
A dissertation submitted in partial fulfilment of the requirements for
M.Tech(Computer Science) degree of the Indian Statistical Institute

Integer Linear Programming Based Scheduling
for H.264 Video Decoding in Multicore

Processor

M.Tech(Computer Science) Dissertation Report

By

Somabrata Pramanik

Roll Number : CS0914

Under the supervision of

Dr. Susmita Sur-Kolay
and

Dr. Ansuman Banerjee
Advanced Computing and Microelectronics Unit

Indian Statistical Institute

203, B.T. Road

Kolkata 700 108

Indian Statistical Institute

Kolkata 700 108

CERTIFICATE

This is to certify that the thesis entitled “Integer Linear Programming Based
Scheduling for H.264 Video Decoding in Multicore processor” is submitted in
the partial fulfilment of the degree of M. Tech. in Computer Science at Indian
Statistical Institute, Kolkata. It is fully adequate in scope and quality as a dis-
sertation for the required degree.

The thesis is a faithfully record of bonafide research work carried out by Somabrata
Pramanik under our supervision and guidance.

Dr. Susmita Sur-Kolay
(Supervisor)

ACMU

Dr. Ansuman Banerjee
(Co-supervisor)

ACMU

Countersigned
(External Examiner)
Date:

1

Acknowledgement

I would like to express my sincere gratitude to the supervisor of this study, Dr.
Susmita Sur-Kolay and Dr. Ansuman Banerjee. I also take this opportunity
to express my gratitude to Mr. Bhaskar Karmakar and Mr. Prasenjit Basu of
Texas Instruments, Bangalore. Their command over this matter has been a great
help for my analysis. They helped me in all aspects including the preparation of
this manuscript. This work has been possible only because of their continuous
suggestions, inspiration, motivation and full freedom given to me to incorporate
my ideas. I also take this opportunity to thank all my teachers who have taught
me in my M. Tech. course and last but not the least I thank all my family mem-
bers and friends for their endless support.

Place : Kolkata
Date : 19.07.2011

Somabrata Pramanik

2

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Scope . 6
1.3 Organisation . 6

2 Review of Earlier Works 7
2.1 Parallel Scalability of H.264 . 7
2.2 A Highly Scalable Parallel Implementation of H.264 8
2.3 Parallel H.264 Decoding on an Embedded Multicore Processor . 9
2.4 Efficient Parallelization Of H.264 Decoding With Macro Block

Level Scheduling . 10
2.5 A Highly Efficient Parallel Algorithm for H.264 Encoder Based

on Macroblock Region Partition 11
2.6 Novel Approaches to Parallel H.264 Decoder on Symmetric Mul-

ticore Systems . 12
2.7 GOP-Level Parallelization of the H.264 Decoder without a Start-

Code Scanner . 13
2.8 Scalability of Macroblock-level Parallelism for H.264 Decoding . 14

3 Problem Formulation 16
3.1 H.264 decoder . 16
3.2 H.264/AVC Data Structures . 17
3.3 Macroblock Prediction . 20
3.4 Macroblock Level Parallelism . 22

3.4.1 Assumptions: . 23

4 Dependence Study for Intra Prediction 24
4.1 Intra Prediction for Luma Samples 24

4.1.1 Intra 4x4 Prediction for Luma Samples: 24
4.1.2 Intra 8x8 Prediction for Luma Samples: 28
4.1.3 Intra 16x16 Prediction for Luma Samples: 29

4.2 Intra Prediction for Chroma samples 30

5 Cache Profiling 31

3

6 ILP Formulation 34
6.1 Notation . 34
6.2 ILP Formulation I . 34

6.2.1 Variables: . 34
6.2.2 Objective: . 35
6.2.3 Constraints: . 35
6.2.4 Discussion: . 37

6.3 ILP Formulation II . 38
6.3.1 Variables: . 38
6.3.2 Objective: . 38
6.3.3 Constraints: . 39
6.3.4 Discussion: . 40

6.4 ILP Formulation III . 40
6.4.1 Variables: . 41
6.4.2 Objective: . 41
6.4.3 Constraints: . 41
6.4.4 Bounds on Objective: . 44
6.4.5 Discussion: . 44
6.4.6 Overlapped Slice Partitioning: 45

6.5 Experimental Results: . 46

7 Conclusion and Bibliography 49

4

Chapter 1

Introduction

Demand of high quality video based technologies are increasing with high-
definition televisions, video streaming through internet and many other ap-
plications. Compression ratio of the previous standards are not enough for
these upcoming technologies. The latest video compression standard, ITU-T
recommended H.264/AVC (also known as ISO/IEC 14496 (MPEG-4) Part 10
for Advanced Video Coding) is expected to become the video standard of choice
in the coming years for its higher compression ratio and use of more efficient
technologies.

H.264/AVC is an open, licensed standard that supports the most efficient video
compression techniques available today. The average bit rate reduction by H.264
encoder is of 80% compared to the Motion JPEG format and 50% the MPEG-4
Part 2 standard, without compromising the image quality. This means, much
less network bandwidth and storage space are required for a video file; or in
another way, much higher video quality can be achieved for a given bit rate.

1.1 Motivation

H.264/AVC is very appropriate for the applications like multimedia streaming,
high quality video broadcasting, video storage in optical and magnetic discs.
But, these applications requires high speed encoding and decoding of video data.
H.264/AVC encoder and decoder both have a sequential, data dependent flow
of execution. This property makes it difficult to leverage the potential perfor-
mance gain that could be achieved by the use of emerging many core processors.

Dedicated silicon implementations of H.264/AVC codecs are presently available
which can perform 30fps encode/decode for 1080p video sequences. Hardware
implementations for each new video compression standard on different platform
is costly enough. That is why we need a parallel software implementation of
H.264/AVC codec that can perform as efficiently as the hardware implemen-

5

tation and can run on different hardware platforms. If the hardware platform
changes the software implementation needs smaller amount of change than ded-
icated silicon implementation.

1.2 Scope

In this project, we consider an H.264 decoder and explore the possibilities of
parallelism. There are a couple of reasons behind taking up the decoder (and not
the encoder) as part of this parallelization effort. Firstly, the encoding problem
is a natively parallel one, and hence, lends itself more naturally to a parallelized
execution environment and there are already numerous successful attempts in
this direction. However, the decoding algorithm poses certain challenges to par-
allelization. Secondly, there is a decoding step inside the encoder as well and
therefore, any success in parallelizing the decoder would naturally expedite the
encoder as well.

The key task in parallelization of the H.264 decoder is to find a scheduler, which
can distribute the decoder flow of execution into several cores efficiently. The
scheduler must consider data dependency issues as well as inter-communication
and synchronization between the processing units. There are many proposed
schedulers for this core allocation, using different strategies. Performance of
these schedulers depends on the scalability and hardware utilization it can
achieve.

Our objective is to find a scheduler which can allocate the processor cores for
decoding in most efficient way so that the time to decode is optimized. As this
scheduler is an optimized one, this can also be used to measure the performance
of other non optimized schedulers.

1.3 Organisation

This report is organised as follows. In Chapter 2 related works on parallelizing
h.264 is discussed briefly. In Chapter 3 our primary objectives and problem
formulation is discussed along with a high level overview of H.264 decoder and
the data structure behind it. Chapter 4 provides the study on various modes of
intra macroblock prediction and corresponding data dependencies. Chapter 5
showing how a H.264 decoder works on various cache environments. Three
formulation of Integer Linear Programming to minimize the decoding time in a
scheduler is given in chapter 6.

6

Chapter 2

Review of Earlier Works

To incorporate with chip multi-processors, the H.264 codec needs thread level
parallelism. Sufficient scalability can be achieved by macroblock level paral-
lelization, so that inter-frame MBs and intra frame MBs can be processed si-
multaneously if they have their sufficient information to be decoded.
The following are abstract of some papers on parallelizing the decoding process
for multi-core processors.

2.1 Parallel Scalability of H.264

Authors: Cor Meenderinck, Arnaldo Azevedo, Mauricio Alvarez, Ben Ju-
urlink, and Alex Ramirez.

Affiliation: Delft University, University of Catalonia, Barcelona Supercom-
puting Center.

Abstract: An important question is whether emerging and future applications
exhibit sufficient parallelism, in particular thread-level parallelism (TLP), to
exploit the large numbers of cores future CMPs are expected to contain. As a
case study we investigate the parallel scalability of the H.264 decoding process.
Previously proposed parallelization strategies such as slice-level, frame-level,
and intra-frame macroblock (MB) level parallelism, are not sufficiently scalable.
We therefore propose a novel strategy, called 3D-Wave, which is mainly based
on the observation that inter-frame dependencies have a limited spatial range.
Because of this, certain MBs of consecutive frames can be decoded in parallel.
The 3D-Wave strategy allows 4000 to 9000 MBs to be processed in parallel,
depending on the input sequence. We also perform a case study to assess the
practical value and possibilities of the 3D-Wave strategy. The results show that
our strategy provides sufficient parallelism to efficiently exploit the capabilities
of future manycore CMPs.

7

Summary: Describes and compares the different Data level decompositions
possible on H.264 decoder. Frame level parallelism has very little scalability
since there are very few B frames between P frames. In H,264 B frames can
also be used as reference. This reduces FLP even more. Slice level parallelism
depends on the size and number of slices/frame. These parameters are depen-
dent on the encoder. Therefore load balancing and low scalability are its issues.
In MB level parallelism two strategies, 2-D and 3-D wave are discussed. This
work tries to combine FLP with MLP dynamically and measure performance
improvements. Study reveals 3-D wave provides huge number of parallel MBs
and requires large memory bandwidth which is even beyond the scope of future
many core CMPs. So the performance of 3-D is studied under limited resource
availability conditions.

Advantages: Even with limited resources 3-D wave has the potential of uti-
lizing the computational power available provided sufficient memory bandwidth
to support constant number of frames in flight.

2.2 A Highly Scalable Parallel Implementation
of H.264

Authors: Arnaldo Azevedo, Ben Juurlink, Cor Meenderinck, Andrei Terechko,
Jan Hoogerbrugge, Mauricio Alvarez, Alex Ramirez, Mateo Valero.

Affiliation: Delft University, University of Catalonia, Barcelona Supercom-
puting Center.

Abstract: Developing parallel applications that can harness and efficiently
use future many-core architectures is the key challenge for scalable computing
systems. We contribute to this challenge by presenting a parallel implementa-
tion of H.264 that scales to a large number of cores. The algorithm exploits
the fact that independent macroblocks (MBs) can be processed in parallel, but
whereas a previous approach exploits only intra-frame MB-level parallelism, our
algorithm exploits intra-frame as well as inter- frame MB-level parallelism. It
is based on the observation that inter-frame dependencies have a limited spa-
tial range. The algorithm has been implemented on a many-core architecture
consisting of NXP TriMedia TM3270 embedded processors. This required to
develop a subscription mechanism, where MBs are subscribed to the kick-off
lists associated with the reference MBs. Extensive simulation results show that
the implementation scales very well, achieving a speedup of more than 54 on
a 64-core processor, in which case the previous approach achieves a speedup of
only 23. Potential drawbacks of the 3D-Wave strategy are that the memory re-
quirements increase since there can be many frames in flight, and that the frame
latency might increase. Scheduling policies to address these drawbacks are also
presented. The results show that these policies combat memory and latency

8

issues with a negligible effect on the performance scalability. Results analysing
the impact of the memory latency, L1 cache size, and the synchronization and
thread management overhead are also presented. Finally, we present perfor-
mance requirements for entropy (CABAC) decoding.

Summary: This paper describes the concept of 3-D wave, how it is imple-
mented, how its performance gain is much more than 2-D wave technique. The
performance of 2-D wave is highly affected by the frame resolution and scala-
bility is not constant throughout the decoding of a frame. To overcome these
drawbacks 3-D technique is exploited along with 2-D technique. It supports
hundreds of frames in flight and thousands of MBs to be processed in parallel
given sufficient memory bandwidth and a good frame scheduling policy.

Advantages:

– Scalability is much better than 2-D.

– With a good Frame scheduling and priority mechanism it is possible to
achieve almost the performance achieved by original 3-D and minimize
Frame latency. Original 3-D needs unlimited memory but FS and priority
scheduling makes it possible to achieve it with limited memory.

Disadvantages:

– Presently the subscribe MBs are chosen statically so the number of frames
in flight is almost constant. It should be chosen dynamically.

– The scalability of 3-D decreases for large number of cores because cache
thrashing occurs The scalability also decreases at the start or end of a
sequence since little parallelism is available at that time.

– For higher resolution video, no relevant speedup is achieved unlike 2-D.

– FS and FP achieve lower frame latency and higher scalability at the cost
of increased memory traffic.

– Increase in average memory latency decreases performance gain (AML of
40-50 cycles is ok). L1 cache should be at least 64KB for higher number
of cores.

– The overhead of TLP must be limited to maximum 30% of the MB de-
coding time. Otherwise the performance degenerates drastically with in-
creased number of cores.

2.3 Parallel H.264 Decoding on an Embedded
Multicore Processor

Authors: Arnaldo Azevedo, Cor Meenderinck, Ben Juurlink, Andrei Terechko,
Jan Hoogerbrugge, Mauricio Alvarez, Alex Ramirez, Mateo Valero.

9

Affiliation: Delft University, University of Catalonia, Barcelona Supercom-
puting Center.

Abstract: In previous work the 3D-Wave parallelization strategy was pro-
posed to increase the parallel scalability of H.264 video decoding. This strategy
is based on the observation that inter-frame dependencies have a limited spatial
range. The previous results, however, investigate application scalability on an
idealized multiprocessor. This work presents an implementation of the 3D-Wave
strategy on a multicore architecture composed of NXP TriMedia TM3270 em-
bedded processors. Results show that the parallel H.264 implementation scales
very well, achieving a speedup of more than 54 on a 64-core processor. Potential
drawbacks of the 3D-Wave strategy are that the memory requirements increase
since there can be many frames in flight, and that the latencies of some frames
might increase. To address these drawbacks, policies to reduce the number of
frames in flight and the frame latency are also presented. The results show that
our policies combat memory and latency issues with a negligible effect on the
performance scalability.

Summary: Describes the 3-D and 2-D implementation process. Shows 3-D
is much more scalable than 2- D. Scalability of 2-D largely depends on the res-
olution of video. 3-D is free from this drawback. Once the reference MB of a
MB in another frame is completed the current MB may start processing. But
this may lead to large number of Frames on the fly and demand large memory
bandwidth. This problem is solved by introducing the concept of subscription
MB which limits the number of Frames in flight. A Frame scheduling policy
which introduces frame priority, helps reducing the frame latency. 3-D is imple-
mented on an existing 2-D implementation. A feature called Tail submit is used
to minimize the spatial dependency of Mbs and reduce memory read/writes.

Advantages and Disadvantages: same as section 2.2

2.4 Efficient Parallelization Of H.264 Decoding
With Macro Block Level Scheduling

Authors: Jike Chong, Nadathur Satish, Bryan Catanzaro, Kaushik Ravin-
dran, Kurt Keutzer.

Affiliation: University of California, Berkeley.

Abstract: The H.264 decoder has a sequential, control intensive front end
that makes it difficult to leverage the potential performance of emerging many
core processors. Preparsing is a functional parallelization technique to resolve
this front end bottleneck. However, the resulting parallel macro block (MB)
rendering tasks have highly input-dependent execution times and precedence

10

constraints, which make them difficult to schedule efficiently on many core pro-
cessors. To address these issues, we propose a two step approach:

(i) a custom pre-parsing technique to resolve control dependencies in the input
stream and expose MB level data parallelism.

(ii) an MB level scheduling technique to allocate and load balance MB ren-
dering tasks.

The run time MB level scheduling increases the efficiency of parallel execution
in the rest of the H.264 decoder. It provides 60% speedup over greedy dynamic
scheduling and 9-15% speedup over static compile time scheduling for more
than four processors. The pre-parsing technique coupled with run time MB
level scheduling enables a potential 7x speedup for H.264 decoding.

Summary: Each video frame goes through 3 stages- parse, render and filter.
This paper concentrates on parallelizing the first 2 stages. Parsing is a major
bottleneck in parallelization. To overcome this, a pre- parsing strategy has been
applied and some of recently pre-parsed frames are buffered and later stages are
performed on them in parallel. This paper compares different MB scheduling
strategies greedy dynamic, static compile time and run time. Among the three
greedy dynamic fails to preserve MB dependencies, static compile time fails to
handle input dependent data. The run time MB scheduling preserves both.

Advantages: The runtime scheduling matches the ideal scheduling most closely

2.5 A Highly Efficient Parallel Algorithm for H.264
Encoder Based on Macroblock Region Par-
tition

Authors: Shuwei Sun, Dong Wang, and Shuming Chen.

Affiliation: National Institute of Defense Technology, China.

Abstract: This paper proposes a highly efficient MBRP parallel algorithm
for H.264 encoder, which is based on the analysis of data dependencies in H.264
encoder. In the algorithm, the video frames are partitioned into several MB re-
gions, each of which consists of several adjoining columns of macro-blocks (MB),
which could be encoded by one processor of a multi-processor system. While
starting up the encoding process, the wave-front technique is adopted, and the
processors begin encoding process orderly. In the MBRP parallel algorithm, the
quantity of data that needs to be exchanged between processors is small, and
the loads in different processors are balanced. The algorithm could efficiently
encode the video sequence without any influence on the compression ratio. Sim-
ulation results show that the proposed MBRP parallel algorithm can achieve

11

higher speedups compared to previous approaches, and the encoding quality is
the same as JM 10.2.

Summary: This paper identifies different data dependencies between Mbs:(a)for
inter prediction dependencies between Mbs belonging to different frames and
(b)between Mbs in the same frame for Intra prediction. This paper introduces
a MBRP algorithm. It partitions a frame into partitions consisting of consec-
utive columns. Each partition is then assigned to a separate processor. The
algorithm proceeds by wave front method.

Advantages:

– Each partition contains approximately equal number of consecutive non-
overlapping columns. So load balancing is achieved easily.

– Amount of data exchanged between processors is smaller.

Disadvantages:

– Each partition must contain at least 2 consecutive MB columns. So highest
speedup possible is restricted by the resolution of the video source.

2.6 Novel Approaches to Parallel H.264 Decoder
on Symmetric Multicore Systems

Authors: Kue-Hwan Sihn, Hyunki Baik, Jong-Tae Kim, Sehyun Bae, Hyo
Jung Song.

Affiliation: Software Lab., SAIT, Samsung Electronics,Visual Display Divi-
sion, Samsung Electronics.

Abstract: Novel approaches to parallel H.264 decoder for symmetric multi-
core processors are presented. The basic partitioning of the decoder is coarse-
grained and hybrid method of the data partitioning and functional partitioning.
We investigate the performance bottleneck of the parallelized decoder, and pro-
pose two new approaches, software memory throttling and fair load balancing.
The software memory throttling limits the number of cores involved in the par-
allel motion compensation to achieve better speedup and power-saving. The
fair load balancing for de-blocking filter reduces load imbalance caused by the
conventional static partitioning method. From the evaluation on two differ-
ent symmetric multi-core platforms, proposed approaches show up to 24% of
speedup when there is much bandwidth contention.

12

Summary: A pipeline structure is developed where VLD is overlapped with
MC stage. VLD and MC share the same task queue. These stages behave
like the producer consumer model. But the speed of VLD is a bottleneck.
The 2-D wavefront technique is used both for Inter and Intra frames. Limited
shared memory and off-chip memory bandwidth in multi-core processors are a
bottleneck. As the number of cores increase the speedup gradually decrease
because the multiple threads that are dependent on VLD occupy much of the
shred memory. So speedup of VLD is essential. IP and MC deal with small data
partitions and they have small load imbalance. But De-blocking filters process
large partitions and so they suffer from heavy load imbalance.

Advantages:

– Software memory throttling method tries to meet the gap between VLD
and MC processing speeds.

– De-blocking of Inter takes 3 times times as compared to that of Intra.
While partitioning workload for De-blocking filter we have to consider the
Mb-type as well to ensure fair load balancing.

2.7 GOP-Level Parallelization of the H.264 De-
coder without a Start-Code Scanner

Authors: Ahmet GÃijrhanl, Charlie Chung-Ping Chen, Shih-Hao Hung.

Affiliation: National Taiwan University.

Abstract: Recent researches on parallelization of H.264 video decoders fo-
cused on fine-grain methods. These works led to designs having very short la-
tencies and good memory usage. However, they could not reach the scalability
of Group of Pictures (GOP) level approaches although assuming a well designed
entropy decoder which can feed the increasing number of parallel working cores.
We would like to introduce a GOP-level approach due to its high scalability,
mentioning solution approaches for the well- known latency and memory issues.
Our design revokes the need to a scanner for GOP startcodes which was used in
the earlier methods. This approach lets all the cores work on the decoding task.
Although the performance on shared memory systems is subject to improve,we
have observed a one-to-one linear speedup in parallel working nodes. We have
tested our method using a cluster of 5 machines each having 2 processors with
4 cores. The decoding is 5 times faster when we run only one process in each
machine, that is we saw one-to-one linear speedup when there is no memory
shortage. We observed a maximum of 11 times speedup when using all of the
40 cores distributed among 5 machines.

13

Summary: Each processor is assigned a GOP. GOPs are independent of each
other and can be decoded simultaneously. The start point of each GOP is
written in the video stream header by the encoder. Each processor in the decoder
reads the header and chooses the part it is supposed to decode. This method
gives linear speedup in case of small GOP sizes but deteriorates as GOP size
increases. For large GOP the memory requirements of the processors increases
so more cache pollution occurs. So linear speedup not possible.

Advantages:

– Does not need GOP start code scanner

Disadvantages:

– Need more memory resource and has long latency problems

– One processor manages the scheduling and the others do parallel decoding.
So with P processors only P-1 times maximum speedup possible

– The scheduler may easily become insufficient for feeding the increasing
number of parallel working cores.

2.8 Scalability of Macroblock-level Parallelism
for H.264 Decoding

Authors: Mauricio Alvarez Mesa, Alex Ram Ì ↪AÄśrezy, Arnaldo Azevedoz,
Cor Meenderinckz, Ben Juurlinkz, and Mateo Valeroy.

Affiliation: Universitat Polit‘ecnica de Catalunya, Barcelona, Spain.

Abstract: This paper investigates the scalability of MacroBlock (MB) level
parallelization of the H.264 decoder for High Definition (HD) applications. The
study includes three parts. First, a formal model for predicting the maximum
performance that can be obtained taking into account variable processing time
of tasks and thread synchronization overhead. Second, an implementation on a
real multiprocessor architecture including a comparison of different scheduling
strategies and a profiling analysis for identifying the performance bottlenecks.
Finally, a trace-driven simulation methodology has been used for identifying the
opportunities of acceleration for removing the main bottlenecks. It includes the
acceleration potential for the entropy decoding stage and thread synchronization
and scheduling. Our study presents a quantitative analysis of the main bottle-
necks of the application and estimates the acceleration levels that are required
to make the MB-level parallel decoder scalable.

14

Summary: The maximum speedup achievable using MB level parallelism is
quite high. But it assumes constant MB processing time and no synchroniza-
tion overhead. When these factors are taken into account maximum speedup
possible is reduced significantly. The paper then compares the various schedul-
ing approaches of Mbs to cores. The static scheduling is good only when MB
processing time is constant(which is impossible in real cases). The dynamic
scheduling exploits more paralleism but encounters huge overhead due to a cen-
tralised task queue read/write. Dynamic scheduling with tail submit is by far
the best scheduling approach. Entropy decoding is entirely serial ,so it is de-
coupled from the parallel part of the decoder and a buffer is inserted between
the modules to meet the spped differences of the two parts.

Advantages:

– CABAC accelerator improves performance

– Thread synchronization accelerator improves performance

15

Chapter 3

Problem Formulation

3.1 H.264 decoder

The H.264 decoder flow of execution on encoded data is as shown in the fig-
ure 3.1. Decoder receives the encoded data as NAL unit from Network Abstrac-
tion Layer. This encoded data is first entropy decoded to produce transformed
and quantised coefficients. These coefficients are then scaled and inverse trans-
formed to regenerate the residual data. Using the header informations already
decoded from the bitstream, the decoder creates a prediction block, identical
to the original prediction formed in the encoder. This predicted data is added
to the residual data, which is already decoded. Then it is filtered to produce
each decoded block of a frame or field. In Intra Prediction, the unfiltered data
blocks of same frame or field is used to create the prediction block and in Inter
Prediction, previously decoded frame or fields are used to predict the current
block.

Figure 3.1: Block Diagram of H.264 Decoder

16

3.2 H.264/AVC Data Structures

To understand the areas where the H.264 decoder can be parallelized and the
limitations in it, we need to know the data structure of H.264/AVC encoded
data. A high level overview of the H.264/AVC data structure is given in fig-
ure 3.2. The horizontal arrows in this figure specifying a ‘ is a ’ relationship and
other arrows specifying a ‘ have a ’ relationship between structures.

Figure 3.2: H.264/AVC coded data structure

17

Video Stream: An encoded H.264 video stream means a collection of organ-
ised logical data packets. Each syntax structure in H.264/AVC is placed into
one of such packets.

NAL Unit: It is raw data packet containing integer number of bytes. The
first byte of each NAL unit is a header byte that contains an indication of the
type of data in the NAL unit, and the remaining bytes contain payload data of
the type indicated by the header. A NAL unit can be of two types,

VCL NAL Unit: contains pixel data of pictures as payload data.

Non VCL NAL Unit: contains other informations which is used to decode
an encoded data.

Video Sequence: A video stream is generated by a number of video se-
quences. Each such coded video sequence is a collection of coded pictures called
access unit.

picture Parameter Set: This is a set of parameters applicable to one or more
coded picture of a video sequence. Each VCL NAL unit contains an identifier
that refers to the content of the relevant picture parameter set.

Sequence Parameter Set: This is a set of parameters applicable to all the
coded pictures of a video sequence. In each picture parameter set, there is an
identifier that refers to the content of the relevant sequence parameter set.

Access Unit: A coded picture is distributed into several NAL Units. An
access unit is a collection of such VCL NAL units which is used to decode a
single picture. All the VCL NAL units in an access unitare decoded using same
sequence parameter set and picture parameter set. This picture is named as
primary coded picture. Also there can be an auxiliary coded picture and a
redundant picture to recover data loss in the primary coded picture.

Picture: A coded picture in a video sequence can be a frame or a single field.
This is consisting of a number of slices. Generally, a frame of video can be
considered to contain two interleaved fields, a top and a bottom field. The
top field contains even-numbered rows and the bottom field contains the odd-
numbered rows. If the two fields of a frame were captured at different time
instants, the frame is referred to as an interlaced frame, and otherwise it is
referred to as a progressive frame.

Slice: A picture is divided into one or more parts in H.264/AVC, each such
part is called slice. The size of a slice in H.264/AVC is flexible. Each slice of
a picture can be decoded separately as there is no data dependency between
any two slices of a picture except in the filtering process. Each slice contains a

18

number of macroblocks.
Depending on the type of macroblocks present in a slice, slices are classified as,

1. I Slice: all the macroblocks in this slice are coded using intra prediction.

2. P Slice: macroblocks in a P Slice is coded either using intra prediction
or using inter prediction with only one motion vector per partition.

3. B Slice: all the macroblocks in a B slice is encoded using one of the intra
prediction, inter prediction and bi prediction. Bi prediction is a kind of
inter prediction, where each partition of a macroblock is predicted using
two motion vector to two different reference picture.

4. SP slice: A so-called switching P slice that is coded such that efficient
switching between different pre-coded pictures becomes possible.

5. SI slice: A so-called switching I slice that allows an exact match of a
macroblock in an SP slice for random access and error recovery purposes.

Macroblock: In H.264/AVC, this is the basic building block of a picture. It
can be of two types,

Intra Macroblock: these macroblocks are predicted using intra prediction.
This contains residual information after predicction.

Inter macroblock: these macroblocks are predicted using inter prediction.
Macroblocks contains the residual information and the information about
partitions.

Partitions: It can be of two types block and subblock. In both the cases
there can be two motion vector specified for motion compensation. In blocks
the identification of the reference pictures from where it has to be predicted is
mentioned. partitions can be further divided into smaller partitions. Possible
Macroblock Partitions and Sub Macroblock Partitions are shown in figure 3.3
and figure 3.4.

Figure 3.3: Macroblock partitions: 16x16, 8x16, 16x8, 8x8

19

Figure 3.4: Sub-macroblock partitions: 8x8, 4x8, 8x4, 4x4

3.3 Macroblock Prediction

Most of the macroblocks in H.264/AVC is predicted from previously encoded
macroblocks of same slice or slices of different pictures. In the encoder a predic-
tion macroblock is constructed using some dependency information. This de-
pendency information is then passed to the decoder and the decoder generates
the same predicted macroblock using this information. As much the prediction
is correct, the residual information in the encoded data is more less. According
to the dependency information needed to decode a macroblock, this prediction
can be of two types.

Intra Prediction: In intra prediction mode, a macroblock is predicted using
the information from neighbouring macroblocks of the same slice, which are
already decoded. For a macroblock, the neighbouring macroblocks on which it
may depend are shown in figure 3.5. In this figure, information from macroblock
A, B, C and D may be used to decode the current macroblock. H.264/AVC
have several modes of prediction for luma and chroma samples of a macroblock
described in chapter 4.

Figure 3.5: Neighbouring Macroblocks for a given macroblock

20

Inter Prediction: In inter prediction, a macroblock is predicted from mac-
roblocks of one or more already decoded frames or fields using block based
motion compensation. In H.264/AVC the block sizes varies from 16x16 to 4x4
as shown in figure 3.3 and figure 3.4. The encoded bit-stream contains the choice
of partitions of a macroblock. To predict each partition it needs one or two mo-
tion vectors. Motion vectors are predicted from the motion vectors of already
decoded neighbouring partitions. Encoded data contains the difference between
original motion vector and predicted motion vector, this difference is added to
the predicted motion vector in decoder to get the actual motion vector.
For current macroblock E the choice of partitions from which the motion vector
is predicted are shown in figure 3.6 and figure 3.7 if they are available.

Figure 3.6: Neighbouring partitions for motion vector prediction when partition sizes
are same

Figure 3.7: Neighbouring partitions for motion vector prediction when partition sizes
are different

The motion vectors for partition E is predicted inthe following way when
partition A, B and C are available.

21

1. For transmitted partitions excluding 16x8 and 8x16 partition sizes, motion
vector is predicted by the median of the motion vectors for partitions A,
B and C.

2. For 16x8 partitions, motion vector for the upper 16x8 partition is predicted
from B and motion vector for the lower 16x8 partition is predicted from
A.

3. For 8x16 partitions,motion vector for the left 8x16 partition is predicted
from A and motion vector for the right 8x16 partition is predicted from
C.

3.4 Macroblock Level Parallelism

To parallelize the decoding task of a H.264/AVC decoder, we have to divide
and distribute the video data among several cores. This division can be done in
various levels,

1. Group of pictures level

2. Frame level

3. Slice level

4. Macroblock level

From previous studies on H.264/AVC parallelization, we have observed that suf-
ficient scalability can not be achieved through the other methods except mac-
roblock level parallelism. In H.264/AVC usually MBs in a frame are processed
in scan order, which means starting from the top left corner of the frame and
moving to the right, row after row. In macroblock level parallelism, macroblocks
are processed in parallel considering the data dependencies. But the challenges
in this method are,

For I-Slices: There are a large amount of spatial data dependencies in
parallel macroblock decoding for an I-Slice. Each macroblock is predicted
from its neighboring macroblocks, which may be decoded in another core.
Thus we have to generate a suitable scheduling algorithm so that this data
dependency among cores will be minimized. This is true for motion vector
prediction for P and B slices as well.

For P and B-Slices: To decode macroblocks of P or B-slices, it may refer
to a macroblock of different frame or field which is in decoding process in
another core. So it has to wait till the decoding of all the slices of that
frame or field is completed. This problem can be solved if we can make the
proper macroblock available for reference when its decoding is completed.
Then the current macroblock can be processed before the completion of
its reference picture.

22

A few other relevant issues applicable to the parallelization approach are as
follows:

1. Maintain functional correctness of program.

2. Support macroblock adaptive frame field coding.

3. Measure of multicore utilization (speed gain over single core).

4. Latency impact on display of the pictures must not hamper.

5. Have good efficiency on defined test set of sequences of common resolutions
CIF, D1, 720, 1080 and higher.

In this work, we investigate the performance scalability of Macroblock-level par-
allelization for the H.264 decoder in a multi-core environment where multiple
processing cores, each having a fixed amount of small local cache and having
access to a larger shared cache, are placed on the same chip. Specifically, our
focus is on reducing the access of shared caches and inter- core communication
by increasing the level of reuse for local caches, while ensuring the dependency
constraints of a given workload. In multicore platforms, reducing shared cache
access can result in decreased execution times, which may allow a larger work-
load to be supported or hardware requirements (or costs) to be reduced.

Given a system of N cores, each with a fixed amount of local memory and
each having access to a shared memory, our objectives are to develop a schedul-
ing and allocation strategy for scheduling multiple macroblocks with a target of
minimizing off-chip access, while satisfying dependency constraints. Our model
has the following assumptions.

3.4.1 Assumptions:

1. Entropy decoding is decoupled from the parallelized decoder before the
allocation of macroblocks are started.

2. Incoming video stream is pre-parsed and all slices extracted and stored in
a buffer.

3. Message passing time between processors ignored

4. Deblocking filter will be used on a picture after completion of all the pre-
filtering subtasks on all the macroblocks of the picture.

23

Chapter 4

Dependence Study for Intra
Prediction

Luma and Chroma components of a Macroblock are predicted separately as
specified in encoded data for that macroblock. We are interested in the amount
of data required from the neighbouring macroblocks to predict the current mac-
roblock.

4.1 Intra Prediction for Luma Samples

Prediction of luma blocks in H.264/AVC can be done in three ways. A 16x16
luma block of a macroblock can be predicted by predicting sixteen 4x4 blocks or
four 8x8 blocks or predicting the whole 16x16 block. There are different modes
of prediction for each such blocks; prediction mode of a block is derived from
the previously derived prediction mode of adjacent blocks and their availability.

4.1.1 Intra 4x4 Prediction for Luma Samples:

There can be nine different modes of prediction for each of the sixteen 4x4 luma
blocks. The following table 4.1 specifies the value and corresponding name of
these modes along-with the data dependency.

For a 4x4 block like Figure 4.1, a subset of neighbouring 13 samples are
used to predict the block depending on the prediction mode of the block. For a
particular prediction mode, the number of samples required from side W, X, Y
and Z of the 4x4 block are also given in table 4.1. In figure 4.2 the direction of
these dependency for each prediction modes are also given.

24

Intra 4x4
Prediction

Mode

Name of the Prediction
mode

Required neighbouring samples

side W side X side Y side Z

0 Intra 4x4 Vertical 0 4 0 0

1 Intra 4x4 Horizontal 4 0 0 0

2 Intra 4x4 DC 4 4 0 0

3 Intra 4x4 Diagonal Down Left 0 4 4 0

4 Intra 4x4 Diagonal Down Right 4 4 0 1

5 Intra 4x4 Vertical Right 4 4 0 1

6 Intra 4x4 Horizontal Down 4 4 0 1

7 Intra 4x4 Vertical Left 0 4 4 0

8 Intra 4x4 Horizontal Up 4 0 0 0

Table 4.1: Intra 4x4 Prediction Modes

Figure 4.1: A 4x4 Block with neighbouring 13 samples

We can divide a macroblock into sixteen 4x4 block, each of which have an
intra 4x4 prediction mode for luma samples. As in figure 4.3, the top and left
boundary blocks M, N, O, P, Q, R, S are responsible for data dependency from
previously decoded macroblocks.
Thus there are 97 = 4782969 possible combinations of prediction modes and
for each such combinations there will be a data requirement from neighbouring
macroblocks. With respect to the amount of data required from neighbouring

25

Figure 4.2: Direction of dependency for different prediction modes of Intra 4x4 Pre-
diction for luma samples

Figure 4.3: Macroblock divided into sixteen 4x4 block

macroblocks A, B, C and D, we can classify the current macroblock. There are
180 possible combinations of amount of data requirements from neighbouring
macroblocks given in table 4.2

26

Data from Data from Data from Data from
A B C D A B C D A B C D A B C D
0 16 0 0 12 13 0 0 13 0 0 0 12 16 4 1
4 16 0 0 10 13 0 0 16 0 0 0 13 16 4 1
5 16 0 0 13 13 0 0 4 4 4 0 16 16 4 1
8 16 0 0 0 4 0 0 8 4 4 0 4 8 0 1
9 16 0 0 4 4 0 0 9 4 4 0 8 8 0 1
12 16 0 0 5 4 0 0 12 4 4 0 9 8 0 1
10 16 0 0 8 4 0 0 13 4 4 0 12 8 0 1
13 16 0 0 9 4 0 0 16 4 4 0 13 8 0 1
0 12 0 0 12 4 0 0 4 5 0 0 16 8 0 1
4 12 0 0 10 4 0 0 8 5 0 0 4 12 4 1
5 12 0 0 13 4 0 0 9 5 0 0 8 12 4 1
8 12 0 0 0 8 4 0 12 5 0 0 9 12 4 1
9 12 0 0 4 8 4 0 13 5 0 0 12 12 4 1
12 12 0 0 5 8 4 0 16 5 0 0 13 12 4 1
10 12 0 0 8 8 4 0 4 9 4 0 16 12 4 1
13 12 0 0 9 8 4 0 8 9 4 0 4 13 0 1
0 16 4 0 12 8 4 0 9 9 4 0 8 13 0 1
4 16 4 0 10 8 4 0 12 9 4 0 9 13 0 1
5 16 4 0 13 8 4 0 13 9 4 0 12 13 0 1
8 16 4 0 0 9 0 0 16 9 4 0 13 13 0 1
9 16 4 0 4 9 0 0 16 13 0 0 16 13 0 1
12 16 4 0 5 9 0 0 16 13 4 0 4 4 0 1
10 16 4 0 8 9 0 0 4 10 0 0 8 4 0 1
13 16 4 0 9 9 0 0 8 10 0 0 9 4 0 1
0 8 0 0 12 9 0 0 9 10 0 0 12 4 0 1
4 8 0 0 10 9 0 0 12 10 0 0 13 4 0 1
5 8 0 0 13 9 0 0 13 10 0 0 16 4 0 1
8 8 0 0 0 13 4 0 16 10 0 0 4 8 4 1
9 8 0 0 4 13 4 0 16 16 0 0 8 8 4 1
12 8 0 0 5 13 4 0 16 16 4 0 9 8 4 1
10 8 0 0 8 13 4 0 4 16 0 1 12 8 4 1
13 8 0 0 9 13 4 0 8 16 0 1 13 8 4 1
0 12 4 0 12 13 4 0 9 16 0 1 16 8 4 1
4 12 4 0 10 13 4 0 12 16 0 1 4 9 0 1
5 12 4 0 13 13 4 0 13 16 0 1 8 9 0 1
8 12 4 0 16 12 0 0 16 16 0 1 9 9 0 1
9 12 4 0 16 8 0 0 4 12 0 1 12 9 0 1
12 12 4 0 16 12 4 0 8 12 0 1 13 9 0 1
10 12 4 0 16 4 0 0 9 12 0 1 16 9 0 1
13 12 4 0 16 8 4 0 12 12 0 1 4 13 4 1
0 13 0 0 16 9 0 0 13 12 0 1 8 13 4 1
4 13 0 0 4 0 0 0 16 12 0 1 9 13 4 1
5 13 0 0 8 0 0 0 4 16 4 1 12 13 4 1
8 13 0 0 9 0 0 0 8 16 4 1 13 13 4 1
9 13 0 0 12 0 0 0 9 16 4 1 16 13 4 1

Table 4.2:27

4.1.2 Intra 8x8 Prediction for Luma Samples:

Similarly luma components of a macroblock can be predicted by predicting
four 8x8 block. For luma 8x8 block prediction also, there are nine prediction
modes. In the table 4.3 the prediction modes along with their name and the
dependency from neighbouring 25 samples are given. Direction of dependency
for these prediction modes are same as 4x4 prediction modes shown in figure 4.2.

Figure 4.4: A 8x8 Block with neighbouring 25 samples

Intra 8x8
Prediction Mode

Name of the Prediction
mode

Required neighbouring samples

side W side X side Y side Z

0 Intra 8x8 Vertical 0 8 0 0

1 Intra 8x8 Horizontal 8 0 0 0

2 Intra 8x8 DC 8 8 0 0

3 Intra 8x8 Diagonal Down Left 0 8 8 0

4 Intra 8x8 Diagonal Down Right 8 8 0 1

5 Intra 8x8 Vertical Right 8 8 0 1

6 Intra 8x8 Horizontal Down 8 8 0 1

7 Intra 8x8 Vertical Left 0 8 8 0

8 Intra 8x8 Horizontal Up 8 0 0 0

Table 4.3: Intra 8x8 Prediction Modes

For a 16x16 macroblock, its three boundary 8x8 block M, N, O is responsible
for intra data dependency as shown in figure 4.5. We can again classify the
93 = 243 combinations of prediction modes that is possible in a macroblock,
so that in each class amount of data needed from macroblock A, B, C and D
to decode the current macroblock becomes same. For each such class, the data
requirements are given in table 4.4.

28

Figure 4.5: Macroblock divided into four 8x8 block

Data from Data from Data from Data from
A B C D A B C D A B C D A B C D
0 16 0 0 0 16 8 0 8 8 8 0 8 16 0 1
8 16 0 0 8 16 8 0 16 8 8 0 16 16 0 1
9 16 0 0 9 16 8 0 8 9 0 0 8 8 0 1
0 8 0 0 16 8 0 0 16 9 0 0 16 8 0 1
8 8 0 0 8 0 0 0 16 16 0 0 8 16 8 1
9 8 0 0 16 0 0 0 16 16 8 0 16 16 8 1

Table 4.4:

4.1.3 Intra 16x16 Prediction for Luma Samples:

A macroblock can be predicted as a single 16x16 block. There are four prediction
modes for luma 16x16 block intra prediction as shown in table 4.5 alongwith
the data dependency from neighbouring macroblocks.

Intra 16x16
Prediction Mode

Name of the
Prediction mode

Required samples from

mb A mb B mb C mb D

0 Intra 16x16 Vertical 0 16 0 0

1 Intra 16x16 Horizontal 16 0 0 0

2 Intra 16x16 DC 16 16 0 0

3 Intra 16x16 Plane 16 16 0 1

Table 4.5: Intra 16x16 Prediction Modes

29

4.2 Intra Prediction for Chroma samples

For different chroma array type, the prediction process for chroma samples are
different.

For Chroma Array Type = 1

The following table shows the no of distinct possible combination of chroma
pixel data that a macroblock has to read from its neighboring macroblocks
when Chroma Array Type is 1.

Intra 16x16
Prediction Mode

Name of the
Prediction mode

Required samples from

mb A mb B mb C mb D

0 Intra Chroma DC 8 8 0 0

1 Intra Chroma Vertical 8 0 0 0

2
Intra1 Chroma

Horizontal
0 8 0 0

3 Intra Chroma Plane 8 8 0 1

Table 4.6: Intra Chroma Prediction Modes for Chroma array Type = 1

For Chroma Array Type = 2

The following table shows the no of distinct possible combination of chroma
pixel data that a macroblock has to read from its neighboring macroblocks
when Chroma Array Type is 2.

Intra 16x16
Prediction Mode

Name of the
Prediction mode

Required samples from

mb A mb B mb C mb D

0 Intra Chroma DC 16 8 0 0

1 Intra Chroma Vertical 16 0 0 0

2
Intra1 Chroma

Horizontal
0 8 0 0

3 Intra Chroma Plane 16 8 0 1

Table 4.7: Intra Chroma Prediction Modes for Chroma Array Type = 2

30

Chapter 5

Cache Profiling

As our objective is to increase the performance of the decoder, we have checked
how it works on different cache environment. We can reduce the number of data
read and write misses by increasing the associativity in different level of cache.
For different associativities of first level instruction cache, first level data cache
and third level unified cache, the cache miss penalty of a H.264 decoder is given
in following two tables.

In all the cases,
L1 Instruction Cache: size = 32768 Byte and line size = 64 Byte
L1 Data Cache: size = 32768 Byte and line size = 64 Byte
L3 Cache: size = 3145728 Byte and line size = 64 Byte

Assuming penalty for single L1 cache miss is 10 cycles and for single L3 cache
miss it is 200 cycles.

Executing the decoder on a set of video streams with display resolution 176x144
and frame rate 25fps, cache miss penalties are given in table 5.1 and table 5.2
is for a set of video streams with display resolution 1280x720 and frame rate of
25fps.In both the tables, second column is for 4 way associative L1 instruction
cache, 4 way associative L1 data cache and 12 way associativie L3 cache; third
column is for 4 way associative L1 instruction cache, 8 way associative L1 data
cache and 12 way associativie L3 cache; fourth column is for 8 way associative
L1 instruction cache, 4 way associative L1 data cache and 12 way associativie
L3 cache; fifth column is for 8 way associative L1 instruction cache, 8 way as-
sociative L1 data cache and 12 way associativie L3 cache. The corresponding
graphs are given in figure 5.1 and figure 5.2.

31

Video
streams

I1 = 4, D1 = 4,
L3 = 12

I1 = 4, D1 = 8,
L3 = 12

I1 = 8, D1 = 4,
L3 = 12

I1 = 8, D1 = 8,
L3 = 12

1 11964300 11938660 11158930 11133290

3 11139540 11076810 10429140 10366410

4 15053450 15012890 14724550 14683990

5 12595410 12574370 11367560 11347040

6 13732080 13719940 13419870 13407730

7 12667270 12633100 12185700 12151530

8 12678140 12634990 12262890 12219740

9 12842460 12815610 12451250 12424400

10 12824060 12780570 12378140 12334650

11 12865390 12817250 12411550 12363410

12 12686340 12637320 12167820 12118800

13 11805420 11622600 10481870 10299050

14 11596320 11596400 10275270 10274810

15 12002910 12006310 10688700 10692100

16 11944890 11854180 11269220 11178510

17 12582850 12545790 12001550 11964490

18 11151460 11086360 10443220 10378120

Table 5.1: Cache miss penalty of the decoder for different associativities of cache,
when applied on video streams of display resolution 176x144 and 25 frame/sec

Figure 5.1: Graph representing Cachemisspenalty to decode coded video streams of
resolution 176x144

32

Video
streams

I1 = 4, D1 = 4,
L3 = 12

I1 = 4, D1 = 8,
L3 = 12

I1 = 8, D1 = 4,
L3 = 12

I1 = 8, D1 = 8,
L3 = 12

1 7661572280 7660185200 7255868240 7254480970

2 6920854200 6919621180 6678286320 6677048170

3 7901699280 7894705020 7510526070 7503532760

4 8012060920 8008696830 7539654140 7536289110

5 7372048390 7365453420 7103300690 7096704390

6 7493155880 7491491420 7159584670 7157919070

7 7322999920 7321467770 6999490020 6997957870

8 8122050320 8118966680 7720041070 7716956670

9 8019448800 8016592940 7653015840 7650158460

10 7534994860 7532989410 7179414970 7177404010

11 6676457940 6675666480 6445371250 6444579600

12 7437291830 7435717550 7108998220 7107423940

Table 5.2: Cache miss penalty of the decoder for different associativities of cache
when applied on video streams with display resolution 1280x720 and frame rate
of 25fps

Figure 5.2: Graph representing Cachemisspenalty to decode coded video streams of
resolution 1280x720(04:04:12 represents associativity of I1 cache is 4; D1 cache is 4
and for L3 cache associativity is 12)

33

Chapter 6

ILP Formulation

6.1 Notation

Suppose we have a m× n slice of macroblocks, tasks are denoted as:
t1 t2 t3 ... tn
tn+1 tn+2 tn+3 ... t2n
...

t(m−1)n+1 t(m−1)n+2 t(m−1)n+3 ... tmn

6.2 ILP Formulation I

Suppose we have n macroblocks in a slice. We want to schedule the decoding
task of these n macroblocks into r processors.The data dependencies between
the macroblocks are given by the dependency graph G = (T,E).

6.2.1 Variables:

T = {t1, t2, ..., tn} denotes the set of tasks.
E = {(ti, tj)| if ti, tj ∈ T and tj depends on ti}
D(j) = {ti ∈ T | if ti, tj ∈ T and (ti, tj) ∈ E}
P = {p1, p2, ..., pr} denotes the set of processors.

for each task ti ∈ T ,
i) Let sti be the start time of execution of task ti.
ii) Let li be the task length of task ti in CPU cycles.

∀ti ∈ T, pk ∈ P and 1 ≤ s ≤ n

ysik =

{
1 if task ti be the sth task on processor pk
0 otherwise

34

∀ti, tj ∈ T
Let cij = amount of data from task ti needed to decode task tj

∀ph, pk ∈ P
Let dhk be the CPU cycles needed to transfer unit pixel data from ph to pk

∀ti, tj ∈ T and ∀ph, pk ∈ P
Let communication latency γhkij = cij dhk

Let MAX be a constant with very high value.

6.2.2 Objective:

minimize max
ti∈T
{sti + li} (6.2.2.0.1)

6.2.3 Constraints:

• Each task will be executed on a single processor and only once, ∀ti ∈ T :

∑
pk∈P

n∑
s=1

ysik = 1 (6.2.3.0.2)

If there is four tasks to be allocated on two processors, then for the first
task,
y11,1 + y21,1 + y31,1 + y41,1 + y11,2 + y21,2 + y31,2 + y41,2 = 1

• At most one task will be the first task on a processor, ∀pk ∈ P :∑
ti∈T

y1ik ≤ 1 (6.2.3.0.3)

If there is four tasks to be allocated on two processors, then for the first
processor,
y11,1 + y12,1 + y13,1 + y14,1 = 1

• ∀(s ≥ 2) if some task is the sth task assigned to a processor, then there
must be another (s−1)th task assigned on that processor, ∀pk ∈ P and 2 ≤
s ≤ n : ∑

ti∈T
ysik ≤

∑
ti∈T

ys−1ik (6.2.3.0.4)

If there is four tasks to be allocated on two processors, then for the first
processor when s = 3,
y31,1 + y32,1 + y33,1 + y34,1 ≤ y21,1 + y22,1 + y23,1 + y24,1

35

• A task can start its execution if and only if all the task its depends on are
finished and required data is transferred, ∀tj ∈ T and ti ∈ D(j) :

stj ≥ sti + li +
∑
ph∈P

n∑
s=1

∑
pk∈P

n∑
r=1

γhkij y
s
ihy

r
jk (6.2.3.0.5)

After linearization this constraint can be replaced with a set of constraints,

stj ≥ sti + li +
∑
ph∈P

n∑
s=1

∑
pk∈P

n∑
r=1

γhkij q
sr
ijhk

and ∀ph, pk ∈ P ; s, r ∈ {1, 2, ..., n}
qsrijhk ≤ ysih
qsrijhk ≤ yrjk
qsrijhk ≥ ysih + yrjk − 1
qsrijhk ≥ 0

If there is three tasks to be allocated on two processors, and task t2 is
depend on task t1then,

st2 ≥ st1+l1+γ1,11,2q
1,1
1,2,1,1+γ1,11,2q

1,2
1,2,1,1+γ1,11,2q

1,3
1,2,1,1+γ1,21,2q

1,1
1,2,1,2+γ1,21,2q

1,2
1,2,1,2+

γ1,21,2q
1,3
1,2,1,2+γ1,11,2q

2,1
1,2,1,1+γ1,11,2q

2,2
1,2,1,1+γ1,11,2q

2,3
1,2,1,1+γ1,21,2q

2,1
1,2,1,2+γ1,21,2q

2,2
1,2,1,2+

γ1,21,2q
2,3
1,2,1,2+γ2,11,2q

1,1
1,2,2,1+γ2,11,2q

1,2
1,2,2,1+γ2,11,2q

1,3
1,2,2,1+γ2,21,2q

1,1
1,2,2,2+γ2,21,2q

1,2
1,2,2,2+

γ2,21,2q
1,3
1,2,2,2+γ2,11,2q

2,1
1,2,2,1+γ2,11,2q

2,2
1,2,2,1+γ2,11,2q

2,3
1,2,2,1+γ2,21,2q

2,1
1,2,2,2+γ2,21,2q

2,2
1,2,2,2+

γ2,21,2q
2,3
1,2,2,2

where all ‘γ’s are constant with value depending on the dependency amount
and cpu cycles needed to read those data. All ‘q’s can be constrained in
above mentioned way.

• ∀pk ∈ P ; ti, tj ∈ T and 1 ≤ s ≤ (n− 1) :

stj ≥ sti + li −MAX
(

2−
(
ysik +

n∑
r=(s+1)

yrjk

))
(6.2.3.0.6)

For three tasks to be allocated on two processors, if task t1 and t2 are
allocated on different processors then for both k = 1 and 2, the constraint
satisfies. For processor p1, ys1,1 and ys2,1 both can not be one for any values
of s and r thus the constraint satisfies with a very high value of MAX. But
if task t1 and t2 are allocated on the same processor, then this constraint
confirms one of them must be finished before another.

• ∀pk ∈ P ; ti ∈ T and 1 ≤ s ≤ n :

ysik ∈ {0, 1} (6.2.3.0.7)

• ∀ti ∈ T :
sti ≥ 0 (6.2.3.0.8)

36

6.2.4 Discussion:

Though this formulation gives an optimized solution with good utilization, it
has certain limitations. The number of non-linear variables in this formulation
is very high, to schedule n tasks on p processors equation (6.2.3.0.5) generates
O(n4P 2) non-linear variables. After linearising the constraints generated by this
equation, the number of linear constraints also becomes very large. It also takes
a huge amount of time to get the optimized solution. For a 4x4 slice containing

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
t1 0 16 0 0 16 0 0 0 0 0 0 0 0 0 0 0

t2 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0

t3 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0

t4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0

t5 0 0 0 0 0 16 0 0 16 0 0 0 0 0 0 0

t6 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0

t7 0 0 0 0 0 0 0 5 0 0 8 0 0 0 0 0

t8 0 0 0 0 0 0 0 0 0 0 4 9 0 0 0 0

t9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

t10 0 0 0 0 0 0 0 0 0 0 4 0 0 16 0 0

t11 0 0 0 0 0 0 0 0 0 0 0 16 0 0 13 1

t12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

t13 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0

t14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0

t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

t16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.1: Dependency between 16 macroblocks of a 4x4 slice

16 macroblocks and with macroblock dependency given in table 6.1, the num-
ber of constraints is 97382 and number of variables is 23057 when the number
of available cores for allocation is two. Time taken to solve these constraints
is 30100 seconds in a quad core processor with 4GB of RAM. The optimized
schedule for the 4x4 slice is given in table 6.2 with scheduler length = 7252 cpu
cycles.

0 0 1 1
0 0 1 1
1 0 0 0
1 1 1 1

Table 6.2: Optimized schedule for the 4x4 slice with macroblock dependency
given in table 6.1

37

6.3 ILP Formulation II

The number of constraints and variables generated using the previous formu-
lation is huge. So we will go for another formulation which generates smaller
number of constraints and variables and also gives the optimized schedule. Sup-
pose we have n macroblocks in a slice. We want to schedule the decoding task
of these n macroblocks into r processors.The data dependencies between the
macroblocks are given by the dependency graph G = (T,E).

6.3.1 Variables:

T = {t1, t2, ..., tn} denotes the set of tasks.
E = {(ti, tj)| if ti, tj ∈ T and tj depends on ti}
D(j) = {ti ∈ T | if ti, tj ∈ T and (ti, tj) ∈ E}
P = {p1, p2, ..., pr} denotes the set of processors.

for each task ti ∈ T ,
i) Let sti be the start time of execution of task ti.
ii) Let li be the task length of task ti in CPU cycles.

∀ti ∈ T and pk ∈ P ,

Let xik =

{
1 if task ti is scheduled on processor pk
0 otherwise

Let yik =

 1 if task ti is scheduled on processor pk; ∃ tj s.t ti ∈ D(j)
which is scheduled on a different processor other than pk

0 otherwise

∀ti, tj ∈ T and pk ∈ P ,

Let zkij =

 1 if task ti, tj is scheduled on same processor pk
and ti starts before tj

0 otherwise

∀ti, tj ∈ T ,
Let cij = amount of data from task ti needed to decode task tj

∀ph, pk ∈ P ,
Let dhk be the CPU cycles needed to transfer unit pixel data from ph to pk

∀ti, tj ∈ T and ∀ph, pk ∈ P ,
Let communication latency γhkij = cij dhk

Let MAX be a constant with very high value.

6.3.2 Objective:

minimize max
ti∈T
{sti + li} (6.3.2.0.9)

38

6.3.3 Constraints:

• Each task must be assigned to a single processor, ∀ti ∈ T :∑
pk∈P

xik = 1 (6.3.3.0.10)

If number of available processors is four then for a task t1,
x1,1 + x1,2 + x1,3 + x1,4 = 1

• A task can be executed if all the tasks it depends on, are finished

– If both tasks are scheduled on same processor, then ∀pk ∈ P, ∀tj ∈ T
and ti ∈ D(j) :

sti + li + γkkij ≤ stj + (2− xik − xjk)MAX (6.3.3.0.11)

for a processor p1 and two tasks t1 and t2,where t2 depends on t1,
the constraint is,
st1 + l1 + γ1,11,2 ≤ st2 + (2− x1,1 − x2,1)MAX
If both the tasks are allocated on same processor p1, then x1,1 = 1
and x2,1 = 1. So the constraint becomes

st1 + l1 + γ1,11,2 ≤ st2
which means t2 can be started after t1 finishes and getting required
data from L1 cache of processor p1.
Otherwise if two tasks are allocated on different processors then one
or both of x1,1 and x21 becomes zero satisfying the constraint with a
very high value of MAX.

– If both tasks are not scheduled on same processor, then ∀ph, pk ∈
P, h 6= k, ∀tj ∈ T and ti ∈ D(j) :

sti + li + γhkij ≤ stj + (2− xjk + xik − yih)MAX (6.3.3.0.12)

for two processors p1, p2 and two tasks t1, t2,where t2 depends on t1,
the constraint is
st1 + l1 + γ1,21,2 ≤ st2 + (2− x2,2 + x1,2 − y1,1)MAX
if ti is allocated on p1 and t2 is allocated on p2 then x2,2 = 1, x1,2 = 0
and y1,1 = 1. So the constraint becomes

st1 + l1 + γ1,21,2 ≤ st2
which means t2 can be started after t1 finishes and getting required
data in p2 from L1 cache of processor p1.
otherwise, if both tasks allocated in same processor p1 or p2 this
constraint satisfies with a very high value of MAX.

• Two independent tasks must not be executed on the same processor at
the same time, ∀pk ∈ P and ∀ti, tj ∈ T where ti /∈ D(j), tj /∈ D(i) :

sti + li ≤ stj + (3− xjk − xik − zkij)MAX (6.3.3.0.13)

39

for a single processor p1 and two independent tasks t1 and t2, the constraint
is:
st1 + l1 ≤ st2 + (3− x2,1 − x1,1 − z11,2)MAX
If bothe tasks are allocated on p1 then x1,1 = 1 andx2,1 = 1, now if z11,2 = 1
that means task t1 is finished before t2. Otherwise this constraint satisfies
with very high value of MAX.

stj + lj ≤ sti + (2− xjk − xik + zkij)MAX (6.3.3.0.14)

for the same example, the constraint is:
st2 + l2 ≤ st1 + (2− x2,1 − x1,1 + z11,2)MAX
If bothe tasks are allocated on p1 then x1,1 = 1 andx2,1 = 1, now if
z11,2 = 0 that means task t2 is finished before t1 which implies z12,1 = 1.
This constraint confirms that two task can not be overlapped when they
are allocated on the same processor. Without the given conditions this
constraint satisfies with very high value of MAX.

• Start time of each task must be positive, ∀ti ∈ T :

sti ≥ 0 (6.3.3.0.15)

• ∀ti ∈ T and pk ∈ P
xik ∈ {0, 1} (6.3.3.0.16)

• ∀ti ∈ T and pk ∈ P
yik ∈ {0, 1} (6.3.3.0.17)

• ∀ti, tj ∈ T and pk ∈ P
zkij ∈ {0, 1} (6.3.3.0.18)

6.3.4 Discussion:

This formulation generates much less number of variables and constraints than
the previous formulation. Time to solve those constraints is also very less.

For the same 4x4 slice to be allocated on two cores and with same macroblock
dependency given in table 6.1, the optimized schedule using this formulation is
exactly similar to the schedule generated by formulation I. But the number of
constraints is only 1168 and number of variables is 515. Time taken to solve
these constraints is 129 seconds in a quad core processor with 4GB of RAM.
The time it takes to find the optimized schedule is very less in compare to the
formulation I, but it is still very slower than the other greedy approaches.

6.4 ILP Formulation III

As the previous formulation find an optimized schedule with taking a huge
amount of time, we have formulated another ILP which can generate the opti-
mized schedule much faster than the previous formulations.

40

Suppose we have n macroblocks in a slice. We want to schedule the decoding
task of these n macroblocks into r processors.The data dependencies between
the macroblocks are given by the dependency graph G = (T,E).

6.4.1 Variables:

T = {t1, t2, ..., tn} denotes the set of tasks.
E = {(ti, tj)| if ti, tj ∈ T and tj depends on ti}
D(j) = {ti ∈ T | if ti, tj ∈ T and (ti, tj) ∈ E}
P = {p1, p2, ..., pr} denotes the set of processors.

for each task ti ∈ T ,
i) Let sti be the start time of execution of task ti.
ii) Let li be the task length of task in CPU cyclesti.
iii) Let pidi be the processor ID where task ti is to be executed.

Let w be the total execution length of the slice.

∀ti ∈ T and pk ∈ P ,

Let xik =

{
1 if task ti is scheduled on processor pk
0 otherwise

∀ti, tj ∈ T ,
Let cij = amount of data from task ti needed to decode task tj

Let σij =

{
1 if task ti finishes before tj
0 otherwise

Let εij =

{
1 if pidi < pidj
0 otherwise

∀ph, pk ∈ P ,
Let dhk be the CPU cycles needed to transfer unit pixel data from ph to pk

∀ti, tj ∈ T and ∀ph, pk ∈ P ,
Let communication latency, γhkij = cij dhk

Let w be the CPU cycles needed to decode the whole slice.

6.4.2 Objective:

minimize w (6.4.2.0.19)

6.4.3 Constraints:

• Each task should be completed before w,∀ti ∈ T :

sti + li ≤ w (6.4.3.0.20)

41

• If there is an ordering between two tasks, then one must be finished before
another, ∀ti, tj ∈ T and ti 6= tj :

stj ≥ sti + li + (σij − 1)wmax (6.4.3.0.21)

where wmax is defined in (6.4.4.0.37).
For task t1 and t2, if σ1,2 = 1 this constraint says st2 ≥ st1 + l1 which
means task t1 is finished before task t2 starts. And if σ1,2 = 0, this
constraint satisfies with a high value of wmax.

• If two different task allocated on different processor, then one of the pro-
cessor must have larger id than the other, ∀ti, tj ∈ T and ti 6= tj :

pidj ≥ pidi + 1 + (εij − 1)|P | (6.4.3.0.22)

If εij = 1 then pidi < pidj elase this constraint satisfies.

• Two overlapping tasks must be executed in two different processors and if
two tasks are in same processor one of them must be finished before other,
∀ti, tj ∈ T and ti 6= tj :

σij + σji + εij + εji ≥ 1 (6.4.3.0.23)

As an example suppose there are two tasks t1 and t2.

σ1,2 + σ2,1 + ε1,2 + ε2,1 ≥ 1

Condition 1 (t1 and t2 allocated on different processors): then either
pid1 < pid2 or pid2 < pid1 thus one of ε1,2 and ε2,1 becomes 1.

Codition 2 (t1 and t2 are two non-overlapping tasks): either t1 finishes
before t2 or t2 finishes before t1. So one of σ1,2 and σ2,1 becomes 1.

From above we can say, this constraint can not be violated as two over-
lapping task can not be allocated on the same processor.

• Among two different tasks atmost one can be finished earlier,
∀ti, tj ∈ T and ti 6= tj :

σij + σji ≤ 1 (6.4.3.0.24)

For two tasks t1 and t2 this constraint is σ1,2 + σ2,1 ≤ 1. If t1 finishes
before t2 then σ1,2 = 1 and σ2,1 = 0. If t2 finishes before t1 then σ1,2 = 0
and σ2,1 = 1. If t1 and t2 are overlapping then σ1,2 = 0 and σ2,1 = 0.

• Among two different tasks atmost one can be allocated to a processor with
higher id, ∀ti, tj ∈ T and ti 6= tj :

εij + εji ≤ 1 (6.4.3.0.25)

For two tasks t1 and t2 this constraint is ε1,2 + ε2,1 ≤ 1. If pid1 < pid2
then ε1,2 = 1 and ε2,1 = 0. If pid1 > pid2 then ε1,2 = 0 and ε2,1 = 1. If
pid1 = pid2 then ε1,2 = 0 and ε2,1 = 0.

42

• A task can be started only if all the task it depends on are finished.
∀tj ∈ T and ∀ti ∈ D(j) :

σij = 1 (6.4.3.0.26)

If a task ta depends on three tasks tb, tc and td, then execution of ta can
be started only if tb, tc and td finishes. Thus
σba = 1
σca = 1
σda = 1

• If a task tj depends on ti then tj can be started after finish time of task ti
added with the communication latency between them, ∀tj ∈ T and ∀ti ∈
D(j) :

stj ≥ sti + li +
∑
ph∈P

∑
pk∈P

γhkij xihxjk (6.4.3.0.27)

After linearization this constraint can be replaced with a set of constraints,

stj ≥ sti + li +
∑
ph∈P

∑
pk∈P

γhkij q
hk
ij

and ∀ph, pk ∈ P
qhkij ≤ xih
qhkij ≤ xjk
qhkij ≥ xih + xjk − 1

qhkij ≥ 0

For two tasks t1 and t2 to be allocated on two processors, where t2 depends
on t1 the constraint is,
st2 ≥ st1 + l1 + γ1,11,2 q

1,1
1,2 + γ1,21,2 q

1,2
1,2 + γ2,11,2 q

2,1
1,2 + γ2,21,2 q

2,2
1,2

• If task ti is scheduled on processor pk then k is processor ID where ti is
to be executed, ∀ti ∈ T : ∑

pk∈P
kxik = pidi (6.4.3.0.28)

If number of available processors is four then for a task t1,
pid1 = x1,1 + 2x1,2 + 3x1,3 + 4x1,4
this constraint confirms if x1,j = 1, j is the ID of the processor where task
t1 is allocated.

• Each task should be assigned to exactly one processor, ∀ti ∈ T :∑
pk∈P

xik = 1 (6.4.3.0.29)

If number of available processors is four then for a task t1,
x1,1 + x1,2 + x1,3 + x1,4 = 1

43

• Start time of each task must be non negative, ∀ti ∈ T :

sti ≥ 0 (6.4.3.0.30)

• Total number of CPU cycles needed to decode a slice is non-negative.

0 ≤ w (6.4.3.0.31)

• The allocated processor for a task must be in the set of processors; assum-
ing processors have an unique id,

pidi ∈ {1, 2, 3, ..., |P |} (6.4.3.0.32)

• For a task, a processor is either allocated to it or not, ∀ti ∈ T and pk ∈ P :

xik ∈ {0, 1} (6.4.3.0.33)

• ∀ti, tj ∈ T :
σij ∈ {0, 1} (6.4.3.0.34)

• ∀ti, tj ∈ T :
εij ∈ {0, 1} (6.4.3.0.35)

6.4.4 Bounds on Objective:

wmin ≤ w ≤ wmax (6.4.4.0.36)

where,

wmax =
∑
ti∈T

li +
∑

ti,tj∈T
cij max

ph,pk∈P
{dhk} (6.4.4.0.37)

and

wmin = max

{
1

P

n∑
i=1

li, max
i≤n

cp(i)

}
(6.4.4.0.38)

cp(i) =

{
li if task ti has no successor
li + max

i∈D(j)
cp(j) otherwise

6.4.5 Discussion:

This formulation generates a bit higher number of variables and constraints
than the formulation II. But as the constraints are very simple, the time to
solve those constraints is very less.

On the same slice and processors example, This formulation also gives the same
optimized schedule.The number of constraints it generates is 1644 and number
of variables is 633. Time taken to solve these constraints is 6 seconds in a quad
core processor with 4GB of RAM which is much lesser than the previous two
formulations.
The comparison between three ILP formulations is given in table 6.3 taking the
same 4x4 slice and scheduling the macroblocks of this slice in 2 cores.

44

Formulation no. No. of Variables No. of Constraints time to solve (secs)
I 23057 97382 30100
II 515 1168 129
III 633 1644 6

Table 6.3: Comparison Between Three ILP Formulations on an example

6.4.6 Overlapped Slice Partitioning:

In all the above mentioned ILP formulations, we are assuming that the decoded
unfiltered data of a macroblock will remain in the cache of the processor core on
which it was processed; until the complete slice is decoded. But due to limited
size of cache memory this may not happen. This limitation does not affect if we
apply the formulations on slices with smaller number of macroblocks. Therefore
to get a sub-optimal schedule for a larger slice, we can partition it and apply
the formulations on them separately. But this is not enough to get the schedule
for the whole slice. There may be data dependency between macroblocks of dif-
ferent slice partitions, so starting time of a macroblock in a slice partition may
depend on the allocated processor and finishing time of a macroblock which is
in a different slice partition. This problem can be solved by overlapping the
neighbouring slice partitions and adding some extra constraints with the con-
straints of formulation III.

As an example, for a slice of size 5x11 we can partition it into two 5x6 slice
partition, with one overlapped column of macroblocks between them.

t1 t2 t3 t4 t5 t6
t12 t13 t14 t15 t16 t17
t23 t24 t25 t26 t27 t28
t34 t35 t36 t37 t38 t39
t45 t46 t47 t48 t49 t50

t6 t7 t8 t9 t10 t11
t17 t18 t19 t20 t21 t22
t28 t29 t30 t31 t32 t33
t39 t40 t41 t42 t43 t44
t50 t51 t52 t53 t54 t55

If we see these partitions as two different slices it will be look like,

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6
t1,7 t1,8 t1,9 t1,10 t1,11 t1,12
t1,13 t1,14 t1,15 t1,16 t1,17 t1,18
t1,19 t1,20 t1,21 t1,22 t1,23 t1,24
t1,25 t1,26 t1,27 t1,28 t1,29 t1,30

t2,1 t2,2 t2,3 t2,4 t2,5 t2,6
t2,7 t2,8 t2,9 t2,10 t2,11 t2,12
t2,13 t2,14 t2,15 t2,16 t2,17 t2,18
t2,19 t2,20 t2,21 t2,22 t2,23 t2,24
t2,25 t2,26 t2,27 t2,28 t2,29 t2,30

Schedule for the first slice partition can be generated using ILP formulation III.
But to get the schedule for the next slice partition using ILP formulation III,

45

we need to add the information about the schedule we get for the first one. This
can be done by adding some additional constraints, these are:

st2,1 ≥ st1,6 (6.4.6.0.39)

st2,7 ≥ st1,12 (6.4.6.0.40)

st2,13 ≥ st1,18 (6.4.6.0.41)

st2,19 ≥ st1,24 (6.4.6.0.42)

st2,25 ≥ st1,30 (6.4.6.0.43)

∀pk ∈ P : x(2,1)k = x(1,6)k (6.4.6.0.44)

∀pk ∈ P : x(2,7)k = x(1,12)k (6.4.6.0.45)

∀pk ∈ P : x(2,13)k = x(1,18)k (6.4.6.0.46)

∀pk ∈ P : x(2,19)k = x(1,24)k (6.4.6.0.47)

∀pk ∈ P : x(2,25)k = x(1,30)k (6.4.6.0.48)

6.5 Experimental Results:

The results we have get applying ILP formulation III on video streams are pre-
sented in this section. We have applied ILP formulation III and ILP formulation
III with overlapped slice partitioning, on same data slices; and the results for
these two methods are shown below. Using the utilization and speedup achieved
by the methods, we can figure out how effective the generated schedules are. The
time to solve the constraints generating the schedule is also given here for both
the methods.
The results given in the following figures are from applying the scheduling strate-
gies on video stream of resolution 176x144 and frame rate 25fps containing 50
slices of dimension 5x11 (in no. of macroblocks). Number of cores available for
scheduling is taken as four.
Figure 6.1 showing the speedup that can be achieved using the given schedule
constructed by both the strategies for each slice. Figure 6.2 showing the aver-
age of the core utilizations for scheduling macroblocks of each slice. Figure 6.3
showing time to solve the ILPs for different slices using standard tools on a quad
core machine with 8GB of RAM and 15GB swap space.

46

Figure 6.1: Graph comparing speedup achieved by simple ILP formulation III and
ILP formulation III with overlapped slice partitioning using 4 core

Figure 6.2: Graph comparing average processor utilization achieved by simple ILP
formulation III and ILP formulation III with overlapped slice partitioning

47

Figure 6.3: Graph comparing time to get the schedule by simple ILP formulation III
and ILP formulation III with overlapped slice partitioning

48

Chapter 7

Conclusion and
Bibliography

Conclusion

The amount of computation in video processing will increase further in future
standards. The number of processing cores in a computer is also increasing with
days. To bridge them we need good schedulers to make these processing faster.
Our work provides an ILP based optimized scheduling strategy for decoding
H.264 videos in multicore processors. We have shown in an average 2.9 speedup
can be achieved for a video stream. The ILP based scheduler can also be used
to measure the performance of other greedy strategies which is much faster than
this. For slices with higher dimensions we have given a strategy to partition it
and use the ILP based scheduling strategies on each such partitions. So this
scheduling strategy can be applied for decoding videos of various resolutions on
a number of processing cores with good speedup and utilization.

49

Bibliography

[1] Ian E. G. Richardson,H.264 and MPEG-4 Video Compression: Video Cod-
ing for Next-generation Multimedia,WILEY

[2] Jae-Beom Lee, Hari Kalva,The VC-1 and H.264 Video Compression Stan-
dards for Broadband Video Services,Springer

[3] ITU-T Rec. H.264, Version Mar. 2010, Advanced Video Coding for Generic
Audiovisual Services

[4] Ying Yi, Wei Han, Xin Zhao, Ahmet T. Erdogan and Tughrul Arslan ”An
ILP Formulation for Task Mapping and Scheduling on Multi-core Archi-
tectures” Design, Automation & Test in Europe Conference & Exhibition,
2009. DATE ’09.

[5] Meenderinck, C., Azevedo, A., Alvarez, M., Juurlink, B., Ramirez, A.:”
Parallel Scalability of H.264.” In: Proc. First Workshop on Programma-
bility Issues for Multi-Core Computers. (January 2008)

[6] A. Azevedo, B.H.H. Juurlink, C.H. Meenderinck, A. Terechko, J. Hooger-
brugge, M. Alvarez, A. Ramirez, M. Valero, ”A Highly Scalable Parallel
Implementation of H.264,” Transactions on HighPerformance Embedded
Architectures and Compilers (HiPEAC), September 2009.

[7] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J.Hoogerbrugge,
M. Alvarez, A. Ramirez, and M. Valero, ”Parallel H. 264 Decoding on
an Embedded Multicore Processor,” Proceedings of the 4th International
Conference on High Performance Embedded Architectures and Compilers,
Springer, 2008, pp. 404-418.

[8] Jike Chong, N. Satish, B. Catanzaro, K. Ravindran, and K.
Keutzer,”Efficient Parallelization of H.264 Decoding with Macro Block
Level Scheduling,” Multimedia and Expo, 2007 IEEE International Con-
ference on, 2007, pp. 1874-1877.

[9] Shuwei Sun, Dong Wang, and Shuming Chen, ”A highly ef̈ıň ↪Acient par-
allel algorithm for H.264 encoder based on macro-block region partition,”
Lecture Notes In Computer Science, pp. 577âĂŞ585, 2007.

50

[10] Sihn, K., Baik, H., Kim, J., Bae, S., Song, H.: Novel approaches to par-
allel H. 264 decoder on symmetric multicore systems. In: Proceedings of
the 2009 IEEE International Conference on Acoustics, Speech and Signal
Processing-Volume 00, IEEE Computer Society (2009) 2017âĂŞ2020

[11] Ahmet GÃijrhanl, Charlie Chung-Ping Chen, Shih-Hao Hung, ”GOP-
Level Parallelization of the H.264 Decoder without a Start-Code Scanner,”
2nd International Conference on Signal Processing Systems (ICSPS), 2010

[12] Mauricio Alvarez Mesa, Alex RamìI ↪Arez, Arnaldo Azevedo, Cor Meender-
inck, Ben Juurlink, Mateo Valero, ”Scalability of Macroblock-level Paral-
lelism for H.264 Decoding,” icpads, pp.236243, 2009 15th International
Conference on Parallel and Distributed Systems, 2009

[13] http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/

51

