
M. Tech. (Computer Science) Dissertation Series

Art Gallery Problem for Monotone Polygons

a dissertation submitted in partial fulfillment of the
requirement for the M. Tech. (Computer Science)

degree of the Indian Statistical Institute

By

Diptapriyo Majumdar

Roll No: CS1107

under the supervision of

Prof. Subhas C. Nandy

Advanced Computing and Microelectronics Unit

INDIAN STATISTICAL INSTITUTE
203, Barackpore Trunk Road

Calcutta - 700108

Acknowledgment

At the end of this course, it is my pleasure to thank everyone who has helped
me along the way.

First of all, I want to express my sincere gratitude to my supervisor, Prof.
Subhas C. Nandy for introducing me to the world of Computational Geome-
try and giving me interesting problems. I have learnt a lot from him. For his
patience, for all his advice and encouragement and for the way he helped me
to think about problems with a broader perspective, I will always be grateful.

I would like to thank all the professors at ISI Kolkata who have made my
educational life exciting and helped me to gain a better outlook on Computer
Science. I would also like to express my gratitude to Prof. Sandip Das, Prof.
Arijit Bishnu, Prof. Gautam K. Das for interesting discussions.

I would like to thank everybody at ISI for providing me a nice platform for
pursuing my studies. I thank all my classmates who have made the academic
and non-academic experience very delightful. Special thanks to my friends
Sukanta-da, Minati-di, Aniket-da, Soumen-da, Aritra-da, Soumyottam-da,
Sayan, Girish, Sunny, Hirak and many others who made my campus life so
enjoyable. It has been great to have them around at all times.

My most important acknowledgement goes to my family and friends who
have filled my life with happiness, most significantly, to my parents who have
always encouraged me to pursue my passions and instilled a love of knowl-
edge in me. I am indebted to my friends Suman, Raviteja, Priyanka, Bipul,
Sanchita, Arani, Abhishek, Bipin for their endless supply of encouragement,
moral support and entertainment.

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Monotone Polygons and Terrains 5
2.2 Approximation Algorithm . 5

3 Approximation Algorithms for Terrain Guarding 7
3.1 4-factor approximation algorithm 7

3.1.1 LP based Algorithm for one sided guarding and its
approximation factor: 8

4 Algorithms to Guard Monotone Polygons 11
4.1 Guarding an Uni-monotone Polygon 11

4.1.1 Algorithm . 11
4.2 Guarding Monotone Orthogonal Polygons 12
4.3 Constant factor Approximation Algorithm for x-monotone poly-

gons . 13
4.3.1 Terminology and Notation 13
4.3.2 Algorithm . 15
4.3.3 Approximation Factor of this algorithm 17

4.4 Our Approach for a Special Sub Case 19
4.4.1 Algorithm . 19
4.4.2 Analysis of Our Algorithm 19

2

Chapter 1

Introduction

Art Gallery problem is one of the well known problems in Computational
Geometry. Given a polygon P in R2, we are asked to find the minimum
number of points interior of P to guard the entire polygon P. Our study is on
a restricted version of the problem, where the given polygon P is monotone
with respect to x-axis. Here also different variations may be studied, namely
point guarding, vertex guarding and edge guarding. Vertex Guarding deals
with the case when guards are placed only at vertices of the polygon. Edge
guarding deals with the case when guards are placed only at the boundary
of the polygon. Point guarding deals with the case when guards can be
placed anywhere inside the polygon. It is a restricted version of the Set Cover
problem which is known to be NP Complete and can not be approximated to a
constant approximation factor unless P = NP. For any simple polygon, point
guarding problem can be formulated to set cover as given in [15]. Initially
Chen et al [6] proved vertex guarding to be NP Hard. But, their proof is
still omitted and is under verification. After that, Erik Krohn and Bengt
J. Nillson has proved its vertex guarding of monotone polygon to be NP
Hard in [2]. But, its interior guarding does not immediately follow from that
claim. The same authors Erik Krohn and B. J. Nillson[7] have proved its
interior guarding version to be NP Hard. It has a related problem which
deals with guarding a terrain. Guarding a terrain is also NP Hard. Erik
Krohn and James King [8] gave a proof of that. About guarding interior
of a polygon, we know some basic results[1] that n/3 guards are always
sufficient and occasionally necessary to guard a polygon. In Chapter 3, we
give an approximation algorithm to guard a terrain and briefly describe other
works related to it referring them. In Chapter 4, we have discussed interior
guarding of monotone polygon. First we describe that a monotone polygon
can be guarded with minimum number of guards when the polygon is y-
monotone and also axis parallel(also called as horizontally convex). Also,

3

we have discussed a constant factor approximation algorithm given by Bengt
J. Nillson[5] when the polygon is x-monotone. It provides approximation
factor 12. After that we propose an algorithm for a special sub-case when the
polygon is x-monotone and also their two extreme points are mutually visible
to each other. In that algorithm, we have conjectured that it is expected to
give a 4-factor approximation algorithm. We have given a brief informal
justification why it should give 4-factor approximation algorithm.
In this thesis, we have reviewed these following works in detail. These are 4-
factor approximation algorithm for terrain guarding problem[10], algorithm
to guard monotone orthogonal polygon[14] and constant factor algorithm for
monotone polygon given by Bengt J. Nillson[5]. And finally we have provided
our approach in the following sections of Chapter 4. In Section 4.1, we have
given an approach where the input polygon in uni-monotone and in Section
4.4, for a special sub-case of the x-monotone polygon.

4

Chapter 2

Preliminaries

2.1 Monotone Polygons and Terrains

:

Definition (Monotone Polygon) A polygon P is said to be monotone with
respect to a given line ` if any line perpendicular to ` intersects that polygon
into at most two vertices. So, if any vertical line intersects P into at most
two vertices then P is said to be x-monotone. Therefore every x-monotone
polygon has an upper chain and a lower chain. In both the chains, the
vertices are stored in increasing order of x co-ordinates. Therefore an x-
monotone polygon has two extreme points s and t having the minimum and
maximum co-ordinates respectively.

Definition (1.5D Terrain) Usually when we use terrain we generally use
a special version of it which is 1.5D Terrain. It is an x-monotone chain T
consisting of a set of points p1(x1, y1), p2(x2, y2),, pn(xn, yn) where (pi, pi+1)
are connected by a line segment, i = 1, 2,, n−1 and the line segment joining
p1 and pn does not intersect the chain.

Definition (Visibility Polygon) Given a polygon P and an interior point q,
the visibility polygon of the point q is said to be the area inside the polygon
P such that if a point p in this area is taken then the line segment joining p
and q does not intersect the boundary of P.

2.2 Approximation Algorithm

As we focus on approximation algorithm for the Art Gallery problems, we
now define various types of approximation schemes. Even though for our

5

work we do not use all the schemes as PTAS is available for Art Gallery
problem.

Definition (Approximation Algorithm) Let P be a maximization (respec-
tively minimization) problem. Then an algorithm A is said to be an α-factor
approximation algorithm for P if and only if for any instance A(x) of P, A(X)
runs in polynomial in —X— time and returns a feasible solution SOL(X) such
that SOL(X) ≥ α ∗ OPT (respectively SOL(X) ≤ α ∗ OPT) where OPT
denotes the optimum solution for the problem P for the given instance X.

Definition (Polynomial Time Approximation Scheme) Let P be a maxi-
mization (respectively minimization) problem. Algorithm A is a polynomial-
time approximation scheme(PTAS) for P if and only if for any instance X
of P and for any (fixed) ε > 0, A(X; ε) runs in time polynomial in |X| and
delivers a feasible solution SOL(X, ε), such that SOL(X, ε) ≥ (1 + ε)OPT
(respectively SOL(X, ε) ≤ (1− ε)OPT).

6

Chapter 3

Approximation Algorithms for
Terrain Guarding

We have already seen that a terrain is said to be a monotone chain. We con-
sider the case when the chain is x-monotone. A chain x-monotone indicates
that their x-coordinates are in increasing order. Finding an optimal set of
guards was not known to be NP Hard before [5]. Neither attempt to prove its
NP Completeness nor attempt to find a polynomial time algorithm has been
successful for that before James King and Erik Krohn gave a hardness proof
of that in [8]. The first constant factor approximation algorithm has been
given by Ben-Moshe in [3]. Clarkson and Varadarajan gave another constant
factor approximation for the problem in [4] based on solving a linear pro-
gramming relaxation and rounding. No attempt has been made to minimize
the constant factor in either paper. King finds in [12] that the factor in [3]
can be brought down to 6 with some modifications into the algorithm. James
King in [12] has provided a 5-approximation factor. Later on K.Elbassoioni,
E. Krohn[10] gave a 4-approximation algorithm for terrain guarding problem.
Matt Gibson, Gaurav Kanade, Erik Krohn and Kasturi Varadarajan in [11]
have provided an approximation scheme that uses local search technique.

3.1 4-factor approximation algorithm

Till now it is the best known approximation algorithm for guarding a terrain.
Before going to the algorithm we need to point out some few observations.
Vertices are arranged in increasing order of x-coordinates. We denote this
notation a < b to indicate that a is to the left of b. We say that a sees b
if the line segment āb lies on or above the terrain. We have the following
observation.

7

a

b

c
d

Lemma 3.1.1 Four points a < b < c < d. If a sees c and b sees d, then a
sees d.

Proof We know that a sees c. So, there is no point in terrain that lies above
the line segment ac. Also, no point lies above the segment bd. So, b must be
below ac and c must be below bd. Therefore there can not be any point in
the terrain that lies above the segment ad. Hence a sees d.

3.1.1 LP based Algorithm for one sided guarding and
its approximation factor:

We consider the one sided guarding version. In this version, the guards can
see in only one of the two directions, left or right. Specially given three set
of points T,GL, GR, we want to find sets BL ⊂ GL and BR ⊂ GR such that
for all p ∈ T , there is g ∈ BL such that g < p and g sees p or g ∈ BR such
that g > p and g sees p.
Let us denote SL(p) = {g ∈ GL|g sees p} and SR(p) = {g ∈ GR|g sees
p}. While solving left-guarding(respectively right-guarding), we set GL =
G(respectively GR = G). Now for the left guarding, we can map this problem
as an integer Linear Programming problem as follows:

minimize
∑

g∈G xg
subject to

∑
g∈SL(p)

xg ≥ 1 ∀p ∈ T
xg ∈ {0, 1} ∀g ∈ G

8

Denote the above formulation as LP1.
Without loss of generality, we assume that each point in T can be seen by

a guard on its left or by a guard on its right. xg,L(respectively xg,R) represents
the indicator variable that can take value from {0, 1}. xg,L = 0(respectively
xg,R = 0) indicates that g is not chosen as a guard in GL(respectively in
GR). On the other hand xg,L = 1(respectively xg,R = 1) indicates that g
is chosen as a guard in GL(respectively in GR). Now in order to find the
optimal set of left and right guards, we can map this problem as an integer
Linear Programming problem as follows:

minimize
∑

g∈GL
xg,L +

∑
g∈GR

xg,R
subject to

∑
g∈GL∩SL(p)

xg,L +
∑

g∈GR∩SR(p) xg,R ≥ 1 ∀p ∈ T
xg,L ∈ {0, 1} ∀g ∈ GL

xg,R ∈ {0, 1} ∀g ∈ GR

We know that Integer Linear Programming problem is NP Hard. So, we
relax the integrality of the variables, and assume that these can take any
real number in [0, 1]. Thus, the problem is

minimize
∑

g∈GL
xg,L +

∑
g∈GR

xg,R
subject to

∑
g∈GL∩SL(p)

xg,L +
∑

g∈GR∩SR(p) xg,R ≥ 1 ∀p ∈ T
xg,L ≥ 0 ∀g ∈ GL

xg,R ≥ 0 ∀g ∈ GR

Algorithm first finds an optimal fractional solution x∗. Guided by x∗, we
divide the points into two sets

TL = {p ∈ T |∑g∈SL(p)∩GL
x∗g,L ≥ 1/2}

TR = {p ∈ T |∑g∈SR(p)∩GR
x∗g,R ≥ 1/2}

∑
g∈GL

x∗g ≤ OPT as OPT is the optimal solution of the integer program.
But,

∑
g∈GL

x∗g is the optimal solution of the linear program.

Lemma 3.1.2 Let B∗L and B∗R be the optimal solutions for the pairs (TL, GL)
and (TR, GR) respectively. Then |B∗L| ≤ 2

∑
g∈GL

x∗g and |B∗R| ≤ 2
∑

g∈GR
x∗g.

9

Proof Set xg,L = 2x∗g we get a fractional solution for the linear program to
guard TL. Hence, its cost is

∑
g∈GL

xg,L ≤ 2
∑

g∈GL
x∗g ≤ 2OPT .

Other inequality
∑

g∈GL
xg,R ≤ 2

∑
g∈GR

x∗g ≤ 2OPT also holds symmetri-
cally. Thus we have a 4-factor approximation. Finally we prove the following
theorem.

Theorem 3.1.3 There exists a polynomial time algorithm for terrain guard-
ing that provides 4-factor approximation.

10

Chapter 4

Algorithms to Guard Monotone
Polygons

Art Gallery problem was for vertex guarding was not known to be NP Hard
for Monotone polygon until E.Krohn and B.J.Nillson[2] proved it to be NP
Hard. NP Hardness of the interior guarding does not immediately follow from
that claim. However, Erik Krohn and B.J.Nillson[7] gave the NP Hardness
proof of its interior guarding.

4.1 Guarding an Uni-monotone Polygon

A polygon is said to be uni-monotone with respect to x-axis if its upper chain
is a x-monotone chain and the lower chain is the x axis. In an analogous way
we can define that a polygon is said to be uni-monotone with respect to a
line `, if one of its chain is l-monotone and the other chain is the line `.

4.1.1 Algorithm

Consider the sequence of convex pieces of the upper chain C1, C2, . . . , Ck

arranged in order, where each piece consists of at least 3 vertices among
which the first and last vertices are reflex, and ∪ki=1Ci consists of all the
vertices of the terrain. The projection for each edge ei on the on the line `
is an interval [ai, bi] (the portion at the line ` from where ei is visible)where
ai and bi are the points of intersection of the extensions of the first and last
edges of Ci with the line `. Note that, from the interval [a, b], the entire
Ci is visible. Thus, the art-gallery problem of uni-monotone polygon can be
formulated as finding the minimum clique cover of an interval graph with
the set of intervals {[ai, bi], i = 1, 2, . . . , } on the line `. This can be solved in

11

Guarding an uni-monotone polygon

Figure 4.1: Figure

O(n + k log k) time, where n is the number of vertices in the uni-monotone
polygon.

4.2 Guarding Monotone Orthogonal Polygons

Here, we need to cover the monotone orthogonal polygon into minimum
number of orthoconvex polygons. Each orthoconvex polygon can be guarded
by a single guard. Gewali et al.[13] and Lingas et al.[14] separately proposed
linear time algorithm for this problem. Thus, this problem can be solved
in O(n) time. Finally, after getting the orthoconvex partitioning, the guard
placement scheme is given below.

t4
b4

t3
b3
t2
b2

t1
b1

g1

g2

g3

g4

top ceiling of s1

N-edge

s1

s2

top ceiling of s2

Figure 4.2: Guarding Orthogonal Monotone Polygon

The basic approach for positioning guards:
First, let us briefly recall the idea of Gewali et al.’s algorithm. Let P(i) be

12

the sub-polygon of P consisting of the portion of P that lies below the i’th
grid line. The idea of the algorithm is to perform a plane sweep, moving up
row by row. A new guard g is placed in P whenever the sweep line reaches a
horizontal grid line i such that the sub-polygon P(i) contains an uncovered
portion. The new guard is positioned at a grid point so that the current cov-
ering set covers P(i) and as many additional consecutive rows of cells above
the line i as is possible. Formally, the idea of the algorithm is as follows.

GUARD − PLACEMENT [P]

• G is initially empty.

• for all i = 1, 2,, n
If P (i) is not covered by G then a new guard g is added to G. The new
guard is added on a vertical grid segment that intersects the (i − 1)st
horizontal grid segment. In particular, the new guard g is placed on
any of these vertical grid segments that allow g to maximize Y max(g),
the level of the top ceiling of g. And the guard g is positioned on
the highest horizontal grid line j (j ≥ i) such that when this point is
added to G, the new set covers P (j).

• Return the final set G as an optimal guard placement for P .

4.3 Constant factor Approximation Algorithm

for x-monotone polygons

In this section, we discuss a constant factor approximation algorithm for
the art gallery problem of a x-monotone polygon. This algorithm has been
provided by Bengt J. Nillson in full detail[9].

4.3.1 Terminology and Notation

An x-monotone polygon polygon is bounded by two x-monotone chains,
namely an upper chain U and a lower chain D. We use V P (p) to denote
the visibility polygon of a point p inside the polygon; V PR(p) to denote the

13

p
qp

shaded region indicates V PR(p) shaded region indicates V PR(p, q)

Figure 4.3: Visibility Polygon, Dark Boundary indicates V P (p)

region of V P (p) that lies to the right of p, and V PR(p, q) to denote the region
of V P (p) that lies to the right of the point q inside the polygon. So, it is
trivial to see that V PR(p, p) = V PR(p).

Definition (Guard Cover) For a given polygon P, a set of interior points
G = {g1, . . . , gk} is said to be a guard cover of P when V P (G) = V P (g1) ∪
V P (g2) ∪ . . . ∪ V P (gk) = P . Note that G may not have minimum number
of guard points.

Definition (Pocket) Let H be a set of guards placed inside a polygon. The
area P \V P (H) (may be disjoint pieces) are known as pockets. The pockets
which are adjacent to the upper boundary U are called as upper pockets.
Similarly, lower pockets are defined. Note that an upper pocket can be
adjacent to D, but a lower pocket can never be adjacent to U .

Definition (Kernel Expansion) For a region R inside the polygon, Kernel
Expansion of R is defined as ke(R) = {p ∈ P |p sees everything in R to the
left of themselves }.

Let us assume that we have a partial guard cover G′ that guards some
parts of the polygon P (not the entire P), and also the entire region of
P to the left of the rightmost guard in G′ is seen. Consider the upper
pockets resulting from this guard cover and enumerate them from left to
right in this order U1, . . . , Uk. Similarly the lower pockets D1, . . . , D` are
enumerated in the same way. Consider an upper pocket Ui. The kernel
expansion ke(Ui) consists of all the points in P that see everything in Ui to
the left of themselves. Similarly, we define the kernel expansion for the lower
pockets.

Definition (Spear) Let r be the largest index such that ∩ri=1ke(Ui) is non-
empty. USP (Gp) = ∩ri=1ke(pi) is the upper spear of Gp, It means that from
this region USP (Gp), all points of the upper pockets of P that are to the left

14

Figure 4.4: Computing spear of a set of pockets

of Gp can be seen. Similarly, we can define lower spear DSP (Gp) of a partial
guard cover G′. The rightmost point of an upper spear (resp. lower spear) is
said to be the spear tip denoted by USP TIP (Gp) (resp. DSP TIP (Gp)).

Definition (Shadow) To every spear sp, we associate a region called shadow
of the spear denoted as shd(sp). It is defined in the way as shown in Figure
4.4. If the spear tip lies on the boundary, then shd(sp) is empty.

4.3.2 Algorithm

Our algorithm works as follows. It first computes the position of the guards
in the entire upper chain as described below. The same method wors or
computing the position of the guards the entire lower chain.

Initialize G = ∅. Repeat the following until all upper pockets are guarded.
Compute VP(G). Pockets are enumerated. Compute USP TIP (G). Put a
guard g at USP TIP (G). G = G ∪ g. Compute VP(G). Consider the first
upper pocket U1. Draw a vertical line segment through the leftmost point
of U1. Place a guard g′ on that line so that USP TIP (G ∪ g′) is as right
as possible. Check if entire upper chain is guarded. If not, then repeat this
step.

Now we will discuss how to compute Step 2.1 and Step 2.5 in brief detail.

Computing Kernel Expansion of a given region R: Let v1, v2, . . . , vm
be the vertices of the region R ordered from let to right. Initialize K =
V P (v1). Then for each vertex from v2 to vm in this order, compute V PR(vi).
Denote KL(vi) and KR(vi) be the region of K that lie to the left and right

15

GuardMonotonePolygon(P)

1 Let G = ∅;

2 while all upper pockets are guarded do

2.1 Compute USP TIP (G);

2.2 Place a guard g at USP TIP (G);

2.3 G = G ∪ g;

2.4 Compute ∪g∈GV P (G); let U1 be the first upper pocket in P and let `
is the vertical line segment through the leftmost boundary of U1.

2.5 Place a guard g′ on l so that USP TIP (G∪ g′) lies as far top the right
as possible; G = G ∪ g′;

3 Repeat step 2 for lower pockets;

4 Return G;

of vi respectively. Update K as K = K ∪ (KR(vi) ∩ V PR(vi)). Repeat this
process for i = 2,....,m. At the end return K. The pseudo-code of the method
is as follows:

ComputeKernelExpansion(R)

1 Order the vertices of R as v1,, vm from left to right. Initialize K =
V P (v1)

2 for(i = 2; i ≤ m; i = i+ 1)

2.1 Compute V PR(vi);

2.2 K = K ∪ (KR(vi) ∩ V PR(vi));

3 Return K;

After computing kernel expansion of all the pockets, we can compute the
spear easily.

Computing Step 2.5 (as stated in the algorithm): We use a plane
sweep approach on the vertical line segment ` and keep on updating the

16

q1
q2

g

g′

`

Figure 4.5: Computing the right most spear tip

USP (G ∪ {g′}) continuously. The change in the combinatorial structure
takes place at the following points. We compute only those points moving in
between will move the spear tip monotonically to the left or monotonically
to the right.

1 A convex vertex of V P (G) ∪ V P (g′) on an edge adjacent to an upper
pocket falls on a vertex of U.

2 An edge of the boundary of USP (G∪ {g′}) falls on two vertices of the
upper boundary U .

3 Three consecutive half lines issuing from pockets meet at one point.

These are the types of points where changes will occurs. Number of such
points is of the O(n3) (there are total n lines, we compute at maximum
number of possible points where 3 lines can intersect). In this way, the
rightmost spear tip is possible.

4.3.3 Approximation Factor of this algorithm

Now we discuss about the approximation factor of this algorithm. Before
that we need to know the following term.

Serial Guard Cover: Given a guard cover G = g1, g2,, gm and they

17

are ordered from left to right, where gm is placed either at the upper spear
of g1, g2,, gm−1 or at the lower spear of g1, g2,, gm−1.

Lemma 4.3.1 If H is an arbitrary guard cover for P , then there is a serial
guard cover H∗ for P such that |H∗| ≤ 3|H|.

Proof Given an arbitrary guard cover H, we transform it to serial guard
cover in the following manner. During this transformations, guards are added
to HU , HD and Hr. Initialize all HU , HD and Hr to empty at the beginning
of the construction. Use a vertical line for plane sweep approach. Start the
vertical sweep line from s. When the sweep reaches a guard h, that gets
attached to the sweep line. Then, it starts moving through the shortest path
from h to t(the right most point of the polygon). Also at some point of time,
some guard may be released from that sweep line. Hr consists of those set of
points that are released from the sweep line. Now, as the sweep proceeds, we
keep on considering the set USP (Hr) and also DSP (Hr) then the following
things can happen.

Case 1: A guard h becomes the last guard to leave a spear (USP (Hr) or
DSP (Hr)). If that happens then we release h from the sweep line and
add a guard h′ to Hr at the point where h was leaving the spear. And
then repeat the same procedure from that point again.

Case 2: If a guard(attached to the sweep line) reaches a USP TIP (Hr) (re-
spectivelyDSPT IP (Hr)), then we place a guard hs at USP TIP (Hr)(respectively
DSPT IP (Hr)) and add it to HU(respectively HD).

As long as the sweep reaches t, we stop and return H∗ = Hr ∪HU ∪HD as
output. Now, we have to compute how many extra guards this construction
has placed. Number of guards added to Hr can be at most the number of
guards that are in H. So, |Hr| ≤ |H|. Similarly, |HU | ≤ |H| and |HD| ≤ |H|.
Therefore |H∗| ≤ |Hr|+ |HU |+ |HD| ≤ |H|+ |H|+ |H| = 3|H|.

Theorem 4.3.2 The above guarding algorithm provides us at most 12OPT
number of guards for any x-monotone polygon.

Proof Let us first compare the cardinality of the produced guard cover with
the serial guard cover. Assume that a serial guard cover is ordered from left

18

to right in this way g1, g2,, gm. We see that at each step in the algorithm,
for the guard gi first it places a guard at the spear tip and then on the vertical
line corresponding to the leftmost pocket. So, the next spear tip is placed
as right as gi+1. Therefore for the upper chain its size is 2 times the serial
guard cover. Same occurs for lower chain. So, |G| ≤ 4|G∗| ≤ 12 ∗OPT . The
reason is that we can choose the serial guard cover such that it is at most 3
times any optimal guard cover. Therefore, this algorithm provides us a 12
factor approximation algorithm proving the theorem.

4.4 Our Approach for a Special Sub Case

Now we discuss about our approach to guard a x-monotone polygon when s
and t are mutually visible.

4.4.1 Algorithm

The main idea of our algorithm is as follows. We split the upper chain
into convex parts, namely C1, C2, . . . , Cm. We consider these convex parts in
order. For each convex part Ci, we compute the portion Ri in the upper chain
where from Ci is completely visible. Let C1, C2, . . . , Ci be the convex parts
such that R1, R2, . . . , Ri have a non-empty intersection R, and Ri+1 does not
intersectR. We choose a point g1 inR to see C1, C2, . . . , Ci completely. Now,
we compute the non-visible portions of Ci+1, Ci+2 . . . , Cm from g1. Again split
these regions into convex parts, and execute the same algorithm to place the
next guard g2. Next time, we compute the non-visible portions from g1 and
g2 and so on. The process stops when there is no non-visible portion in the
upper chain. We repeat the same process for the entire lower chain.

4.4.2 Analysis of Our Algorithm

Our algorithm will not provide optimal solution. We have some non-trivial
observations about our algorithm.

Observation If there is a contiguous convex sub-chain consisting of 3 or
more edges, then for that sub-chain, our greedy algorithm will put at most
an extra guard than the minimum number of guards to guard that sub-chain.

Proof Suppose, there is a contiguous convex sub-chain Ck. On its left there
is a monotone chain Ck−1 and also on its right there is one convex sub-
chain Ck+1. Our greedy algorithm finds that Ck−1 and Ck must be treated
separately. Also, it finds that Ck and Ck+1 must be treated separately as

19

C1

C2

C3

C4

C5

g1 g2 g3

h1 h2

Figure 4.6: A monotone polygon

we can see in the above figure (small points indicates the places where our
greedy algorithm places guards, big points indicate where the minimum set
of guards are placed). Ck can be divided into two adjacent sub-chains so that
those two sub-chains can be separately guarded by one from its left and one
from its right. We are placing an extra guard for each such sub-chains. This
proves our observation.

The set of guards returned by our algorithm will give a constraint about
the guards that every edge is completely seen by at least one guard. Because
at each iteration, it computes the intersection of completely visibility polygon
of the edges. But, when a sub-chain is convex and both its lower and upper
parts are disjoint from its left most and right most edge, then an interesting
thing occurs. Our algorithm will place at most one extra guard for each such
sub-chains. Therefore, our chain gives twice the actual number of guards
that is actually required. Thus we conjecture that approximation factor of
our algorithm is 2. This comes from the extension of our earlier observation
that we have. Now, we can state the following conjectures. Using similar
approach to guard the entire lower chain also will involve an approximation
factor of 2. So, overall approximation factor is 4.

Conjecture 4.4.1 When s and t are mutually visible to each other, then our
greedy algorithm provides 2OPTU guards for the upper chain.

Conjecture 4.4.2 Our greedy algorithm gives an approximation factor 4 to
guard a monotone polygon when s and t are mutually visible to each other.

20

Bibliography

[1] Computational Geometry: Algorithms and Applications.

[2] Erik A. Krohn, Bengt J. Nillson. Approximate Guarding of Monotone
and Rectilinear Polygons. Algorithmica 2012.

[3] B. Ben-Moshe, M. Katz, J. Mitchell. A constant factor approximation
algorithm for optimal terrain guarding. Symposium on Discrete Algo-
rithms 2005

[4] K.L.Clarkson, K.Varadarajan. Improved Approximation Algorithms for
Geometric Set Cover. Proc 21st ACM Symposium on Computational
Geometry 2005.

[5] Bengt J. Nillson. Approximate Guarding of Monotone and Rectilinear
Polygons. ICALP 2005.

[6] D. Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal guarding of
polygons and monotone chains. In Proceedings of the 7th Canadian
Conference on Computational Geometry, pages 133138, 1995.

[7] Erik Krohn, Bengt J. Nillson. The Complexity of Guarding Monotone
Polygons. Canadian Conference of Computational Geometry, August 8-
10, 2012.

[8] James King, Erik Krohn. Terrain Guarding is NP Hard. SIAM 2009.

[9] Erik Krohn. Survey of Terrain Guarding and Art Gallery Problems.

[10] K. Elbassioni, Erik Krohn, Domagoj Matijevic, Julian Mestre, Domagoj
Severdija. Improved Approximations for Guarding 1.5-Dimensional Ter-
rains. Algorithmica 2011

[11] Matt Gibson, Gaurav Kanade, Erik Krohn, Kasturi Varadarajan. An
Approximation Scheme for Terrain Guarding. Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques.
Lecture Notes in Computer Science Volume 5687, 2009, pp 140-148

21

[12] James King. A 4-approximation algorithm for Guarding 1.5 Dimensional
Terrains. Lecture Notes in Computer Science (3887), 629-640, 2006.

[13] L. Gewali, M. Keil, S.C.Ntafos. On covering orthogonal polygons with
star-shaped polygons. Information Sciences 65(1992) 45-63.

[14] Andrej Lingas, Agnieszka Wasylewicz, Pawel Zylinski. Note on covering
monotone orthogonal polygons with star-shaped polygons. Information
Processing Letters 104 (2007) 220-227.

[15] Subir Kumar Ghosh. Approximation Algorithms for Art Gallery Prob-
lems in Polygons and Terrains. WALCOM: Algorithms and Computa-
tion 2010.

22

	dissertation-title.pdf
	diptapriyo_dissertation.pdf

