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Abstract

Digital tomography deals with the problem of reconstructing an image from its

projections. The image may or may not be reconstructible uniquely. The effec-

tive reconstruction also depends on the kind of projections taken. We consider the

simplest two-dimensional case in which we have a 2D matrix and the projections

are orthogonal. The matrices which are not uniquely reconstructible are known as

ambiguous. In this thesis we concentrate on decomposing such an ambiguous ma-

trix into a minimum number of matrices such that each of them are unambiguous.

We claim that the XOR sum of these component matrices would return the origi-

nal matrix. As the component matrices can be stored just by storing the row-sum

and column-sum (the horizontal and vertical projections), we can store any ambigu-

ous matrix by storing the projections of the components. The space management

highly depends on the minimum number of components which we define as XOR-

dimension. We study the trend of change in XOR-dimension first for n×n matrices

and then for general m× n matrices.
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1
Introduction

1.1 Motivation

The birth of information age is marked with the invention of computing machines

and gradually it became a subject of utmost significance. One of the most important

purposes of these machines is to store, represent and process data efficiently. In

a digital computer data is stored in binary format. The fact signifies that one

step forward in better representation of binary data consequently brings a giant

leap in the management of computerized data. Our line of work is motivated from

this simple fact apart from the joy of studying the mathematical symmetry and

beauty inherent in binary matrices. We scavenge several ideas from different fields
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2 Introduction

of discrete tomography [3] and graph theory to give a new perspective to an age old

problem. Any image, color or gray scale, is stored in the form of a binary matrix.

Discrete tomography which has immense applications in medical imaging, deals with

reconstruction of a binary matrix from its projections [3]. Such reconstruction of a

binary matrix is easy if the matrix satisfies certain properties. In graph theory these

matrices, which are known as Ferrer’s digraphs [1] are well studied. We amalgamate

both the ideas to answer some of the unsolved questions about binary matrices in

connection to the reconstruction-from-projection problem.

1.1.1 Digital Tomography

Computerized tomography (CT) based medical-imaging systems generates three-

dimensional (3D) images of internal body structures using complex X-ray and computer-

aided tomographic imaging techniques.

The X-ray images used to generate the tomographic snapshots are generated

first by exposing the patient to a fan-shaped X-ray beam and then detecting the

attenuated ray by a thin semicircular, digital X-ray detector. The patient is placed

between the source and detector, and the detector is configured with its geometric

center located at the X-ray source. Each image is an X-ray projection of a very

thin transverse slice of the body. To collect the multitude of X-ray projections

necessary to generate a tomographic CT image, both the X-ray source and detector

are revolved around a patient within a supporting gantry. As the source and detector

are rotated, images are collected and stored. As in a traditional X-ray, the signal

levels in the image slice represent the relative radio density of the patient along a

line from the X-ray source to the corresponding pixel location [3].
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1.2 Scope of the Thesis

The matrices that motivated us arise from a problem in discrete tomography as

stated earlier. We look at some theoretical problems where we deal with the simple

two-dimensional case. Instead of viewing it from all directions, we look at the only

horizontal and vertical projections. So, the problem is mapped to that of recon-

structing a matrix from its horizontal and vertical projections. Most interestingly,

the matrices which can be uniquely reconstructed from their horizontal and vertical

projections also correspond to ortho-convex polygons, alternatively known as h− v

polygons [3]. In this paper we concentrate on the decomposition of matrices into

minimum number of component matrices that are ortho-convex.

In this thesis we first ask the following question:

Let M be an m × n binary matrix such that M is not uniquely reconstructible

from its projections. Can M be decomposed into k number of m × n matrices

M1,M2,M3, . . . ,Mk such that each Mi, 1 ≤ i ≤ k is uniquely reconstructible from

its projections and M = M1 < op > M2 < op > . . . < op > Mk, where < op > is

some bit-wise logical operation such that AND, OR, XOR?

In context to the above-mentioned problem, we have studied various operations

that can generate the original matrix. A binary matrix can also be thought of as

the incidence matrix of a directed graph. Then one could represent the underlying

graph in terms of intersection of other graphs. Ferrer’s [1] digraphs are used as

components, intersection of which give the original matrix back. Note that because

of the unique reconstruction property [5], it is enough to store the projections of the

matrices instead of the matrix itself. In two dimensions, we can have a simplified

view of the problem as shown in Figure 1.1.

In this work we surveyed the work done on intersection and studied the proper-

ties for the XOR operation. Unfortunately the XOR operation between two graphs

was not well considered earlier in this context and to the best of our knowledge,
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Figure 1.1: The dots denote the particle on the grid where the X-ray can get absorbed

their properties were not studied before. Our main goal is to find the components

for a given matrix such that each of the components would be a Ferrer’s digraph,

and successive XOR operation between them would give back the original matrix.

To summarize we have following questions that we are trying to answer in this thesis:

• Is it possible to store an n× n matrix in components?

• Is it possible to decompose any matrix in finite components, such that XOR

among them would return the matrix?

• If the answer to the above question is yes, then what is the smallest number

of components?

• Is it possible to express it as a function of input matrix size?

• Is it possible to extend it to an m× n matrix?
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At the end of the thesis, we have been able to answer a few questions, others

still remain unanswered.

1.3 Organization of the Thesis

The document is organized as follows. In the next chapter, we introduce the

notion of projections with formal definition. We give a reconstruction algorithm for

matrices with well defined properties. We describe the notion of Ferrer’s dimension

which provides the basis of understanding XOR-dimension. Starting from Chapter

3, we introduce several new notations and definitions to establish the property of

XOR-dimension. In Chapter 3 we present a conjecture on the dimension change.

Chapter 4 is dedicated towards possible extension of the current study.
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2
Problem & Related Works

2.1 Introduction

In this section we formally define the problem from light of digital tomography

[3]. There are many different kind of objects that are studied in discrete tomography,

e.g. lattice sets, binary matrices, digital or label images, measurable sets, dominoes,

etc. In general they are represented as function with domain X and with a given

discrete range. Let us denote the class of functions to be studied by E . Geometrically

lines, strips, hyperplanes. The projection of a function in E onto a subset S in S is

an weighted sum or an integral denoted by [Pf ](S) =
∑

x∈S w(x, S)(
∫
S
w(x, s)f(s)).

where w : X × S → R is a given weight function. For the matrices we consider

7



8 Problem & Related Works

the weight function takes a value 0 or 1, as the contents are binary. With this no-

tation there are few questions that it posed. They are

Uniqueness(E ,S)

Given a function f ∈ E does there exist a function f ′ ∈ E different from f

such that f and f ′ have same projection?

Existence(E ,S)

Given a real valued function g defined on S does there exist a function f ∈ E

such that [Pf ](S) = g(S) ∀S ∈ S?

Reconstruction(E ,S)

Given a real valued function g defined on S construct a function f ∈ E such

that [Pf ](S) = g(S)∀S ∈ S.

In our case X = Z2, where Z denote set of integers. E is the set of {0, 1}-valued

functions on X, such that number of elements of X. The elements of S are the

horizontal and vertical lattice lines, that are the sets of the form {i, j}|j = j0 or

{i, j}|i = i0. The weight w is always 1, so the projections are just sums of the

function values on a horizontal or a vertical lattice line. A switching component or

a conflict of an f ∈ E is a set of four points in X of the form x1 = (i1, j1), x2 =

(i2, j1), x3 = (i1, j2), x4 = (i2, j2), such that f(x1) 6= f(x2), but f(x1) = f(x3) and

f(x2) = f(x4). A well known proven result is that under the definitions f is not

unique if and only if, f has a switching component [3]. Now we will discuss the

reconstruction problem and algorithm for a unique reconstruction if possible.

2.2 Unique Reconstruction

Let A = (aij) be a binary matrix of size m × n. As described in the previous

paragraph here projection effectively means row sum and column sum. Let the row
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sum vector to be denoted by R(A) = R = (r1, r2, . . . , rm),

ri =
n∑

j=1

aij, where, i = 1, 2, . . . ,m

similarly let the column sum vector denoted by S(A) = S = (s1, s2, . . . , sn) , so

ri =
m∑
i=1

aij, where, j = 1, 2, . . . , n

Here R and S are projections. Now let us denote the class of binary matrices

with row sum R and column sum S by A(R, S). The above set of equations can

be shown to be a special case of binary system CZ = D where C is an mn ×mn

coefficient matrix of nonnegative integers, D is an mn × 1 vector of nonnegative

integers. The usual way to solve that set of systems is branch and bound which is

exponential in nature [5][4].

Let us present the known result more formally,

Theorem 2.2.1. A binary matrix is non unique (or ambiguous) if and only if it

contains a switching element (or conflict).

It follows from Theorem 2.2.1 that, to decide whether a given binary pattern (or

matrix) M is ambiguous, it suffices to check if Z contains a switching component or

not. If M is of dimension m × n, then the exhaustive enumeration requires in the

worst case
(
n
2

)(
m
2

)
, 2× 2 submatrice of Z.

A more computationally feasible way is the idea of iterative deletion.

Primitive Row : Let M be a matrix. A primitive row of M is a row such that all of

its entries are either 0’s or 1’s. A primitive column is defined in the same way.
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The idea of iterative deletion comes from the following theorem,

Theorem 2.2.2. Given a matrix M , an submatrix of M is obtained by deleting all

the primitive rows and all the primitive columns of M . Repeat the deletion process on

successive sub-matrices until no deletion can be made. M is unique or unambiguous

if M can be deleted completely.

Considering a binary matrix,


0 0 1 1

0 1 1 1

0 0 1 1

1 1 1 1



It can be easily shown that successive deletion of the rows and columns can

completely delete the matrix. Clearly Theorem 2.2.2 can lead to a linear time

algorithm 1.

2.3 Motivation from space efficiency

From previous section it is clear that if a binary matrix is unique, then we can

reconstruct the matrix from its row sum and column sum in linear time. Now if a

matrix is not unique and we can decompose it into matrices which are unique in

nature so that the component matrices can give back the matrix. The process is

effective in terms of space. The reason is simple, to store an n× n matrix we need

O(n2) space in general. But if it is a unique or unambiguous matrix then storing

row-sum and column-sum is fairly suffices. To store row-sum and column-sum we

need O(n) spaces if we consider that the matrix can be stored decompose in k such
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Algorithm 1: Checking Uniqueness

Input: A finite set A = {a1, a2, . . . , an} of integers
Output: The largest element in the set

1 i← 0
2 while True do
3 Find a primitive row or column D
4 if No such D exists and i < n then
5 Report M to be ambiguous
6 break

7 else
8 Modify M by deleting D
9 if M is empty then

10 Report M to be non ambiguous
11 break

12 i← i+ 1

13 return max

matrices then it is easy to see that it would take kO(n) space. But k is very im-

portant here. If it is also linear to n then no improvement comes in terms of space.

This idea of decomposition of a matrix in unique matrices comes from the theory of

intersection graphs.

In this section we will discuss Ferrer’s dimension which was proposed very early

by Cogis et al.[1]. Later different related work added to it by Das et al.[2]. But it

needs a fair introduction to understand the matter itself,

2.3.1 Ferrer’s Digraph

A digraph is a tuple G = (V,E), such that E ⊆ V 2, we assume V is finite.

If G is reflexive and transitive V is called preordering. A partial ordering is an

antisymmetric preordering. A linear order is a partial ordering which is complete.

A digraph G = (V,E) is called Ferrer’s Digraph when there exists an linear

order (X,L) such that for every x, y, z ∈ V , if xy ∈ L and yz ∈ E, then xz ∈
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E. Dushnik et el. proved that a partial order is intersection of all linear orders

containing it and introduced the dimension of the partial order G as the minimum

number of linear orders whose intersection is G. As linear orders can be equivalently

changed into Ferrer’s digraphs Cogis et al.[1] extended the dimension to Ferrer’s

digraphs and called it Ferrer’s dimension denoted by dF .

2.3.2 Ferrer’s dimension of a digraph

Theorem 2.3.1. Any digraph is the intersection of the Ferrer’s digraph containing

it.

Proof. Either G = (V,E) is the intersection of the family of the family of Ferrer’s

digraphs Kxy = (V, V 2 − {xy})∀xy /∈ E or it is itself a Ferrer’s digraph.

Ferrer’s Dimension: the Ferrer’s dimension dF (G) of a digraph G is the small-

est number of Ferrer’s digraphs whose intersection is G.

The digraphs of Ferrer’s dimension at most 2 were characterized by Cogis. He

defined an undirected graph H(G), the graph associated to a digraph G whose

vertices correspond to the 0’s of its adjacency matrix with two such vertices joined

by an edge if and only if the corresponding 0s belong to a couple or conflict. The

theorem follows

Theorem 2.3.2. A digraph G is of Ferrer’s dimension at most 2 if and only if

H(G) is bipartite.

In the general case, if dF (G) = n, then there exist Ferrer’s digraphs Fi, i =

1, 2, . . . , n, such that G can be expressed as G = F1 ∩ F2 ∩ . . . ∩ Fn. Observe that

the zeros belonging to any particular Fi do not form any couple among themselves

and consequently form an independent set in H(D). Thus χ(H(D)) ≤ dF (D) where
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χ(H(D)) is the chromatic number of H(D).

The theorem that is relevant for the current literature is the following theorem

proved by Das et al. [2].

Theorem 2.3.3. The following conditions are equivalent for a digraph B,

(i) B is a containment bigraph.

(ii) B is of Ferrer’s dimension at most 2.

(iii) The rows and columns of biadjacency matrix of B can be permuted indepen-

dently, so that in the rearranged matrix no 0 has a 1 both below it and to its right.

It should be noted that the emphasis from the graph theoretic view is only

confined to the intersection due its connection with ordered sets and intervals. The

intersection or AND is a very primitive operation when it comes to the family of

boolean operations. Unfortunately the graphs having more than Ferrer’s dimension 2

are less studied. In this thesis we take the operation to the next level, and have taken

XOR operation in consideration and definedXOR-dimension, which is more powerful

in nature. Our intuition was the matrices even with large Ferrer’s dimension can

have small XOR-dimension, and the results in the next section evidentially show

that there is a fair chance of such decomposition.
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3
XOR-dimension & Properties

3.1 Introduction

As described in previous chapter the Ferrer’s Dimension describes the the mini-

mum number of Ferrer’s matrices, intersection of which generate the original matrix,

we can define the same for the XOR operations. Before defining XOR dimension we

present the following theorem which helps to understand it better. Let us consider

the incidence matrix of a graph again, which is a square matrix.

Theorem 3.1.1. Any digraph G = (V,E) can be written as XOR of finitely many

Ferrer’s digraphs, moreover, if a digraph has n vertices then (i.e adjacency matrix

is n× n) it can always be represented as XOR of at most n Ferrer’s digraphs.

15



16 XOR-dimension & Properties

Proof. We can write any row of n × n matrix as an 1 × n vector. Now the vector

is a combination of binary values. Let m1 ≤ n be the right most index such that

m1-th bit is 1. So we can assign an 1 × n vector with m1 1’s followed by 0’s. Let

m2 < m1 be the second right most index, then there are (m1 − m2) 0’s. We will

define another vector (m1 − 1) 1’s followed by 0’s. The XOR of these two vectors

will take care of the original vector up to m2 places. We can repeat the process until

we obtain the leftmost 1.

e.g. (101010) = (111110)⊕ (111100)⊕ (111000)⊕ (110000)⊕ (100000)

As the 1’s are always together in that method of decomposition therefore the com-

ponents would be Ferrer’s digraphs. Clearly the number of such component vectors

can not exceed n, therefore any n×n matrix can be represented as XOR of n Ferrer’s

digraphs.

3.2 XOR dimension

From theorem 3.1.1 we have the intuition of having a dimension for XOR oper-

ation. Although the notion is fairly straight forward with XOR operation. Let us

now define XOR dimension in a formal way.

XOR dimension: The XOR dimension dX(G) of a digraph G is the smallest number

of Ferrer’s digraphs, such that successive XOR operation between them would

return G.

From theorem 3.1.1 we have following observation.

Observation 3.2.1. For a digraph G with n vertices dX(G) ≤ n.
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3.2.1 Decomposition of higher dimension

To have a conflict in a matrix, it must contain an
(
1 0
0 1

)
or

(
0 1
1 0

)
as sub matrix.

We can decompose any matrix into 4 co-ordinates as in figure 3.1, and make diagonal

coordinates different, in that way we can prohibit couples whose 4 corners lies in

different co-ordinates.

= ⊕

D11 D12

D21 D22

D11

D22

1

0

D12

D21

0

1

Figure 3.1: Decoding a permutation Ferrer’s element

That decomposition leads to following theorem,

Theorem 3.2.1. If every digraph with n vertices has dimension n or less or equal

to k, then any digraph with 2n vertices has a XOR dimension less or equal to 2k.

Proof. Suppose we have 2n× 2n adjacency matrix A as

 A1 A2

A3 A4



where each of A1, A2, A3, A4 are n × n adjacency matrices and hence by our

assumption can be written as a sum of exactly k Ferrer’s digraphs (we add zero

matrices if needed). Let the representations be

A1 = A11 ⊕ A12 ⊕ . . .⊕ A1k

A2 = A21 ⊕ A22 ⊕ . . .⊕ A2k

A3 = A31 ⊕ A32 ⊕ . . .⊕ A3k
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A4 = A41 ⊕ A42 ⊕ . . .⊕ A4k

First suppose k is even, then we can write A as

 A11 1

0 A41

⊕
 A12 1

0 A42

 . . .⊕

 A1k 1

0 A4k



⊕

 1 A21

A31 0

⊕
 1 A22

A32 0

 . . .⊕

 1 A2k

A3k 0



If k is odd, we can write A as

 Ā11 1

0 A41

⊕
 Ā12 1

0 A42

 . . .⊕

 Ā1k 1

0 A4k



⊕

 1 Ā21

A31 0

⊕
 1 Ā22

A32 0

 . . .⊕

 1 Ā2k

A3k 0


where for an adjacency matrix A = ((aij)), we define, A = ((āij))

Observe that each of these matrices have 4 n × n sub-blocks which are Ferrer’s

digraphs. By placing one matrix and zero matrix in the two opposite blocks, we

ensure that a couple is not formed from different blocks. Hence, each of these

matrices are Ferrer’s digraphs and as there are 2k many of them, we get that the

dX(A) ≤ 2k.

We can generalize the decomposition method in theorem 3.2.1 for any multiple

of n. The idea goes in a similar way as done for l = 2 above where there are ln

nodes. First observe that as we have proved it for l = 2, we have a ln× ln adjacency
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matrix A as in figure 3.2.

n2
n2 n2

n2 n2
n2

l × n

A1 A2 Al

A(l−1)l+1 Al2

Figure 3.2: matrix of lk dimension

Theorem 3.2.2. If every digraph with n vertices has XOR dimension less or equal

to k, then any digraph with ln vertices has XOR dimension at most lk for n, k, l ∈ N.

Proof. The proof follows the similar track as done for l = 2 in the Theorem 3.2.1. it

is sufficient to prove when l be an even number. Suppose we have a ln×ln adjacency

matrix A as


A1 . . . . . . Al

Al+1 . . . . . . A2l

. . . . . . . . . . . .

A(l−1)l+1 . . . . . . Al2


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where each of A1, A2, . . . , Al2 are n×n adjacency matrices (See figure 3.2) and hence

each of the blocks by definition has XOR dimension k Ferrer’s digraphs (we add all

ones and all zeros matrices as needed). Let the representations be

A1 = A11 ⊕ A12 ⊕ . . .⊕ A1k

A2 = A21 ⊕ A22 ⊕ . . .⊕ A2k

....

Al2 = Al21 ⊕ Al22 ⊕ . . .⊕ Al2k

Observe that for Ferrer’s digraphs D1, D2, . . . Dl, the matrix


D1 1 .. 1

0 D2 .. 1

.. .. .. ..

0 .. 0 Dl


has no couple and hence a Ferrer’s digraph. Also observe, as column permutaion

retains a Ferrer’s digraph, rotations of the above matrix i.e.



1 D1 1 .. 1

1 0 D2 .. 1

.. .. .. .. ..

1 0 .. 0 Dl−1

Dl 0 0 .. 0


. . . . . .



1 1 1 .. D1

D2 1 .. 1 0

.. .. .. .. ..

0 .. Dl−1 1 0

0 .. 0 Dl 0


are also couple free matrices (By rotation, we mean that put the last block of columns

at the beginning of the matrix consecutively).

First suppose k is even. Then we can write A as
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
A11 1 . . . 1

0 A(l+2)1 . . . 1

. . . . . . . . .

0 0 . . . Al21

⊕


A12 1 . . . 1

0 A(l+2)2 . . . 1

. . . . . . . . . . . .

0 0 . . . Al22

 . . .⊕


A1k 1 . . . 1

0 A(l+2)k . . . 1

. . . . . . . . . . . .

0 0 . . . Al2k



⊕


1 A21 . . . 1

. . . . . . . . . . . .

1 0 . . . A(l−1)l,1

A((l−1)l+1),1 0 . . . 0

 . . .⊕


1 A2k . . . 1

. . . . . . . . . . . .

1 0 . . . A(l−1)l,k

A((l−1)l+1),k 0 . . . 0



. . .⊕


1 . . . 1 Al1

A(l+1)1 . . . 1 0

. . . . . . . . . . . .

0 . . . A(l2−1)1 0

 . . .⊕


1 . . . 1 Alk

A(l+1)k . . . 1 0

. . . . . . . . . . . .

0 . . . A(l2−1)k 0


because in each block, say in the first block, we have a sum over an even number

of ones (and they add up to 0), a few zeros and the A1j’s which simply add up to

A1. If k is odd, then the sum in each block is different depending on the row in

which the block is placed. For the odd rows, i.e. the first, third etc. rows, in each

block, we have a sum over an even number of ones (since l is odd, and we sum over

(l−1)k, (l−3)k . . . ones respectively), a few zeros and the corresponding Aij’s which

simply add up to Ai’s.

For the even rows, we have sum over odd number of ones, few zeros and and odd

number of Aij’s (since k is odd). Hence, to make the sum Ai, we replace Aij’s by

Āij’s which are also Ferrer’s digraphs. Thus, we can write A as
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
A11 1 . . . 1

0 Ā(l+2)1 . . . 1

. . . . . . . . . . . .

0 0 . . . Al21

⊕


A12 1 . . . 1

0 Ā(l+2)2 . . . 1

. . . . . . . . . . . .

0 0 . . . Al22

 . . .⊕


A1k 1 . . . 1

0 Ā(l+2)k . . . 1

. . . . . . . . . . . .

0 0 . . . Al2k



⊕


1 A21 . . . 1

. . . . . . . . . . . .

1 0 . . . Ā(l−1)l,1

A((l−1)l+1),1 0 . . . 0

 . . .⊕


1 A2k . . . 1

. . . . . . . . . . . .

1 0 . . . Ā(l−1)l,k

A((l−1)l+1),k 0 . . . 0



. . .⊕


1 . . . 1 Al1

Ā(l+1)1 . . . 1 0

. . . . . . . . . . . .

0 . . . A(l2−1)1 0

 . . .


1 . . . 1 Alk

Ā(l+1)k . . . 1 0

. . . . . . . . . . . .

0 . . . A(l2−1)k 0



where for an adjacency matrix A = ((aij)), Ā is defined as, Ā = ((āij))

By our observation, each of these matrices are Ferrer’s digraphs and as there are

lk many of them, we get that the dX(A) ≤ lk.

Now we prove a theorem that guarantees the existence of a digraph with any

predefined XOR dimension.

Theorem 3.2.3. For any integer k, we can have an n such that there exists an

n× n matrix with XOR dimension at least k.
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Proof. Let n and k be number of vertices and dimension respectively. We know that

any Ferrer’s digraph can be constructed by independent row and column permuta-

tions of matrices where the 1’a are clustered in a corner. Now we can construct such

a matrix in (n+ 1)n ways (as in each row, we can choose the number of 1’s ranging

from 0 to n). Observe that to construct a Ferrer’s digraph, we only need to consider

the different column permutations of these (n+1)n matrices (since we have already

incorporated the row permutations in the count of matrices with 1’s clustered in

a corner). Suppose in a given matrix with 1’s in a corner, the different rows have

k1, k2, . . . , kl 1’s where l ∈ N, l ≤ n, 0 < k1 < k2 < . . . < kl. The ki’s take values

in {1, 2, . . . , n}. Then the number of different column permutations of this matrix is

n!

k1!(k2 − k1)! . . . (kl − kl−1)!(n− kl)!

Hence, the number of Ferrer’s digraph with n vertices is the XOR sum of the quan-

tity, by taking k of such over the (n + 1)n matrices. So, an upper bound to the

number of Ferrer’s digraphs is n!(n+ 1)n. By an use of the AM-GM inequality, we

get an upper bound of (n+1)2n

2n
. (as n! < (n+1

2
)n).

Now, for a digraph with n vertices to be of XOR dimension less or equal to k,

we must have

2n
2 ≤ (n+ 1)2kn

2kn

(as there are 2n
2
possible matrices and (n+ 1)2kn many possible sums)

i.e.,

2n
2+kn ≤ (n+ 1)2kn
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i.e.,

2n+k ≤ (n+ 1)2k

Now, the RHS of the inequality grows polynomially and the LHS grows exponen-

tially. Hence there exists nk such that for all n ≥ nk,

2n+k > (n + 1)2k and hence for n ≥ nk, the upper bound is strictly greater than

k.

NOTE: For k = 2, we get n2 = 13. Hence for an n ≥ 13, we can always get a

digraph with n vertices such that its XOR dimension is at least 3.

Also note that,

2nk+k > (nk + 1)2k

i.e.,

(nk + k) log 2 > 2k log (nk + 1)

i.e.,

k <
nk log 2

2 log (nk + 1)− log 2

which is O( nk

lognk
)

So, For an n ∈ N, there will always be digraphs with n vertices such that it has

XOR dimension k which is of the order O( n
logn

). Hence, for digraphs with n vertices,

the upper bound to dX(G) is less than or equal to n and is greater than or equal to
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O( n
logn

).

3.3 XOR-dimension of any m× n matrix

Until that point we have been discussing matrices which are square in nature.

But while doing experiments we also get an idea that we could also handle any m×n

matrix, since the matrices are binary therefore the number of rows they can produce

is bounded by 2n. We have the following observation from that simple fact. Later

we have conjectured another bound, which is much less.

Observation 3.3.1. The XOR dimension of n×n matrix is bounded by the dimen-

sion of 2n × n matrix where rows are non-repeating.

As in a 2n × n matrix exhaust all possible combination of rows and conflicts so

the above observation is trivially true.

Generating Ferrer’s digraph components for a general m×n matrix is computation-

ally a hard job. Therefore we devised several new encoding techniques to write the

program efficiently and to minimize repetitions.

3.3.1 Ferrer’s Element

Ferrer’s digraphs have the adjacency matrix which is conflict free. We generalize

the notion of conflict-freeness and recoded a matrix in from a permutation of column

numbers. We call a particular permutation a Ferrer’s Element. For example we

can think of any matrix having 4 columns. A permutation of numbers (0, 1, 2, 3)

would represent a Ferrer’s element. So for n columns a permutations of numbers

(a1, a2, . . . , an) where i ∈ {1, . . . , n} can be interpreted as a matrix whose Ferrer’s

dimension is 1. The decoding is as follows, if we have columns 0 to n, a1 denotes

that a1-th bit is made 1 at the first row, a2 denotes that a2 th bit is 1 in the second

row along with the a1-th bit from the first row and so on. In this manner in the i-th
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row all ones are copied from the (i− 1)-th row and ai-th bit is made 1. We have the

following observation,

Observation 3.3.2. Every Ferrer’s element is conflict free.

As all the the 1’s are carried down from the previous rows so there is no conflict,

hence the observation is trivially true.

We will denote Ferrer’s elements as ei where i ∈ {1, . . . , n!}.

The decoding is explained in the following Figure 3.3

3 2 1 0 4

4 3 2 1 0

0 1 0 0 0

0 1 1 0 0

0 1 1 1 0

0 1 1 1 1

1 1 1 1 1

Figure 3.3: Decoding a permutation Ferrer’s element

3.3.2 Cartesian XOR

While using intersection between the graph and the AND-operation was bit-

wise. The Cartesian XOR is just an extension of normal bitwise XOR operation.

Cartesian XOR between twomxnmatrices (Ferrer’s elements) are defined as follows,

we XOR each row of the first Ferrer’s element with every other row of the second

Ferrer’s element. As a result we will get m2 rows not necessarily unique. Our next

observation states that in this process we are able to enumerated all possible row

combinations.
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Table 3.1: Ferrer’s Element pairs

Ferrer’s element e1 Ferrer’s element e2 Missing Rows
(0,1,2,3) (0,2,1,3) 9-11-13
(0,1,2,3) (0,2,3,1) 9-11
(0,1,2,3) (0,3,1,2) 5-13
(0,1,3,2) (0,2,1,3) 9-13

Observation 3.3.3. Cartesian XOR of two Ferrer’s element exhaust all possible

row combinations that can be generated by all possible matrices with repetition that

can be made from a Ferrer’s element.

We are generating all possible combination, and repetition does not introduce

any new row, therefore the observation follows.

Example: For 4 columns (i.e. n = 4) the rows that are produced by two Fer-

rer’s element (0, 1, 2, 3) and (0, 1, 3, 2) would generate every row from 0 to

(24 − 1) = 15 rows except 5,9 and 13. Below in the table 3.1 of few Ferrer’s

element of order 4 with the rows that they can not generate.

It is to be noted that we have fixed the number of bits while working with a

particular Ferrer’s element. Let us denote the number of bits c as it is also number

of columns too. We have many observations with different values of c.

3.3.3 Observations for c = 4 and c = 5

During the experiments on n × n matrices, it is found from exhaustive search

that every square matrix up to n = 5 has XOR-dimension 2. The matrix we first

encountered to break that monotonicity was of size 6× 4, below is the matrix
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

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0



As we have seen in Example 3.3.2 that Ferrer’s element XOR-d together they

are leaving few rows. In case of c = 4 there are 24 Ferrer’s elements. The best pair

of Ferrer’s elements are those which leave minimum number of rows. Below is the

picture of such best pairs for c = 4.

0 1 2 3

1 3 0 2

0123

2 0 3 1

6
9

69

a

0 1 23

1 302

012 3

203 1

10 5

5 10

b

0 12 3

1 302

01 23

203 1

12 3

3 12

c

0 12 3

1 30 2

01 23

2 03 1

9 6

6 9

d

0 1 23

1 302

012 3

203 1

3 12

12
3

e

01 2 3

130 2

0 123

2 031

5 10

10
5

f

Figure 3.4: Best pairs for c = 4

The rows that a pair misses is written on the corresponding arrow. It is to be

noted that if a pair misses a row then the reverse of the Ferrer’s elements misses
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its mod(24 − 1) complement. To construct the 6 × 4 matrix we have taken these

missing rows all together so that no pair can generate them, and the barrier of XOR

dim 2 is broken. Another thing is to be noted that the matrix is in general has the

form of
(

n
n
2
×n

)
where each row has equal number of 1’s and 0’s. We will prove some

interesting property with that intuition.

Just as we have seen that the best pairs for c = 4, (Figure 3.3.3) forms a 2-regular

graph, similarly in case of c = 5 the best pairs form a 20 node 6 regular graph,

1 4 2 0 3

1 3 0 4 2

0 1 2 3 4

4 2 3 0 1

1 2 4 3 0

1 0 3 2 4

0 3 4 2 1

4 0 1 3 2

2 3 1 0 4

2 1 3 4 0

4 3 2 1 0

3 1 4 0 2

4 1 0 2 3

3 2 0 1 4

0 2 1 4 3

3 0 2 4 12 4 0 3 1

2 0 4 1 3

0 4 3 1 2

3 4 1 2 0

Figure 3.5: 6 regular graph for c = 5
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There are 6 such graphs, As there are 120 Ferrer’s elements.

3.3.4 Detecting Dimension

Now we will give a general construction technique for making a matrix with

higher XOR-dimension. Here we will assume that the graph between different Fer-

rer’s elements, let us call it GP is already given and for fixed number of columns

the graph is also fixed. Now if we move from a pair to triplet or a k subset then GP

would become a hypergraph. Let us farther assume that the matrix of the higher

dimension contain m rows and the rows are r1, r2, . . . , rm. We will label those sub-

sets that misses r1, let the subgraph be Gr1
P , then we take GP \ Gr1

P , and do the

same for rows successively until the graph becomes empty, if the graph is still not

empty after m iterations then the taken matrix has dimension less or equal to k as

it can be generated by k components. In this way we can construct and check the

XOR-dimension of a matrix, but the task is computationally hard as the process of

generating the hypergraph is combinatorially exhaustive. Algorithm 2 is a iterative

deletion algorithm to find out the dimension

3.3.5 Properties of
(
n
n
2

)
× n matrices

From the observations of 3.3.3, it would be intuitively realizable that
(
n
n
2

)
× n

matrices are special, as they have a terminal dimension. After a simple observation

we would prove that for a given type of matrices
(
n
n
2

)
× n has maximum XOR-

dimension. First we have the following simple observation,

Observation 3.3.4. XOR-dimension is non-decreasing with increasing size of ma-

trices.

The observation comes from the fact, that row column permutation does not

change the XOR dimension. If a matrix M × N matrix contain a submatrix of
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Algorithm 2: Checking XOR-dimension of a matrix

Input: The hypergraph GP labeled with missing rows by a subset,
MatrixM = {r1, r2, . . . , rm}, dimension k

Output: M has a dimension k or not
1 i← 0
2 repeat
3 Choose subgraph Gri

P such that the subsets missed row ri
4 GP = GP \Gri

P

5 if GP is empty then
6 Report that matrix M has XOR dimension greater than k
7 STOP

8 i← i+ 1

9 until GP is not empty and i ≤ m
10 if i > m and GP is not empty then
11 Report that matrix M has dimension less or equal to k
12 STOP

size m× n, which has XOR-dimension k, then XOR dimension of M ×N matrix is

greater or equal to k. If it is less than k, then we take the components and could

omit the extra rows and columns and find less than k components for m× n, which

is a contradiction.

Now we consider matrices with same number ones in each row, we would prove

that such matrices for a fixed c, the matrix with highest dimension would contain(
c
c
2

)
rows.

Theorem 3.3.1. For a fixed number of columns c, the matrix of size
(
c
n
2

)
× c has

higher dimension among the matrices of column size c and have same number of

ones at each row.

Proof. We would prove the theorem in inductive way, Let us fix a c. Now the matrix

with no ones at each row is a zero matrix, which is conflict free by nature. Let us

call a matrix Ms if it contains s 1’s in every row. The XOR-dimension of M1 is 2 as

depicted below



32 XOR-dimension & Properties


1 0 . . . 0

0 1 . . . 0

. . . . . . . . . . . .

0 0 . . . 1


=


1 0 . . . 0

1 1 . . . 0

. . . . . . . . . . . .

1 1 . . . 1

⊕


0 0 . . . 0

1 0 . . . 0

. . . . . . . . . . . .

1 1 . . . 0



It is to be noted that when we have the components for M1 then we can easily

calculate the components for Mc−1 by complementing one component and they have

the same dimension. For M2 we know the matrix must contain a submatrix 6 × 4

as in section 3.3.3, so M2 must have dimension more than or equal to 3. Let us

denote the function as dX for XOR-dimension. We know that dX(Mi) = dX(Mc−i).

As dX(M0) = dX(Mc), dX(M1) = dX(Mc−i) the function is symmetric with respect

to x = c
2
line. It has the same value for s = i, s = c − i, so the dX must attain

maximum for some i = c
2
, for which there complements are same. For c = 2k that

matrix is M( c
c
2
). For odd values of c we can take floor or ceiling.

We will end this section with a conjecture that we found to be true for c = 10

experimentally. If we fix c and call any matrix with r rows asMr then.

A conjecture: For a given c, dX(M c
2
) ≥ dX(Mi) where i ≤ 2c, i ∈ N.



4
Conclusion and Future Research

We began with several questions that are asked from the point of view of decom-

position of binary matrices. The major question was to determine if a matrix can be

decomposed into several matrices that do not contain conflicts, and we wanted the

number of components (XOR-dimension) to be minimized. We have been able to

answer that question for some matrices. We have proved that the XOR- dimension

is finite for a given matrix. We have also given a decomposition technique, and

shown that the upper bound on the XOR-dimension of the original matrix can be

computed from those of its component matrices. Next we have proved that there

always exists a matrix with any arbitrary XOR-dimension k. To construct a general

m × n matrix with a given XOR-dimension, we have used an encoding technique

33
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Table 4.1: Ferrer’s Element pairs

Number of Columns XOR-dimension
2 2
3 2
4 3
5 3
6 3
7 3
8 4
9 4
10 4
12 5
13 5
14 5
15 6
16 6
17 6
18 6
19 6

(Ferrer’s elements), where we fix the number of columns. The combination of Fer-

rer’s elements would exhaust the combination of matrices that could be generated

by any permutation of rows. We have described an enumeration graph (for a set

of Ferrer’s elements) that can be constructed by the possible combinations of Fer-

rer’s elements. An iterative deletion algorithm on such a graph that determines the

XOR-dimension of a matrix is also presented.

As the construction of the graph is computationally intensive, an efficient enu-

meration could speed up the algorithm. However it is yet to be resolved whether or

not such an algorithm exists. Experimental results on enumeration of matrices are

given in Table 4.1.

The result is known for a matrix with 11 columns. However it should lie between

4 and 5. For higher dimension matrices we could not derive a closed-form formula

for it neither do we know if such formula exists or not. So the questions that remain
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are following :

• What is the dimension of an n× n square matrix in general?

• Is the XOR-dimension a function of the number of columns?

• Can we determine the minimal components in polynomial time?

We were motivated to study the problem as the challenge of reconstructing a

matrix from its projection has a direct correspondence to discrete tomography. The

idea of decomposition of such matrices arises from its relation to intersection graphs.

However the XOR operation seems more promising than simple intersection or AND

operation. We have analyzed the problem with simple square matrices as they

represent graphs, and then we have generalized it for rectangular matrices. The

idea of this decomposition seems powerful, as we have several options for choosing

the bit-wise logical operation. Altogether, there are lot of opportunities to expand

the boundaries.
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