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Abstract

Facility Location problem has been an interesting research topic
in the area of Wireless (Sensor) Networks, Operation Research, Com-
putational Geometry and other related area of Computer Science. A
lot of work have been done in this area where the objective is to place
k base station of equal(minimum) range to cover entire interior re-
gion of a given polygon. Many variations have been studied in the
literature by restricting the base station location on the boundary of
the polygon, on a given edge etc.We focus on the problem in other
way round i.e. given a Convex Region P and a real number R the
objective is to find minimum number (say k) of base station posi-
tion(s), if possible, where we can place our base station(s) such that
each and every interior point of P is covered by atleast one of the
k base station(s). Here the constraint is that the base stations can
only be placed on vertices of the Convex Region. This problem of
finding k base station position(s)to cover polygonal region is named
as MinRegionCover(P,R). The minimum value of given R for which
MinRegionCover can be found out, we name that value as L(P ). In
this work we find L(P ) in O(n) time and decide whether given R is
sufficient to find MinRegionCover of given P along with an approach
for MinRegionCover(P,L(P )). We also have proved that at most 5
base stations are sufficient to cover a regular region P when R ≥ L(P )
and that can be found in O(n) time. In general none of the variation of
Base Station Placement problems is known to be NP-hard or Polyno-
mial time solvable though polynomial time algorithms for some special
cases are known. Our main work is an optimal O(n2) algorithm to
find MinRegionCover of a Convex Polygon P such that line join-
ing farthest pair is an edge of the P , which leads to an approach to
find constant factor approximation algorithm for MinRegionCover
for general Convex Polygon in polynomial time.
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Chapter 1

Introduction

1.1 Base Station Placement Problems

Due to recent growth in the demand of mobile communication ser-
vices in several typical environments, the development of efficient systems
for providing specialized services has become an important issue in mobile
communication research. An important sub-problem in this area is the base
station placement problem, where the objective is to identify the location for
placing the base stations. Mobile terminals communicate with their respec-
tive nearest base station, and the base stations communicate with each other
over scarce wireless channel in a multi-hop fashion by receiving and trans-
mitting radio signals. Each base station station emits signal periodically and
all the mobile terminals with in its range can identify it as its nearest base
station after receiving such radio signal. Here the problem is to position the
base stations such that the mobile terminal at any point in the entire area of
interest can communicate with at least one base station, and the total power
required for all the base station in the network is minimized. A different
variation of the problem arises when some portions of the target region is
forbidden for placing the base stations, but the communication inside those
regions need to be provided.For example, we may consider a large water body
or a stiff mountain. In such cases, we need some specialized algorithms for
efficiently placing the base stations on the boundary of the forbidden zone to
provide services inside that region. Some cases may also arise such that we
are allowed to place our base station only at some given location say only on
vertices.

For simplicity, we assume that the region P is convex, and all the k base
stations are similar, in other words,their range /power requirement are same,
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and the power requirement(cost) for a base station of range r is proportional
to r2.

In this thesis some constrained versions of Base stations placement on
vertices of the given Convex Region are studied.

1.2 Related Works

The k base stations placement problem can be formulated as classi-
cal k center problem in computational geometry. The simplest version of
this problem is Euclidean 1-center problem by sylvester[24]. The first al-
gorithmic result on this problem is by Elzinga and Hearn[10], which gives
an O(n2). Later Shamos and Hoey[25] improved the time complexity to
O(nlogn). Lee[15] proposed the farthest point voronoi diagram which can
also be used to solve 1-center in O(nlogn). Finally Megiddo[19] gave an O(n)
prune and search algorithm.

Several constrained versions of Euclidean 1-center problems are also stud-
ied in literature. Megiddo[19] has also studied a problem of minimum enclos-
ing circle where center lies on a given straight line.Hurtado, Sacristan and
Toussaint [13] used linear programming to give an O(n+m) time algorithm
for finding minimum enclosing circle whose center satisfies m linear inequal-
ity constraints. The query version of the minimum enclosing circle problem
is studied by Roy et al. [22], where the given points need to be preprocessed
such that given an arbitrary query line, the minimum enclosing circle with
center on the query line can be reported efficiently. The preprocessing time
and space requirement of this algorithm are O(nlogn) and O(n) respectively,
and the query time complexity is O(log2n).

For the 2-center problem, the first work is due to Sharir[23], where an
O(nlog9n) time algorithm is presented. The best known algorithm for this
problem was proposed by Chan[9]. It suggests two algorithms. The first one
is a deterministic algorithm, and it runs in O(nlog2n(loglogn)2) time; the
second one is a randomized algorithm that runs in O(nlog2n) time with high
probability.

Several other constrained variations of the k − center problem may be
of interest in the domain of mobile communication and sensor network. Alt
et al.[5] considered the problem of computing the centers of k circles on a
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line to cover a given set of points in 2D. The radius of the circles may
not be the same. The objective is to minimize the sum of radii of all these k
circles. They proposed an O(n2logn) time algorithm for solving this problem.

A variation of this problem is the discrete k− center problem, where the
objective is to find two closed disks whose union can cover a given set P of
n points, and whose centers are a pair of points in P . Bilo et al.[8] proved
that the discrete k−center problem in 1D can be solved in polynomial time,
and is NP-hard in higher dimension. Agarwal et al.[7] first studied the case
where k = 2, and proposed an O(n4/3logn) time algorithm. Recently, Kim
et al.[14] proposed much efficient algorithms for both the standard and dis-
crete versions of the 2-center problem where the points to be covered are
vertices of a convex polygon. Their algorithms run in O(nlog3nloglogn) and
O(nlog2n) respectively. The discrete k− center problem is known to be NP-

complete[18]. Hwang et al.[11] proposed an O(n
√
k) time algorithm for the

discrete k− center problem. Therefore, it makes sense to search for efficient
approximation algorithms and heuristics for the general version [12,21]. Lev-
Tov and Peleg[16,17] proposed another variation of the discrete k − center
problem in the context of mobile communication. Here the positions of k
base stations are given, and the objective is to find the radius of coverage
of each base station such that each point in P is covered by at least one of
the base stations and the sum of radii of coverage of all these base stations
is minimized. A polynomial time approximation scheme for this problem is
also proposed[16]. Detailed review on this topic can be found in [27].

Many similar problems can also be found in the mobile communication
and sensor network literature. Sohn et al.[26] assumes that two sets of points
B and R , called blue and red points, are given. The objective is to cover
all the red points with circles of radius p (given apriori) centered at min-
imum number of blue points. Here the blue points indicate the possible
positions of base stations, and red points indicate the target locations where
the message need to be communicated. A heuristic algorithm using inte-
ger linear programming is presented along with experimental results. Azad
et al.[6] studied a different variation where n base stations (of same range)
are placed on the boundary of a square region, and m sensors are uniformly
distributed inside that region. The sensors are also allowed for limited move-
ment. The entire time span is divided into slots. At the beginning of each
time slot, depending on the positions of the sensors,k base stations need to
be activated. The proposed algorithm finds a feasible solution (if exists) in
timeO(mn+ nlogn) time.
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Sansanka Roy et al.[1,2] have also studied some variations of k − centre
problem on boundary of convex region. They gave an O(n) algorithm for
1 − centre problem where center lies on the boundary and an 1 + ε factor
approximation algorithm for regioncover(k) problem that runs in O((n +
k)log(n+ k) + nlog(1/ε)), where all k base stations lie on a specified bound-
ary.

In this paper we focus on the facility location problem on vertices of a
convex Region. We basically focus on the problem named MinRegionCover
to find minimum set of facilities that are required to cover entire region
given a real number R as radius. We find minimum possible value of R((P))
that is required for a given polygon in O(n) time. We give an approach
for MinregionCover(P ,L(P)) and MinregionCover(P , R) where R is any
thing.
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Chapter 2

Problem Definition and Some
Results

2.1 Some Definitions

Below some definitions are given which are used in the following in this
thesis.

Definition (PRegion) Given a Convex Region P and a point p(p is a vertex
of P) and a real number R , PRegion(p,R,P) (written as PRegion(p,R) for
simplicity) is defined as PRegion(p,R)=CR(p,R) ∩ P. Where CR(p,R) is
the circular region of radius R centered at p.

Definition (PolygonalVoronoiRegion) Given a Convex Region P with its
vertex set {p1, p2, . . . , pn} in anticlockwise order V oronoiRegion(p) is the
intersection of P and the voronoi region of p ∈ {p1, p2, . . . , pn} and denoted
as V R(P , p) or simply V R(p). Here the sites of the voronoi diagram are the
vertices of the convex Region.

Definition (VoronoiDiameter) VoronoiDiameter(p)is the distance of the far-
thest point inside V R(P , p) i.e. farthest from p and is denoted as V D(p).
V D(p) = maxq∈V R(p)d(p, q), where d(., .) refers to euclidean distance.

Definition (LowerBoundCoveringRadius) Given a Convex Region P with its
vertex set {p1, p2, . . . , pn}in anticlockwise order LowerBoundCoveringRadius(P)
is defined as L(P) = maxi∈[n]V D(pi). Refer figure 2.1., d(pi, c) = d(pj, c) =
d(pk, c) = L(P)

Definition (CriticalPoint) By the definition of L(P) it is clear that there
exists a point c inside the convex region and a vertex p ∈ {p1, p2, . . . , pn} such
that d(p, c) = L(P), Here c is called Critical Point of P. Refer figure 2.1.
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Definition (ε− disk) Given a Convex Region P with its vertex set {p1, p2,
. . . , pn} in order ε − disk = CR(q, ε), where q is the critical point and ε <
maxiV D(pi) − maxi 6=j:V D(pj)=maxlV D(pl)V D(pi). Refer figure 2.1., circle of
radius ε centered at c is ε− disk.

pi pj

pk

c CR(c, ε)

d(c, pi) = d(c, pj) = d(c, pk) = L(P)

Figure 2.1: CriticalPoint and ε− disk

2.2 Problem Definition

Given a Convex Region P with its vertex set {p1, p2, . . . , pn} in anticlockwise
order and a real number R as radius the objective is to find , if possible,
{f1, f2, . . . , fk} ⊆ {p1, p2, . . . , pn}, 1 ≤ k ≤ n, such thatP ⊆ ∪ki=1CR(fi, R)
or P = ∪ki=1 PRegion(fi, R) and k is minimum.

Definition (MinRegionCover) The problem posed above for finding {f1, f2, . . .
, fk} is referred to as MinRegionCover(P , R). For simplicity we say MRC(P , R)
= {f1, f2, . . . , fk}.

2.3 Some Results

2.3.1 On Critical Point of a Convex Region

Lemma 2.3.1 Critical Point of a Convex Region P is a voronoi vertex(inside
the region P) of voronoi diagram of {p1, p2, . . . , pn} where P is a convex re-
gion and {p1, p2, . . . , pn} is its vertex set.
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Proof Let q be the critical point of P. It is obvious that q is either a voronoi
vertex or a point on the boundary through which a voronoi edge passes through
it. Let’s assume that q is not a voronoi vertex, then there must exist pi, pj ∈
{p1, p2, . . . , pn} such that q lies on the bisector of pi and pj say e and there
exists an edge of P on which q lies, let that edge be e1. Here e is either
perpendicular to e1 or e forms an obtuse angle at q in exactly one of V R(pi)
or V R(pj), w.l.o.g. say V R(pi), then there exists a point y on e such that
d(y, pi) > d(x, pj), which contradicts definition of q. Hence the claim holds.
�

2.3.2 On Lower Bound of Covering Radius

Lemma 2.3.2 Given a Convex Region P with its vertex set {p1, p2, . . . , n} in
anticlockwise order and a real number R as radius, we can find MinRegion−
Cover iff R ≥ L(P).

Proof Let by contrary assume that R < L(P) and q be the critical point
defined earlier, by definition of q, d(q, pi) ≥ L(P),∀i ∈ [n]. If R < L(P)
then q /∈ ∪ni=1CR(pi, R). Hence the claim holds. �

Remark L(P) is the lower bound for R to find MinRegionCover(P , R).Here
as well as In the following sections R refers to the given radius and L(P) as
defined above.

2.3.3 On Regular Convex Polygon

Lemma 2.3.3 Given a Regular Convex Region P having n vertices {p1, p2,
. . . , pn}, we can find MRC(P , R) ={f1, f2, . . . , fk} such that k ≤ 5 whenever
R ≥ L(P).

Proof The claim is trivially true for n ≤ 5 and we can also verify that k = 3
for n = 6.So,w.l.o.g let’s assume that n ≥ 7.

It is trivial that L(P) = Radius of circumcircle C of P . Let’s draw a
hexagon abcdefa of side length L(P) which is also circumscribed by C such
that f1 coincides with a. Refer figure 2.2. Assume origin of C as origin of
the co-ordinate system and define x axis arbitrarily. Find angular position
of the vertex set of P . Assign each vertex p ∈ {p1, p2 . . . , pn} to region
r ∈ {ab, bc, cd, de, ef, fa} iff p lies on arc r. Observe that each region contains
atleast one vertex. Now assign f2 = p(∈ {p1, p2, . . . , pn}) such that p is in the
region bc and nearest to c. Similarly f3 = p(∈ {p1, p2 . . . , pn}) such that p is
in the region cd and nearest to d, f4 = p(∈ {p1, p2, pn}) such that p is in the
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region de and nearest to e and f5 = p(∈ {p1, p2 . . . , pn}) such that p is in the
region ef and nearest to f . Now it is easy to observe that P ⊆ ∪5i=1CR(fi, R)
or P = ∪5

i=1PRegion(fi, R)and hence the claim holds. �

a

b

c

d

e

f

f1

f2

f3

f4

f5

c

Figure 2.2: MRC of a Regular Convex Region

Observation The bound given in Lemma 2.3.3 is tight. To be specific k = 5
for n = 5 iff R = L(P)
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Chapter 3

Finding MinRegionCover with
Lower Bound of Covering
Radius

In the previous chapter we have defined L(P). An approach for finding
MRC(P ,L(P)) is given in this chapter with some important observations.
Though the algorithm is not completely solved but our approach gives a
direction to solve the problem.

3.1 On Compulsory facilities when R = L(P)

pi pj

pk

c CR(c, ε)

d(c, pi) = d(c, pj) = d(c, pk) = L(P)

y

Figure 3.1: Compulsory facilities when R = L(P)
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Lemma 3.1.1 Given a Convex Region P with its vertex set {p1, p2, . . . , pn}
in anticlockwise order and a real number R = L(P) , MinRegionCover =
{f1, f2, . . . , fk} ⊆ {p1, p2, . . . , pn} can be found out such that k ≥ 3. We need
atleast 3 facilities to cover ε− disk or say P if R = L(P). �

Proof Let q be the critical point,and by lemma 2.3.1, q is a voronoi ver-
tex.So, there exists atleast three vertices such that q is inside their voronoi
region. For simplicity assume that q is the intersection of voronoi regions
of three vertex pi, pj, pk ∈ {p1, p2, . . . , pn}i.e. V R(pi), V R(pj), V R(pk). Refer
figure 3.1. Let’s assume that pi /∈ MRC(P , R) w.l.o.g. there exists a point
y ∈ V R(pi) ∩ ε −disk(P) such that y /∈ ∪f∈MRCCR(f,R), Hence the claim
holds. �

Lemma 3.1.2 Given a Convex Region P with its vertex set {p1, p2, . . . , pn}
in anticlockwise order and a real number R = L(P) and c be its critical point.
If c is in the voronoi region of m points, we need at most 5 points out of those
m points to cover ε− disk around c.

Proof The claim is trivially true for m ≤ 5, Hence assume that m > 5.
Now it is clear that we can find a circle of radius R = L(P) centered at c
that has all m points on its circumference. Now the proof is a variation of
lemma 2.3.3. �

3.2 Approach for MinRegionCover when R =

L(P)
Below an observation is given that leads to an approach for finding

MRC(P ,L(P))

Observation From the definition of ε− disk the minimum number of facil-
ities required to cover it are necessary facility to cover a given convex region
P.

Algorithm 1: MinRegionCover of a given ConvexPolygonwithR =
L(P)

Input: A Convex Region P .
Output: MRC of P .
begin1

Find the critical point(s) and (3 to 5) necessary facilities.2

Divide P into smaller regions by fixing necessary facilities.3

Cover each smaller part separately.4

end5
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Remark It is obvious that P will be divided in to disjoint regions as facility
points in one partition will be at distance more than R(≥ L(P)) from any
points in other partition, but the difficulty is that each small part is not
in normal polygonal structure. Refer figure-3.2. Here UV − 1, UV − 2 and
UV −3 are three, at most, uncovered regions after fixing the three compulsory
facilities pi, pj and pk.

pj
pi

pk

c

UV-1

UV-2

UV-3

Figure 3.2: Uncovered Regions after fixing Critical Points
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Chapter 4

Given Radius Finding
MinRegionCover

In this chapter basically two approach for finding MRC of convex region P
and a real number R if R ≥ L(P),otherwise our procedure reports fail.

4.1 Naive Approach

Definition (Optional facility)Given a Convex Region P with its vertex set
V = {p1, p2, . . . , pn} in anticlockwise order and a real number R ≥ L(P), a
point p ∈ V is said to be optional iff V R(p,R) ⊆ ∪q∈V,q 6=pCR(q, R).

Lemma 4.1.1 A vertex of p of a given Convex Region P is optional facility
point iff V R(p,R) ⊆ ∪q∈V \{p},V R(p)∩V R(q) 6=φCR(q, R)(assume R ≥ L(P)).

Proof It follows from the definition of Voronoi diagram.

Lemma 4.1.2 Given a Convex Region P with vertex set V and a real num-
ber R ≥ L(P), a point p ∈ V is optional or not can be tested in O(n1logn1)(n1

denotes number of edges in V R(p,R)). In fact each v ∈ V can be tested in
O(nlogn).

Following is an approach for finding MinRegionCover given a Convex
Polygon and a real number R.
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Algorithm 2: MinRegionCover of a given ConvexPolygon

Input: A Convex Region P with vertex set V and a real number R .
Output: MRC of P , if possible.
begin1

Find L(P )2

if R < L(P ) then3

Return FAIL;4

Find set of optional facilities A as defined above;.5

B = V \ A;6

Initialize MRC = B;7

Add some facility of A dynamically in such a way to minimize8

|MRC|
end9

Remark Step 2 can be performed in O(n) time as we can draw voronoi
diagram of a set of point in convex position in O(n) time[3]. Except step 8
remaining steps are easy and can be performed in O(nlogn). Some dynamic
programming techniques may be used to solve step 8.

4.2 Efficient Approach

Before explaining our approach-2 for any Convex Region we need the algo-
rithm for finding MRC of aHalfConvexPolygon as defined below.

Definition (HalfConvexPolygon)A Convex Region P with vertex set {p1, p2,
. . . , pn} in clock wise order is said to be HalfConvexfPolygon if (p1, pn) is
the farthest pair and p1(x) < p2(x) < pn(x), where line joining p1 and pn
is x axis of our co-ordinate system and pi(x) denotes x co-ordinate of pi, ∀
i ∈ [n]. Refer figure-4.1.

4.2.1 MinRegionCover of a HalfConvexRegion

Following contains the algorithm for finding MinRegionCover of a given
HalfConvexRegion.

Algorithm The basic idea of our algorithm is as follows. We start from
the leftmost facility of(one point of the farthest pair) and find its PRegion
and add it to ourMRC(F in algorithm). We then go to other vertices in clock
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p1

p2

p3

pn
p1pn is the farthest pair

Figure 4.1: HalfConvexPolygon

wise order and find their PRegion. We maintain two variables Lastadded[1]
and Lastadded[2] to store two recently added facilities. At each instance we
check whether PRegion of currently considered facility point is contained
in PRegion of Lastadded[1] or vice versa. We delete the facility point ac-
cordingly from F . If none of them is true then we check whether PRegion
of Lastadded[1] is contained in the union of PRegion of currently considered
facility point and Lastadded[1] then we delete Lastadded[1] from our solution
F and we set Lastadded variable accordingly.

Following is a formalism to our idea. Cover(P,R, p, q) in Algorithm-3
returns true iff PRegion(q, R) ⊆ PRegion(p,R).
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Algorithm 3: MinRegionCover of a given HalfConvexPolygon

Input: A HalfConvexPolygon P with its vertex set {p1, p2, . . . , pn}
and a real number R as radius.

Output: MRC of P iff possible.
begin1

Find L(P );2

if R < L(P ) then3

Return FAIL;4

Initialize F = {p1};5

Lastadded = {p1, NULL};6

foreach i = 2(1)n do7

if (Cover(P,R, pi, Lastadded[1])) then8

F = F \ Lastadded[1];9

F = F ∪ {pi};
gotostep20;

else if (!Cover(P,R, Lastadded[1], pi)) then10

F = F ∪ {pi};11

Lastadded[1]←− {pi};12

else13

gotostep− 21;14

if (Lastadded[2] 6= NULL) then15

if (PRegion(Lastadded[1], R) ⊆16

PRegion(pi, R) ∪ PRegion(Lastadded[2], R)) then
F = F \ {Lastadded[1]};17

else18

Lastadded[2]←− Lastadded[1];19

Lastadded[1] = pi;20

i← i+ 1;21

ReturnF ;22

end23

Lemma 4.2.1 Let P be a HalfConvexPolygon and {p1, p2, . . . , pn} be its
vertex set in order. If p1 /∈ CR(pi, R) then p1 /∈ CR(pj, R), ∀pj(x) > pi(x),
where R is the given radius and x axis as considered above.

Proof Let by contradiction assume that there exists a pj such that j > i
and p1 ∈ CR(pj, R). Let’s draw an circle of radius R centered at p1, then
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by assumption pi /∈ CR(p1, R) and pj ∈ CR(p1, R). Observe that pn ∈
CR(p1, R), otherwise P wouldn’t be convex. So, d(p1, pn) ≤ R and also As
(p1, pn) is the farthest pair we can say d(p1, pn) ≥ d(p1, pi) > R, which is not
possible. �

Theorem 4.2.2 Algorithm 3 solves MinRegionCover(P,R) optimally, where
P is a HalfConvexPolygon.

Proof Let A = {pi1 , pi2 , pi3 , . . . , pik} is returned by our algorithm and it is
not optimal, then there exists B = {pl1 , pl2 , pl3 , . . . , plk′} such that k′ < k and

P ⊆ ∪k′j=1CR(plj , R). It is easy to observe that i1 ≥ l1 and ik ≤ lk′ . In the
view of Algorithm-1 we can say that i1 = l1 and ik = l′k. Let’s divide vertex
set of P in to regions as follows. Regionr = {pir+1, . . . , pir+1} ∀r ∈ [k] and
pik+1

= pn. By pigeonhole principle there exists a region that does not have
any point of A, observe that Which is not possible. Hence the claim holds.�

Time Complexity Analysis

Observation PRegion(v), v is a vertex of the given convex region, is convex.

Observation Let P be given HalfCovexRegion with its vertex set {p1, p2,
. . . , pn} then CR(pi, R) intersects with polygon boundary with at most 4
points, to be more specific at most two intersection point on p1pn and at
most two on the chain (one to the left of pi and one to the right of pi and
one to the left of pi) ̂p1p2...pn.)
Theorem 4.2.3 Algorithm-3 runs in O(nlogn) time.

Proof From above observation it is clear that we can find PRegion of a
particular vertex in O(logn) by binary search. Intersection and union of two
convex region can be computed in O(logn)[4]. So, each execution of loop can
be done in O(logn), hence the claim holds. �

4.2.2 Approach for a Convex Polygon

Given a convex polygon P and a real number R we have to follow the fol-
lowing steps.

Step 1 : Find L(P) and proceed iff R ≥ L(P).
Step 2 : Find the farthest pair say (p1, pl).
Step 3 : Construct two polygons namely Pu having vertex set {p1, p2, . . . , pl}

and Pl having vertex set {pl, pl+1, . . . , p1} in order.
Step 4 : Find MRC of Pu and Pl using Algorithm− 3.
Step 5 : Merge MRC(Pu) and MRC(Pl) as suggested in next part.

Remark Pu and Pl are HalfConvexPolygon as defined above.
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4.2.3 On Merging MRC of Pu and Pl

From the above procedure, we can do each step easily except step-5.
Though we can find MRC(Pl, R) and MRC(Pu, R) optimally but merging
the two optimal solution is not so straight forward. Some observations with
figures are given below.

Observation It is not necessary that MRC(P , R) > MRC(Pu, R) (resp.
MRC(Pl, R), Refer figure 4.1. In fact there exists a case as illustrated in
figure MRC(P , R) < MRC(Pu, R), MRC(Pl, R), Refer figure 4.2. In figure
4.2 and 4.3 , given radius R = radii of the circles shown and optimal facilities
are marked by squares.

MRC(P, R) = 1, MRC(Pu, R) = 2, MRC(Pl, R) = 1

a

b c

d

e

Figure 4.2: A case where MRC(Pu, R) > MRC(P , R)

MRC(P, R) = 2, MRC(Pu, R) = 3, MRC(Pl, R) = 3

a

b c
d

e

ff

g

Figure 4.3: A case where MRC(Pu, R),MRC(Pu, R) > MRC(P , R)
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Remark One may think that merging MRC(Pu, R) and MRC(Pu, R) will
give 2-approximate solution, but from the above observation it is clear that
we may not get a 2-approximate solution in some cases.

Observation It may be possible that L(Pu)(resp.L(Pl)) > R ≥ L(P), it
is illustrated by figure-4.4. No facility point in upper polygon can cover the
center but it is covered by a facility point in lower polygon as shown below.

Pu

Pl

L(Pu) > R ≥ L(P)

Figure 4.4: Example where L(Pu) > R ≥ L(P)

Remark To avoid some criticality we assume that if R ≥ L(P) then R ≥
L(Pu) and L(Pl).

Definition Given a HalfConvexPolygon P with vertex set V , Interval(v)
or I(v), v ∈ V is defined as the intersection of CR(v,R) and the line joining
farthest pair of points, where R is the given radius.Let v1vn be the line joining
farthest pair, I(v) = CR(v,R)∩ v1vn and Il(v)(resp.Ir(v) denotes left (resp.
right) end point of I(v). Refer figure 4.5
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p1

p2

p3

pn

v

a b

I(v) = ab

Figure 4.5: Interval on farthest pair

Below an algorithm is given to merge MRC(Pu, R) and MRC(Pl, R).

Algorithm 4: Merging of MRC(Pl, R) and MRC(Pu, R)

Input: MRC(Pu, R)andMRC(Pl, R) .
Output: ApproximatesolutiontoMRC(P).
begin1

Initialize F = MRC(Pl, R) ∪MRC(Pu, R);2

Find Iu(resp.Il) = {I(v) : v ∈MRC(Pu)(resp.MRC(Pl)}.;3

Sort Iu(resp.Il) according to ascending order of left end4

point.//let Iu(resp.Il) has nu(resp.nl) elements;
countl = 0; countu = 0;5

i = 1; j = 1;6

while (i ≤ nu and j ≤ nl) do7

if (Iu[i]is a subset of Il[j]) then8

countu ← countu + 1;9

i← i+ 1;10

if (countu == 3) then11

F = F \ Iu[i− 1] ;12

countu = 2

else if (Il[j] is a subset of Il[i]) then13

countl ← countl + 1;14

j ← j + 1;15

if (countl == 3) then16

F = F \ Il[j − 1] ;17

countl = 2;

else18

countl = 0; countu = 0; if (Iu[i])l < Il[j])l then19

i← i+ 1;20

else21

j ← j + 1;22

Return F23

end24
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Observation Let p, q be two vertices of a given half convex region P such
that p, q ∈MRC(P,R) then I(p) ∩ I(q) 6= I(p)(resp. I(q)).

Lemma 4.2.4 Let P be a given convex region and Pu and Pl as defined ear-
lier and p ∈ MRC(Pu, R) and q1, q2, q3 ∈ MRC(Pl, R) such that I(p) ∩
I(q1)(resp. I(q2), I(q3)) = I(q1)(resp. I(q2), I(q3)) and Il(q1) < Il(q2) <
Il(q3) then ∪v∈V PRegion(v,R) = ∪v∈V \q2PRegion(v,R) , where
V = MRC(Pu, R) ∪MRC(Pl, R).

Proof Let p = xy, q1 = a1a2, q2 = b1b2 and c1c2 as in figure 4.6. It is obvi-
ous that a1 < b1 < c1 and a2 < b2 < c2. Let’s divide the proof in to two cases.
Case-1(c1 ≤ a2)From the figure 4.6 it is clear that presence of q2 inMRC(P , R)
does not make any difference to it. Hence the claim holds.
Case-2(c1 > a2) From the figure 4.6 it is clear that there is a small region
r such that r /∈ ∪v∈Vl\q2PRegion(v,R), where Vl = MRC(Pl, R), but
r ∈ CR(p,R), hence the claim holds.

x

a1

b1

a2 c1

b2

c2
y

Figure 4.6: Merging MRC(Pu, R) and MRC(Pl, R)

Theorem 4.2.5 Given a Convex Polygon P and a real number R such that
if R ≥ L(P) then R ≥ L(Pu) , L(Pl), our algorithm finds a 3-factor approx-
imate solution.

Proof Due to Theorem 4.2.2 we get optimal solution for both MRC(Pu)
and MRC(Pl) that are input to Algorithm-4. From the above observation
no interval corresponding to a vertex of MRC(Pu)(resp.MRC(Pl)) is subset
of another interval of MRC(Pu)(resp.MRC(Pl)). Step-17(resp. Step-12)
deletes one vertex in MRC(Pl) (resp.MRC(Pu)) when 3 intervals corre-
sponding to Pl(resp.Pu) are subset of a interval of Pu (resp.P l). By lemma
4.2.4 it does not make any difference to a solution of MRC(P). So at most 3
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facilities will be left at end of one iteration one corresponding to Pu (resp.Pl)
and two corresponding to Pl(resp.Pu). Out of those three atleast one is nec-
essary in our optimal solution, Hence the claim holds. �

Theorem 4.2.6 Algorithm-4 runs in O(nlogn) time and O(n) space.

Proof Sorting takes O(nlogn) time and other steps can be performed in
O(n)time, hence total of O(nlogn) is required and O(n) space required to
store the intervals. �

Theorem 4.2.7 Running time of the procedure given in section 4.2.2 for
finding MRC is O(nlogn).

Proof Step-1 runs in O(n)[3], step-2 in O(nlogn) and step- 3 in O(n). By
Theorem 4.2.3 step-4 runs in O(nlogn) and step-5 in O(nlogn) by Theorem
4.2.6, hence the claim holds. �
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Chapter 5

Conclusion and Future Works

A variation of base station placement problem is given in this thesis where
the base stations can only be placed on vertices of a given convex region. We
have focused the problem in other way around i.e. given R we have given an
O(nlogn) time 3−factor approximation algorithm to find MinRegionCover
under a condition if R ≥ L(P) then R ≥ L(Pu), L(Pu). Our work can
be extended to find MRC in general i.e. the given Polygon not necessarily
satisfies the above said condition. Our first approach for MRC can further
be extended.

We have given some results in chapter-2 that can be used by other vari-
ations of facility location problem in future. We have also studied another
constrained version in chapter-3 to find MRC(P , R) when R = L(P). Fu-
ture work also can be carried out to establish the detailed algorithm and to
extend this idea to find MRC(P , R) for any R.

This work also can be extended to the case where the region is not neces-
sarily convex and to the variations of the problem where power requirements
by different base stations are not equal.

The base station placement problem on the vertices on convex polygon
interduced in this thesis can also be studied in more general i.e. to be specific
let the vertices of given convex polygon are colored by two colors and we are
only allowed to place our only on the green vertices.
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