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Chapter 1

Introduction

Our perceptual system has the ability to reconstruct the shape of objects
from sparse partial data. The way how the brain does this led the pattern
recognition researchers to data condensation problem. However such a task
is very difficult to accomplice by a visually challenged person. They don’t
have the ability to match pairs of points on the same vertical or horizontal
line. They use a is a tactile writing system called Braille system created
by Frenchman Louis Braille. This system is used for books, menus, signs,
elevator buttons, and currency. Braille-users can read computer screens and
other electronic supports thanks to refreshable braille displays. They can
write braille with the original slate and stylus or type it on a braille writer,
such as a portable braille note-taker, or on a computer that prints with a
braille embosser. This is the way to encode alphabetic symbols. However
expressing non-textual information such as maps, paintings, graphs and di-
agrams to a blind person is a challenging problem. This is done by Tactile
Maps. These are images that use elevated surfaces so that a visually im-
paired person can feel them. But this technique is costly. An easier way of
doing this is to put some elevated dots along the edges of the diagrams so
that they can touch and connect the elevated dots to reconstruct the under-
lying geometric shape. If the elevated dots are placed close enough along an
edge, reconstruction by perception can be made unambiguous. Our problem
determines the necessary number of elevated dots and their positions. This
leads to a solution for manufacturing cheap Tactile/Braille maps, which can
be used for depicting necessary floor-plans in public places or for teaching in
classrooms for visually challenged people. We will refer to this problem as
an unlabeled version of connect-the-dots.
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1.1 Problem Definition

Let P be a collection of orthogonal polygons P1, P2, . . . , Pn. Our algorithm
produces V , an irredundent set of points lying on the boundaries of the
polygons that captures the underlying geometric continuity and the neigh-
bourhood relations defining the boundaries of the polygons. In this article
by orthogonal polygon, we mean a polygon whose edges are parallel to either
x-axis or y-axis.

1.2 Related Previous works

In 1964 Hugo Steinhaus [1] posed the following problem. Consider a set S of
n (≥ 3) points in the plane such that no three of them lie on the same straight
line. Is it always possible to find a closed polygon with n non-intersecting
sides whose vertices are these n points? Then he proceeded to give a clever
proof by induction that this is true. His proof removes an extreme point
p of S and, by induction, assumes that the remaining n − 1 points admit
such a polygon. Next, an edge e of this polygon that is completely visible
from p is found, p is connected to the endpoints of e and e is removed. A
direct implementation of this proof yields an O(n log n) time algorithm for
constructing the required polygon.

Independently, in 1966 Michael Gemignani [2] posed the following similar
problem: given n (≥ 3) points in the plane, not all lying on the same line,
are they the vertices of a simple closed polygonal chain and, if so, produce
a witness, i.e., construct one. Note that the problem posed by Gemignani
is more general than the version posed by Steinhaus, since Gemignani as-
sumes only that not all the points are collinear, whereas Steinhaus assumes
no three points are collinear. Gemignani’s proof yields immediately an algo-
rithm that runs in O(n log n) time, which is optimal since Shamos [5] proved
an Ω(n log n) lower bound on this problem.

Since then several mathematicians have provided alternate proofs (Quin-
tas and Supnick [3], and Grnbaum [4]). This is now a well known result
in computational geometry. In fact this problem has often been tackled in
computational geometry as a stepping stone to solving other problems. For
example, in 1972 Ron Graham [6] proposed a simple optimal O(n log n) time
algorithm for computing the convex hull of S by first computing a star-shaped
polygonization of S.
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1.3 Motivation

1.3.1 Reconstructing Polygons from Scanner Data

Scanners are used in many applications, e.g., to capture objects on a plat-
form, looking down to capture terrain. In addition to point coordinates,
different scanners may be able to provide surface labels, normals, or unob-
structed segments of scanned rays. The problem of reconstructing a surface
from a set of data points has been studied for both theoretical and practical
interests. Theoretical solutions can provably reconstruct the original surface
when the samples are sufficiently dense relative to local feature size. Various
solutions to this problem handle noisy data and often incorporate additional
information along with the point coordinates, such as estimated normals.
Reconstructing the 2D floor-plan of a room from different types of scanned
data, specifically whether knowledge about the geometry (monotonicity, or-
thogonality) or topology (connectedness, genus) of the room allows efficient
reconstruction from less dense data.

1.3.2 Robotics

Today there are several tasks which are performed by autonomous robots.
How powerful do the sensors and movement capabilities of a robot need to be
for a given problem? From a theoretical point of view, trying to answer this
question leads to a better insight of both the essential difficulty of the problem
at hand and of the inherent power of different sensors. From a practical point
of view, investigating the question might enable us to replace sophisticated
robot designs with cheap and robust counterparts that can more easily be
produced in masses. In military applications, an important problem is to
draw a map by a robot in an unknown environment. So, here the problem
is how many markers do we need so that a robot which can only sense the
nearest marker can walk around the edges of a polygonal map.
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Chapter 2

Problem Formulation

A simple polygon is a polygon whose two edges never intersect other than the
vertices. Our problem deals with simple orthogonal polygons whose edges
are parallel to either horizontal or vertical axises. Suppose C is the given
collection of simple orthogonal polygons. If we erase all the edges of the
polygons can we reconstruct C ?

O’Rourke [7] proved that a collection of non-intersecting orthogonal poly-
gons is uniquely determined by its set of vertices V , and its edges can be
reconstructed from V in O(n log n) time where |V | = n. The implication of
this theorem is that the edges of such collection is redundant. If there is a
way, then there is only one way to connect a set of points to make such a col-
lection of orthogonal polygons. And the proof of this theorem is constructive
, leading to an O(n log n) time algorithm for the reconstruction. An easy
to implement algorithm for orthogonal polygon reconstruction in IR2 is as
follows :

• In each horizontal level, sort the points in that level, and then pair-up
consecutive points starting from the left-most point, and connect each
pair by a horizontal edge.

• Do the same for each vertical level.

• Finally report the polygon starting from any point.

This procedure is done in O(n log n) time by sorting the points horizon-
tally and vertically. The same approach works in IR3 with the same time
complexity. Here in each plain, we need to execute the earlier algorithm, and
the points in two consecutive horizontal planes are also connected following
the same rule.
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Figure 2.1: Collection of non-
intersecting orthogonal polygons

Figure 2.2: Vertices of the poly-
gons required to reconstruct

Figure 2.3: Extra points should be added

O’Rourke and Streinu [8] defined a richer combinatorial structure called
the vertex-edge visibility graph which includes edge-to-edge visibility. Jack-
son and Wismath [9] introduced an extended visibility structure, called stab-
graph, and they proposed an axis-parallel polygon reconstruction scheme
using stab-graph.

The visibility graph of a simple polygon traditionally consists of a vertex
for each corner of the polygon with an edge joining a pair of vertices if the
corresponding corners are internally visible. Polygon reconstruction results
attempt to build a polygon consistent with a given visibility graph. The gen-
eral polygon reconstruction problem was shown to be in PSPACE by Everett
[10], who also characterized the visibility graph of spiral polygons. However,
a general characterization of visibility graphs of simple polygons has proven
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elusive; see for example, the paper by Everett and Corneil [11].

The closest line of research of related problem is of estimating the medial
axis from a set of boundary points. Brandt and Algazi [12] proved that De-
launy Triangulation of a sufficiently dense set of points on the boundary can
reconstruct the boundaries as a subset of edges. Robinson et.al [13] proposed
boundary reconstruction by comparing the length of Delauny edges. Various
geometric graphs has been proposed for this reconstruction scheme. One such
example is nearest neighbour graph which can be obtained by each point with
its nearest neighbour(s) [14]. Another similar graph is relative neighbourhood
graph which is obtained by joining each pair of relative neighbor(s) [15].

In O’Rourke’s algorithms the user has the knowledge that the polygons
are orthogonal. But the polygons intersect only at the vertices that means
in the corner points. We have taken care of cases where two edges of two
different polygon can intersect at any general point and where two edges of
two different polygons can share a vertex or an edge.

The reconstruction rule for our scheme is as following :

1 At the time of reconstruction the user only have a set of unlabeled
points on a 2D plane.

2 At each step the user connect two closest points.

In the following example we can show that only the set of vertices is not
enough information to reconstruct the polygons using our connect-nearest-
point rule.

Figure 2.4: Initial collection of the
polygon(s)

Figure 2.5: Only the vertices of the
Initial polygon(s)

We can see given only the information about the vertices a different col-
lection of polygon is generated if we add edges between two closest points.
So for correct reconstruction we have to add some extra points on the edges
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Figure 2.6: Incorrectly Recon-
structed Polygon(s)

Figure 2.7: Extra points should be
added

so that any pair of closest pair and these pairs only define the original edges.
So our algorithm takes input P as the collection of orthogonal polygons (may
be intersecting) and as output gives V ′ a set of unordered points. Our aim
is to minimize the number of points in V ′.
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Chapter 3

Two phases of the scheme

Our scheme has two phases to solve this problem. The first phase is the
important phase where the extra points are added along the boundaries of
the polygons. In the second phase the algorithm mimics the touch-and-sense
technique of a visually challenged people and reconstructs the polygons from
the given point-set.

3.1 Assumptions

We have some restrictions about the arrangement of the polygons.

1 Among the input points supplied for the reconstruction, the left-most
top corner vertex of every polygon is marked differently. The user
can identify these special points and start reconstruct each polygon
individually at each stage.

2 Each polygon is reconstructed in clockwise manner. In other words,
the vertices and edges are reported in clockwise order as the output.
A direction is necessary to minimize the number of points in V ′.

3 At most two edges of two different polygons can intersect at one point.

4 At most two polygons can share a line segment as part of their edge.

5 At most two polygons can share a vertex.

6 ε is the minimum distance user can discriminate during reconstruction.
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3.2 Different types of arrangement : Allowed

and not Allowed

As mentioned in the assumptions all types of arrangements are not allowed
in our algorithm. Direction plays a major role in our connecting nearest point
rule. So any vertex or edge can be shared by at most two different polygons.
Here we present some cases of arrangements which are not allowed in our
scheme.

Type-T point

Figure 3.1: Two polygons sharing
an edge is allowed

Figure 3.2: Three polygons shar-
ing an edge is not allowed

Type-C
point

Figure 3.3: Two intersecting poly-
gons are allowed

Type-X point

Figure 3.4: Two polygons sharing
a vertex is allowed
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Figure 3.5: Three polygons sharing a vertex is not allowed

3.3 Reconstruction phase

In this phase we present the simple algorithm to reconstruct the collection
P from the point set V .

3.3.1 Algorithm

1. Start from a left most top corner point which is marked specially.

2. Let we are at point p now. Find out its nearest point r from all the
points in the horizontal and vertical direction. Add an edge pr and
walk to r and do this step again.

3.4 Point Generation phase

As input we take the collection of orthogonal polygons. We walk along the
boundaries of the polygons one by one and add extra points where necessary.

3.4.1 Definition

As we are dealing with polygons that may intersect or overlap each other, we
need to label the vertices and extra points in different types. The definitions
of different types of points are given below.

1. Type-C point : The intersecting points of two edges of two different
polygons are of these type.

2. Type-X point : If two polygons overlap on a corner point but none of
its incident edges are overlapped then this corner point is of Type-X.
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3. Type-T point : If two polygons overlap on a corner point and at least
one of its incident edges are overlapped then this corner point is of
Type-T.

4. Type-N point : All other points are of this type.

Data Structure

In our algorithm we have the query to find out all the points which have
same x-coordinate value or same y-coordinate value with a given point p from
a set of points V . kD-tree is the appropriate Data structure for answering
this kind of queries efficiently. The main problem in our algorithm is that V
is dynamic in nature, that means new points are constantly being added to
the set V .

Algorithm

Input: P , A collection of orthogonal polygons P1, P2, . . . , Pm

Output: V , A set of points

for each vertex vi do
if vi is corner point of two polygons Pi and Pj then

Add vi to V with label type-X.

end
if vi is corner point of Pi and is on an edge of Pj then

Add vi to V with label type-T.

end
else

Add vi to V with label type-N.

end
end
for each Pi and Pj do

if any two edges of Pi and Pj intersect then
Add that intersecting point to V with label type-C.

end
end

Algorithm 1: Point set generation from a collection of orthogonal polygons
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while no new point is needed to be placed do
for each polygon Pi do

hi is left-most top corner of Pi. previous← hi. current← hi;
while hi is not reached again in this stage do

Let the next vertex in the polygon is next;
if current is type-T or type-N then

S is the set of all the points in V having same x or
y-coordinate value with current except the points on the
line current, previous on the direction of previous of
current;

end
if current is type-X or type-C then

S is the set of all the points in V having same x or
y-coordinate value with current;

end
From S find out the nearest point(s) of current;
if there is only one nearest point and it is next then

previous← current. current← new;

end
else

d is distance of current and its nearest point(s);
if p is of type-N then

place a new point new on current, next at a distance
d− ε from current and add new to V ;
previous← current. current← new;

end
if p is of type-X or type-C then

place a new point new1 on current, next at a distance
d− ε from current and another new point new2 on
the other incident edge of current at a distance d− ε
from current and add new1 and new2 to V ;
previous← current. current← new1;

end
if p is of type-T then

place a new point new1 on current, next at a distance
d− 2ε from current and another new point new2 on
the other incident edge of current at a distance d− ε
from current and add new1 and new2 to V ;
previous← current. current← new1;

end
end

end
end

end
Algorithm 1 Point set generation from a collection of orthogonal
polygons (contd.)

Algorithm 2: *
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Chapter 4

Upper Bound Construction and
Complexity Analysis

The time and space complexity of this procedure clearly depends on the size
of V , the output. Here we try to find an upper bound, that means in worst
case what is the maximum number of extra points need to be added. Let the
maximum size of V is vmax, m is the number of polygons and n is the total
number of corner points (as well as edges). It is clear that vmax does not only
depend on n. It also depends on the arrangement or the relative position of
the polygons and distance between their vertices and edges.
Let L is the length of the longest edge of the all the polygons. Let us draw a
vertical line along each vertical edge and horizontal line along each horizontal
edge of the polygons. That creates a grid structure on the collection. In this
grid let δmin is the shortest line segment.

Lemma 4.0.1. On any edge of the distance between two newly added point
is at least δmin − ε.

Proof. According to our point generation rule if there are two newly added
points just one after another on any edge, then the one, q, which comes later
while walking in clockwise direction must be generated while preprocessing
the earlier one, p. Now as δmin is the shortest line segment in the whole grid
structure, so there is no other edge parallel or perpendicular to pq within a
distance less than δmin. So while p was being preprocessed, there were no
point within a distance less than δmin. So the distance between p and q can
be at least δmin − ε.

Theorem 4.0.1. For any collection of orthogonal polygons P , vmax is at
most O(nL/δmin).
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Proof. As L is the length of the longest edge of the all the polygons and
δmin − ε is the shortest distance between two newly added point, so the
maximum number of points on any edge is O(L/δmin). Total number of
edges are n. So maximum number of points is O(nL/δmin).

Here we present two examples of worst case scenario. In these cases we
have shown such arrangements that one edge is bound to have points every
δmin distance apart.
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Theorem 4.0.2. The Point Generation Algorithm takes O(c log c) time to
compute the guiding point set of a given collection of orthogonal polygons
where c is the size of the output point set.

Proof. Each point may be preprocessed many times but they are added only
once into the output set V . And most importantly whenever a point is
proceeded, a new point is added. So number of points added encompasses
the whole time complexity of this algorithm. Now each time a new point is
added it need to search through the whole point set V stored in a kD-tree,
thus taking O(log c) time in the process. So we can conclude that altogether
this algorithm will take O(c log c) time to compute the guiding point set of
a given collection of orthogonal polygons where c is the size of the output
point set.
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Chapter 5

Some Experimental Results

If we want to teach the proof of the theorem (a + b)2 = a2 + b2 + 2ab geo-
metrically, this picture-sequence will help us to do that.

a

a

b

b

Figure 5.1: (a+ b)2

a

a

b

b

Figure 5.2: (a+ b)2

a b

a

b b2

a2

Figure 5.3: a2 +
b2 + 2ab

a

a

b

b

a2

b2

Figure 5.4: a2 + b2

a b

a

b ab

ab

Figure 5.5: ab+ ab
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Chapter 6

Future Works

We have two directions of thoughts for further works related to this prob-
lem. One is about handling more complex types of figures. Another is about
handling it in more simpler way with respect to lower bound and time com-
plexity.

6.1 Handling general type of polygonal fig-

ures

In our problem we have dealt with only orthogonal polygons. Later we
would like to work on polygons of general type without any restriction on
their arrangement. That would be a more appealing and accurate work for
our ultimate target.

6.2 Finding an optimal order of polygons dur-

ing preprocessing

During the simulation of our algorithm, we noticed that the order in which
the polygons are being preprocessed plays a great role in determining the
number of points in the output. So in future, we would like to find out
an optimal ordering of the polygons that will reduce the number of points
generated. In this way we may produce some tighter upper bound on the
size of the output.
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