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Abstract

In spite of the enormous progress in the performance of SAT solvers in recent years, still  there is  

strong demand for highly efficient SAT algorithms to solve harder and larger problems. Though there  

exists huge scope of parallelism, unfortunately, most modern SAT solvers are sequential. Starting with  

a  concise  report  on  CUDA  architecture  and  programming  basics,  this  dissertation  presents  an  

implementation  of  parallel  matrix  multiplication  algorithm  on  NVIDIA  CUDA  GPU.  Average  

performance  is  evaluated  executing  it  on  large  number  of  random  matrices,  in  terms  of  time  of  

completion and speed-up varying the scale of parallelism. Next,  this parallel  matrix multiplication  

algorithm is used to solve the Satisfiability problem. In present work, both complete and incomplete  

SAT solvers have been considered and parallel algorithms are developed and average performance is  

evaluated executing the algorithms on NVIDIA CUDA GPU for large number of randomly generated  

Boolean functions. 

Key Word:   CUDA GPU, Parallel Programming, Kernel, Speed-up, Satisfiability Problem, SAT solver
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                                                                    Chapter 1

Introduction

Thrust for high performance computing power led the computer industry to switch from single CPU 

based microprocessor to multi-core and many-core  models. Since  2003,   a  class  of  many-core 

processors  called  graphic processing  units (GPUs)   developed  by  NVIDIA  have  led the race for 

floating point  performance. As of  2008   the  ratio  of  peak  floating  point  calculation throughput  

between many-core GPUs and  multi-core CPUs is about 10.  Recently developed many-core GPU 

Fermi has higher performance than this. So GPUs have been found to be the best  platform for massive 

data parallelism. CUDA  architecture is based on the heterogeneous platform comprising both CPU and 

GPU that offers enormous potential to solve complex harder problems efficiently with high speed-up 

which is still to be explored fully. 

The  satisfiability problem (SAT) is certainly the most studied problem in computer  science since it 

was the first problem proven to be NP-complete by S Cook in 1971. It is seen as the  fundamental of  

computing  theory.   Its  exponential  complexity  has  been  challenging  the  most  talented  computer 

scientists for decades. Nowadays, the satisfiability problem evidences great practical importance in a 

wide range of disciplines, including hardware verification, artificial intelligence, cryptography and it is 

especially important in the area of Electronic Design Automation (EDA). There is increasing demand 

for high performance SAT solving algorithms in industry to solve huge and harder problems that show 

an   exponential  explosion  of  the  search  space.  Though  there  exists  huge  scope  of  parallelism, 

unfortunately, most modern SAT solvers are sequential and fewer are parallel. 

In this dissertation a parallel complete SAT solver based on CUDA architecture is designed exploiting 

an efficient  high performance parallel matrix multiplication algorithm. Its performance is compared 

with the performance of the complete sequential SAT solver. Finally an incomplete parallel SAT solver 

is designed based on  CUDA, and the performances are compared in terms of time of completion when 

executed on randomly generated Boolean functions.

                                                                                                                                                                    6



In chapter 2, CUDA architecture and CUDA programming basics are discussed in brief. Based on this,  

an efficient CUDA architecture based  parallel  Matrix multiplication has been presented  in chapter 3. 

The performance evaluation studies and results are also included.  In  chapter 4, parallel  complete  and 

incomplete  SAT  solvers   are  developed  based  on  CUDA  architecture. This chapter also includes 

the performance comparison studies in terms of time of completion. Chapter 5 concludes the report.
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 Chapter 2  

CUDA Architecture and CUDA programming

        

2.1 CUDA Architecture

Following sections present a brief outline of the architecture of NVIDIA CUDA GPU. 

2.1.1 NVIDIA GPU  Architecture

A modern GPU is organized into 16 highly threaded streaming multiprocessors (SMs). A pair of SMs 

form a  building  block of a GPU. Each SM  has 8    streaming processors(SPs). So a GPU consists of  

128 SPs. Each SP has a multiply- add (MAD) unit,  and  an  additional  multiply  unit.   All running at  

1.35 gigahertz.  Newly developed GPU Fermi  has 32 SMs. So Fermi  consists of 256 SPs.

             

      

Figure. 2.1: Architecture of a CUDA-capable GPU  
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2.1.2    Difference between CPU and GPU design

Since 2008 GPUs have led the floating point  performance.  While  performance of  micro-processor 

slowed significantly, the GPUs have continued to improve relentlessly. As per 2008 the ratio of peak 

floating-point  calculation  throughput  between  many-core  GPUs  and  multi-core  CPUs  is  about  10. 

Recent  development  has better  performance.  Such a  large performance  gap motivated application 

developers to  move their  computationally  intensive parts of their  software to  GPU   execution. Now 

question is why  there is  such a large performance gap  between  many-core GPU and multi-core CPU. 

The answer  lies in the  differences in the  fundamental  design  philosophies  between the two types of 

processors  as  illustrated in   figure 2.2. GPU is   designed as numeric computing engine and it will not  

perform  well  on some tasks that CPUs are designed to  perform well. Most  applications will use both  

CPUs   and GPUs, executing the  sequential  parts  on the  CPU and  numeric  intensive parts  on  the 

GPUs.  So  CUDA  programming  model is   designed  to  support joint  CPU-GPU  execution  of  an 

application.

                                                                         

                                               

Figure. 2.2:  CPUs and GPUs have fundamentally different design philosophies 
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2.2 CUDA Threads

The fundamental means of parallel execution in CUDA is fine-grained data parallel threads. Launching 

a  CUDA  kernel  creates a  grid  of  threads. The kernel function specifies the statements that are 

executed by each individual thread created  when  the kernel  is  launched  at run-time. Details of 

kernel  function   and organization of grid of threads are  discussed here. 

2.2.1 CUDA Thread organization

Kernel function is a device function which is executed in GPU. Once kernel is invoked it  generates 

grid of threads. All  threads  execute the same kernel function. These  threads have  unique   co-

ordinates to distinguish  themselves from each  other and  to  identify  the  appropriate  portion of the 

data   to process. These threads  are  organized  into a  two-level  hierarchy using unique coordinates,  

called blockId and threadId, assigned to them by the CUDA run time system. The blockId and threadId 

appear as built-in variables that are initialized by the run-time system and can be accessed within the 

kernel functions. When a thread executes the kernel function, references to the blockId  and  threadId 

variables  return the   appropriate values that form coordinates of the thread.

   At the top level of the hierarchy, a grid is organized as a two dimensional array of blocks. The  

number of blocks  in each   dimension is specified by the first special parameter given at the kernel 

launch. The special parameters that specify the number of blocks in each dimension is a struct variable 

name as gridDim with gridDim.x specifying the number of  blocks in the x dimension and  gridDim.y 

specifying  the number of  blocks in  the y dimension. The values of gridDim.x and gridDim.y  can  be 

supplied  by  run-time variables at kernel  launch  time. Once a kernel  is  launched,  its  dimensions 

cannot change in the current CUDA run-time implementation. All  threads  in  a  block share the same 

blockId values.  Figure 2.3 shows a small grid that consists of four  blocks  organized  into  a   2X2  

array. Each block in the array is labeled with (blockIdx.x, blockIdx.y). For  example,  Block(1,0) has 

its  blockIdx.x=1 and  blockIdx.y=0.  The  grid  was  generated by  launching the kernel with both 

gridDim.x and gridDim.y set to 2. At the bottom  level  of the hierarchy, all  blocks of a grid are  

organized into a three-dimensional array of threads. All blocks in a grid have the same dimensions. 

Each threadId consists of three  components:the x coordinate threadIdx.x, the y coordinate threadIdx.y, 

and the z coordinate threadIdx.z. 

                                                                                                                                                                  10 



The number of threads in each dimension of a block is specified by the second special parameter given 

at the kernel launch. Here it refers to the second special parameter as blockDim variable given at the 

launch of a  kernel.  The  total   size of a block is  limited to  512 threads,  with total  flexibility of  

distributing these elements into the three dimensions as long as the total number of threads does not 

exceed 512. For example, (512,1,1), (8, 16, 2) and (16,16,2) are all allowable dimensions but (32, 32, 

1) is not allowable since the total number of threads would be 1024. Figure 2.3 also illustrates the 

organization of threads within a block. Since  all  blocks within  a  grid have   the same  dimensions, we 

only need to show one of them. In this example, each block is organized into 4X2X2 arrays of threads.  

Figure   2.3  expands  block(1,1)  by  showing  this  organization  of  all  16  threads  in  block(1,1).  For 

example, thread(2,1,0)  has  its  threadIdx.x=2,  threadIdx.y = 1, and threadIdx.z=0. Note that in this 

example, we have  4   blocks of 16 threads each, with a grand total  of 64 threads in the grid.  

                             Figure. 2.3:  Example of CUDA thread organization                                                    

The  exact  organization  of a grid is  determined  by  the  special parameters provided during  kernel  

launch. The first special parameter of a kernel launch specifies  the  dimensions  of  the grid in  terms of 

number of  blocks. The second specifies the dimensions of each block in terms of  number of threads. 

Each such parameter is a dim3 type, which is essentially a struct with three  fields. Since grids  are  2D 

array  of  block  dimensions,  the  third  field  of  the grid dimension parameter is  ignored;  one should  
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set it  to  one for clarity. The thread organization shown in Figure 2.3 is created through a kernel launch 

of the following form: 

                                                      dim3 dimBlock(4, 2, 2); 

                                                      dim3 dimGrid(2, 2, 1); 

                                                      KernelFunction<<<dimGrid, dimBlock>>>(...); 

 The  first  two statements initialize the dimension parameters. The third statement is the  actual kernel 

launch. 

2.2.2 Transparent scalability

 CUDA allows threads in the same block to coordinate their activities using a barrier synchronization 

function syncthreads(). When a kernel function calls syncthreads(), all threads in a block will be held at 

the calling location until everyone else in the block reaches the location. This ensures that all threads in  

a block have completed a phase of their execution of the kernel before they all move  on  to  the  next 

phase.   The ability of synchronizing with each other also imposes execution constraints on  threads 

within  a block. These threads should execute in close time proximity  with  each  other to avoid  

excessively  long waiting times. CUDA run-time systems satisfy this constraint by assigning execution 

resources to all threads in a block as a unit. 

           

This leads  to a major trade off in the design of CUDA barrier synchronization. By not allowing threads 

in different blocks to perform barrier synchronization with each other, CUDA run-time system does not 

need to  deal with any constraint while  executing different blocks.  This flexibility enables scalable 

implementations  as  shown  in  Figure 2.4.  In a low-cost implementation with only few execution 

resources, one can execute a small number of blocks at the same time, shown as executing two blocks 

at  a  time on the left  hand side of  Figure 2.4.  In  a  high-end implementation with more execution 

resources, one can execute a large number of blocks at the same time, shown as four blocks at a time on 

the right hand side of Figure 2.4. The ability to execute the same application code at a wide range of 

speeds  allows  one  to  produce  a  wide  range  of  implementations  according  the  cost,  power,  and 

performance requirements of particular market segments. The ability to execute the same application 

code  at  different  speeds  is  referred  to  as  transparent  scalability,  which  reduces  the  burden  on 

application developers and improves the usability of applications.

                                   12



                         Figure. 2.4:   Lack of synchronization across blocks enables transparent

                                              scalability of CUDA programs 

2.2.3 Thread assignment 

CUDA run-time system generates the  grid of  threads  once a kernel is  launched. These threads are 

assigned to  execution resources  on a  block by block basis.  In  the GeForce-8 series  hardware,  the 

execution  resources  are  organized  into  Streaming  Multiprocessors.  For  example,  the  GeForce 

8800GTX implementation has 16 Streaming Multiprocessors. Up to 8 blocks can be assigned to each 

SM  in the  GeForce  8800GTX  design as long as there are  enough resources  to  satisfy  the  needs  of 

all the blocks. In situations  where  there  is an  insufficient amount of any one or more types of  

resources needed for the simultaneous execution of  8  blocks, the CUDA  run time  automatically 

reduces  the  number  of  blocks  assigned  to  each  Streaming  Multiprocessor  until  the  resource 

usage is  under the limit. With 16 Streaming Multiprocessors in a GeForc 8800 GTX   processor,  up to 

128   blocks  can   be   simultaneously  assigned  to  Streaming Multiprocessors.  Most  grids contain 

much more than 128 blocks. The run-time system maintains a list  of  blocks  that  need  to execute  and 

assigns new blocks to Streaming Multiprocessors as they complete the execution of blocks  previously 

assigned to them. In the GeForce 8800GTX design, up to 768 threads can be assigned  to  each  SM. 

This could be in the form of 3 blocks of 256  threads  each, 6  blocks of 128 threads each, etc. It should 

be obvious that  12 blocks  of 64 threads  each are not  a  viable  option since each SM  can   only 

accommodate up to 8 blocks. With 16 SMs in GeForce 8800GTX, there can  be up to 12,288 threads 

simultaneously residing in SMs for execution. So there is a limitation  of assigning number of threads 

to a SM. 
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2.2.4  Thread scheduling

In  GeForce  8800GTX  once  a block is assigned to a Streaming Multiprocessor, it is further divided 

into 32-thread units called Warps. The warps  is implementation  specific  and  can  vary  from  one 

implementation  to another. Warps are  not  part of the CUDA language definition. Warps are unit of  

thread  scheduling. Knowledge  of  warp  helps  to  optimize  the performance of CUDA   applications.  

Suppose  a  block  has 256  threads. Then it has 256/32 =8 warps. A SM has  maximum 768  threads.  

That implies  up to 24 warps can reside inside a SM at any point of time. For  the GeForce-8  series 

processors, there can be up to 24 warps residing in each Streaming Multiprocessor at any point in time. 

The SMs are designed such that only one of these warps will be actually executed by  the  hardware  at 

any  point  in  time. A legitimate question is why we need to  have  so  many  warps  in  an  SM 

considering the fact that it executes only one of  them  at  any  point  of  time.  The  answer  is  that this  

is  how  these processors efficiently execute  long latency operations such as access to the global  

memory.  When  an  instruction  executed  by  threads  in  a  warp   needs   to  wait  for  the  result  of  a 

previously  initiated  long-latency  operation,  the  warp is placed into a waiting area. One  of  the  other 

resident  warps  who  are  no longer waiting for results is selected  for  execution. If  more  than one  

warp  is  ready for execution, a priority mechanism is  used to select one for execution. 

2.3 CUDA Memory model

Memory organization is most vital in every architecture.  Following sections present how memory is 

organized in GPU which is significant  for reducing access time.

                                                                                                                                                                

2.3.1 CUDA Device Memory Types 

CUDA device has several memories that can be used by programmers to achieve high CGMA ratio and 

thus  high  execution  speed  in  their  kernels.  Figure  2.5  shows  these  CUDA  device  memories  as 

implemented in the GeForce 8800 GTX hardware. At the bottom of the picture, we see global memory 

and constant memory. These are the memories that the host code can write(W) and read(R) calling API 

functions. The  constant  memory  allows  read-only  access  by the  device and provides faster and 

more parallel data access paths for CUDA kernel  execution than the global memory. Above the thread 

execution  boxes  in  Figure  2.5 are registers and shared  memories. Variables that reside  in these  

memories can  be accessed  at  very  high  speed in  a  highly parallel manner. Registers are allocated to 

individual  thread;  each  thread  can  only access its own registers. A kernel function typically uses 

             14



registers to hold frequently accessed variables that are private  to each  thread.  Shared memories are 

allocated to thread blocks; all threads in a block can access variables in the shared memory locations 

allocated  to  the  block. Shared memories  are  efficient  means  for threads to cooperate by sharing the 

results of their work.  

 Figure. 2.5:  GeForce 8800GTX  Implementation of CUDA Memories 

 

2.3.2  CUDA variables

Table 1 shows the CUDA syntax for declaring program variables into the various  device memories. 

Each such declaration also gives its declared CUDA   variable a scope and lifetime. Scope identifies the 

range of threads that can access the  variable: by a single thread only, by all threads of a block, or by all  

threads of  the  entire  grid. If  a  variable’s  scope  is  a single thread, a private version of the  variable  

will  be  created  for each and every thread; every thread can only access  its own local  version  of the 

variable. For example, if a kernel declares a variable whose  scope  is a  thread and  it is launched with  

one million threads, one million   versions of the variable will be  created  so that each thread initializes 

and uses its own  version of  the  variable. Lifetime specifies the portion of program execution duration 

when the variable is available for use: either within a kernel’s invocation or  throughout  the  entire 

application.  If  a  variable’s  lifetime is within a kernel invocation,  it  must  be  declared  within  the  

kernel  function  body  and  will  be available for use only by the kernel’s code. If the kernel is invoked 

several  times, the contents of the  variable  are  not  maintained  across  these  invocations. Each 
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invocation must initialize the variable in order to use them. On the other hand, if a variable’s lifetime  is 

throughout the entire application,  it  must  be  declared  outside  of   any  function  body. The contents 

of  the variable are maintained throughout the execution of the application and available to all kernels. 

                                                         Table 1 CUDA  variable types

                                                                                                                                                                  

  

All automatic variables except for arrays declared in kernel and  device functions  are placed into 

registers.  Variables that are not arrays as scalar variables.  The  scopes  of  these  automatic  variables 

are within individual threads.  When  a kernel function declares an automatic variable, a private copy of 

that variable is generated for every thread that executes the kernel function. When a thread terminates, 

all its automatic variables also cease to exist. Automatic array  variables are  not  stored  in  registers.  

Instead,  they  are  stored  into  the  global   memory  and  incur  long  access  delays  and  potential  

access  congestion.  The  scopes  of  these  arrays  are,  same as automatic scalar variable, within 

individual threads. Once a thread terminates its execution, the contents of its automatic array  variables 

also cease to exist. 

If  a  variable  declaration  is preceded by keywords “__shared__’’ , it declares  a  shared variable. One 

can also add an optional “__device__” in front of “__shared__” in the declaration to achieve the same 
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effect. Such declaration must reside  within  a kernel  function  or  a  device  function .  The  scope  of 

a shared  variable  is  within  a  thread  block,  that  is,  all  threads  in a block see the same version of a  

shared variable. A private version of the shared variable is created for and used by each thread block 

during kernel  execution. The  lifetime  of a shared variable   is  within   the  duration  of  the  kernel.  

When  a  kernel  terminates  its  execution, the contents  of its shared variables cease to exist. Shared 

variables are an  efficient   means  for  threads  within  a  block  to  collaborate with each other. 

Accessing to shared memory is extremely fast and  highly  parallel.  If  a  variable  declaration   is  

preceded  by  keywords  “__constant__’’,  it  declares  a  constant  variable  in  CUDA.  One  can  also  

add  an  optional  “__device__”  in  front  of “__constant_” to achieve the same effect. Declaration of 

constant  variables  must   reside outside  any function body. The scope of a  constant  variable  is  all  

grids, meaning that all threads in all grids see the same version of a constant variable. The  lifetime  of  

a constant  variable  is the entire application execution. Constant variable are often  used for variables 

that provide input values to kernel functions. Constant  variables  are  stored  in  the global memory but  

are cached for efficient access.   A   variable   whose   declaration   is   preceded   only   by  the 

keyword  “__device__” ,  is  a  global  variable   and  will   be   placed   in  global  memory. Accesses 

to  a  global variable are very slow. However, global variable are visible to   all  threads   of  all  

kernels.  Their  contents  also  persist  through  the   entire  execution.  Thus ,  global  variables  can  be 

used  as  a   means   for   threads  to collaborate across blocks. 

                                                                                                                                                    

2.4  CUDA  programming model

CUDA  programming aims at data parallelism. In the following sections it has been discussed in brief. 

 2.4.1  Data parallelism

To write a CUDA program   the  computing system must consist of a CPU and one or more devices that 

are  massively parallel  processors  equipped with a large  number  of  arithmetic  execution  units. In 

software applications, there are often program  sections  that  exhibit  rich  amount  of data parallelism, 

a property where  many  arithmetic  operations  can  be  safely  performed  on  program data structures 

in  a  simultaneous manner. For example, Let P be the resultant matrix obtained  after multiplication of 

Matrices  M, N.   Each  element  of the product matrix P is generated by performing a dot product 

between a row of  input  matrix M and a column of input  matrix N.  The  dot  product  operations  for 

computing  different P elements can be simultaneously performed.  None of the  dot  products will 

effect the results of other.           17 



2.4.2 CUDA program structure

A CUDA  program  consists  of  one or more phases that are executed on  either the host (CPU) or a 

device such as a GPU. The phases that exhibit little or no data  parallelism  are implemented in host  

code. The phases that exhibit rich amount  of data  parallelism  are  implemented  in  the  device  code. 

The program supplies  a  single  source  code  encompassing  both  host  and  device  code. The  

NVIDIA C  Compiler (NVCC)  separates the two. The host code is straight ANSI C code  and  is  

compiled  with  the  host's  standard  C  compilers  and  runs   as an ordinary process. The  device code  

is  written  using  ANSI  C  extended  with keywords  for labeling data-parallel functions, called  

kernels, and their associated data  structures.  The  device code is typically further compiled by the 

NVCC and executed  on  a   GPU  device.  The  execution  of  a  typical  CUDA  program  is illustrated 

in  Figure 2.6.  The execution starts with host (CPU) execution. When a  kernel  function  is invoked,  

the execution is moved to a device (GPU), where a large  number  of  threads  are   generated   to  take  

advantage  of  abundant  data parallelism.  All  the  threads  that are generated by a kernel during an 

invocation are collectively called a grid. 

                                          

                                                                                                                

                                                               

                                                    Figure. 2.6: Execution of a CUDA program. 
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2.4.3 Memory device and data transfer

In  CUDA, host  and  devices have separate memory spaces. Devices are  typically    hardware  cards 

that come  with  their  own  Dynamic  Random  Access Memory (DRAM).  In order  to  execute  a 

kernel  on  a  device,  the programmer needs  to  allocate  memory  on  the  device  and  transfer  the  

pertinent data from the   host   memory  to   the   allocated   device  memory.  Similarly,  after  device  

execution, the  programmer  needs  to transfer resultant data from device back to the host  and  free  up 

the  device  memory  that  is  no  longer  needed.  The  CUDA run time system provides Application 

Programming Interface (API)  function calls to perform these activities. Figure 2.7 shows an overview 

of  the  CUDA  device memory  model  which  tells  about  the allocation, movement, and  usage  of  

the various memory types available on a device. 

        

 Figure. 2.7: CUDA device memory with a overview of data Transfer                             

The  CUDA  memory  model  is  supported  by  the  API  function  that  can  be  called  by  CUDA 

programmers. Two  must  important  API functions are cudaMalloc() and cudaFree(),   used   for  

allocating   and   de-allocating   device  global  memory respectively.  Similarly   API  function 

cudaMemcpy()  is  called  to transfer data from host to device, device to device and device to host. 

Detail is given below with their arguments.

           float *Sd, S;

           int   size ;

           cudaMalloc((void**)&Sd,size);

           cudaMemcpy(Sd,S, size, cudaMemcpyHostToDevice);

           cudaMemcpy(S, Sd, size, cudaMemcpyDeviceToHost);
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During execution of a CUDA program  the part  that  execute  data  parallelism on device do first  

transfer  the  required  data  from  host  to  device,  then invoke the kernel   function   and  finally  

resultant  data  is  transferred  from  device  to  host.  Based  on  above  discussion here  an algorithm  is 

for matrix multiplication  is given in chapter 3 based on CUDA architecture which  tries to optimize the 

data parallelism.
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   Chapter 3  

          Parallel Matrix Multiplication on CUDA         

3.1  CUDA Architecture based parallel matrix multiplication

In the following sections CUDA based matrix multiplication algorithm is discussed in details.

3.1.1 Skeleton of  matrix multiplication

Let M,N and P are three square matrices  where M & N are input matrices and  P  is  product  matrix.  

The  main  steps  in host code  for  matrix   multiplication are illustrated below.

                                  int main() { 

                                        1. // Allocate and initialize the matrices M, N, P 

                                            // I/O to read the input matrices M and N 

                                              .... 

                                        2. // M * N on the device 

                                            MatrixMulOnDevice(M, N, P, width); 

                                        3. // I/O to write the output matrix P 

                                            // Free matrices M, N, P 

                                                ... 

                                            return 0;   

                                     }

     The  main program first allocates the M, N, and P matrices and then performs I/O to  read  in  M  and  

N,  in  Part 1. Part 2 performs the matrix multiplication. After completing the matrix multiplication  in  

part 3  main  function performs the I/O to write the product matrix P and free all the allocated matrices.  

The part 2 is the  main   focus.   It   calls   a   function,   MatrixMulOnDevice()  to  perform  matrix  

multiplication. The host code calls matrixMulOnDevice(), which is also executed on  the  host.  It  is 

responsible  for  allocating  device  memory,  performing data transfers,   and   then   activating   the 

kernel  that   performs  the  actual  matrix  multiplication. 

                                                                                                                                                           

      3.1.2  Function MatrixMulOnDevice()

Let Md, Nd & Pd are the pointer variables pointing to the first element of  a  single  precision  array.  
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Width  is  the order  of the square matrix. Size here refers  to  space  required  for matrix. For simplicity 

let us assume all matrices are of same order. The code for  MatrixMulOnDevice()  consists of three 

parts. The first part  allocates  device  memory for Md, Nd, and Pd, the device  counter  part of M,  N, 

and  P and transfer M to Md and N to Nd. The second part actually invokes the kernel. The  third  part 

reads the product from  device memory variable Pd to host memory variable P so that the value will be 

available to main(). It then frees Md, Nd, and  Pd  from  the  device  memory.  Algorithm  and the 

corresponding  code  are given below.

                                                                    Algorithm

                                                step-1    

                                                                  Allocate space for M, N, P on device memory

                                                step-2

                  Load M, N to device memory

                                                step-3

                                                                 Invoke kernel function

                                                step-4

                 Read P from device

                                                step-5

                                                                Free the allocated space

                                                                   Code

                                 void MatrixMulOnDevice(float* M, float* N, float* P, int Width) 

                                       { 

                                                 int size = Width * Width * sizeof(float); 

                                         1.     // Load M and N to device memory 

                                                 cudaMalloc(Md, size); 

                                                 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

                                                 cudaMalloc(Nd, size); 

                                                 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

                                                 // Allocate P on the device 

                                                 cudaMalloc(P d, size); 
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                                           2.   // Kernel invocation code 

                                                              ... 

                                           3.   // Read P from the device 

                                                 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

                                                 // Free device matrices 

                                                 cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 

                                         }  

3.1.3 Kernel Function

In CUDA a kernel function specifies a code to be executed for all threads of a parallel phase. Since all 

threads of a parallel  phase  execute  the  same  code,  CUDA programming is  an  instance  of  the 

well known Single-Program Multi-Data (SPMD)    parallel    programming.  Let  the  kernel   function 

for   matrix  multiplication   is    MatrixMulKernel().    There  is   a  CUDA  specified  keyword 

“__gobal__” in front of the declaration of   MatrixMulKernel().  The  pseudo code for  kernel  function  

using  two  dimensional  thread( threadIdx.x , threadIdx.y) is given below.

                // Matrix multiplication kernel – thread specification

 __global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 

       { 

                // 2D Thread ID 

                int tx = threadIdx.x; 

                int ty = threadIdx.y; 

                // Pvalue stores the Pd element that is computed by the thread 

                float Pvalue = 0; 

                for (int k = 0; k < Width; ++k) 

                { 

                      float Mdelement = Md[ty * Md.width + k]; 

                      float Ndelement = Nd[k * Nd.width + tx]; 

                      Pvalue += Mdelement * Ndelement; 

               } 

               // Write the matrix to device memory each thread writes one element              

               Pd[ty * Width + tx] = Pvalue; 

      } 
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when this  kernel  is  launched   it  creates  a  single  grid of  threaded  block  organized as a 2-

dimensional array of threads. Since a thread block can have only up to   512   threads   and  each  thread 

is  to calculate one element of the product matrix,  this   code   can   only  calculate  a  product matrix 

of up to 512 elements. Therefore grid  may be organized  with  multiple blocks. As the above code 

doesn't  use  blockId,  all   the   threads   implicitly   belong   to  same  block.  For   larger   matrix 

multiplication  multiple   blocks   are   needed. Product matrix has to be  broken  into square tiles. All  

the pd elements  of  a tile are computed by block of threads. Let us abbreviate  blockIdx.x    and 

blockIdx.y   as   bx   and   by,    threadIdx.x   and  threadIdx.y   as   tx   and    ty   respectively.   The  

corresponding  code for kernel function is illustrated below which uses the concept of tile.

  

                           global__ void Matri xMulKernel(float* Md, float* Nd, float* Pd, int Width) 

                            {

                                    // Calculate the row index of the Pd element and M 

                                    int Row = by * TILE_WIDTH + ty; 

                                    // Calculate the column idenx of Pd and N 

                                    int Col = bx * TILE_WIDTH + tx; 

                                    Pvalue = 0; 

                                    // each thread computes one element of the block sub-matrix 

                                    for (int k = 0; k < Width; ++k) 

                                                  Pvalue += Md[Row][k] * Nd[k][Col]; 

                                    Pd[Row][Col] = Pvalue; 

                            }

3.1.4 kernel function using shared memory

The most  important part of the kernel in terms of execution time is the for  loop  that  performs inner 

product calculation.   In every iteration of this loop, two   global   memory  accesses  are  performed for  

one  multiplication  and  one addition.  Thus,  the  ratio  of  floating  point calculation to global memory 

access operation is 1 to 1,  or  1.0.  So  use  of  shared  memory  is  important  to  reduce execution  

time.  Global memory is large but slow whereas the shared memory is small  but fast.  A common 

strategy is to partition the data into subsets called tiles so that  each  tile fits  into the shared memory.  

The kernel computation on these tiles can  be  done independently of each other. The concept of tiling 

can be illustrated with  the  matrix  multiplication example.  Figure  2.8  shows  a  small example of  

matrix multiplication using multiple blocks. This  example  assumes  that we use four 2X2 blocks to 
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compute  the  Pd  matrix.  Figure  2.8   highlights  the  computation  done   by   the   four   threads  of 

block(0,0). These four threads compute Pd0,0, Pd1,0, Pd0,1, and Pd1,1. 

                             Figure.2.8: A small example of matrix multiplication using multiple blocks 

Table 2  shows  the   global  memory  accesses  done  by  all  threads  in  block0,0.  Note   that  each 

thread  accesses  four  elements  of Md and four elements of Nd  during  its  execution. Among  the 

four  threads  highlighted, there is a significant overlap  of  their  accesses  to  Md  and  Nd.  For 

example,  thread0,0  and thread1,0  both   access  Md1,0  as well as the rest of row zero of Md.  In  general, 

we can see  that  every  Md and Nd element are  accessed  exactly  twice during the execution of 

block0,0.  Therefore,  if  we can  have all the four threads to collaborate in their  accesses  to  global 

memory,  we  can reduce the traffic to the global memory by half. 
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             Table 2 Global memory accesses performed by threads in block0,0 

It  is  observed  that  the  potential  reduction  of  global  memory  traffic in matrix multiplication  is 

proportional  to  the  dimension  of  the  blocks used. With NxN blocks,  the  potential  reduction  of 

global  memory  traffic  would be N  through collaboration between threads. 

Now   an  algorithm  can  be  designed   where  threads  collaborate to reduce  the  traffic  to  the global  

memory. The basic idea is to have the threads to collaboratively load Md  and  Nd  elements  into  the  

shared  memory before they individually use these elements in their dot product  calculation.  Keep 

mind  that  the  size  of  the  shared  memory  is  quite  small  and  one  must be careful not to  exceed  

the  capacity  of  the  shared   memory  when  loading  these  Md  and  Nd  elements into  the  shared  

memory. This  can  be  accomplished  by  dividing  the Md  and  Nd  matrices  into  smaller  tiles.  The  

size of these tiles is chosen so that they can fit into the  shared  memory. In  the  simplest  form,  the  

tile  dimensions equal to those of the block. After the two tiles of Md and Nd are loaded into the shared 

memory,  these  values are used in the calculation of the dot product. Note that  each  value  in  the 

shared  memory  is  used  twice.  For  example, the Md1,1 value,  loaded  by  Thread1,1  into  Mds1,1,  is 

used  twice, once  by   thread0,1  and once by thread1,1. Mds is a pointer  to  shared  memory.  By 

loading  each  global memory value into shared  memory  so  that  it  can  be  used  multiple  times,  we 

reduce accesses to the  global memory.  In this case,  the  number of  accesses to the  global memory  is 

reduced by half.   The reduction  is  by  a  factor  of N if the  tiles are of NxN elements. Table-3 

illustrates this in details.       
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        Table 3  Execution phases of a tiled matrix multiplication algorithm

 So for matrix size 4   and  tile  size  2  we  need two  phases to  complete  each  dot  product.  In  

general,  number of  phases = N/Tile_width   where  N is Matrix dimension. Based on this algorithm 

the code for kernel function is as follows.

                     

                    

                      global__ void Matri xMulKernel(float* Md, float* Nd, float* Pd, int Width) 

                        { 

                              __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 

                              __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

                              int bx = blockIdx.x; int by = blockIdx.y; 

                              int tx = threadIdx.x; int ty = threadIdx.y; 

                              // Identify the row and column of the Pd element to work on 

                              int Row = by * TILE_WIDTH + ty; 

                              int Col = bx * TILE_WIDTH + tx;

                              int Pvalue = 0; 

                              // Loop over the Md and Nd tiles required to compute the Pd element 
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                               for (int m = 0; m < Width/TILE_WIDTH; ++m) {  

                               // Collaborative loading of Md and Nd tiles into shared memory 

                                          Mds[tx][ty] = Md[m*TILE_WIDTH + tx][Row]; 

                                          Nds[tx][ty] = Nd[Col][m*TILE_WIDTH + ty]; 

                                          for (int k = 0; k < TILE_WIDTH; ++k) 

                                                         Pvalue += Mds[tx][k] * Nds[k][ty];     

                                          Pd[Row][Col] = Pvalue; 

                              } 

                        } 

                         Using this algorithm, CUDA based parallel matrix multiplication Code is designed to  

verify the performance  in the following sections and chapters. 

  

3.2 Performance of parallel vs sequential matrix multiplication

In the following sections the  performance of parallel matrix multiplication against sequential one has 

been studied.

3.2.1 System Specification

For this work, the Machine that is used has the following specification. It is a Hp xw8600 workstation. 

Its core is Intel Xeon E5405, core clock :2000 Mhz, FSB :1333MHz, L2:12MB,Multiplier 6, ,socket 

LGA771,Data width:64 bit and its family is Harpertown. This machine possesses NVIDIA   GPU, 

Quadro  FX 3700.  Its core is G92 with core clock :500 MHz, Memory clock :800 MHz, Memory size :  

512  MIB,  Memory  type  :256-  bit  GDDR3,  Memory  bandwidth  :51.2,  112  number  of  streaming 

processors, active block capacity 768 and warp :32 threads.

3.2.2 Performance parallel matrix multiplication on basis of block size

The   parallel  matrix   multiplication  code,  written using the  algorithm  discussed in the section 3.1 

has been executed on the machine as described in subsection 3.2.1. The elements of the matrices are 

randomly generated floating point numbers of single precision. Here the variable block  size  has been 

taken to study the effect of block size. The execution time has been taken for matrix sizes, 1024x1024 

and 1012x1012. This time, which is average of 100 readings includes  the time for transferring  data to 

the device and performing the matrix  multiplication on device.  The aim of taking two different matrix 

size is to study the effect of block sizes those are divisors of matrix sizes. In this case 16 and 22 are 
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divisor of 1024 and 1012 respectively. Here execution time is considered up to block size 22 (22x22 

threads) as the maximum capacity of a block is 512 threads.  Table 4  contains details of the execution 

time.

                                                                      Table 4

Block size Execution time(sec) for
Matrix Size (1024X1024)

Execution time(sec) for
Matrix Size (1012X1012) 

            2             1.08           1.01

            3             0.71           0.56

            4             0.51           0.47

            5            0.41           0.37

            6             0.34           0.29

            7             0.29           0.25

            8             0.27           0.23

            9             0.23           0.21

           10             0.215           0.18

           11             0.20           0.17

           12             0.185           0.16

           13             0.17           0.14

           14             0.16           0.14

           15             0.15           0.12

           16             0.065            0.095

           17             0.135            0.12

           18             0.135            0.12

           19             0.12            0.115

           20             0.11            0.105

           21             0.11            0.105

           22             0.11            0.10

       Graph-1  below  shows  the variation of execution time. First(upper)  and second(lower) curve are 

representing  the execution time for matrix size 1024x1024 and 1012x1012 respectively. It  decreases 

as   block size increases from 2 to 16. It also decreases as block size increases from 17 to 22, but time  

for block size 17 to 22 are greater than the execution time of block size 16.   
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                                                                    Graph-1

  Observation:  From graph 1 of the table 4, it is observed that block size 16 results least execution 

time.  It  is  also  observed  that  the  execution  time  for  block  size  16  is  not  only  least  but  also  its 

differences from execution times of block size 15 and 17 are significant.  This is  because of warp 

mechanism of CUDA architecture. So with the present system block size 16 is the best choice for 

matrix multiplication on CUDA as long as the maximum capacity of a block is 512. 

3.2.3 Performance of parallel matrix multiplication 

In this section the execution time (parallel  vs sequential) is studied for variable matrix sizes. Both 

parallel as well as sequential code is executed on the same machine as said above. Matrices are taken to 

be square matrix. The elements of the matrices are randomly generated floating point numbers of single 

precision. Concluding that block size of 16 has least execution time from section-3.2.2, block size has 

taken as 16 (16x16 threads) for all succeeding parallel matrix multiplication. Here time taken in sec is  

average of 100  readings on randomly generated matrices for each size. Table-5 contains the details of 

execution time and speed up.    
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                                                                Table 5

Matrix size Parallel 
execution 

time(sec) P1

Parallel 
execution 

time(sec) P2

Sequential 
execution 

time(sec) S1

Sequential 
execution 

time(sec) S1

Speed up
(S1/P1)

Speed up
(S2/P2)

 512      0.10      0.105      1.215      1.23 12.15    11.71 

 768      0.12      0.13     5.42      5.42 45.08    41.69

 1024      0.155      0.175     12.46      14.17 80.38    80.97

 1280      0.20      0.24     28.14      28.45 140.70    118.54

 1536      0.26      0.335     51.45      51.63 179.88    154.11

 1792      0.355      0.46     80.80      80.90 227.57    175.8

In this table P1 denotes the execution time of parallel matrix multiplication which includes time for 

transferring  data  to  device,  multiplication  time on device  and  transferring  the  result  to  CPU.   P2 

denotes the total execution time of parallel matrix multiplication (execution of main). S1 denotes the 

execution time of sequential matrix multiplication which includes only the multiplication time.  S2 

denotes the total execution time of sequential matrix multiplication (execution of  main). Graph 2 is 

representing the data of table 5.  Graph 3 is representing speed up.  

                                                                       Graph 2 
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                                                                       Graph-3

                              

Here  SP1(upper)  and SP2(lower)  is  representing  speed  up   S1/P1 and   S2/P2 respectively.  It  is  

observed that speed up increases as matrix size increases. This excellent speedup  matrix multiplication 

can be used to solve the computing intensive problems where matrix multiplication can be used,in low 

time complexity. As the SAT problem is one among them, it has been experimented in chapter 4. 
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                                                           Chapter 4 

Parallel SAT solver on CUDA

4.1 Satisfiability Problem

Before presenting the formulation of SAT problem let  us define a Boolean function and its  CNF 

representation.

4.1.1 Boolean Function in CNF 

A Boolean Formula F is a logical expression defined over variables that takes the value in the set 

{True, False} which we will identify with {0,1}. A truth assignment to a set V of Boolean variables is a 

map  σ : V → {0, 1}. A satisfying assignment for F is a truth assignment σ such that F evaluates to 1 

under σ .  A Boolean formula has two special  form,conjunctive normal form(CNF) and disjunctive 

normal form(DNF). In this area we are interested for CNF. F is in CNF if  it  is conjunction(/\)  of 

clauses,where each clause is disjunction(\/) of literals , each literal is either a variable or its negation. 

For example F= (x\/y)/\(x\/¬y\/¬z)/\z is in CNF with three variables and three clauses. x,y,z,¬y,¬z are 

literals and x\/y,  x\/¬y\/¬z and ¬z are clauses.

4.1.2 Problem Definition

The SAT problem is shorthand for Boolean satisfiability problem. SAT problem refers to the question 

that given a Boolean expression, determine if there exists an assignment  of TRUE(1) or FALSE(0) to 

all Boolean variables that make the entire Boolean expression to be TRUE. There is another equally 

important question that there exists no such assignment . Both of them are NP-complete problem [3]. In 

the  first  case  one  assignment  is  sufficient  if  such  assignment  exists.  Then  we  call  the  Boolean 

expression is satisfiable, otherwise we call it unsatisfiable which is proven in the second case which 

needs exhaustive search of all possible assignments. According to the rules of logical equivalence, each 

Boolean  expression  formula  can  be  transformed  into  CNF  form  which  sometimes  simplifies  the 

problem to some extent for exposing the underlying structure of the SAT problem, so that a couple of 

optimization strategies can be applied to reduce the size of the original problem. In addition, Boolean 
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expressions in CNF can be easily treated as input for SAT solvers. In this dissertation, SAT problem 

inputs to the solver are assumed to be in in general CNF form.                                          

4.1.3 Earlier Works

The  satisfiability problem can  be  solved  deterministically  in  time  poly(n).2n time,  where  n  is  the 

number of literals and poly(n) is a polynomial in n. This worst-case upper bound can be decreased to 

poly(n).cn, c<2, if we restrict to k-SAT problems, where each clause in the Boolean CNF expression 

contains  at  most  k  literals.  In  [9],  it  has  been  shown that  the  2-SAT  problem can be  solved  in 

polynomial time using a randomized local search procedure. Local search is a well-known heuristic that 

is applied widely to solve the SAT problem.  The best known bound for randomized   3-SAT problem 

is  poly(n).(4/3)n [10]. 

Random k-SAT problems exhibit a so-called "Phase Transition Phenomenon" [5], which is when there 

are exactly k literals in each clause, randomly choose the number of clauses ck and the number of 

variables vk, the probability of the satisfiability of the problem falls sharply from near 1 to near 0 as the 

ratio  rk=ck/vk passes some critical point called threshold. For example, when k=3, the threshold value is 

about 4.25 (Figure 4.1). However, it is much more complicated to find the threshold value once k is 

larger  than 3.  In  Figure  4.1,  When rk is  close  to  Y axis,  the  problem can be easily  proved to  be 

satisfiable. Conversely, the problem can be easily proved to be unsatisfiable when it is far from Y axis. 

The hardest instances appear at the region near the peak (when rk ≈ 4.25), during this region, enormous 

search space needs to be traversed until the solution is found. 

                         Figure. 4.1: SAT Problem Phase Transition Phenomenon [5] 
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Random walk strategy [8] for SAT problem is one of the most efficient methods to search the solution 

for SAT problems by making use of the heuristic variable selection. It evolved from a Pure (unbiased)  

random walk selection strategy. In this strategy, performance of sequential execution is significantly 

improved. But it is not suitable for parallel environment. In this case each flip would affect each other 

unpredictably without guarantee to increase the number of satisfied clauses after operation.  GPU4SAT 

is a  parallel incomplete SAT solver [11]. In this SAT solver GPU has been used to solve the SAT 

problem. Its performance has been compared with that of WalkSAT, an efficient CPU solver. It is a  

local search method. In this paper it has been proved that its performance is  better than that of best 

WalkSAT. Recently in 2010, NVIDIA CUDA Architecture-based Parallel Incomplete SAT Solver [12] 

has been developed. In this Solver, the algorithm for parallel SAT solver, based on the cellular genetic 

algorithm and random walk strategy [8] has been followed.

 

4.2 SAT Solver

Among all of the SAT solvers, two main categories of SAT solvers are  widely studied by researchers. 

One is Complete SAT solver  and another one is  incomplete  SAT solver.

4.2.1 Complete Solver

Complete SAT solver is the algorithm that checks the satisfiability of  the SAT problems. It guarantees 

to give the result of whether a SAT problem is  satisfiable or unsatisfiable. Most of modern complete 

SAT solvers  are  based on the classical  DPLL algorithm [6].  DPLL itself  is  still  a highly-efficient 

procedure  for  SAT  problems  even  under  contemporary  performance  standards.  The  fundamental 

principles of DPLL algorithm are backtracking and divide-and-conquer. It firstly simplifies the problem 

by assigning some values to some variables, so if the rest smaller problem is satisfiable, then the entire 

formula is satisfiable, otherwise it goes back to assign the opposite values to the appropriate previously 

assigned variables, and keep doing this recursively until a solution is found or the entire search space is  

traversed.  DPLL actively  calls  two subroutines  Unit  Propagation and  Pure Literal  Elimination to 

enhance the efficiency of the algorithm, and recent researches are also eagerly looking for efficient 

approaches to improve these two functions. 

Unit Propagation: Some clauses only contain one literal, there is only one choice for the value of the 

corresponding variable, then these variables can be safely eliminated from the problem without 
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affecting the search of the values of other variables. In addition, these eliminations may lead to the 

deterministic  cascades  of  unit  clause which  is  able  to  dramatically  reduce the size of  the  original 

problem to avoid naive search or early detection of assignment conflict which is able to prove the 

unsatisfiability of the problem.                

    

Pure Literal  Elimination: If  one variable  occurs  in  the problem with only one form (positive or 

negative), then all of the clauses that contain this variable can be  eliminated from the problem since the 

Boolean value that makes the corresponding literal true can make all of those clauses be true, and there 

is only one choice for this value. While Pure Literal Elimination is not used in DPLL as intensively as 

Unit  Propagation,  because  finding  all  of  the  clauses  containing  single  form  of  variable  is  a 

computation intensive process, and sometimes, it is not worthwhile.            

     Although modern DPLL-based algorithms have been phenomenally improved, the lack of parallelism 

make them very complicated to be implemented  on large multiprocessors parallel environment [7].

      4.2.2 Incomplete Satisfiability Problem Solver 

      Incomplete SAT solver is the algorithm that finds the solution for the SAT  problems during its running 

time. Incomplete SAT Solvers are not able to prove the  unsatisfiability of SAT problem. But its ability 

of quickly discovering the solution for  certain kinds of pretty large satisfiable instances compensates 

its weakness to a great extent. Incomplete SAT solvers are mostly based on the stochastic local search, 

and  genetic algorithms, most of which are very suitable for parallel computing architecture. This grants 

the incomplete SAT solvers incomparable advantage of parallelism. 

                                                                                                                                                                       

4.3  Matrix representation of CNF Boolean expression

     Each SAT problem instance(BF) has a natural matrix representation. In the matrix representation row 

represents a clause of Boolean expression. If there are n variables present in the Boolean expression, 

then there will be 2n literals, so 2n columns in the matrix. If a literal presents in the true form, then 

corresponding value is '1', otherwise '0'. A Boolean expression containing m clauses and n variables can 

be represented by a binary matrix of size m by 2n. Similarly the matrix of instances is also a binary 

matrix with 2n rows and maximum 2n number of columns. We can test the satisfiability of the Boolean 

expression by multiplying the two matrices and replacing the operation of addition by Boolean 'OR'. If 

we get at least one column containing only 1's then we say that the Boolean expression is satisfied.  The 
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following example with 4 variables ( x1, x2, x3, x4) and 3 instances ( I1, I2, I3) shows that the given 

function is satisfied for assignment I2.                                                                   

                                                                                                                             I1   I2   I3                        Satisfiability matrix

                                                             SAT  problem instances→                  0      1     0      x1

                                                                                                                                          0      1     1      x2                1      1      0

                                                  x1     x2    x3    x4    ¬x1   ¬x2  ¬x3  ¬x4            1      0      0     x3                 

                        x1 \/ ¬x2 \/ x3 →          1      0     1      0       0      1      0      0             1      0     1      x4     =       1      1      1

                                x2 \/ x3 \/ ¬x4 →           0      1     1      0       0      0      0      1       *   0      0     1    ¬x1

                                x1 \/ x2 \/ ¬x3 →           1      1     0      0       0      0      1      0             1      0     0    ¬x2                0      1      1  
                                                                                                                                           0      1     1    ¬x3    
                                    Clauses                                                                                          0      1     0    ¬x4                                     I2 
                                                                                                                                                                                 satisfiable instantiation
                                                                                                                                          Instantiation set

                                                                                                                                       

     4.4 Complete parallel SAT solver Implementation on CUDA

The  following  sections  describe  some  strategies  for  parallel  complete  SAT  solver  and  our 

implementation.

4.4.1 Performance of parallel SAT solver   

   Above  discussion  tells  us  that  SAT problem can  be  solved  by  matrix  multiplication.  We  already 

concluded that CUDA based parallel matrix multiplication has high performance over sequential matrix 

multiplication. By generating exhaustive instances  and using CUDA based parallel multiplication one 

can solve the complete satisfiability problem faster than sequential one. Table-6 below gives the detail 

of  execution  time  in  sec.  Here  the  time  considered  is  sum  of  instances  generating  time  and 

multiplication time. Program generates all possible instances (worst case). In this case the number of 

clauses is assumed to be 2000 and block size for matrix multiplication is 16. 

                                                                     Table 6

No. of variables Parallel execution 

    time (in sec)

Sequential  execution 

time(in sec)

Speed up

          10           0.12          0.38       3.17

          11           0.17          0.84       4.94

          12           0.34          1.36       5.47

          13           0.60          4.04       6.73

          14           1.24          10.43       8.41

          15           2.41          22.38       9.28
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Graph 4 shows the execution time comparison between parallel(lower)  and sequential(upper)  SAT 

Solver. Graph -5  shows the speed up.

                                                 Graph 4

                

                                                                                                                                         

                                                     Graph 5
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Here the performance comparison is done for worst case as the instance matrix contains all possible 

instances. In this case not only satisfiability is tested but also we can report all the instances that satisfy 

the Boolean expression.

 

4.4.2 A better strategy for complete SAT solver

In this discussion a greedy strategy is used in order to verify the satisfiability of SAT  problem. At the  

initial stage a clause generates a set of possible instances that satisfy the 1st clause. In the successive 

stages each instance considers the next clause in order to generate instances that satisfy present clause 

as well as all the previous clauses. After the last clause verification all possible satisfiable instances can 

be reported or problem is unsatisfiable. Details of the strategy is given below.

                                     

Suppose the Boolean expression in CNF consists of m number of clauses in  n variables. There will be 

2n literals. Suppose number of literals  in the clauses are not equal. Let  n 1, n2, ...,  nm are number of 

literals  present in clauses C1,  C2,  ...,  Cm respectively.   Denote a negative variable by 0,  a positive 

variable by 1. From C1, n1 distinct instances can be formed where each instance contains exactly one 

literal  (0/1) and rest n-1 places may have any value 0/1 (don't cares) such that these instances satisfy 

the clause C1. For generating instances let those n-1 places are blank. Now each instance generated in 

the first stage will generate n2 instances, assigning some literals in  don't care positions that satisfy 

clause C2.  Conflict instances are to be eliminated. So in the second stage there will be at most n1*n2 

number of instances. Proceeding in this way, at the end  the method will generate at most n 1*n2*...*nm 

number of instances. But actual number is less than this due to conflict and repetition. The following 

example with two clauses in four variables illustrates the method. Let the clauses be C1 : x1\/x3\/¬x4 and 

C2:  x2\/¬x3\/¬x4  respectively.  The first  clause  generates  following three  satisfiable  instances  where 

blank space may take any value 0 or 1.

                   1 _ _ _ ,              _ _ 1_ ,              _ _ _ 0.

Now each instance generated will verify second clause to generate new instances those satisfy both the 

clauses. First instance generates three, second two as there is one conflict (x3,¬x3) and third one three 

(two new & one remains same) instances.

                  1 1 _ _ ,             1 _ 0 _ ,               1_ _ 0.

                  _ 1 1_ ,               _ _ 1 0. 

                 _ 1 _ 0 ,               _ _ 0 0 ,               _ _ _0.
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The blank spaces (hyphenated) may take any value 0 or 1.  The eight possibilities so generated, in 

which  each  of  first  seven  instances  generates  four  and  last one  eight instances  will  satisfy  both 

the clauses. We cannot have more than these possibilities that satisfy both the clauses. 

                           

If each stage generates the instances in parallel, then we need m stages for a CNF Boolean expression 

consisting of m clauses. In stage-m we get either  all possible satisfiable instances (after assigning all  

possible values to blank spaces left) or conclude that the Boolean expression is unsatisfiable. At each 

stage the computation can be done in parallel but the stages are to be executed sequentially. It is a 

complete solver and produces all assignments of variables which make the function true. However, the 

scope of parallelism is limited. 

                                                                                                                                                 

4.5  A strategy for  Incomplete parallel SAT solver on CUDA

In this strategy the high performance parallel matrix multiplication on CUDA has been  used to test the 

satisfiability of CNF Boolean expression. This strategy is organized into stages. Each stage has two 

sub-stages.  In the first sub-stage a fixed  number of instances (keeping in mind the capacity of the  

GPU device) has been generated and used for testing satisfiability. In the second sub-stage a particular 

row value of the above instances is made '1', so that those are always satisfying a fixed clause (chosen 

arbitrarily). The instance matrix so generated has been used to test the satisfiability of the CNF Boolean 

expression. If it has a satisfiable instance, then the process will be terminated and the satisfiability will 

be reported. Otherwise, it  will go for next iteration. An outline of the proposed algorithm is given 

below:          

                                                Algorithm

       

                      1.    Input : Matrix A of the  clauses of Boolean Function (BF) in n variables, 

                                            L: Upper bound on instances, 

                                            I: Fix number of instances in each step for testing 

                          

                          2.    Initialization:

                                      {

                                            Select a Clause C arbitrarily from A

                                            v = position of a literal=1 in C

                                     }
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                          3.     For j=0 to  L/I  

                                    {

                                        if  j.I > 2n -1 then report SAT is unsatisfiable and terminate

                                                                   else if  j=ΓL/IꞀ then report SAT  is undecidable and terminate
                                      else generates instance matrix B (2n X I), using the binary representation of 

                                      decimal number from j.I to (j+1).I-1.

                                      multiply A & B and verify the satisfiability

                                      if True, report SAT is satisfiable and terminate

                                      else modify B by replacing all the v-th row elements by '1'

                                            multiply it with A and check the satisfiability

                                            if True, report SAT is satisfiable and terminate

                                else next j

                             }

                                                                                                                                                                

The code, written using above algorithm has been executed in the same Machine as said above and 

average execution time (in sec) over 100 readings has been taken for a given number of variables. The 

number  of  clauses  is  fixed  to  be  2000  for  all  cases.  This  is  our  proposed  algorithm for  parallel  

incomplete solver.  The Table 7 below shows the execution times for parallel   incomplete,  parallel 

complete ( which terminates once the function is satisfied or the instance set is exhausted), parallel 

complete (worst case), and sequential (worst case), which always tests all the instances exhaustively, 

SAT solvers.

                                                                     Table 7

No. of variables Incomplete execution time 
in sec(2000 clauses)-P1

Complete execution time in 
sec(2000 clauses)-P2

worst case
Complete execution time in 

sec(2000 clauses)-P3

Sequential execution time 
in sec(2000 clauses)-S

11 0.0875 0.0885 0.17          0.84

12 0.0885 0.089 0.34          1.36

13 0.0885 0.089 0.60          4.04

14 0.089 0.089 1.24          10.43

15 0.089 0.0891 2.41          22.38

  

The graph 6 below presents  the execution time given in the above table  7.  P1,  P2, P3 and S are  

representing the execution times of parallel incomplete, parallel complete, parallel complete (worst 

case) and sequential (worst case) SAT solver respectively.   Though it is observed that the complete 

and incomplete SAT solver has better performance than complete (worst case) and sequential (worst 

case). As the  number of clauses are very large in comparison to the number of variables and the matrix 
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for BF is generated randomly, the satisfiability is decided in few stages. Instead of random generation, 

if set of hard test cases can  be used, we can differentiate the performance of incomplete from complete 

SAT solver.

                                                                 Graph 6
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Chapter 5

                                          Conclusion and Future Work

In this work it has been observed that CUDA architecture has a high  performance for parallel matrix 

multiplication  over  sequential  matrix  multiplication.  Block  size  16  is  the  best  choice  for  matrix 

multiplication as long as maximum number of threads is 512. Complete SAT solver (worst case) has 

shown  better  performance  over  sequential  SAT  solver  (worst  case).   CUDA  parallel  matrix 

multiplication has shown a high speed up to verify the satisfiability of instances. But no conclusion can 

be drawn about the performance of incomplete SAT solver against complete SAT solver. Perhaps the 

limitation lies in random generation of clauses. If particular set of Boolean functions which are hard for 

sequential  SAT solver   will  be   used  to  test  the  performance in  term of  execution  time both  for  

complete  and  incomplete  SAT solver,  then  their  performance  may  be  differentiated.  It   could  be 

concluded better if its time complexity can be compared with that of existing parallel SAT solvers. 

Performance  as  shown  in  this  report  can  be  improved  if  the  generation  of  instances  could  be 

parallelized.  In  this  case   random generation  of  clauses  may  have  repetition.  Generation  without 

repetition will do better.  Last but not the least, the choice of arbitrary clauses in incomplete strategy 

may be replaced by a better one.   
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