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Chapter 1

Introduction

A Rumor is defined by the Google dictionary as an “information or story or report, that is being

circulated but the truth of which is unverified or doubtful”. It is interesting to observe that in

a social scenario alongside a proper information a rumor story spreads equally like an ‘wild fire’.

With the advent of social media especially social networking sites the spread and impact of rumors

can be seen vividly. Earlier what would be a simple gossip of a closed locality, can now easily

cause a flash flood into the global community. Rumors arrives in various forms, and their span of

habitability is also intriguing. While on one hand we see the quick and sudden childish rumors ‘like

the death of a celebrity’, on the other hand we see ‘political rumors’ from misinterpretation of some

forum discussion on an obscure community. While these may cater to people with distinctive and

specific interests from very simple to complex tastes and may not live long, but there are rumors

which never die and their out break in a social time line is seen over and over again. One good

example of this later type are the Conspiracy theories. There are still millions who believe ‘Moon

landing was fake’, ‘Osama bin laden is not dead’, ‘Yeti lives up in high Himalayas’ or even ‘UFO s

are a reality’. The lighter aspect of the situation is, shown enough dubious conspiracy logic, even

die hard non-believers become believers even though they revert soon enough when they come back

in touch with their rationalistic sides.
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1.1 Motivation

Often one would say, rumor is like a disease. A look into the various epidemiological models of

disease propagation can lead to a intuitive correlation of spread of a rumor sweeping through a

section of a social scenario. Two treatments of a spreading scenario has been studied in this report

based on epidemiological models viz. SIR and SIRS, where S represents Susceptible, I represents

Infected and R represents Removed or Recovered’s. Discrete time differential equations have been

used, with time delay to model a more realistic propagation tendency, as one will observe. The

models considers a homogeneous population resident on a planar lattice. Each site can have only

one subject or a ‘node’ as we may be referring to them as. If we consider the node placement as a

graph, then we have one node at each lattice point on the rectangular grid, each lattice point is a

vertex and each vertex has a degree of four, i.e connected to the immediate North-South-East-West

nodes only. Total initial and final population is constant. A rumor is introduced at one or more

points in the the population and the spatial as well as global asymptotic tendency are analyzed

both theoretically and by use of simulations using Monte Carlo technique. A better more realistic

randomized simulation of this problem is also introduced in the end however formalizing it kept as

further work.

1.2 Preliminaries

Few relevant terms are being introduced in this section, some of which have been already mentioned

in the preceding text, and few of which will soon be used as we move to our next chapter on the

mathematical model of our problem and the subsequent Simulation study of the problem.

1.2.1 Dynamical System

A dynamical system is a concept in mathematics where a fixed rule describes the time dependence

of a point in a geometrical space. Examples include the mathematical models that describe the

swinging of a clock pendulum (Simple harmonic pendulum), the flow of water in a pipe (Fluid

motion), and the number of fish each springtime in a lake (Ecology). At any given time a dynamical
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system has a state given by a set of real numbers (a vector) that can be represented by a point

in an appropriate state space (a geometrical manifold). Small changes in the state of the system

create small changes in the numbers. The evolution rule of the dynamical system is a fixed rule

that describes what future states follow from the current state. The rule is deterministic– for a

given time interval only one future state follows from the current state.

The concept of a dynamical system has its origins in Newtonian mechanics. There, as in

other natural sciences and engineering disciplines, the evolution rule of dynamical systems is given

implicitly by a relation that gives the state of the system only a short time into the future. (The

relation is either a differential equation, difference equation or other time scale.) To determine the

state for all future times requires iterating the relation many times—each advancing time a small

step. The iteration procedure is referred to as solving the system or integrating the system. Once

the system can be solved, given an initial point it is possible to determine all its future positions,

a collection of points known as a trajectory or orbit.

For simple dynamical systems, knowing the trajectory is often sufficient, but most dynamical

systems are too complicated to be understood in terms of individual trajectories. The difficulties

arise because,

1. The systems studied may only be known approximately—the parameters of the system may

not be known precisely or terms may be missing from the equations. The approximations

used bring into question the validity or relevance of numerical solutions. To address these

questions several notions of stability have been introduced in the study of dynamical systems,

such as Lyapunov stability or structural stability. The stability of the dynamical system

implies that there is a class of models or initial conditions for which the trajectories would be

equivalent. The operation for comparing orbits to establish their equivalence changes with

the different notions of stability.

2. The type of trajectory may be more important than one particular trajectory. Some trajecto-

ries may be periodic, whereas others may wander through many different states of the system.

Applications often require enumerating these classes or maintaining the system within one

class. Classifying all possible trajectories has led to the qualitative study of dynamical sys-
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tems, that is, properties that do not change under coordinate changes. Linear dynamical

systems and systems that have two numbers describing a state are examples of dynamical

systems where the possible classes of orbits are understood.

3. The behavior of trajectories as a function of a parameter may be what is needed for an

application. As a parameter is varied, the dynamical systems may have bifurcation points

where the qualitative behavior of the dynamical system changes. For example, it may go from

having only periodic motions to apparently erratic behavior, as in the transition to turbulence

of a fluid.

4. The trajectories of the system may appear erratic, as if random. In these cases it may be

necessary to compute averages using one very long trajectory or many different trajectories.

The averages are well defined for ergodic systems and a more detailed understanding has been

worked out for hyperbolic systems. Understanding the probabilistic aspects of dynamical

systems has helped establish the foundations of statistical mechanics and of chaos.

1.2.2 Discrete time dynamical equation

Change can be modeled using the formula,

change = future value − present value

If values that we monitor changes during discrete periods (for example, in discrete time intervals),the

formula above leads to a difference equation or a dynamical system. In this case, we are dealing

with a function that depends on discrete integer values – a sequence. A sequence of real numbers

{an}can be represented by a recursive equation,

an+1 = f(an)

with some initial value a0. This relationship between terms of a sequence is called a dynamical

system. A dynamical system allows us to describe the change from one state of the system to the

next. At n-th stage, the change is described by
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Change at stage n = future (n+ 1)th state − present nth state = an+1 − an.

The difference, an+1−an is frequently denoted by ∆an and is called a change or n-th first difference.

A difference equation is an equation of the form,

∆an = g(an)

A solution of a difference equation is a sequence an The solution can be given analytically (i.e. by

the formula of an in terms of n), graphically, or numerically (i.e. as a table of an values for various

values of n).

1.2.3 Delay differential equation

Delay differential equations (DDEs) are a type of differential equation in which the derivative of

the unknown function at a certain time is given in terms of the values of the function at previous

times. A general form of the time-delay differential equation for x(t) ∈ Rn is,

d

dt
x(t) = f(t, x(t), xt),

where xt = {x(τ) : τ ≤ t} represents trajectory of the solution in the past. In this equation, f is

a functional operator from R× Rn × C1 to Rn.

1.2.4 Monte Carlo Simulation

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms

that rely on repeated random sampling to obtain numerical results; i.e., by running simulations

many times over in order to calculate those same probabilities heuristically just like actually playing

and recording your results in a real casino situation: hence the name. They are often used in physical

and mathematical problems and are most suited to be applied when it is impossible to obtain a

closed-form expression or infeasible to apply a deterministic algorithm. Monte Carlo methods

are mainly used in three distinct problems: optimization, numerical integration and generation of

samples from a probability distribution.
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Monte Carlo methods are especially useful for simulating systems with many coupled degrees

of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures

(e.g: cellular Potts model). They are used to model phenomena with significant uncertainty in

inputs, such as the calculation of risk in business. They are widely used in mathematics, for exam-

ple to evaluate multidimensional definite integrals with complicated boundary conditions. When

Monte Carlo simulations have been applied in space exploration and oil exploration, their predic-

tions of failures, cost overruns and schedule overruns are routinely better than human intuition or

alternative ”soft” methods.

The modern version of the Monte Carlo method was invented in the late 1940s by Stanislaw

Ulam, while he was working on nuclear weapon projects at the Los Alamos National Laboratory.

It was named, by Nicholas Metropolis, after the Monte Carlo Casino, where Ulam’s uncle often

gambled.Immediately after Ulam’s breakthrough, John von Neumann understood its importance

and programmed the ENIAC computer to carry out Monte Carlo calculations. In our experiments

MC comes in handy as the tool for, randomly propagating the infection.

1.2.5 Epidemiology Models

Mathematical models of epidemiology are well studied. Mathematical models can project how

infectious diseases progress to show the likely outcome of an epidemic. However here we will

be talking about two models whose modified forms form the basis of our study. As mentioned

earlier S stands for the currently ‘Susceptible’ section of the population, I stands for the currently

‘Infected’ section of the population in our focus & R denotes the section of the population who are

currently ‘Removed’ from the infectibility. The standard continuous time dynamical system of the

models of interest are being briefly explained here. The reference material on them are abundant

though, so an interested reader can stumble upon lot of work in this regard. Since these models

partition or compartmentalize the entire population into distinct sections, these models are also

called compartmental models.

Basic SIR model

In 1927, W. O. Kermack and A. G. McKendrick created a model in which they considered
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a fixed population with only three compartments. susceptible, infected, and recovered. The

compartments used for this model consist of three classes.

(a) S(t): is used to represent the number of individuals not yet infected with the disease at

time t, or those susceptible to the disease.

(b) I(t): denotes the number of individuals who have been infected with the disease and are

capable of spreading the disease to those in the susceptible category.

(c) R(t): is the compartment used for those individuals who have been infected and then

recovered from the disease. Those in this category are not able to be infected again or

to transmit the infection to others.

The basic flow of this model is as follows

S→ I→R

Kermack and McKendrick assumed a Fixed population i.e N = S(t) + I(t) + R(t) and

derived the following system. 
Ṡ = − βSI

İ = βSI − γI

Ṙ = γI

(1.2.1)

Assumptions involved here are:

(a) An individual in the population must be considered as having an equal probability as

every other individual of contracting the disease with a rate of β, which is considered

the contact or infection rate of the disease.

(b) The population leaving the susceptible class as equal to the number entering the infected

class.

(c) A number equal to the fraction ( γ which represents the mean recovery rate, or 1
γ the

mean infective period) of invectives are leaving this class per unit time to enter the

removed class.
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(d) These processes which occur simultaneously are referred to as the Law of Mass Action

(which is an widely accepted idea).

(e) The rate of infection and recovery is much faster than the time scale of births and deaths

and therefore, these factors are ignored in this model.

The SIRS model

This model is an extension of the SIR model, owing to the fact that removed population

seeps back into the susceptible compartment as the system evolves over the time-line. Total

population is also considered constant here supposing that no births and deaths take place

during the time the time evolution of the system is observed. The basic flow of this system:

S→ I→R→S

The dynamical system in this case would be,


Ṡ = − βSI + σR

İ = βSI − γI

Ṙ = γI − σR

(1.2.2)

We will be formulating our experiment on these two models in discrete form and then introduce

the changes accommodate our assumptions. Some analysis of the system will be performed and

simulation results will be furnished.
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Chapter 2

Dynamics of Rumor propagation

In this chapter we will be discussing some previous works in the related domain of rumor propagation

and epidemiology and then move to modeling our problem.

2.1 A Brief Literature Survey

Social and biological interactions always have been a matter of interest to the scientists. Information

diffusion, Prey-Predator, Host-Pathogen, Invasion- Extinction are some of the well known fields of

application. Recently there has been a increased zeal of studying the social interaction both due

to availability of Computational power and observable datasets from our virtual ’on-line social

networks’. The spread, mutation and transformation of information is being studied. One of the

earliest known works in rumor propagation was done by Daley and Kendall that studied stochastic

behavior of rumors (1965). Studies of virality of a piece of new information (Topic of diffusion and

emergence of virality, Rajyalaxmi, Bagchi, Das 2012), can give use characterization of the type of

promotion that may lead to the condition which may be a boon for the marketing scenario.

It is well known in physics to study the global magnetic behavior of a system through Ising

model that places the magnetic spins in a packed d-dimensional lattice. Essentially specifying

the local behavior and observing the global behavior that results from homogeneous as well as

inhomogeneous systems asymptotically has always been a matter of interest. Ostelli, Yoneki and
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Leung in their Technical report of University of Cambridge (2010), studied rumor spreading in

interacting communities with the help of Ising model. Similar studies have also been done to study

complex interactions using a random complex Ising model by Son, Jeong and Noh.

Tilman and Kareiva proposed that spatial dynamics of an evolving population may lead to a

different inter-specific interaction (1997).Invasion and extinction in Mean field approximation for

spatial host-pathogen model by guiar, Rauch, Brar-yam (2003) studies the prey predator interaction

in a spatial model. Recently, Uwe C. Tauber studied the stochastic oscillations in a population in

a spatial prey-predator model (2010).

2.2 Proposed Mathematical Model and Justification

Influenced with the idea of studying and visualizing the rumor propagation in a spatial scenario,

existing simple SIR and SIRS models were modified to our use with the constraint of constant total

population. Here, we will study discrete time dynamical systems, which uses delay to model the

process of rumor spreading by individuals in a social scenario. What is quite impossible to observe

in a real life scenario, could be understood easily from observing and dwelling on the social networks

for sometime. Since one of our major daily activities involve on-line social networks, which for the

most of the time is labeled as waste of time, this could be termed as at least an useful job that has

been done while logging hours of on-line activity.

2.2.1 Basic Rumor Propagation model

This model assumes an infectivity probability τ for a susceptible individual to accept a gossip from

a gossiping individual with whom it is interacting. We assume a fixed delay of TA during which

a gossiping individual is interested in spreading a rumor and he is termed as a Believer (B), after

which he loses interest and shows non-activity with regards to this specific gossip – he turns into a

non-believer(N). This is a justified assumption because most of the individuals involved in a social

network scenario tend to have a short attention span, and once the craze is over, the reigning rumor

is simply discarded. A very well known citable example in this regard is the ’Why this Kolaveri

Di’ music phenomenon, that went viral and plagued India specific facebook users for months in
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mid 2012 but by end 2012 it was nowhere to be seen anymore. Another assumption we impose on

the model is that the population is homogeneous on the grid, which allows us to ignore the local

spatial interaction among the entities and only the time average of the population compartments

is what matters (Uwe C. Tauber, stochastic oscillations in a population in a spatial prey-predator

model (2010). A modification of the (1.2.1) is proposed as the ‘Basic rumor propagation’ model

(BRP model here onwards) as follows.


St+1 = St − τStBt

Bt+1 = Bt + τStBt − Bt−TA

Nt+1 = Nt + Bt−TA

(2.2.1)

2.2.2 Analysis of the BRP model

System (2.2.1) without the time delay looks like:


St+1 = St − τStBt

Bt+1 = Bt + τStBt − Bt

Nt+1 = Nt + Bt

(2.2.2)

Equilibrium Points of the system are: EA : (0 , 0, n) and EB : (s, 0, (n − s)) where n is

the total population, and 0<s ≤ n. Since the total population is constant then we can replace the

occurrence of Nt in the first two difference in terms of Bt and St, as at any given t, n = St+Bt+Nt.

Hence, we can carry the analysis on the two dimensional system of (St, Bt). So reduced system

will have equilibrium points E∗
A : (0 , 0) and E∗

B : (s, 0).

2.2.3 Stability of EA and EB

Linearizing the system in the neighborhood of E∗
A, the system reduces to

St+1

Bt+1

 = J

St

Bt

 (2.2.3)
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where

J =

1 0

0 0


is the Jacobian matrix for the system of equations.The Eigen Values of the Jacobian matrix are 1

and 0 respectively. Since one eigenvalue of J is 1, the equilibrium point E∗
A is non-hyperbolic i.e

this method is inadequate for studying the stability.Similarly, the Jacobian matrix for the system

for the E∗
B will have 1 as one of the eigenvalue hence it is also inadequate for studying by this

method.

However, although we simulate the system with delay, we do not present any analysis of it for

the BRP model, as the situation is quite trivial, and also there is no change of the stability situation

from the system with no delays.

2.2.4 Conspiracy Theory model

This model studies the kind of rumors that have a high tendency of reappearing in a social scenario

again and again. Most apt example of this situation are the conspiracy theories. This is the reason

of why we talked about ‘moon landing hoax’, ‘Osama’s death’, or ‘Yeti’s Himalayan abode’ in our

very introduction of the thesis. Although the basic definition of susceptible, believers and non-

believers remain the same but here non-believers after a resting period of TB rejoin the pool of

susceptible candidates. This can be attributed to the fact that in a social network both pro and

anti of the hoax make very convincing counter points which at the moment of exposure can easily

convince a person that what he is reading is the ’gospel’, however it does not take long for the

person to take a complete opposite stand in a short while, this in my opinion is the beauty of a

social network. The concept from (1.2.2) and the modification of (2.2.1) will give us our conspiracy

theory model (denoted as CT model here onwards):


St+1 = St − τStBt + Nt−TB

Bt+1 = Bt + τStBt − Bt−TA

Nt+1 = Nt + Bt−TA − Nt−tB

(2.2.4)
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2.2.5 Analysis of the CT model

The system (2.2.4) without the delay parameters will be:


St+1 = St − τStBt + σNt

Bt+1 = Bt + τStBt − γBt

Nt+1 = Nt + γBt − σNt

(2.2.5)

where σ = 1 and γ = 1. Equilibrium Points of the system are: EA : (n, 0, 0) and EB :

(γτ ,
σ(n−(γ/τ))

γ+σ , γ(n−(γ/τ))
γ+σ ) where n is the total population, and 0<s ≤ n.

Invoking the constant population condition we can again reduce the dimension by one. So the

Equilibrium points of the reduced system, are E∗
A : (n, 0) and E∗

B : ( 1τ ,
(n−(1/τ))

2 ). Now linearizing

about the point E∗
A we have,

St+1

Bt+1

 = J

St

Bt

 (2.2.6)

where

J =

 2 −τn+ 1

τn τn



this implies eigenvalues are,

λ =
2 + τn±

√
(4− 3τ2n2)

2

so for the condition |λ| <1, further simplification gives us, 6τ2n2 + 4τn+ 4<0 which is impossible.

Hence |λ| >1 for both eigen values, implying the system is unstable at E∗
A hence also unstable at

EA.

Now linearizing about the point E∗
B we have,

St+1

Bt+1

 = J

St

Bt

 (2.2.7)
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where

J =

(5− τn)/2 −1

1 1



So the characteristic equation of J is

λ2 − 7− τn
2

λ+
7− τn

2
= 0

. The two roots of this equation are,

λ+ =
−b+

√
b2 + 4b

2

and,

λ− =
−b−

√
b2 + 4b

2

where, b = τn−7
2 . For stability of this point we should have 0<λ+<1 , however using λ+ in this

relation yields 0<b<b+ 1, which is always true. Hence, |λ+| < 1.

Also, for the stability of we should have −1<λ−<0. Using the the λ− in this relation we get

b<1/2 which is not true for sufficiently large values of n as 0<τ<1. Hence, |λ−|>1. So the system

has one eigenvalue less than one and another greater than one about E∗
B so it is a saddle point,

hence EB is a saddle point in the system.

2.2.6 Delay analysis of the CT model

The system (2.2.4) after, dimension reduction is Linearized about an arbitrary point: EG : (s, b).

The linearized form is,

St+1

Bt+1

 = J

St

Bt

 +K

St−TA

Bt−TA

 + L

St−TB

Bt−TB
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where J=

1− τb −τs

τb 1 + τs

, K =

0 0

0 −1

, L =

−1 −1

0 0



Let

St

Bt

 =

S0

B0

λt = A0λ
t, using this in the previous equation we get,

A0λ
t = JA0λ

t + KA0λ
t−TA + LA0λ

t−TB

or,

[λI2 = J −Kλ−TA + Lλ−TB ]A0 = 0

where I2 is the identity matrix of order two and the equation λI2 = J −Kλ−TA + Lλ−TB = 0

is called the characteristic equation.

At the point EG = EA∗, this characteristic equation yields, λTB (1 − λ) = 1 and,

λTA(1 − λ + τn) = 1.

From these two equations we observe a few interesting aspects of the system, for odd TA and

TB,

1. We cannot conclude about the nature of the system for τn = 1

2. System becomes a saddle point for τn > 1

3. System becomes stable for τn < 1

This can give us a clue, that for sufficiently large population it is quite impossible that the

rumor would be controlled and die out easily since it is quite hard to satisfy the constraint τn < 1,

however since generally τn > 1 leads to a saddle point, so for certain initial conditions the system

may become controlled.

The situation EG = EB∗, leads to a similarly complex situation but the calculations become

very complex so they are not pursued further.
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Chapter 3

The Computational Study

In this, chapter we elaborate on the simulation based investigation of the mathematical model we

have proposed. The ‘Monte Carlo simulation technique’ is our key to randomizing our model so

that it behaves apparently realistically as if it has a mind of it’s own. In the subsequent sections

we explain our basic scheme of attacking the two models, and various nitty-grittys of the process.

Experimental snapshots of the time evolving Lattice will be produced and also the global asymptotic

characteristics of the system will be continuously observed from the evolving lattice.

3.1 Simulation Scheme for Basic Rumor Propagation model

We assume a uniformly distributed population on an M × N 2-D lattice with each individual on

one lattice location. This is modeled by a M ×N matrix Mat , with Matij position on the matrix

denoting the state of the individual at the lattice point (i, j). Total population in question is MN .

Matij = 0 implies that the candidate is susceptible to rumor, Matij = −1 means the individual

no longer believes in the rumor and goes dormant with respect to this piece of information i.e

they do not try to influence the susceptibles with a negative rumor. 1 ≤ Matij ≤ K implies the

candidate in question is currently spreading the rumor. Here K is the number of days, the candidate

stays active before turning into a non-believer or Matij = − 1. A rumor infectivity parameter

0 ≤ τ < 1 denotes the probability of acceptance of the rumor by a susceptible upon coming in
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contact with a currently believer individual. However, a believer has only four degrees of freedom

in terms of contacting a susceptible viz. West - East - South - North. At the start of the simulation,

a random location on the lattice is made infected and we observe the plane as time evolves. The

Scheme is as follows:

Algorithm 1 Scheme for Basic Rumor Propagation

set K, τ , MaxSteps, step← 1
while step ≤MaxSteps do

for i = 0 to M do
for j = 0 to N do

if Matij == − 1 then
Matij ← −1

else if Matij > 1 then
Matij ←Matij − 1

else if Matij == 1 then
Matij ← −1

else
if 1 ≤Mati,j−1 ≤ K and r ∈ [ 0, 1 ] < τ then
Mati,j−1 ← K

end if
if 1 ≤Mati,j+1 ≤ K and r ∈ [ 0, 1 ] < τ then
Mati,j+1 ← K

end if
if 1 ≤Mati−1,j ≤ K and r ∈ [ 0, 1 ] < τ then
Mati−1,j ← K

end if
if 1 ≤Mati+1,j ≤ K and r ∈ [ 0, 1 ] < τ then
Mati+1,j ← K

end if
end if

end for
end for
step← step + 1

end while
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3.2 Simulation Scheme for Conspiracy Theory model

We assume a uniformly distributed population on an M × N 2-D lattice with each individual on

one lattice location. This is modeled by a M ×N matrix Mat , with Matij position on the matrix

denoting the state of the individual at the lattice point (i, j). Total population in question is MN .

Matij = 0 implies th candidate is susceptible to Rumor, Matij = − 1 means the individual no

longer believes in the rumor and goes dormant with respect to this piece of information i.e they do

not try to influence the susceptible s with a negative rumor. 1 ≤Matij ≤ K implies the candidate

in question is currently spreading the rumor. Here K is the number of days, the candidate stays

active before turning into a non-believer or Matij = −1. A rumor infectivity parameter 0 ≤ τ < 1

denotes the probability of acceptance of the rumor by a susceptible upon coming in contact with

a currently believer individual. However, a believer has only four degrees of freedom in terms of

contacting a susceptible viz. West - East - South - North. However once an individual moves from

infected to Removed state, we allow a fixed amount of time S after which the candidate switches

back to Susceptible state again. At the start of the simulation, a random location on the lattice is

made infected and we observe the plane as time evolves. The Scheme is as follows: Here, r ∈ [0, 1]

is performed by calling a pseudo-random number generator which follows a uniform distribution.
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Algorithm 2 Scheme for Conspiracy Theory model

set K, τ , MaxSteps, step← 1
while step ≤MaxSteps do

for i = 0 to M do
for j = 0 to N do

if Matij == − 1 then
if counterij>0 then
counterij ← counterij − 1

else
Matij ← 0

end if
else if Matij > 1 then
Matij ←Matij − 1

else if Matij == 1 then
Matij ← −1
counterij ← S

else
if 1 ≤Mati,j−1 ≤ K and r ∈ [ 0, 1 ] < τ then
Mati,j−1 ← K

end if
if 1 ≤Mati,j+1 ≤ K and r ∈ [ 0, 1 ] < τ then
Mati,j+1 ← K

end if
if 1 ≤Mati−1,j ≤ K and r ∈ [ 0, 1 ] < τ then
Mati−1,j ← K

end if
if 1 ≤Mati+1,j ≤ K and r ∈ [ 0, 1 ] < τ then
Mati+1,j ← K

end if
end if

end for
end for
step← step + 1

end while

30



3.3 Simulation Results of Basic Rumor Propagation model

Figure 3-1: BRP model K=3,
S=30 τ = 0.3, step=155

Figure 3-2: BRP model K=3,
S=30 τ = 0.3, step=250

Figure 3-3: BRP model K=3,
S=30 τ = 0.3, step=339

Figure 3-4: BRP model K=3,
S=30 τ = 0.3, step=500

Figure 3-5: BRP model K=3,
S=30 τ = 0.3, step=700

Figure 3-6: BRP model K=3,
S=30 τ = 0.3, step=800
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Figure 3-7: BRP model K=3,
S=30 τ = 0.3, step=900

Figure 3-8: BRP model K=3,
S=30 τ = 0.3, step=1000

Figure 3-9: BRP model K=3,
S=30 τ = 0.3, step=1522

3.4 Simulation Results of The Conspiracy Theory model

Figure 3-10: CT model
K=10, S=4 τ = 0.3,
step=155

Figure 3-11: CT model
K=10, S=4 τ = 0.3,
step=250

Figure 3-12: CT model
K=10, S=4 τ = 0.3,
step=339
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Figure 3-13: CT model
K=10, S=4 τ = 0.3,
step=500

Figure 3-14: CT model
K=10, S=4 τ = 0.3,
step=700

Figure 3-15: CT model
K=10, S=4 τ = 0.3,
step=800

Figure 3-16: CT model
K=10, S=4 τ = 0.3,
step=900

Figure 3-17: CT model
K=10, S=4 τ = 0.3,
step=1000

Figure 3-18: CT model
K=10, S=4 τ = 0.3,
step=1200
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Chapter 4

A Realistic model & Further work

Here we will be introducing a completely different scheme of simulation which takes the Basic SIR

model, and introduces the concept of sparse population on the regular lattice, with each individual

having 4-degrees of freedom of movement on the 2 dimensional plane. Effectively each individual,

whether Susceptible, or, Infected, or Removed is allowed to perform a 2D random walk on the 2D

lattice, and their coexistence and interaction leads to the evolution of the global model against

time. The mathematical formalization of this model would not be provided in this document but

the basic algorithm will be given. An outline of the further work which may be undertaken from

here will be listed.

4.1 Sparse population - Random walk model

In both previous models the population was assumed homogeneous and immobile a person or node

at location (i , j ) could only influence another person or node at (k , h ) only if a chain of influence

arising from the ijth node reaches khth node through any path via the intermediate nodes. However,

in a realistic scenario, social interaction is not uniform and interactions are not restricted to just

neighboring individuals. A node can easily interact with seemingly very distant nodes with respect

to it’s global scope and get influenced by it. Generally random graphs like Watts-Strogads graph is

used, but the interest here was to model it on the 2D regular lattice. In this regard U.C Tauber’s
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2010 work on spatial prey predator model was an eye opener. So here we propose a modification

for our BRP model that has the following distinct characteristics:

1. Total population in a M ×N grid is <<MN , but remains constant during the observation.

2. The entire population is doing a 2-d random walk on the M × N grid with 4 degrees of

freedom.

3. If a Believer individual meets a susceptible individual, he may turn him with a probability of

τ .

4. A Believer turns into a non believer on his own with a probability σ.

5. Only one individual can stay at a lattice point at any point, i.e, stacking is not allowed.

The direct fall out of this constraints is we have a swarming lot of points, where individuals

are randomly showing Brownian motion like activity on the observed grid. With the spatial immo-

bility constraint removed points from far horizons can now easily interact given a sufficiently long

iteration time. However in this report only the simulation scheme and some interesting simulation

snapshots for our Sparse population- Random walk model (or SPRW model as is being mentioned)

is presented. The detailed mathematical analysis is not undertaken as it seemed out of scope.

As further work, stochastic formulation and subsequent mean field approximation theories can be

applied to this model, more over delays can be implemented and also the this scheme could be

extended to include the CT model. There is also a scope of introducing stacking effect, i.e allowing

more than one entity to reside at a specific lattice grid point.

4.1.1 Simulation scheme for SPRW model

The meaning of the symbols are the usual from the BRP and CT model only σ, InitSusSeed and

InitInfSeed are newly introduced. Here each node can be in 3 of the states. σ is the probability

of moving from ijth location to any of the four N-S-E-W locations.InitSusSeed are total initial

susceptibles and InitInfSeed are initial Believers.

State 1: A Un-suspecting susceptible individual on a clandestine 2d walk on the M ×N grid.
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State 2: A Believer on a clandestine 2d walk on the M ×N grid.

State 3: A Non-Believer on a clandestine 2d walk on the M ×N grid.

Algorithm 3 Scheme for Sparse Population Random walk model

set τ , σ, MaxSteps, step
set InitSusSeed, InitInfSeed
Randomly seed M with InitSusSeed susceptibles and InitInfSeed believers
Set step← 1
while step ≤MaxSteps do
{Infectivity cycle Update}
{Movement cycle Update}

end while

Algorithm 4 Infectivity Cycle Update

τ , Mat
for i = 0 to M do

for j = 0 to N do
if Mati,j == 1 then

if Mati,j−1 == 2 and r ∈ [ 0, 1 ] < τ then
Mati,j ← 2

end if
if Mati,j+1 == 2 and r ∈ [ 0, 1 ] < τ then
Mati,j ← 2

end if
if Mati−1,j == 2 and r ∈ [ 0, 1 ] < τ then
Mati,j ← 2

end if
if Mati+1,j == 2 and r ∈ [ 0, 1 ] < τ then
Mati,j ← 2

end if
end if

end for
end for
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Algorithm 5 Movement Cycle update

for i = 0 to M do
for j = 0 to N do

if Mati,j == 0 then
Do Nothing

else
if Mati,j+1 is empty and r ∈ [ 0, 1 ] < σ then
Mati,j+1 ←Mati,j
Mati,j ← 0
Continue to next iteration

end if
if Mati,j−1 is empty and r ∈ [ 0, 1 ] < σ then
Mati,j−1 ←Mati,j
Mati,j ← 0
Continue to next iteration

end if
if Mati−1,j is empty and r ∈ [ 0, 1 ] < σ then
Mati−1,j ←Mati,j
Mati,j ← 0
Continue to next iteration

end if
if Mati+1,j is empty and r ∈ [ 0, 1 ] < σ then
Mati+1,j ←Mati,j
Mati,j ← 0
Continue to next iteration

end if
end if

end for
end for
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4.2 Simulation Results of Basic Rumor Propagation model

Figure 4-1: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=155

Figure 4-2: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=250

Figure 4-3: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=339

Figure 4-4: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=500

Figure 4-5: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=700

Figure 4-6: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=800
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Figure 4-7: SPRW model τ =
0.6,µ = 0.3,σ = 0.1, step=900

Figure 4-8: SPRW model
τ = 0.6,µ = 0.3,σ = 0.1,
step=1000

Figure 4-9: SPRW model
τ = 0.6,µ = 0.3,σ = 0.1,
step=1177
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