∈ ZN , such that
∑

i∈[l] ai = 0 and for i /∈ S−→y and

b ∈ {0, 1} B chooses Ri,b ∈ Gp3 .

For i ∈ [l] \{j} B sets

Yi =

 gci1 g

ai
ti,yi
2 Ri for i ∈ S−→y

gci1 g
ai
2 Ri for i /∈ S−→y

and Di,b = gci1 g
ai
ti,b

2 Ri,b for i 6= j, i /∈ S−→y and b ∈ {0, 1}

Moreover if j ∈ S−→y then B sets
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Yj =

 g
cj
1 g

aj
r
j,y

(k)
j

2 Rj for yj = y
(k)
j

g
cj
1 g

aj
tj,xj

2 Ri for yj = xj

If j /∈ S−→y then B sets

Yj = g
cj
1 g

aj
2 Rj, Dj,y

(k)
j

= g
cj
1 g

aj
r
j,y

(k)
j

2 R
j,y

(k)
j

and Dj,xj = g
cj
1 g

aj
tj,xj

2 Rj,xj

The answer to the first (k − 1) queries has the same distribution in Gamek−1 or Gamek.

B handles the kth query as follows.

Suppose A requests the key for −→y (Correspondong input vector).

Let h be an index such that h 6= j and y(k)
h 6= ∗

B chooses for i ∈ [l] \ {j, h}, ai ∈ Zn randomly

B chooses for i ∈ [l] , Ri ∈ Gp4 randomly

B also chooses Ri,b ∈ Gp4for i 6= j, hi ∈ S−→y (k) , b ∈ {0, 1} randomly

For each i ∈ [l] \ {j, h},B sets

Yi =

 g

ai
t
i,y

(k)
i

12 Ri for i ∈ S−→y (k)

gai12Ri for i /∈ S−→y (k)

Moreover for i /∈ S−→y (k) and b ∈ {0, 1}, B sets

Di,b = g
ai
ti,b

12 Ri,b.

Let s =
∑

i∈[l]\{j,h} ai

B also sets
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Yj = Tg

a
′
j

r
j,y

(k)
j

2 Rj for some a′j ∈ ZN , and

Yh = (Aα1B4)
− 1
t
h,y

(k)
h . g

− s
t
h,y

(k)
h

1 . g
−

s+a
′
j

t
h,y

(k)
h

2 . Rh

This terminates the description of how B handles the k-th Reveal query.

Suppose now that T = AαβD4 and thus by our settings, we have that

Yj = gαβ1 g

a
′
j

r
j,y

(k)
j

2 (D4Rj)

By the Chinese Remainder Theorem, there exists aj ∈ ZN such that

aj =

{
α mod p1

a
′
j mod p2

and there exists t
j,y

(k)
j
∈ ZN such that,

t
j,y

(k)
j

=


1
β
mod p1

r
j,y

(k)
j
mod p2

Clearly we can write Yj and Yh as

Yj = g

aj
t
j,y

(k)
j

12 Rj , and

Yh = g

−(α+s)
t
h,y

(k)
h

1 . g

−(s+a
′)
j

t
h,y

(k)
h

2 . Rh

=g

−(s+a
′)
j

t
h,y

(k)
h

12 . Rh

=g

+ah
t
h,y

(k)
h

12 . Rh where, ah = −(aj + s)

Therefore the answer to the k-th query is distributed as Gamek−1
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If T is random in Gp1p4 then Gp1 part of the Yi’s are random and independent thus answer

to the k-th query is distributed as Gamek

Now B handles the last (q − k) queries as follows.

Suppose A requests the key for −→y

Now B chooses for i ∈ [l] , Ri ∈ Gp4 randomly

For each i ∈ [l] \ {j}, b ∈ {0, 1} B chooses Ri,b ∈ Gp4

For i ∈ [l], B chooses ai ∈ ZN , such that
∑

i∈[l] ai = 0

For i ∈ [l] \ {j} B sets

Yi =

 g

ai
ti,yi
12 Ri for i ∈ S−→y
gai12Ri for i /∈ S−→y

and

Di,b = g
ai
ti,b

12 Ri,b for i 6= j i /∈ S−→y and b ∈ {0, 1}

For index j, B sets

Yj =


(Aβ1C4)ajg

aj
r
j,y

(k)
j

2 Rj for yj = y
(k)
j

g

aj
tj,xj

12 Rj for yj = xj

gaj12Rj for yj 6= ∗

Finally if yj 6= ∗

D
j,y

(k)
j

= (Aβ1C4)ajg

aj
r
j,y

(k)
j

2 R
j,y

(k)
j

Dj,xj = g

aj
tj,xj

12 Rj,xj

By the Chinese Remainder Theorem, there exists t′
j,y

(k)
j

∈ ZN such that
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t
′

j,y
(k)
j

=


1
β
mod p1

r
j,y

(k)
j
mod p2

So Yi can be written in the following format

Yi =

 g

ai
ti,yi
12 R

′
i for i ∈ S−→y

gai12R
′
i for i /∈ S−→y

For some random R
′
i ∈ Gp4 .

we can therefore conclude that the answer provided by B has the same distribution as in

Gamek and Gamek−1 .

Challenge construction. B creates the challenge ciphertext by running algorithm Encrypt

on input one randomly chosen challenge vector −→x provide by A and public parameters Pp
′ .

Notice that under the assumption that B has correctly guessed w(k)
j we have that xj = w

(k)
j ,

and this Pp
′

contains all the values needed for computing an encryption of −→x . Therefore the

challenge ciphertext is distributed exactly like in Gamek−1 and Gamek .

We observed that in Gameq the Gp1 part of the challenge ciphertext is the only one depending

on η. In addition notice that the g1R3 is the only component of the public parameters which

contains a Gp1 part but it is independent from η. Thus, it gives no advantage to the adversary

and moreover the answer to the key queries have random and independent Gp1 part. Therefore

we can conclude that for all adversaries A, AdvgameqA = 0. We have thus proved.

Theorem 4.1.1 If Assumptions 3 and 4 holds then the HHVE scheme is secure.



Chapter 5

Conclusions

In this work we have done a survey on Attribute Based Encryption and predicate Based En-

cryption and found a redundancy of the security proof in the HHVE scheme proposed in [7].

Hence we improved the security proof of the scheme and proposed a new security proof by

removing the redundancy in the previous proof for the HHVE scheme . The previous security

proof uses Delegate algorithm in the key query phase which is redundant because actual key

generated by KeyGen algorithm( Run by PKG ) are in the same distribution with the key gener-

ated by running a Delegate(Run by user) algorithm in the key query phase. Our proof removes

the importance of Delegate algorithm in the Key Query phase thus makes the proof simpler.

Moreover we uses a assumption 3 and 4 instead of assumption 3 and 5, where assumption 4 is

weaker version of assumption 5. Hence we proved that the HHVE scheme is secure in much

weaker assumption.

66



Bibliography

[1] Michel Abdalla:Searchable Encryption Revisited. Crypto 2005

[2] Dan Boneh and Brent Waters: Conjunctive, subset, and range queries on encrypted data.

.In Salil Vadhan, editor, Theory of Cryptography Conference (TCC) 2007 ,LNCS, volume

4392 pages 535–554. Springer, 2007

[3] D. Boneh, E.-J. Goh, and K. Nissim : Evaluating 2-DNF Formulas on Ciphertexts. In

Advances in Cryptology — Eurocrypt 2005 Springer LNCS 3378 (2005),pages 325–341.

[4] Dan Boneh and Xavier Boyen: Efficient selective-ID secure Identity Based encryptions

without random oracles in Eurocrypt, 2004.

[5] Xavier Boyen and Brent Waters : Anonymous Hierarchical Identity-Based Encryption

(Without Random Oracles) in Crypto, 2006.

[6] Ran Canetti, Shai Halevi, Jonathan Katz: Chosen-Ciphertext Security from Identity-

Based Encryption. Eurocrypt 2004.

[7] Angelo De Caro, Vincenzo Iovino and Giuseppe Persiano : Efficient Fully Secure (Hier-

archical) Predicate Encryption for Conjunctions, Disjunctions and k-CNF/DNF formulae

Cryptology ePrint Archive 2010.

[8] Ling Cheung and Calvin Newport: Provably Secure Ciphertext Policy ABE in ACM Con-

ference on Computer and Communications Security , pages 456-465, 2007.

[9] Ling Cheung and Craig Gentry and Alice Silverberg : Hierarchical ID-Based Cryptogra-

phy in Eurocrypt ’05, LNCS 3493, pages. 440-456, 2005 .

67



68 BIBLIOGRAPHY

[10] Craig Gentry and Alice Silverberg: Hierarchical id-based cryptography in Asiacrypt, 2002

[11] Vipul Goyal, Omkant Pandey, Amit Sahai and Brent Waters: Attribute-Based Encryption

for Fine Grained Access Con- trol of Encrypted Data . Advances in CCS ’06 Proceedings

of the 13th ACM conference on Computer and communications security

[12] Vipul Goyal, Abhishek Jain, Omkant Pandey and Amit Sahai: Bounded Ciphertext Policy

Attribute Based Encryption. ICALP (2) 2008

[13] Fujisaki E, Okamoto T : A Chosen-Cipher Secure Encryption Scheme Tightly as Secure

as Factoring . in IEICE Transactions on Fundamentals E84- A(1): Pages 179-187

[14] Jonathan Katz, Amit Sahai and Brent Waters: Predicate Encryption Supporting Disjunc-

tions, Polynomial Equations, and Inner Products. Eurocrypt 2008

[15] Allison Lewko, Amit Sahai, Tatsuaki Okamoto, Katsuyuki Takashima and Brent Waters:

Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner

Product Encryption. Simulatable Adaptive Oblivious Transfer. in Eurocrypt, 2010.

[16] Amit Sahai and Brent Waters: Fuzzy Identity-Based Encryption Advances in Euro-

crypt’2005, Volume 3494 of Lecture Notes in Computer Science, pages 457-473. Springer-

Verlag, 2005.

[17] Amit Sahai, John Bethencourt and Brent Waters: Ciphertext Policy Attribute Based En-

cryption. Eurocrypt 2007.

[18] Adi Shamir: Identity-Based Cryptosystems and Signature Schemes. Crypto 1984, LNCS

7, pages 47-53. Springer-Verlag, 1984.

.


