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Abstract

Piercing problems often arises in facility location, and is a well-studied area
of research in computational geometry. The specific piercing problem discussed
in this dissertation asks for the minimum number of points required to stab a
set of possibly overlapping rectangles. In other words, to determine the mini-
mum number of facilities and their positions such that each rectangular demand
region contains at least one facility located inside it. It is already proved that
even if all regions are uniform sized squares, the problem is NP-hard. There-
fore we concentrate on designing efficient heuristic algorithms for solving this
problem. In this dissertation we do experimental studies of the piercing prob-
lem on randomly generated axis-parallel rectangles. We have implemented two
approaches for piercing on random rectangles generated in a random manner
(i) Greedy approach (ii) Divide-and-Conquer approach and compared the two
results. We have also studied the computation of maximum independent set
and minimum clique cover problems and plotted the ratio of minimum clique
cover and maximum independent set for a set of n rectangles for different values
of n. It is observed that Greedy Clique Cover is a 2 factor approximation of the
Maximum Independent Set problem for randomly generated rectangles.
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Chapter 1

Introduction

1.1 Introduction

Computational Geometry is a fascinating branch of computer science de-
voted to the study of algorithms for solving geometric optimization and search
problems. The main impetus for the development of computational geometry as
a discipline was progress in computer graphics and computer-aided design and
manufacturing (CAD/CAM), .Other important applications of computational
geometry include robotics (motion planning and visibility problems), geographic
information systems (GIS) (geometrical location and search, route planning), in-
tegrated circuit design (IC geometry design and verification), computer-aided
engineering (CAE) (programming of numerically controlled (NC) machines).

1.2 The Rectangle Intersection Graph

Geometric intersection graphs are intensively studied in the literature. A ge-
ometric intersection graph G(V,E) is defined with a set of geometric objects.
Usually, the vertices correspond to the geometric objects; an edge eij ∈ E be-
tween a pair of nodes vi, vj ∈ V implies that the objects corresponding to vi
and vj intersect. The problems on geometric intersection graphs are studied for
their interesting theoretical properties, and for the practical motivations. Many
such graph classes allow elegant characterizations. Different graph-theoretic
optimization problems, which are usually NP-hard for arbitrary graphs, can be
solved in polynomial time for some geometric intersection graphs. There are
many optimization problems which remain NP-hard for the geometric intersec-
tion graphs also. The following figure shows an example of rectangle intersection
graph.

Any graph G = (V,E) can be represented as the intersection graph of a set
of axis-parallel boxes in some dimension. The boxicity of a graph with n nodes
is the minimum dimension d such that the given graph can be represented as
an intersection graph of n axis parallel boxes in dimension d.

A graph has boxicity at most one if and only if it is an interval graph. Every
outerplanar graph has boxicity at most two, and every planar graph has boxicity
at most three. If a bipartite graph has boxicity two, it can be represented as an
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Figure 1.1: An example of Rectangle Intersection Graph

intersection graph of axis-parallel line segments in the plane. Given an arbitrary
undirected graph G, testing whether the boxicity of G is a given constant k is
NP-complete even if k = 2 .

The intersection of a pair of objects is defined depending on the problem
specification. For example, sometimes proper containment is considered to be
an intersection and sometimes it is not. Here two types of problems are usually
considered: (i) characterization problems, and (ii) solving some useful optimiza-
tion problems. In the characterization problem, given an arbitrary graph, one
needs to check whether it belongs to the intersection graph of a desired type of
objects. The second kind of problem deals with designing efficient algorithms
for solving some useful optimization problems for an intersection graph of a
known type of objects. It needs to be mentioned that several practically useful
optimization problems, for example, finding the largest clique, minimum vertex
cover, maximum independent set, etc. are NP-hard for general graph. There are
some problems for which getting an efficient approximation algorithm with good
approximation factor is also very difficult. In this area of research, the geomet-
ric properties of the intersecting objects are used to design efficient algorithms
for these optimization problems. The characterization problem is important
in the sense that for the intersection graph of some types of objects, efficient
algorithms are sometimes already available for solving the desired optimization
problem.

Let us first consider the interval graph, which is the simplest type of geomet-
ric intersection graph. This is obtained by the intersection of a set of intervals
on a real line. The characterization problem for the interval graph can easily be
solved in O(|V | + |E|) time by showing that the graph is chordal and its com-
plementary graph is a comparability graph. All the standard graph-theoretic
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optimization prob- lems, for example, finding minimum vertex cover, maximum
independent set, largest clique, minimum clique cover, minimum coloring, etc,
can be solved in polynomial time for the interval graph.

1.3 Geometric Packing

The general geometric packing problem asks for finding the largest sub-collection
of objects among a given collection of objects in Rd such that no two objects in
the sub-collection intersect. The number of objects in the largest sub-collection
is called the packing number. In general the piercing number is at least as large
as the packing number and in many cases approximation results for the packing
problem carries over to the piercing problem. The packing problem may also
be viewed from an alternative point of view: given a collection of place-holders
of known geometric shapes and a corresponding collection of objects that fit
the placeholders, we want to place as many objects as possible in appropriate
placeholders in a non-intersecting fashion. A typical application conforming to
this interpretation is found in map labeling, where non-intersecting rectangular
labels are to be placed on a map with fixed points so that each point becomes
a corner of one of the labels. This is a special case of the planar geometric
packing problem involving rectangles. The general planar geometric packing
problem allows arbitrarily shaped objects in 2D space R2 .The following figure
shows an example of Planar Rectangle Packing where the dotted rectangles
refers to the rectangle set in which no two rectangle intersect.

Figure 1.2: An example of the Planar Rectangle Packing

The combinatorial analogue for geometric packing is the set packing prob-
lem which is defined in the same manner: given a collection of sets, find a
sub-collection with the maximum number of sets such that the sets in the sub-
collection are pairwise disjoint. In the graph-theoretic formulation, the geo-
metric packing problem actually seeks the maximum independent set in the
intersection graph. The maximum independent set problem asks for a subset,
of maximum cardinality, of vertices such that no two vertices in the set are
adjacent. In this thesis. we will consider the maximum independent set of
rectangles. The problems is NP-Hard. Thus the main focus here is getting a
good polynomial time approximation algorithm for this problem. If the rectan-
gles are arbitrary, then O(log log n) factor approximation algorithm is recently
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proposed by Parinya Chalermsook et al. If the rectangles are of unit height a
2-approximation algorithm runs in O(n log n) time.

1.4 Geometric Covering

For a collection of n given points in d-dimensional space Rd , and the description
of an object R, the general geometric covering problem asks for a set of those
copies of R such that each point is contained in at least one object, and the
cardinality of the set is minimum. For d = 2, the problem is known as planar
geometric covering problem. The covering problem is related to both packing
and piercing problems. In a covering problem, the objects usually are of similar
shape or property, e.g., all objects are rectangles or all objects are disks. The
objects can be non-convex as well. The following shows an instance of planar
geometric covering with squares. The lines indicate square boundaries used for
the cover.

Figure 1.3: Covering with squares in 2 dimensions

Geometric covering is analogous to the well known set cover problem : given
a finite set S and a collection C of subsets of S such that each element of S is
contained in at least one of the subsets in C, we have to choose the minimum
number of subsets in C such that each element of S is contained in at least one
of the chosen subsets. A graph representing an instance the geometric covering
problem is different from an intersection graph. In such a representation a vertex
usually represents a point and two vertices are considered adjacent if they can
be covered by the same object. Sometimes a graph representation is difficult
to produce, as different sized objects impose different adjacency relationship
between the same pair of vertices. For instances where such a representation
can be formed, the covering problem reduces to a minimum clique cover problem
as the piercing problem does.

In this thesis we consider the problem in the context of covering points with
axis-parallel rectangles. If the covering rectangles are all of same description R,
then the problem can be formulated as follows : For each point p ∈ P , put a
rectangle of type R with p at its top-left corner. Thus we have a set of (possibly
intersecting) rectangles of same size R. Now we need to find the minimum
clique cover C of the corresponding rectangle intersection graph. For each clique
X ∈ C, we put a rectangle with its bottom right corner at the common region
of intersection of the members in X. Finding the minimum clique cover in a
rectangle intersection graph of equal-sized rectangles is NP-Hard and 2-factor
approximation is easy to set.
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1.5 Maximum Independent Set of Rectangles

The Maximum Independent Set of Rectangles (MISR) problem can be stated
as follows: given a collection R of n axis- parallel rectangles, find a maximum-
cardinality subset of disjoint rectangles. The heavy rectangles in the following
figure represents the maximum independent set of the rectangles. MISR is a
special case of the classical Maximum Independent Set Problem, where
the input is restricted to intersection graphs of axis-parallel rectangles. Due
to its many applications, ranging from map labeling to data mining, (MISR)
has received a significant amount of attention from various research communi-
ties. Since the problem is NP- hard, the main focus has been on the design of
approximation algorithms.

Figure 1.4: A demonstration of MISR
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1.6 Maximum Clique of Rectangles

Though the minimum clique cover of rectangle intersection graph is NP-Hard,
finding the largest clique can be solved in polynomial time.

A clique in a set of rectangles R is a subset of R in which for any 2 rectangles
there exists an intersection between them. A clique C is said to be a maximal
clique if it is not a subset of any other clique. We can state the Maximum Clique
of Rectangles problem as : given a collection of R of n axis-parallel rectangles,
find the maximum-cardinality subset C of R such that for any 2 rectangles in
C there exists an intersection between them. In the following figure, the black
square dot represents the area where maximum clique has formed. The other
circular dots represents the maximal cliques.There can be at most O(n2) number
of cliques in a rectangle intersection graph, where n is the number of rectangles.

Figure 1.5: Maximum Clique Illustration

1.7 The Piercing or Stabbing Problem

A Piercing Set for n given objects in d-dimensional space Rd is a set of points
such that each object contains at least one of the points in the set. The minimum
cardinality of a piercing set is known as the Piercing Number. The general
Piercing Problem asks for finding the piercing number of n given objects in
Rd . The piercing problem is sometimes termed as the Stabbing Problem as
well. However stabbing problems may also consider the given objects by some
specific geometric objects for example, lines. In our discussion, we shall restrict
ourself to the axis-parallel rectangles of arbitrary sizes only.

The combinatorial counterpart of the piercing problem is the Hitting Set
problem. The hitting set problem can be stated as : Let C be a collection of
subsets of a set U , find a subset X ⊆ U , with minimum cardinality such that
for any subset Y in C, Y ∩X 6= ∅. The piercing problem can be cast in a graph-
theoretic setting as well. An intersection graph of the given objects is formed
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by mapping each object to a different vertex and placing an edge between two
vertices if the corresponding objects intersect, i.e., have at least one point in
common. The piercing problem thus mapped to finding the minimum geometric
cover of that intersection graph.

A Clique in a graph is a subgraph in which every pair of vertices are adjacent
(i.e., connected by an edge) and a Clique Cover of a graph is a set of cliques
such that each vertex is contained in at least one of the cliques. The piercing
problem thus asks for a clique cover of the minimum size in the intersection
graph.

Figure 1.6: An example of the Piercing Set

1.8 Motivation for the Piercing Problem

The piercing problem has applications in facility location. In typical facility
location problems, a collection of demand points, a parameter p and a distance
function are given. The objective is to find a set of p supply points or facilities
so that the maximum distance between a demand point and its nearest facil-
ity is minimized. This formulation is widely known as the p-center problem.
The piercing problem addresses a different formulation of the facility location
problem: given a set of demand regions and probable locations for facilities,
the objective is to minimize the number of facilities to be established so that
all demands are served. There is also another form of piercing problem known
as the p-piercing problem. The number of points, p, to be used for piercing is
given in advance, and the p-piercing problem asks to decide whether the set of
given objects can be pierced using p points. However, the values of p for which
solutions exist are usually very small.
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1.9 Interval Piercing

The interval piercing problem is the one-dimensional case of the rectangle pierc-
ing problem. The well-known algorithm for finding the piercing number of a set
of given intervals is quite simple and works in a greedy manner. The intervals
are sorted by their right endpoints for convenience. The algorithm then chooses
the leftmost right endpoint as the first piercing point and removes the intervals
pierced by the point. The process of finding the leftmost right endpoint among
the remaining intervals and removal of intervals pierced by it is repeated until
no interval is left for piercing. The number of piercing points selected in this
manner is optimum and is reported as the piercing number. The process of
identifying the leftmost right endpoint and removal of intervals can be done in
a single scan over the sorted list of intervals. For n intervals the scan takes only
O(n) time. The overall time is O(n log n) due to time required for presorting
the intervals according to right endpoints. The algorithm can proceed in a right
to left direction as well with the intervals sorted according to the left endpoints
and the rightmost left endpoints chosen iteratively as piercing points. In the
following figure, the vertical dashed lines represents the positions at which the
intervals are optimally pierced.

x1
x2

Figure 1.7: An example of Interval Piercing

1.10 The Complexity of Piercing

The covering problem was the first to receive attention. Tanimoto and Fowler
investigated the problem of 2-dimensional covering with squares in the context
of image processing: find the minimum number of square patches for storing
information such that all points with information are contained in at least one
of the patches. However, they advocated the use of heuristics, because even for
the very special case of axis-aligned squares, the decision version of the covering
(and packing) problem has been shown to be NP-complete by Fowler et al.. The
proof is by reduction from the well known 3-SAT problem. The optimization
versions of the problems are consequently NP-hard. The complexity result of
the covering problem for axis-aligned squares easily carries over to piercing axis-
aligned squares in the plane by a simple transformation: consider the points in
the covering problem as the center of the axis-aligned squares in the piercing
problem and replace the covering squares with their center points. The center
points become a piercing set for the newly formed squares. Thus the piercing
problem for axis-aligned identical squares in the plane is also NP-hard. More
generally, the piercing problem for axis-aligned hyperrectangles in Rd is NP-
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hard whenever d ≥ 2. The one dimensional case involving intervals can be
solved optimally in polynomial time as shown previously.

1.11 Related Works

The axis-parallel rectangles is always a point of great interest in the field of
algorithms. For the Maximum Independent Set of Rectangles (MISR) prob-
lem, Parinya Chalermsook and Julia Chuzhoy gave O(log log n) approximation
algorithm in their paper Maximum Independent Set of Rectangles. They also
considered a generalization of MISR to higher dimensions, where rectangles are
replaced by d-dimensional hyper-rectangles. Hiroshi Imai and Takao Asano in
their paper Finding the Connected Components and a Maximum Clique of an
Intersection Graph of Rectangles in the Plane presented two problems on inter-
section graphs of rectangles in the plane. One is an O(n log n) algorithm for
finding the connected components of an intersection graph of n rectangles. This
algorithm is optimal to within a constant factor. The other is an O(n log n)
algorithm for finding a maximum clique of such a graph. They also showed that
the k-colorability problem on intersection graphs of rectangles is NP-complete.
In the paper Fast stabbing of boxes in high dimensions by Frank Nielsen we can
find a simple and efficient algorithm for stabbing a set I of n axis-parallel boxes
in d-dimensional space with c(I) points in output-sensitive time O(dn log c(I))
and linear space.
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Chapter 2

Our Approach

2.1 Maximum Clique Algorithm using Horizon-
tal Line Sweep

The method of Line Sweep is very widely used in the field of Computational
Geometry. In computational geometry, a sweep line algorithm or plane sweep
algorithm is a type of algorithm that uses a conceptual sweep line or sweep
surface to solve various problems in Euclidean space. It is one of the key tech-
niques in computational geometry. The idea behind algorithms of this type is
to imagine that a line (a vertical or horizontal line) is swept or moved across
the plane, stopping at some points. Geometric operations are restricted to geo-
metric objects that either intersect or are in the immediate vicinity of the sweep
line whenever it stops, and the complete solution is available once the line has
passed over all objects.

The key idea is to scan a horizontal sweep-line across the axis-parallel rect-
angles from the topmost rectangle to the lowest one. Successive positions of the
sweep-line are determined by the y-coordinates of the top and bottom sides of
the rectangles sorted in descending order according to the y-coordinate which
we may call as events. Before presenting the algorithm formally, we describe a
brief outline of it. Initially, we have one empty list. At every step of the algo-
rithm we maintain a list (Sweep Line Status list) of current active rectangles by
storing its horizontal interval in a list sorted according to x-coordinate. Also, in
the list we maintain a integer count that says the number of rectangles overlap
on that interval at the current position of the sweep line.

We shall define a rectangle to be inactive if the current sweep line does not
intersect it otherwise we shall say the rectangle to be active.

Whenever we meet a top boundary, we mark this rectangle as active. Let
I = [α, β] be the corresponding interval. We identify the set of intervals I1...Im
in the list with which I overlaps. Note that I1 contains α and Im contains β.
I1 = [φ1, ψ1] is split into two parts I ′1 = [φ1, α], I ′′1 = [α,ψ1] and Im = [φ2, ψ2]
is split into two parts I ′m = [φ2, β], I ′′m = [β, ψ1]. The count field of I ′1 will
remain same as that of I1 , I ′′1 will be one more than that of I ′1, I ′′m will remain

14



same as that of Im and I ′m will be one more than that of I ′m. For all intervals
I2, ..., Im−1, the count will be increased by 1.

There are many intricate and special cases where we need to handle them
specially. Details of these cases shall be discussed later in this report.

Now we come to the case when we meet a bottom boundary of a rectangle.
Firstly, we mark the rectangle to be inactive. Now if we do a careful observation
we find that we must have one interval whose left x-coordinate is equal to the
left x-coordinate of the current rectangle. Let the interval be [xi, xj ]. Since
the rectangle is leaving from the set of current active rectangles, we merge the
interval with the left interval. Similarly, we perform such work while handling
the right boundary. As we have pointed before, we postpone the discussions of
the intricate and special cases until we present the formal algorithm. We also
adjust the count of the intervals accordingly. Next we take a point just above
the lower boundary and find the set of active rectangles that contain the point.
These set of rectangles forms a maximal clique and we store its size. Finally we
report the largest clique.

From now on, by rectangle incident on an interval, we mean that the hor-
izontal interval of the rectangle and the interval have a common intersection
interval.

2.1.1 The Maximum Clique Algorithm

As we have pointed before, the underlying idea is the basic line sweep method-
ology. Since in due course of line sweep we need to maintain the current list
of x-intervals of the active rectangles, Doubly Linked List can be of great
help for two reasons. Firstly, it is a dynamic data structure where we can
add or delete intervals during the line sweep. Secondly, we can do the update
operations efficiently. Other data structures may also work well but3 for our
experimental simplicity we have opted for this data structure. The algorithm
works in polynomial time.

In each node of the doubly linked list we maintain seven fields to denote the
current status of the interval corresponding to the node.

1. Left : Stores the left boundary of the interval

2. Right : Stores the right boundary of the interval

3. Prev : Points to the previous interval in the list

4. Next : Points to the next interval in the list

5. Count : Stores the number of rectangles incident on this interval

6. RecEndCountL : Stores the number of rectangle (left/right) boundary
that intersected the left end of this interval

7. RecEndCountR : Stores the number of rectangle (left/right) boundary
that intersected the right end of this interval

15



When we encounter a top boundary during line sweep, there can arise twelve
different cases as shown in the following figures. The upper line is an interval
from the list of intervals we maintain during sweep. The rectangle below it is
the rectangle whose status is going to change from inactive to active. When we
encounter the lower boundary, we merge or adjust the node fields accordingly.
For each interval in the list, we check each of the following cases and act ac-
cordingly. Algorithm 1 presents pseudocode of finding maximum clique in the
rectangle intersection graph. Here, N(i, j) denotes the node that corresponding
to the interval [i, j]. At every instant the list is maintained as sorted according to
x-coordinate of the intervals i.e if N(i, j) and N(k, l) be two nodes and j <= k,
then N(i, j) must be present before N(k, l) in the list. When we mention insert
a node in the list, the node has to be inserted at the appropriate position in the
list and its fields are to be adjusted accordingly. The regular adjustments of the
fields of a node are not shown to make the pseudocode more friendly towards
basic conception rather than focusing at actual implementation.

2.1.2 The 12 cases in processing a top boundary

x1 x2

xi xj

Case 1

x1 x2

xi xj

Case 2

Case 3

xi xj

x1
x2

xi

x2

Case 4

xj

x1

x1 x2 x1 x2

xi xixj xj

Case 5 Case 6

x1 x2

xi xj xi xj xk xl

x1 x2

Case 7 Case 8

Figure 2.1: Maximal Clique Analysis : Case 1-8
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x1 x2

xi xj

x1x2

xi xj

Case 9 Case 10

Case 11 Case 12

x1 x2 x1 x2

xi xj xi xjxi

Figure 2.2: Maximal Clique Analysis : Case 9-12
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Algorithm 1 Maximum Clique Algorithm for Axis-Parallel Rectangles

procedure MaxClique(R)

sort the horizontal boundaries, both upper and lower according to
y-coordinate and store it in an array H;

create one empty list;
MaxClique← φ; SizeMaxClique← 0;

for each boundary (x1, x2) ∈ H do
if (x1, x2) an upper boundary of the rectangle r then

Change the status of the rectangle r from inactive to active;

if list is empty then
insert N(x1, x2) in the list;
continue;

end if

for each interval node in the list do

Case 1 if (xi = x1) ∧ (xj = x2) holds true
increment the count of the N(xi, xj);

Case 2 if (x1 < xi) ∧ (xi < x2 < xj) holds true
if N(xi, xj).P rev is empty or N(xi, xj).P rev.Right < x1
insert a newnode N(x1, xi) in the list;

Case 3 if (xi < x1 < x2 < xj) holds true split the node
N(xi, xj) into three nodes - N(xi, x1), N(x1, x2) and N(x2, xj);

Case 4 if (x1 < xi < xj < x2) holds true split the node
increment the count of the N(xi, xj). If N(xi, xj).P rev
is empty then insert N(xi, x1) else adjust fields of
N(xi, xj).P rev accordingly. If N(xi, xj).Next is empty
insert N(x2, xj) else N(xi, xj).Next accordingly;

Case 5 if (xi = x1 < x2 < xj) holds true
split N(xi, xj) into N(xi, x2) and N(x2, xj);

Case 6 if (xi < x1 < x2 = xj) holds true
split N(xi, xj) into N(xi, x1) and N(x1, xj);
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Algorithm 2 Maximum Clique Algorithm for Axis-Parallel Rectangles Part 2

Case 7 if (xi < x1 < xj < x2) holds true
split N(xi, xj) into N(xi, x1) and N(x1, xj).
If N(xi, xj).Next is empty insert N(xj , x2);

Case 8 if the interval x1, x2 comes in between two
intervals N(xi, xj) and N(xk, xl), then insert
a new node N(x1, x2) in the list;

Case 9 if N(xi, xj).P rev is empty and x2 < N(xi, xj).Left
insert a new node N(x1, x2) in the list;

Case 10 if N(xi, xj).Next is empty and N(xi, xj).Right < x1
insert a new node N(x1, x2) in the list;

Case 11 if (xi = x1 < xj < x2) holds true
increment N(xi, xj).Count and insert N(xi, x2) if
N(xi, xj).Next ie empty;

Case 12 if (x1 < x2 < xj = x2) holds true
increment N(xi, xj).Count and insert N(x1, xi) if
N(xi, xj).P rev ie empty;

end for
else if (x1, x2) is lower boundary then

take a point just above the boundary and find the set of active
rectangles Y that contain the point;

if |Y | > SizeMaxClique , then SizeMaxClique← |Y | and
store the clique in MaxClique;

decrement the Count of the nodes with which (x1, x2) overlaps;

merge two intervals N(xi, xj) and N(xj , xk) if
N(xi, xj).RecEndCountR == N(xj , xk).RecEndCountL == 0;

if Count of any node becomes zero, delete the node from the list;
end if

end for
return MaxClique;

end procedure
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2.2 The Greedy Clique Cover Algorithm

In this section we present a simple approach to obtain the clique cover of a set
of axis-parallel rectangles. This algorithm calls the maximum clique algorithm
as discussed in previous section. Let ADJ(C) of a maximal clique C denotes
the set of all rectangles Ri that forms the clique C. Now the algorithm goes as
follows.

Algorithm 3 Greedy Clique Cover Algorithm for Axis-Parallel Rectangles

procedure GreedyCliqueCover
1. Initially GCC is empty and R contains all rectangles;
2. Use Algorithm 1 to compute a clique C of maximum cardinality;
3. Stab all the rectangles in C by a pin p;
4. Set R = R\ADJ(C) and GCC = GCC ∪ p;
5. Repeat Step 2 and 3 recursively until R is empty;
6. Return GCC which is the stabbing set of R;

end procedure
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2.3 Finding maximum Independent Set of the
Rectangles

Here, we have implemented the brute force approach described by Wagner et
al. The approach is based on finding simplicial-rectangles. Let us consider an
ordering of rectangles R1, ..., Rn. A rectangle Ri is said to be simplicial if all the
neighbors of Ri denoted by N(Ri), R1..., Ri−1 forms a clique. Two rectangles
will be said to be neighbors of each other if they intersects. Let N(Ri) denotes
the set of all neighbors of a rectangle Ri. The following algorithm returns the
Maximum Independent Set (MIS) of our input axis-parallel rectangles.

Algorithm 4 MIS Algorithm for Axis-Parallel Rectangles

procedure MISR(R)
1. Initially MIS is empty and R contains all rectangles;
2. If there is any simplicial-rectangle Ri ∈ R then set MIS = MIS ∪Ri

and R = R\(Ri ∪N(Ri)), else delete Rj ∈ R with max(|N(Rj)|) (The
part in else gets executed iff there is no simplicial-rectangle and R 6= φ).
3. Repeat Step 2 recursively until R is empty.
4. return MIS

end procedure
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2.4 Divide and Conquer Algorithm for Interval
Stabbing

The methodology consists in applying the traditional Divide-And-Conquer
strategy to the set of intervals I = {[a1, b1], ..., [an, bn]}. However, it differs
from the traditional Divide-And-Conquer by filtering the recursive subsets.
The algorithm mentioned below returns an optimal stabbing point set P of I .
The algorithm is output-sensitive in nature. The running time complexity is of
O(n log c) where c is the size of the stabbing set. Also the algorithm uses linear
space.

Algorithm 5 Divide-and-Conquer for Interval Stabbing

procedure DandCI(I )
if n = 1 then

return P = {a1};
else

if {a1 = a2 = ... = an} then return a1;
compute median m of {a1, ..., a2};
Ir ← {[ai, bi]|ai ≥ m};
Il ← I \Ir;
Pr ← DandCI(Ir);
q ← min Pr be the leftmost stabbing point of Ir;
I ′l ← {[ai, bi]|bi < q};
Pl ← DandCI(I ′l );
return P ←Pr ∪Pl;

end if
end procedure
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2.5 Divide and Conquer Algorithm for Rectan-
gle Stabbing

For axis-aligned boxes or hyperrectangles in d-dimensional space, Nielsen pro-
vides an algorithm for piercing based on a simple divide-and-conquer approach.
The algorithm computes a median axis-aligned hyperplane and partitions the
set of input hyperrectangles into three sets — one set consisting of the hyper-
rectangles intersected by the hyperplane, the second one consisting of hyper-
rectangles lying entirely in one halfspace determined by the hyperplane and
the remaining set con- sisting of hyperrectangles lying in the other halfspace.
The piercing problem for the first set reduces to a piercing problem involving
(d− 1)-dimensional hyperrectangles defined by the median hyperplane. Recur-
sive solutions are computed for the latter two sets. The base case is the interval
stabbing problem and is solved optimally. The running time of the algorithm
is O(n logd−1 n) In this section, we have modified the Divide-And-Conquer
algorithm by Nielsen for stabbing n-dimensional boxes to work for axis-parallel
rectangles.which is much better than the ε-approximation schemes. However,
the approximation factor achieved is O(logd−1 n).

Algorithm 6 Divide-and-Conquer for Rectangle Stabbing

procedure StabRectangles(R)
I (x) ← set of x-coordinate intervals of all rectangles;
Px(I )← DandCI(I (x)) ;
Sort Px(I );
procedure DandCR(R)

select the value m of the median stabbing point of x-intervals of R
using Px(I );
Hm ← (x = m);
R1 ← rectangles that do not cross Hm and are to the left of Hm;
R2 ← rectangles that do not cross Hm and are to the right of Hm;
Rm ← rectangles intersecting Hm;
if |Px(R1)| >= 1 then call Pl ← DandCR(R1);
if |Px(R2)| >= 1 then call Pr ← DandCR(R2);
Stab the rectangles of Rm by piercing the y-coordinate intervals
R′m, call Pm ← DandCI(R′m);
return P ←Pl ∪Pr ∪Pm;

end procedure
end procedure
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Figure 2.3: Our implementation for the Divide and Conquer Rectangle Stabbing
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Chapter 3

Experimental Results

3.1 Experimental Steps Carried Out

1. We have generated a set of n random rectangles in a 1000000 x 1000000
grid for different values of n (5,50,75,100,200,300,400,500,600,700,800,900,
1000). For each value in the set of n and we have computed the following
parameters under study.

(a) Maximum Clique

(b) Greedy Clique Cover (GCC)

(c) Maximum Independent Set (MIS)

(d) Clique Cover computed using Divide and Conquer strategy (DCC)

2. We have reported average of 20 results for each parameter.

3. Finally we have plotted the ratio |GCC|/|MIS| for different values of n.

Figure 3.1: The Comparison between the approaches.
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Figure 3.2: Plot of |GCC|/|MIS|

n |GCC| |MIS| R = |GCC|/|MIS|
5 2.8500 3.3000 0.8636
50 13.3000 11.9000 1.1176
75 18.3500 15.1000 1.2152
100 21.4500 18.9000 1.1349
200 32.5500 27.4000 1.1880
300 42.1000 35.8500 1.1743
400 49.1500 40.1500 1.2242
500 56.7000 43.9500 1.2901
600 61.7000 51.5000 1.1981
700 69.1000 54.2500 1.2737
800 73.8500 59.1000 1.2496
900 79.0500 60.9000 1.2980
1000 83.35 63.8500 1.3054

Figure 3.3: Performance measurement of our Greedy Approach
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n |DCC|
5 3.5000
50 20.1500
75 26.0000
100 30.8000
200 48.1500
300 62.9500
400 76.8000
500 85.4000
600 94.9500
700 103.9500
800 114.5500
900 128.8500
1000 137.0000

Figure 3.4: Performance measurement of our Divide-And-Conquer Approach

3.2 Conclusion

Figure 3.1 shows the performance of GCC and DCC for different values of n.
Finally we have observed that the ratio of the size of the clique cover and
maximum independent set for a set of n randomly generated rectangles is less
than 2 for reasonable values of n.

Plot 3.2 suggests that GCC
MIS ≤ 2 for almost all values of n when the rectangles

are generated randomly. Also, MIS∗

CC∗ ≤ 1. In other words, MIS∗ ≤ CC∗ ≤
CC ≤ 2 ×MIS ≤ 2 ×MIS∗. Thus, GCC is a 2 factor approximation of the
MIS problem for randomly generated rectangles.

Again CC∗ ≥ MIS∗ ≥ MIS ≥ GCC
2 ≥ CC∗

2 . Thus, any solution for the
MIS problem is a 2 factor approximation of the minimum clique cover problem
for randomly generated rectangles.

3.3 Future Scope

The experiment can further be extended to geometrical objects which can be
generated randomly. The same ratio may be observed in those type of geometric
objects as we did in this dissertation.
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