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Abstract

Voronoi game is a geometric model of competitive facility location problem,

where each market player comes up with a set of possible locations for placing their

facilities. The objective of each player is to maximize the region occupied on the

underlying space. In this thesis we consider one round Voronoi game with two

players. Here the underlying space is a road network, which is modeled by a graph

embedded in R2. In this game each of the players places a set of facilities and the

underlying graph is subdivided according to the nearest neighbour rule. The player

which dominates the maximum region of the graph wins the game. This thesis

mainly deals with the problem of determining optimal strategies of the players. We

characterize the optimal facility locations of second player given a placement by first

player. Using this result we design a polytime algorithm for determining the optimal

strategy of second player on trees. We also show that the same problem is NP-hard

when the underlying space is a general graph. Moreover we present a 1.58 factor

approximation algorithm for the above mentioned problem. Then we concentrate

on optimal strategy of first player. We give a lower bound on the optimal payoff

of first player. We discuss optimal strategy of first player for (1, 1) and (2, 1) game

on tree network. Then we characterize optimal facility locations of first player for

(1, 1) game on graph network.
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1
Introduction

1.1 Problem Definition

A situation often arises in market where the competitive service providers (Hotel

Chains, Supermarkets etc.) want to occupy a big area in a locality for placing their

facilities (Hotel, Shopping Mall etc.) so that they could attract as much customers

as possible. The game-theoretic analogue of competitive facility location problem is

Voronoi Game which was proposed by Ahn et al. [1]. In this game the main objective

of a player is to cover maximum area by placing its facilities on the underlying space.

A point on the underlying space is always served by its nearest facility. Different

versions of this game can be modeled by changing the underlying space like line

1



2 Introduction

segment, circular arc, graph and 2D-plane.

In this thesis we consider a game where the underlying space is a road network,

represented by a graph G(V,E). With each edge (u, v) ∈ E, a positive weight

w(u, v) is associated which can be considered as the length of the edge (u, v). Let

us assume that an embedding of G on R2 is given. As any edge (u, v) is having a

positive weight w(u, v), it can be mapped to a closed interval [0, w(u, v)] of length

w(u, v). For any point p on this interval consider the distance between p and u as

|p| and between p and v as w(u, v) − |p|. Throughout the thesis, by a point p on

G we mean either p ∈ V or p belongs to any edge (u, v). For any two points p and

q in G, the distance between p and q is considered as the weighted shortest path

distance between them and is denoted by d(p, q). A weight wv is associated with

each vertex v. For any graph G′, let W (G′) be sum of weights of vertices and edges

of G′. Then weight of G,

W (G) =
∑

(u,v)∈E

w(u, v) +
∑
v∈V

wv

f1 f2

f3

v1

v2

v3

v4

v5

v6

p1 p2

Figure 1.1: Service zone of f2

Refer a portion of an edge as sub-edge. Recall that an edge e is modelled as

an interval of length w(e). Hence a sub-edge can be represented as a sub-interval

of the interval with length defined accordingly. Define a sub-graph G′ = (V ′, E ′)

of a Graph G, such that E ′ is a finite subset of edges and sub-edges of G. Hence

V ′ can contain some vertices of V or some points belong to edges of G. Weight

of a sub-edge is same as the length of the sub-interval correspond to it. For any
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sub-graph G′ of G define the weight of G′, W (G′) as the sum of the weights of the

edges, sub-edges and vertices present in G′.

Like any other versions of voronoi game, here facilities are modeled as points in

the underlying space. Given any set of facilities F on G, service zone GF (f) of any

facility f ∈ F is defined as the set of points in G that are closer to f than any other

facility f ′ ∈ F . In case if a point is equidistant to its nearest facilities of P1 and

P2, then it is included in the service zone of P2. Observe that for any facility f ,

GF (f) is a connected sub-graph of G. It would be more appropriate to refer GF (f)

as a subset of G, because GF (f) may contain portions of some edges. For example

in Figure 1.1, service zone of f2 (shown in bold) contains the portions of the edges

(v2, v4) and (v4, v6) where p1 be the point such that d(f1, p1) = d(p1, f2) and for p2,

d(f2, p2) = d(p2, f3). For a set of facilities F ′ ⊆ F define the service zone of F ′,

GF (F
′) = ∪f∈F ′GF (f). With all these definitions in our hand, next we define the

model that we consider throughout this thesis.

1.2 The Model

In this thesis we will consider the One-Round (m, k) Voronoi Game on Graphs.

The game consists of a weighted graph G(V,E) and two players P1 and P2 respec-

tively. Initially P1 places m facilities, followed by which P2 places k facilities in

G. For any set of facilities F and S by P1 and P2 respectively, the payoff of P1,

Q1(F, S) is defined as W (GF∪S(F )) and the payoff of P2, Q2(F, S) is defined as

W (G) − Q1(F, S). Let ν(F )=maxS Q2(F, S), where maximum is taken over any

placement of k facilities S by P2. The One-Round (m, k) Voronoi Game on Graphs

can be formally stated as follows.

One-Round (m, k) Voronoi Game on Graphs: Given a graph G = (V,E) and two

players P1 and P2 having m and k facilities respectively, P1 chooses a set

F ∗ of m facility locations following which P2 chooses a set S∗ of k facility
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locations disjoint from F ∗ in G, such that:

(i) maxS Q2(F
∗, S) is attained at S=S∗

(ii) minF ν(F ) is attained at F = F ∗, where the minimum is taken over all

possible set of facility locations F of P1

1.3 Previous Works

There are quite a lot of works in literature on Voronoi Game. Ahn et al. [1]

consider the case where the game is restricted to 1-dimensional continuous domain.

Cheong et al. [6] and Fekete et al. [7] deal with 2-dimensional case but for one round.

Banik et al. [3] [4] discuss the discrete versions of this game on lines. Demaine et

al. [13] consider the discrete version of the game on graphs where the users and

facilities are constrained to be located on vertices. A special case of this game when

the underlying space is a path is considered by Kiyomi et al. [11]. Recently Banik

et al. [5] have studied the discrete version of this game on polygon.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 optimal strategy of

P2 is discussed. There a finite set of points is characterized which always contain

an optimal placement of P2. Next this result is used to present a polynomial time

algorithm for finding optimal strategy of P2 on trees. We also discuss about the

complexity of finding optimal strategy of P2 on general graphs. In fact we show

that the above mentioned problem is NP-hard. Then we propose a 1.58 factor

approximation algorithm for the same problem.

In Chapter 3 we talk about the optimal strategy of P1. There we give a lower

bound on optimal payoff of P1 where the underlying space is tree. Next we discuss
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strategy of P1 for (1, 1) and (2, 1) game on tree. We end the chapter after discussing

about optimal strategy of P1 for (1, 1) game on general graphs.

Chapter 4 summarizes the work done in this thesis and presents a number of

open problems as future research.
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2
Optimal Strategy of Second Player

2.1 Introduction

This chapter is devoted for discussions on optimal strategy of P2 for One-Round

(m, k) Voronoi Game on Graphs. Here we assume that P1 has already placed it’s

m facilities and now P2 is interested to place it’s k facilities so that it’s payoff could

be optimized.

7



8 Optimal Strategy of Second Player

2.2 Characterization of Optimal Facility Locations

In this section we show that it suffices to search a finite number of points for de-

termining optimal strategy of P2. Let G(V,E) be any graph and F={f1, f2, . . . fm}

be a set of facilities placed by P1. First we consider the problem where P2 places only

one facility on G. Goal is to find an optimal placement of P2. Let V={v1, v2, . . . , vn}

and for any two vertices vi and vj denote the edge joining them by eij. Define an

arc to be an edge or a sub-edge. An arc between two points u and v are denoted by

⟨u, v⟩. For any vertex vi ∈ V denote the facility closest from vi among the facilities

in F by f(vi) and the distance between vi and f(vi) by di. Let Γ(vi) be the set

of points in G which are at a distance di from vi. Now observe that any edge can

contain at most two points from Γ(vi). Hence for any vertex vi, |Γ(vi)| contains

O(|E|) many points. Let Γ = ∪1≤i≤nΓ(vi). Thus Γ contains O(|V ||E|) many points.

Let fk be any facility of P1 on any edge eij. Then we assume that, there exists

two points p1 ∈ ⟨vi, fk⟩ and p2 ∈ ⟨fk, vj⟩ very close to fk such that distance between

p1 and fk and p2 and fk are small enough to be considered as zero. For all fk,

k = 1, . . . ,m include all those points into Γ and we have the following observation.

Observation 2.2.1. [2] Number of points in Γ is bounded by O(|V ||E|+m).

Let s be any placement of a facility by P2 located on an arbitrary edge eij.

Consider any path λ between s and any facility fl ∈ F , such that half of the points

of λ are closer to fl than any other facility in F ∪ {s} and the rest of the points are

closer to s than any other facility in F . Denote all such paths by π(s). For example

in Figure 2.1 the path between s and f2 is in π(s), but the path between s and f1

is not in π(s). Observe that for any path λ ∈ π(s), λ contains at least one of vi

or vj. Let πi(s) be the set containing all those paths of π(s) which contain vi, but

not vj and πj(s) be the set containing all those paths of π(s) which contain vj, but

not vi. For the paths λ ∈ π(s), such that λ contain both of vi and vj, include λ in

πi(s) if vi is preceded by vj in λ, otherwise include it in πj(s). Note that a path
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is a sequence of vertices and hence the predecessor relationship holds between two

vertices. Observe that πi(s) ∩ πj(s) = ∅. Define the set Bi(s) and Bj(s) such that

they contain the midpoints of the paths in πi(s) and πj(s) respectively. We refer to

those midpoints as bisectors.

vi

30

f1

f2

s

15
40

vj

Figure 2.1: Example of facilities placed by P1 and P2

Observation 2.2.2. [2] Each edge contains at most one point of Bi(s) ∪Bj(s).

Proof. Suppose there exists two paths λ1 and λ2 in π(s) such that the bisectors of

λ1 and λ2 belong to the same edge eab. Let b1 and b2 be the bisectors of λ1 and λ2

respectively. Without loss of generality assume the paths λ1 and λ2 start at s and

end at fk and fl respectively. Suppose along the path λ1, the vertex va precedes the

vertex vb. Now there will be two cases.

vi vjs

va vbb1 b2

fk fl

(a)

vi vjs

va vbb1 b2

fkfl

(b)

Figure 2.2: Figure showing two cases for the proof of Observation 2.2.2

Case 1 : Along the path λ2, va precedes vb (see Figure 2.2(a)). Suppose distance of

b1 and fk is δ1 along λ1 and distance of b2 and fl is δ2 along λ2. Now there

are two possibilities, δ2 < δ1 or δ2 > δ1. The first possibility contradicts the
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fact that the arc ⟨b2, b1⟩ is served by P1 considering the path λ2. The second

possibility contradicts the fact that the arc ⟨b1, b2⟩ is served by P1 considering

the path λ1. Hence this case can’t occur.

Case 2 : Along the path λ2, vb precedes va (see Figure 2.2(b)). Without loss of

generality assume that b1 precedes b2 along λ1. we consider the path λ1, then

by definition of bisector the arc ⟨b2, vb⟩ will be served by P1. But if we consider

the path λ2, then by definition of bisector the arc ⟨b2, vb⟩ will be served by P2.

Hence contradiction and the observation follows.

vi s

δ

vj
ps

ms mp

δ/2

flp

Figure 2.3: Positions of s, ps and fl

Suppose a facility s1 of P2 is placed at s ∈ eij. Let ps ∈ ⟨s, vj⟩ be the point

closest to s, such that ps ∈ Γ∪ V (see Figure 2.3). Let λ ∈ πj(s) be a path between

s and fl, where fl ∈ F and ms ∈ eαβ be the midpoint of λ. Let p be any point on

the arc ⟨s, ps⟩. Suppose the distance between s and p along eij is δ. If s1 is now

shifted to p, then the path between s1 and fl is reduced and hence the mid point is

shifted from ms to a new point mp. Note that selection of ps and hence of p ensures

that mp ∈ eαβ. Now we have the following observation.

Observation 2.2.3. [2] Distance between ms and mp is equal to δ/2 along eαβ.

Observation 2.2.3 holds for any path λ ∈ πj(s). Similarly for any path λ′ ∈ πi(s)

consider the point p′s closest to s, such that p′s ∈ Γ ∪ V . Observe that if the facility

of P2 is shifted from s to any point p ∈ ⟨p′s, s⟩ the midpoint of the path λ′ is moved

to a distance δ′/2, where δ′ is the distance between p and s along eij.

We note that there might be more than one optimal placements by P2, even

there might be infinitely many optimal placements by P2. In Figure 2.4 P1 has
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10

10

100
10

10

v1

v2

v3 v4

v5

v6

f1 f2

Figure 2.4: Example of facilities placed by P1 and P2

placed two facilities at v3 and v4 and any point on the edge joining v3 and v4 is an

optimal placement by P2. Now we have the following theorem.

Theorem 2.2.1. [2] There exists an optimal strategy of P2 which belongs to Γ∪V .

Proof. Let s̊ be any optimal placement by P2 such that s̊ /∈ Γ∪V . Suppose s̊ belongs

to the edge eij. Let pl ∈ ⟨vi, s̊⟩ be the point closest to s̊, such that pl ∈ Γ ∪ V .

Similarly define pr ∈ ⟨ s̊, vj⟩ be the point closest to s̊, such that pr ∈ Γ ∪ V (see

Figure 2.5). Now observe that it is enough to show that either P(F, s̊) ≤ P(F, pl)

or P(F, s̊) ≤ P(F, pr).

Now suppose P(F, s̊) > P(F, pl) and P(F, s̊) > P(F, pr). Recall that for any

placement of facility s by P2, Bi(s) and Bj(s) are the sets of bisectors correspond

to the set of paths πi(s) and πj(s). Now based on the emptiness of Bi(̊s) and Bj (̊s)

two cases can arise.

δ1 δ2

s̊Vi Vj

f1

f2

f3

f4

f5

f6

pl prm1 m2

rm2

l

δ1/2 δ2/2

m2 m5

rm5

l

δ1/2 δ2/2

Figure 2.5: Positions of s̊, pl and pr

Case 1: Bi(̊s)=∅ or Bj (̊s)=∅. Without loss of generality assume Bj (̊s)=∅. Observe

that as F ̸= ∅, Bi(̊s) ̸= ∅. Now there is no path between s̊ and any facility of

P1 via vj. Thus P(F, s̊) ≤ P(F, pl), which contradicts our basic assumption

and hence the result follows.
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Case 2: Bi(̊s) ̸= ∅ and Bj (̊s) ̸= ∅. Suppose distance between s̊ and pl be δ1 and

distance between s̊ and pr be δ2(see Figure 2.5). Further let |Bi(̊s)| = k1 and

|Bj (̊s)| = k2. Consider any path λ in πi(̊s). Let m1 ∈ Bi(̊s) be the midpoint

of λ. Observe that instead of placing the facility at s̊, if P2 would have placed

it at pl, the length of the path λ between two facilities is reduced by δ1. From

Observation 2.2.3 we know the new midpoint is at a distance δ1/2 from m1

along λ(see Figure 2.5). Now as |B1(̊s)| = k1, k1 many such paths are there.

Hence along all such paths the payoff of P2 will be increased by k1∗δ1
2

. Similarly

along the paths in πj(s) the payoff will be decreased by k2∗δ1
2

. Hence,

P(F, pl) = P(F, s̊) + (k1 − k2) ∗ δ1/2 (2.1)

Similarly if P2 would have placed the facility at pr, the payoff of P2,

P(F, pr) = P(F, s̊) + (k2 − k1) ∗ δ2/2 (2.2)

Now as, P(F, s̊) > P(F, pl) and P(F, s̊) > P(F, pr), from Equation 2.1 and

2.2 we get, (k1 − k2) ∗ δ1/2 < 0 and (k2 − k1) ∗ δ2/2 < 0. As δ1, δ2 > 0, we get

(k1 − k2) < 0 and (k2 − k1) < 0, hence contradiction and the result follows.

Now consider the general problem where P2 is interested in placing k(≥ 1)

facilities. Again the goal is to find the optimal placement by P2 on G. Consider any

set of placements S by P2. Let s ∈ S be any arbitrary facility location. Without

loss of generality we assume s is on the edge eij. We refine the definition of π(s) by

saying that π(s) is the set of paths between s and any facility of P1 such that for

each path λ ∈ π(s), half of the points of λ are closer to some fi ∈ F than any other

facility point in F ∪S and the rest of the points are closer to s than any other facility

point in F ∪ S. Similarly define πi(s) and πj(s) as the disjoint subset of π(s), such
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that the paths in πi(s) and πj(s) contains vi and vj respectively. Accordingly let

Bi(s) and Bj(s) are the sets of midpoints of the paths in πi(s) and πj(s) respectively.

Next we present a theorem whose proof is somewhat similar to the proof of Theorem

2.2.1.

Theorem 2.2.2. [2] For One-Round (m, k) Voronoi Game on Graphs there exists

an optimal strategy of P2 which belongs to Γ ∪ V .

Proof. Let S̊ be any optimal placement by P2 such that it contains a point s̊ such

that s̊ /∈ Γ∪ V . We show that there exists a placement S ′ ⊆ Γ∪ V by P2 such that

P(F, S̊) ≤ P(F, S ′). Without loss of generality assume s̊ belongs to the edge eij.

Let pl ∈ ⟨vi, s̊⟩ be the point closest to s̊, such that pl ∈ Γ∪ V . Similarly define pr ∈

⟨ s̊, vj⟩ be the point closest to s̊, such that pr ∈ Γ ∪ V .

Instead of placing a facility at s̊ if P2 would have placed it at pl or pr, then

using a similar argument like in proof of Theorem 2.2.1, we can prove that either

P(F, S̊) ≤ P(F, S̊ \ {̊s} ∪ pl) or P(F, S̊) ≤ P(F, S̊ \ {̊s} ∪ pr) .

By using this construction repeatedly we substitute each of such s̊ ∈ S̊, such

that s̊ /∈ Γ∪ V , by a point in Γ∪ V . We end up getting a set S ′ ⊆ Γ∪ V , such that

P(F, S̊) ≤ P(F, S ′), which completes the proof of this theorem.

Note that it is possible to design a simple algorithm, which by checking all subsets

of size k of the set Γ ∪ V , finds out the optimal strategy of P2 in exponential time.

Nevertheless, in the next section we present a polynomial time algorithm for finding

optimal strategy of P2 on trees.

2.3 Optimal Facility Locations on Trees

Consider a tree T=(V,E) such that weight of each vertex and edge is non-

negative. Let F={f1, . . . , fm} be the m facilities placed by P1 on T . Also let
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|V |=n. We are interested in the problem of finding a set of k optimal placement of

facilities by P2. Now consider the facilities placed by P1 on T . Observe that these

facilities divide T into a finite number of subtrees. Here we deviate a bit from the

original definition of subtree and assume the bisectors could also be vertices of a

subtree. Refer to these subtrees as partitions of T with respect to F . Figure 2.6

shows an example tree and it’s partitions with respect to facilities of P1.

v1

v2
v3

v4

v5 v6

f1
f2

(a)

v1

v2
v3

v4

v5 v6

f1

f2

(b)

Figure 2.6: Example tree and partitions with respect to {f1, f2}.

Let d be the maximum degree of the vertices of T . Note that there could be

O(md) many partitions of T . It should be noted that facilities placed by P2 in

one partition will not affect the facilities placed in other partitions as the partitions

are bounded by either facilities of P1 or leaves. Consider a partition which contain

exactly one facility of P1. By placing only one facility in that partition, P2 can

serve it totally (see Figure 2.6(b)). Now consider the partitions which contains p

facilities of P1, where p ≥ 2. Let Ti be one such partition. Considering any path as

a subtree, let π be the union of the paths of Ti between the facilities of P1. Observe

that Ti \ π is a collection of trees, say {λi : 1 ≤ i ≤ c}. Each tree λi shares exactly

one vertex, say αi with π. For example in Figure 2.6(b) the partition containing

vertex v2 is a shared vertex. Note that it is always advantageous for P2 to place

a facility on the point v2, instead of placing it on the edge (v2, v5). We have the

following observation.

Observation 2.3.1. For any optimal placement by P2, if a facility of P2 is placed

on some λk then it is placed on the point αk.
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Thus for all such λi we add the weight of λi to the weight of αi and remove it

from Ti. Note that now all the leaves of Ti are facilities of P1. Thus without loss of

generality we can assume that if a partition contains more than one facilities of P1,

then each of it’s leaves contains a facility of P1. We refer to this kind of partitions

as bounded partitions. Now we define the following routine.

ALLOC(g1, . . . , gl; p): Here g1, . . . , gl are monotone concave functions and p is a

non-negative integer. Then ALLOC solves the following:

max
l∑

i=1

gi(pi)

subject to,
l∑

i=1

pi = p

Each pi is a non-negative integer. Frederickson et al.[8] have shown that

ALLOC can be solved in O(l log p) time.

Note that the optimal payoff function on any partition is monotone and concave

with respect to number of facilities. Suppose we know the optimal payoff of P2

for placing κ(≥ 1) facilities on any partition. Then we can use ALLOC to find

the maximal payoff of P2 on T for placing k facilities. Here gi(pi) will be the

optimal payoff of P2 on ith partition for placing pi facilities and p = k. So if we

can compute the optimal payoff of P2 on any partition in polynomial time, we can

solve the problem on T in polynomial time. Calculation of optimal payoff of P2 on a

partition having exactly one facility of P1 is trivial as discussed before. Remaining

is to show that for any bounded partition, the optimal payoff of P2 can be calculated

in polynomial time. The idea of our solution is similar to [12].

Now we want to solve the following problem. For any bounded partition we want

to find a set of κ placement for a given integer κ such that payoff of P2 is maximized.

In the rest of this section instead of solving this problem we will solve a more general
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Figure 2.7: Service zones of P1 and P2

problem. Let T (V,E) be any tree where each leaf of T is occupied by a facility of

P1 and with each edge eij of T two real values are associated lij, denotes the length

of the edge and wij, denotes the weight of that edge. Note that lengths of edges

are used for calculation of distance and weights are used for computing payoff. For

example in Figure 2.7 the payoff of P2 from edges (v1, v2), (v2, v3) and (v2, v4) are

0, 4 and 5 respectively. Let m′ be the number of leaves of T . Also let |V |=n′. P2

wants to place κ facilities on the vertices of T such that its payoff is maximized. By

Theorem 2.2.2 it suffices to consider only points of Γ ∪ V as the possible optimal

facility locations of P2. For the sake of simplicity add the points of Γ into the set of

vertices. Then observe that the new set of vertices contains O(n′m′) many points.

Recall that for any placement of facility s by P1, bisector is the midpoint of the path

λ where λ be any path between s and any facility fi of P1 such that half of the path

is served by s and the other half by fi. Include the set of bisectors B into the set of

vertices and define a new tree T ′(V ′, E ′) where V ′ = V ∪ B and edges are defined

accordingly. Assign the length and the weights of new edges proportionally. Our

aim is to choose κ points from V ⊂ V ′ such that the payoff is maximized. Choose

an arbitrary vertex vr ∈ V to be the root of T ′. For any vi let Ti be the subtree

rooted at vi. Now we define a subroutine OPT which recursively places the facilities

of P2.

OPT (Ti, δ, Vr, Er): Here Ti is a tree rooted at vi, 1 ≤ δ ≤ κ is an integer, Vr ⊆ V ′
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is set of restricted vertices where facilities can not be placed and Er ⊆ E ′ is a

set of edges with zero weight. OPT (Ti, δ, Vr, Er) places δ facilities of P2 on Ti

recursively. Let the set of vertices of Ti which are not in Vr be {vi1, vi2, . . . , viι}.

Also let these vertices are sorted in increasing order of their distances from vi.

For vertex vij consider the set ∆ij = Ti \ λij, where λij be the path between

vi and vij. Observe that ∆ij is a forest and let ∆ij contains α trees. Let Eij

be the set of edges contained in the service zone of the facility of P2 placed at

vij. Let T
l
ij, 1 ≤ l ≤ α be the trees of ∆ij and V l

ij be the set of vertices of T l
ij.

Also let gij(pl) = OPT (T l
ij, pl, (Vr ∪ {vi1, vi2 . . . vi(j−1)}) ∩ V l

ij, Er ∪Eij), where∑α
l=1 pl=δ − 1.

LetQij=ALLOC(g1ij(p1), g
2
ij(p2), . . . , g

α
ij(pα))+W (Eij), whereW (Eij)

is sum of the weights of the edges Eij. Then OPT (Ti, δ, Vr, Er) returns the

following, max1≤j≤ι Qij.

Suppose in an iteration of OPT a facility is placed at vij, say at a distance dij

from vr. Then note that in the following iterations no facility could be placed within

a distance dij from vr. Consider any subtree Ti rooted at vi, which is passed as an

argument of OPT . Note that Ti is the maximal subtree rooted at vi and thus all

of it’s leaves contain a facility of P1. Moreover some of it’s vertices are flagged so

that no facility can further be placed on them and some of it’s edges could have zero

weight. First of all we show the independence of the placement of facilities by P2

on the subtrees of ∆ij.

Observation 2.3.2. For any µ ̸= ν placement of facilities of P2 in T µ
ij and T ν

ij are

independent of each other.

Proof. Let vlij be the root of T l
ij, where 1 ≤ l ≤ α. Consider any subtree T µ

ij, such

that vµij = vij, then the service zone of any facility in T µ
ij will be limited within T µ

ij.

Moreover as T µ
ij is connected to other subtrees through vµij, facilities of P2 in other

subtrees will not get any payoff from T µ
ij. Now consider two subtrees T µ

ij and T ν
ij
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Figure 2.8: Independence of T µ
ij and T ν

ij

such that vµij ̸= vij and vνij ̸= vij. Let dlij be the distance between vij and vlij. Also

let dij be the distance between vi and vij. Without loss of generality we assume

dµij < dνij(see Figure 2.8). Note that dij ≥ dνij. Now the facility of P2 on T ν
ij closest

to vµij could lie at a distance dνij + dνij − dµij from vµij, which is greater than dµij. Hence

the facility at vij is closest to vµij than any other facilities in T ν
ij. Hence any facility

placed at T ν
ij doesn’t get any payoff from T µ

ij. Similarly any facility placed at T µ
ij

doesn’t get any payoff from T ν
ij, which completes the proof of this observation.

Note that to get the optimal payoff of P2 from bounded partition T ′, OPT (T ′, κ,

V ′ \V, ∅) should be invoked. Now we will argue about the optimality of the solution

return by this subroutine.

Lemma 2.3.1. OPT (T ′, δ, V ′ \V, ∅) calculates the optimal payoff of P2 from T ′ for

placing δ facilities.

Proof. Note that it is sufficient to prove that for any subtree Ti, the callOPT (Ti, δ, Vr

, Er) returns the optimal solution. We’ll prove this claim using induction on subtree

containment. In base case the subtrees containing some constant number of vertices

and the payoff of P2 can be calculated in a trivial manner using OPT . Now suppose

OPT can calculate the optimal payoff of P2 on all the subtrees of Ti correctly. Now

for 1 ≤ j ≤ ι, OPT (Ti, δ, Vr, Er) chooses a vertex vij and places a facility at vij.
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Then it calls the functions gij(pl) = OPT (T l
ij, pl, Vr ∪ {vi1, vi2 . . . vi(j−1)}, Er ∪ Eij)

recursively. Now by induction hypothesis the functions gij(pl), for 1 ≤ pl ≤ δ returns

the correct solutions. Moreover by Observation 2.3.2 the placement of facilities of

P2 in different T l
ij are independent of each other. Hence the further call to ALLOC

will return the optimal payoff of P2 Qij for placing δ facilities, such that the first

facility of P2 is placed at vij. Thus max1≤j≤ι Qij will give the optimal payoff of P2

from Ti for placing δ facilities, which completes the proof of this lemma.

Though OPT calculates the maximal payoff, if we make the recursive call as

described, the time complexity could be exponential. This is because the recursive

calls could be made repetitively with same arguments and everytime the function

will be computed separately. We’ll refine this algorithm by applying dynamic pro-

gramming. We’ll store the values of recursive calls so that no redundant calculations

are done. Before that we have to argue that the number of subtrees which are used

as the argument of OPT over all calls are bounded polynomially. All the subtrees

which have considered are maximal and specified by some sets Vr and Er. We note

that number of maximal subtrees is same as the number of vertices, as for any vertex

v there can be at most one maximal subtree rooted at v. Now we’ll show that the

number of distinct Vr considered over all calls of OPT is polynomial.

Observation 2.3.3. Number of distinct subsets of vertices Vr considered over all

calls of OPT is polynomial.

Proof. Consider the call of OPT (Ti, δ, Vr, Er) on the subtree Ti, rooted at vi. Now for

any Vr, Vr trivially contains the non-vertex bisectors of Ti, as no facility is supposed

to be placed on them. Let df be the distance of the facility of P2 which is farthest

from the root of T ′. Also let di be the distance of vi from the root of T ′ (see Figure

2.9). Hence for the call on Ti, if df ≥ di, Vr \ (B \ V ) will be the set of vertices of Ti

within a distance df − di from vi. Thus for any call of OPT (Ti, δ, Vr, Er), Vr can be

uniquely specified by a tuple (vi, df −di). Now for a fixed subtree Ti, there could be
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O(n′m′) many distinct df . As number of subtrees is O(n′m′), the number of such

tuples is O(n′2m′2), which completes the proof of this observation.

vi

df

di

Ti

sf

vr

Figure 2.9: Farthest facility sf from vr

Now we’ll argue about the number of distinct Er over all calls of OPT .

Observation 2.3.4. Number of distinct subsets of edges Er considered over all calls

of OPT is polynomial.

Proof. Let’s consider the call of OPT (Ti, δ, Vr, Er) on the subtree Ti, rooted at vi.

Now Er is the set of zero weighted edges of Ti. If Er = ∅ there is nothing to prove.

So consider the case where Er ̸= ∅. Thus Er is contained within the service zone

of facilities of P2 which are already placed on T ′. Let vc be the vertex of T ′ which

contains the facility of P2 closest from vi(see Figure 2.10). Then Er is the exact

set of edges of Ti, which are in service zone of the facility placed at vc. Thus given

Ti, Er could be specified by the vertex vc. Hence for any call of OPT (Ti, δ, Vr, Er),

Er can be uniquely specified by a tuple (vi, vc). Note that number of such distinct

tuples is bounded by O(n′2m′2), as each of vi and vc are bounded by O(n′m′). Hence

the observation follows.

Observation 2.3.3 and 2.3.4 show that number of subtrees on which the OPT calls

are made is bounded by a polynomial. Now we’ll discuss the dynamic programming

based approach.

We maintain a table M to store the values returned by OPT , correspond to

different arguments passed to it. Each row of M corresponds to a subtree as defined
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f1 f2 f3 f4

vi

vcdc

Figure 2.10: Closest facility of P2 from vi is at vc

before. Note that we can enumerate all such subtrees. One such enumeration is

based on subtree containment relationship. Also for same subtree with different

Vr’s, say V 1
r and V 2

r can be enumerated using subset containment relationship as we

know either V 1
r ⊆ V 2

r or V 2
r ⊆ V 1

r . Similarly for same subtree with different Er’s

can be enumerated. M has κ+1 columns marked by 0 to κ. Moreover we want the

M(., .) values of all the subtrees of a tree should be calculated before the calculation

of M(., .) values correspond to it. Hence if the calculations are done in bottom-up

approach the entries of M(., .) could be calculated correctly. Once all the M(., .)

values of all the subtrees of a tree Ti are calculated the entries ofM(., .) correspond to

Ti can be calculated in polynomial time using ALLOC. As M contains polynomial

number of entries, all of it’s entries can be calculated in polynomial time. Finally

the entry of M correspond to the subtree T ′ with Vr=V ′ \ V , Er = ∅ and δ = κ will

give the anticipated result.

Hence on any bounded partition the optimal payoff of P2 can be calculated in

polynomial time. As there are O(m) many such bounded partitions, the total time

for calculation of payoffs on bounded partitions is also polynomial. Hence we have

the following theorem.

Theorem 2.3.2. The optimal payoff of P2 correspond to placement of k facilities

on any tree can be calculated in polynomial time.
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2.4 Computational Complexity for Graphs

In this section we prove that given a placement of m facilities by P1 determining

the optimal placement by P2 for One-Round (m, k) Voronoi Game on Graphs isNP-

hard. Let us call the problem of finding the optimal placement of P2 in One-Round

(m, k) Voronoi Game on Graphs as Maximum payoff problem. Now consider the

decision version of Maximum payoff problem. Given a graph G = (V,E), a set of m

facilities F by P1 in G, and a real number δ, we have to decide whether there exists

a set of k points S disjoint from F in G such that the payoff of P2, Q2(F, S) ≥ δ or

not. Clearly the problem is in NP as given any placement of facility by P1 and P2

it is possible to find out Q2(F, S) in polynomial time. To prove that this problem

is NP-hard we show a reduction from Minimum Dominating Set problem which

is known to be NP-hard[9]. At first let us define the Minimum Dominating Set

problem.

Minimum Dominating Set Problem: Given a graph G = (V,E) a dominating set is

a set of vertices S ⊆ V such that each vertex in graph G is either in S or is a

neighbor of at least one element of S. The problem asks to find such S with

minimum cardinality.

Given a graph G and an integer k, the decision version of Minimum Dominating

Set Problem asks whether there exist a dominating set of size k or not. Now we

have the following theorem.

Theorem 2.4.1. [2] Maximum Payoff Problem is NP-complete.

Proof. It is already shown that the problem is in NP . Remaining is to prove the

NP -hardness. Let I=(G, k) be any valid instance of the minimum dominating set

where G is an un-weighted graph and k is an integer. We will construct a new

weighted graph G′ = (V ′, E ′) from G by adding a pendant vertex to each of the

vertices. Figure 2.11 is showing the construction for an example graph. Let F̃ be
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Figure 2.11: Construction of G′ from an example graph G.

the set of |V | new vertices. Now V ′ = V ∪ F̃ and E ′ = E ∪ (vi, fi) ∀vi ∈ V and

fi ∈ F̃ . We will assign weight we <
1

|V |+|E|+k
to each edge e ∈ E ′ and weight wv = 1

for each vertex v ∈ V ′. Now consider the Maximum Payoff Problem on G′ with F̃

as the placement of P1. Now it is sufficient to prove that there exists a dominating

set of size k in G if and only if there exists a set of k points S in G′ such that

Q2(F̃ , S) ≥ |V |.

Let S be a set of k points in G′ such that Q2(F̃ , S) ≥ |V |. Without loss of

generality assume S ⊆ Γ ∪ V , if not then using a construction similar to proof of

Theorem 2.2.2 S can be modified so that S ⊆ Γ∪V and Q2(F̃ , S) ≥ |V |. Recall that

we have assumed for each edge (fi, vi) there exists a point pi very close to fi such that

distance between pi and fi is small enough to be considered as zero. Denote the set

of all such points as P . Now observe that as weight of each edge is same, Γ ⊆ V ∪P .

Hence S ⊆ P ∪V . Now we will construct a new set of placements of facilities S ′ from

S as follows. For all points si ∈ S∩V add si to S ′. For all points si ∈ S∩P let vj is

adjacent to si. If vj /∈ S add vj to S ′, else add any vertex v ∈ V such that v /∈ S (see

Figure 2.12). Observe S ′ ⊂ V and Q2(F̃ , S ′) > Q2(F̃ , S) − k ∗ we. Now the payoff

Q2(F̃ , S) can be written as QE′ +QV where QE′ sum of the length of all the arcs

those are served by P2 and QV is the number of vertices in the service zone of P2.

Observe now QE′ ≤ (|V |+ |E|)∗we. Hence QV ≥ Q2(F̃ , S)−k∗we−(|V |+ |E|)∗we.

But we <
1

|V |+|E|+k
, that is we ∗ (|V |+ |E|+k) < 1, |V | and QV are integers. Further

Q2(F̃ , S) ≥ |V |. Therefore QV ≥ |V |. Now any vertex vi ∈ V will be served by a
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facility sj ∈ S ′ if either vi ∈ S ′ or sj is neighbor of vi. Hence S ′ is a dominating set

of G of size k.

fj

si
vj

Figure 2.12: Formation of S′ from S in proof of Theorem 2.4.1

Now consider the case where the graph G has a dominating set D of size k. In

graph G′, D can be used for placement by P2. Every vertex in V is adjacent to one

of the vertices of D. So the payoff by P2 is at least |V |. Hence the result follows.

2.5 Approximation Bound on Optimal Payoff

In this section we describe a 1.58 factor approximation bound on the optimal

payoff of P2. We reduce our problem to Weighted Maximum Coverage Problem and

use the existing approximation bound for Weighted Maximum Coverage Problem to

derive an approximation bound for our problem. But before that let us define the

Weighted Maximum Coverage Problem.

Weighted Maximum Coverage Problem: Given an universe X={x1, x2, . . . , xn}, a

family S of subsets of X, an integer τ and a weight function wi associated

with each xi ∈ X the Weighted Maximum Coverage Problem is to find τ sets

such that total weight of the covered elements is maximized.

The Weighted Maximum Coverage Problem is NP-hard, and cannot be approxi-

mated within e−1
e

− o(1) ≈ 1.58 factor, under standard assumptions [10]. There is

a greedy approximation algorithm for the Weighted Maximum Coverage Problem,

which at each stage chooses a set, which contains the maximum weighted uncovered

elements. Now we are having the following theorem.

Theorem 2.5.1. [10] The greedy algorithm for Weighted Maximum Coverage Prob-

lem achieves an approximation ratio of e−1
e
.
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Figure 2.13: Service zone of s

Now consider any instance of our problem. Let G = (V,E) be any graph and F

be any set of facilities placed by P1 in G. P2 wants to place k new facilities. For the

sake of simplicity we assume that the weight of each vertex is zero. But by a simple

modification our algorithm can be extended to handle the case when the vertices

are having non-zero weights. Now from Theorem 2.2.2 we know that there exists an

optimal placement by P2 which belong to Γ ∪ V . Now consider any placement of

facility s ∈ Γ∪V by P2. Let Ωs be the set of bisectors correspond to s. For example

in Figure 2.13, P1 has placed two facilities f1 and f2 and P2 has placed the facility

s. The service zone of P2 is shown with dotted lines. Here the set Ωs will be equal

to {p1, p2, p3}. Define

Ω = {∪s∈Γ∪VΩs} ∪ Γ

From Observation 2.2.2 it is implied that the cardinality of Ω is bounded byO((Γ ∪ V )E),

that is O((V + E)2). Now from G = (V,E) construct another graph G′ = (V ′, E ′)

in the following way. V ′ = V ∪ Ω ∪ F . For each edge eij ∈ E which does

not contain any point of Ω include that edge to E ′. Any edge eij, which con-

tains one or more points of Ω, {ω1, ω2, . . . ωl} sorted along vi to vj, add the edges

(vi, ω1), (ω1, ω2) . . . (ωl−1, ωl), (ωl, vj) to E ′. Now observe that for any placement s

by P2, payoff of P2 will be equal to a set of edges Ẽ ⊆ E ′ of G′.

Now consider the set system where X is equal to E ′ and for each point pi ∈ Γ∪V

define the set Si ⊆ E ′, such that, Si is the set of edges that is in service zone of the

facility of P2 at pi. For each edge ei ∈ E ′ the weight of ei is equal to the length of
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ei. Now run the greedy algorithm for the Weighted Maximum Coverage Problem on

this set system for τ = k. Then we have this lemma which directly follows from the

construction.

Lemma 2.5.2. [2] An α factor approximation bound for the Weighted Maximum

Coverage Problem will produce an α factor approximation bound for Maximum Pay-

off Problem.

Now from Theorem 2.5.1 and Lemma 2.5.2 we have the following theorem.

Theorem 2.5.3. [2] There exist an 1.58 factor approximation algorithm for Maxi-

mum Payoff Problem.

Note that the above mentioned construction can be extended in case if the ver-

tices are having non-zero weights. There the vertices are also member of the ground

set. For each point pi ∈ Γ ∪ V , the payoff of P2 for the facility placed at pi would

be the total weight of the edges as well as vertices contained in service zone of that

facility.



3
Optimal Strategy of First Player

3.1 Introduction

This chapter deals with determination of optimal strategy of P1. To be precise

we mainly discuss the results for (1, 1) and (2, 1) game. First we discuss a result

on tree showing a lower bound on payoff of P1. Then we discuss about optimal

strategy of P1 on trees and we finish this section after discussing about the results

on general graphs.

27
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3.2 Bound on Optimal Payoff on Trees

Consider the game where the underlying space is a tree T=(V,E). Let P={p1, p2,

. . . , pτ} be any set of points on T . Observe that T \ P is a set of sub-trees of T .

Refer those sub-trees as partitions of T . For example in Figure 3.1, four partitions

of an example tree has shown with respect to the set of points {p1, p2, p3}. Let us

denote T \ P by T (P ). Observe that for any set of m facilities placed by P1 in

T , partitions T into at least m + 1 partitions. By placing one or more facility in

a partition, P2 can get only a portion of that partition. Let us denote the total

weight of T by W . Also assume that the tree is rooted at some vertex. Now we are

going to show a lower bound on optimal payoff of P1 on trees all of whose vertices

are having zero weight. But by a simple extension it can be shown that the bound

holds also for the trees with nonzero weights. Now we have the following lemma.
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Figure 3.1: Example of partition of a tree: (a) Original Tree T and (b) Partitions of
T .

Lemma 3.2.1. [2] For any tree T with all zero weighted vertices, there exists a

set of points P = {p1, p2, . . . , pτ} which partitions T into at least τ + 1 sub-trees,

such that weight of each sub-tree Ti ∈ T (P ) is at most W
τ+1

, where τ is any positive

integer.

Proof. Observe that it is enough to prove that given any weighted tree T and a

positive integer τ there exist a point p̊, which partitions the tree into two or more

parts such that weight of one part is less than or equal to τ∗W
τ+1

and weight of all
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other parts are less than or equal to W
τ+1

. Choose an arbitrary vertex of tree as the

root of T . Define an extended weight function wT which maps the vertices of T to

R, such that, weight of any leaf vertex v is zero and weight of any internal vertex

vi is equal to
∑

vj
(wvi + wT (vj) + w(vi, vj)), where vj is child of vi and w(vi, vj) be

the weight of the edge (vi, vj). Now observe that there will always be a vertex with

weight greater than or equal to W
τ+1

all of whose children are having weight less than

W
τ+1

. Denote that vertex by v̆. Let the children of v̆ be {v1, v2, . . . , vk}. Now if for

all 1 ≤ i ≤ k, wT (vi) + w(v̆, vi) is less than
W
τ+1

, then p̊ = v̆. Otherwise there exist

a child vj of v̆, such that, wT (vj) + w(v̆, vj) >
W
τ+1

, but wT (vj) <
W
τ+1

. But in that

case observe that there exists a point p on the edge (v̆, vj) which partitions the tree

into two parts, one having weight W
τ+1

and other having weight τ∗W
τ+1

. Thus p̊ = p

and the result follows.

Now we have the following corollary.

Corollary 3.2.1. [2] There exists a placement strategy of P1 such that it always

achieves at least m−k+1
m+1

W as its payoff for One-Round (m,k) Voronoi Game on

Trees, where m ≥ k.

Proof. We prove this corollary by proposing an placement strategy of P1. By Lemma

3.2.1 we know that there exists a set F ′ such that F ′ partition the tree T in a manner

such that each of the partition is having weight at most W
m+1

, where |F ′|=m. Suppose

P1 places its facilities on the points of F ′. By placing k facilities P2 can occupy k

partitions. Payoff of P2 in that case would be W
m+1

k . Hence the payoff of P1 is at

least m−k+1
m+1

W , which completes the proof of this corollary.

Now consider a restricted version of this game where k = 1, i.e P2 places only

one facility. Also consider the class of Star trees with m+ 1 edges of equal weight.

For this case, an optimal strategy of P1 is to place a facility at the central vertex

and the remaining m− 1 to anywhere on the Star. On the other hand P2 chooses a

point as close as possible to the central vertex, preferably on an edge which doesn’t
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contain any facility of P1, as its optimal strategy. Thus service zone of P2 is limited

within an edge and payoff of P1 is m
m+1

W . Hence the bound of Corollary 3.2.1 is

tight.

3.3 Optimal strategy on trees

In this section we discuss about the optimal strategy of P1 for (1, 1) and (2, 1)

games. Here the underlying space is a tree. The next two subsections contain the

strategies for (1, 1) and (2, 1) games respectively.

3.3.1 Optimal strategy for (1, 1) game

Consider any facility location f1 of P1. f1 could be a vertex or some point on

an edge. Also consider the branches of f1. P2 should place it’s facility as close as

possible to f1 on the maximum weighted branch of f1 for maximum gain. As P1

try to minimize the maximum gain of P2, for placing it’s facility it should choose

the point where the weight of the maximum branch is minimized. For any weighted

tree T let WT be the weight of T . Call a point p on T as central point if weight of

all the branches of p is at most WT

2
. Now we have the following observation.

Observation 3.3.1. For any tree a central point always exists and is unique.

Proof. We describe a procedure that essentially finds out a central point. This is

more than sufficient to prove the existence of central point. Consider any weighted

tree T . Without loss of generality we assume T has a non-leaf node. Otherwise the

tree contain only one edge and the midpoint of that edge is the unique central point.

Start with any non-leaf node v of T . There could be two cases. All the branches of v

are having weight at most WT

2
or their exists a branch Bv of v whose weight is more

than WT

2
. In first case v is the anticipated central point. In second case let u be the

neighbour of v on Bv. If the branch of u which contain v has weight more than WT

2
,
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then the edge (u, v) must contain a point which has two branches of weight exactly

WT

2
. Hence that is a central point of T . Otherwise u is a non-leaf node. Repeat the

procedure for u. Note that this procedure always stops and returns a central point.

For any point q, q must be in some branch of a central point p. By definition

weight of all the branches of p are at most WT

2
. Thus the branch of q which contain

p must have weight more than WT

2
and so q can’t be a central point, which proves

the uniqueness of central point. Hence the observation follows.

Now we argue that the central point is the optimal strategy of P1 for (1, 1) game.

Lemma 3.3.1. For One-Round (1, 1) Voronoi Game on Tree the optimal facility

location of P1 is the central point.

Proof. Consider the central point pc of any tree T . If P1 places it’s facility on pc,

payoff of P2 is always less than WT

2
. But if it places in some other point and P2

places on pc, then payoff of P2 is at least WT

2
. Hence pc is the optimal facility location

of P1 which completes the proof of the lemma.

3.3.2 Optimal strategy for (2, 1) game

Consider any placement of P1 for (2, 1) game on tree T . The optimal placement

of P2 must be either on the path between the two facilities of P1 or on a point

as close as possible to facilities of P1. Thus their must exist two leaf nodes l1 and

l2 such that the path between l1 and l2 contains all the three facilities. Hence an

optimal placement of P1 on T should also be optimal for the scenario where the

facilities of P1 are restricted to be placed on some path between two leaves of T .

Suppose we are able to calculate optimal strategies of P1 on any such paths between

two leaves, then taking the maximum payoff of P1 among all such paths gives the

optimal payoff of P1 on T . It is remaining to show what should be the optimal

strategy of P1 on such paths which we discuss in the rest of this subsection.
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Consider any path π between two leaves l1 and l2 of T . We solve the problem

of determining the optimal strategy of P1 when the facilities of P1 are restricted to

be placed on π only. Say v be a vertex on π. Consider the branches of v which is

not in π. As no facilities could be placed on these branches we add the weight of

these branches to weight of v. Thus without loss of generality we assume that the

underlying space is now a path containing some vertices. Note that after placement,

facilities {f1, f2} of P1 divides the path into three portions. One between l1 and f1,

one between f1 and f2 and the other between f2 and l2. If f1 or f2 are vertices, those

portions don’t contain weight of those vertices. Optimal payoffs of P2 from first and

the third portion are the weight of those portions. Say the distance between f1 and

f2 is d. Also let Wd be the weight of a maximum weighted d
2
length interval among

all the d
2
length intervals of the second portion. Then optimal payoff of P2 from the

second portion is Wd. The optimal payoff of P2 is the maximum among the payoffs

from those three portions.

Now consider a simpler problem than the one, which we are supposed to solve.

Suppose P1 has already placed one facility on π. We need to find on which point

on the path between f1 and l2, it should place the other facility so that it’s payoff is

maximized. Define two functions f and g, where f(x) and g(x) denotes the payoffs

of P2 from second and third portion while f2 is at a distance x from f1. It is easy to

see that g(x) is a piecewise linear function with jumps on the vertices and is strictly

decreasing in nature. On the other hand f(x) is a strictly increasing piecewise linear

function. Consider the scenario in Figure 3.2. When x=4, P2 can occupy v1 and

f(x)=12. The payoff increases linearly until x just becomes greater than 8. Here

P2 can occupy v2 and hence it’s payoff is 24. So the point as close as possible and

on right to v2 is a jump point for f . The payoff increases linearly until x=10. At

x=10, P2 can occupy both of the vertices v1 and v2, as their distance is 5 and P2 can

occupy the maximum weighted interval of length 5. So if d is the distance between

two vertices, then x=2d could be a jump point for f . No other jump points are
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possible for f . Hence f and g are having O(n2) and O(n) jump points respectively.

Note that the optimal position of f2 is the lowest point correspond to upper envelope

of f and g.

f1 l210 20f2
3 5 10v1 v2s1

f1 l210 20 f2
3 5v1 v2 2 8s1

Figure 3.2: Optimal payoff of P2 from the second portion.

Suppose the jump points correspond to the function g are sorted in increasing

order. As g is strictly decreasing in nature we can use a variant of binary search to

find the optimal strategy of P1. Say g has k jump points. Denote the piece of linear

segments of g by (si, ti), where 1 ≤ i ≤ k + 1. Then we perform binary search to

find out the segment (si, ti) such that either of the following four cases is satisfied, i.

g(si)=f(si), ii. g(ti)=f(ti), iii. g(si) > f(si) and g(ti) < f(ti) and iv. g(si) > f(si)

and g(ti) > f(ti) and g(si+1) < f(si+1) and g(ti+1) < f(ti+1). All the four cases are

shown in Figure 3.3. For each of such probed segment the evaluation of functions

on the points si, ti, si+1 and ti+1 takes O(n) time. As k=O(n), in total O(n log n)

time is needed.

si

ti

i.

si

ti

ii.

si

ti

iii.

si

ti

si+1

ti+1

iv.

Figure 3.3: Cases correspond to the functions f and g

Now we consider the original problem of finding optimal facility locations of P1

on the path between l1 and l2. Let f1 is placed at a distance y from l1. Then define
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the function h such that h(y) denotes the payoff of P2 from the portion between

l1 and f1. Suppose we move the facility f1 from l1 to l2 and observe h(y) on each

non-leaf vertex. For any placement of f1 we know the optimal placement of f2.

Let x be the variable which denotes the distance between f1 and optimal location

of f2. Then h(y) increases with increase of y, but f(x) and g(x) monotonically

decrease. There will be some vertex v1 and v2 such that h(v1) < max(f(x), g(x)) and

h(v2) ≥ max(f(x), g(x)). Consider any other point p on the right of v2. Maximum

payoff of P2 is h(p) if f1 is at p, which is greater than h(v2), the maximum payoff

of P2, if f1 is at v2. Thus optimal location of f1 can’t lie on right of v2. Similarly

it can’t be on the left of v1 either. Hence optimal location of f1 must be some

point on the edge (v1, v2). We try to find out the point where exactly the transition

occurs. When f1 is at v1 two cases may occur, f2 is on a point of some edge or on

a vertex. For the first case if f1 is shifted a small ϵ unit, then f2 will be shifted ϵ
3

unit(f(x)=g(x) for this case). Hence f(x) or g(x) will be changed linearly until f2

reaches to some vertex. Hence if the distance between f2 and next vertex is d, a

jump will occur when f1 is at a distance y+3d. Hence for each vertex on right of f2

we get a jump point. For the second case, let f2 is on a vertex vf . If g(x) > f(x)

with an ϵ unit increase of y, x is also increased by ϵ unit. Here optimal payoff

of P2 is decreased linearly until g(x)=f(x) or f1 is on v2 or f2 is on some other

vertex. Hence if distance between f2 and some vertex on right of it is d, then y+d

is a jump point. So in this case also for each vertex on right of f2 we get a jump

point. For the remaining case where g(x) ≤ f(x), with the increase of y, f2 remains

on vf until the x
2
length interval containing vf as it’s right endpoint have lesser or

equal weight than a maximum weighted x
2
length interval not containing vf . Now

the interval containing vf becomes lesser than a maximum weighted interval if there

exists another vertex vf ′ such that d(vf , vf ′)=d and x is just lesser than 2d. Hence

in this case for each such vf ′ one jump point may occur. Hence there could be O(n)

such jump points.
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Thus (v1, v2) may contain O(n) jump points where the slope of optimal payoff of

P2 gets changed. If all of these points are sorted we can apply binary search to find

the points where the transition occurs. Here for each of the O(log n) pass we need

to find the optimal position of f2. Thus the searching time is O(n log2 n) and hence

optimal strategy of P1 on a path can be computed in O(n log2 n) time. Hence the

optimal strategy of P1 on the tree T can be computed in O(n3 log2 n) time.

It’s not hard to see that the same strategy on the path can be extended to (m, 1)

game. Thus the problem on the path could be solved in O(n logm n) time for (m, 1)

game.

3.4 Optimal strategy on graphs

This section is dedicated to finding optimal facility locations of P1. Here we talk

about the strategy for (1, 1) game on general graphs.

3.4.1 Characterization of Optimal Facility Locations

In this subsection we discuss about the strategy of P1 for One-Round (1, 1)

Voronoi Game on Graphs. Here P1 is interested in choosing a facility location so

that it could maximize it’s payoff. Define a function f , such that for any point p on

the graph G, f(p) denote the optimal payoff of P2. From Theorem 2.2.1 we know

that there exists an optimal facility location of P2 which belong to the set Γ ∪ V

with respect to a placement of P1. Note that the set Γ ∪ V may get changed with

respect to placement of P1. We refer to this set of points as event points. For any

placement of P1 calculate the payoff of P2 on these event points. Then consider the

upper envelope of all these payoff functions. Then note that this upper envelope is

exactly equal to the function f . The placement of P1 which minimizes the maximum

payoff of P2 is the optimal placement of P1. Hence a point correspond to minimum

value of the upper envelope is an optimal facility location of P1.
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For any vertex v ∈ V , let gv(p) denotes the payoff of P2 with respect to the

placement of P1 on p and placement of P1 on v. Note that gv(p) is piecewise linear.

And the point where slopes of the linear functions get changed, either it is a vertex

itself or some bisector must touch a vertex. Hence if the slope gets changed on a

point p /∈ V , then ∃v1 such that d(p, v1)=d(v1, v). For any two vertices vi and vj,

let Eij
1 ={q : d(vi, q) = d(vi, vj)}. Also let Ei

1=
∪

vj∈V Eij
1 and E1=

∪
vi∈V Ei

1. Then

Ei
1 ∪ V denotes the set of points where the slopes of the function gvi(p) could get

changed.

Observation 3.4.1. For any vertex vi, |Ei
1|=O(|V ||E|).

Consider the back up points with respect to a placement of P1. If the placement

is on an edge, then there will be exactly two such points, else if it is on a vertex,

then the number of back up points is same as degree of that vertex. If the placement

is on a vertex then the optimal payoff of P2 on back up points can be calculated

by calculating payoff of P2 on all the back up points with respect to that vertex.

Consider a placement of P1 on a non-vertex point p ∈ (vi, vj), where i < j. Let bpl

and bpg be the back up points closer to vi and vj respectively. Note that here if the

facility of P1 is moved along (vi, vj), then the payoff on bpl and bpg remain same until

some bisector touches a vertex or the facility is on a vertex. We characterize the

points where these payoff can get changed. For any two points q and r, let dP (q, r)

be the distance between q and r along the path P . Then consider the set of points

E2={q : ∃v, dS1(p, v) = dS2(p, v)}, where if q ∈ (vi, vj), then S1 contains vi, but not

vj and S2 contains vj, but not vi. Then note that if the placement of P1 is shifted

along an edge the bisetors could touch each vertex at most once. Hence we have the

following observation.

Observation 3.4.2. |E2|=O(|V ||E|)

We get two payoff functions correspond to bpl and bpg with respect to placement

of P1 on p. Hence we can calculate all the payoff functions correspond to back up
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points.

Let Γ1 ⊆ Γ be the set of points as close as possible to the facility of P1. Define

Γ2=Γ \ Γ1. Now consider the payoff functions of P2 with respect to points on Γ2.

Consider any placement p ∈ (vi, vj). Also consider the payoff of P2 on a point

q ∈ (vk, vl) of Γ. Then if the facility of P1 is shifted along (vi, vj), q is also shifted

and payoff may get changed. Note that the payoff function with respect to q is

piecewise linear. Also note that the slope of this function gets changed either when

p or q reaches to a vertex or some bisector touches a vertex. Now the bisectors

may touch any vertex at most once. Hence the payoff could be changed in at most

O(n) points. Note that with the movement of p, after when q touches a vertex new

event points could be generated, while the old one may get vanished. So the payoff

function on q is defined for those points p for which q remains on (vk, vl). So for

all the edges the slope of the payoff function with respect to a point of Γ2 could

be changed at most O(n2) times. Hence we can calculate all the payoff functions

correspond to points in Γ2.

Thus we get O(n2) linear piecewise functions with O(n2) jump points in each

function. As these functions are like monotone chains they could intersect in at

most O(n4) points. Thus the upper envelope of these functions can also contain at

most O(n4) jump points. Hence we have the following lemma.

Lemma 3.4.1. Their exists O(n4) points which must contain an optimal facility

location of P1.
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4
Conclusion and Future Research

In this chapter we summarize the work in this thesis and propose some unsolved

problems as possible future works.

4.1 Contributions

Voronoi Game is having a rich literature since it was introduced. Many re-

searchers have worked on many variants of this game. We select transportation net-

work as the underlying space of the game and hence modelled using planar graph.

Now we summarize the works of this thesis.

In Chapter 2 we discussed about the optimal strategy of second player. At first

39
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optimal facility locations of P2 are characterized. Then using that result we propose

a polytime algorithm to determine optimal strategy of P2 on tree network. There-

after we prove that the problem of determining optimal strategy of P2 on general

graph is NP-Hard. We concluded the chapter with a constant factor approximation

algorithm for the above mentioned problem.

Chapter 3 is fully devoted for describing optimal strategy of P1. At first we

propose a lower bound on optimal payoff of P1. Then we describe optimal strategy

of P1 for (1, 1) and (2, 1) game on tree network. Lastly we describe an optimal

strategy of P1 for (1, 1) game on graph.

4.2 Open Problems

Our study leaves several open problems and directions of future research. Some

of the immediate open problems resulted from the study in this thesis are indicated

below.

• For general graph it is proved that to determine optimal strategy of P2 is

NP-Hard. But what can be said about the problem when we consider simpler

structures like Cactus Graph, Chordal Graph etc.?

• Is it possible to give a better algorithm for the above mentioned problem when

the underlying space is tree?

• Is it possible to give a tighter approximation bound for the same problem on

graph?

• What should be the optimal strategy of P1 for (m,n) game? Is it possible to

give a polynomial time algorithm for this problem or prove it as NP-Hard.

• What can be said about the said problem when the underlying space is tree?

• We considered one round game. What if there are more rounds involved?
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• What if the facilities of P1 and P2 are placed alternatively?

• What can be said about existence of pure Nash equilibrium on this version of

voronoi game?
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