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Chapter 1

Introduction

Proximity graph [JT92; Lio; Tou91] is a graph where the edges between the

vertices of the graph depends on the neighborliness of vertices. Proximity

graph can be intuitively defined as follows: given a point set P in the plane,

the vertices of the graphs, there is an edge between a pair of vertices p, q ∈ P

if they satisfy some particular notion of neighborliness.

Proximity graphs can be used in shape analysis and in data mining [JT92;

Tou]. In graph drawing, a problem related to proximity graphs is to find the

classes of graphs that admit a proximity drawing for some notion of proximity,

and whenever possible to efficiently decide, for a given graph, whether such a

drawing exists [BETT99; Lio].

In the case of Gabriel graphs, GG(P ), the notion of neighborliness of a pair

of vertices a, b is the closed disk Dab with diameter ab. An edge ab is in the

Gabriel graph of a point set P if and only if P ∩ Dab = {a, b} (see Figure

1.1(Left)) [ADH10]. Gabriel graphs were introduced by Gabriel and Sokal

[GS69] in the context of geographic variation analysis.

In the case of Delaunay graphs, DG(P ) [ADH11], the region of influence of a

pair of vertices a, b is the set of closed disks Dab with chord ab. An edge ab

is in the Delaunay graph of a point set P if and only if there exists a disk

dab ∈ Dab such that P ∩ dab = {a, b}
In this thesis, we consider the problems related to the Witness graphs (gen-
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Figure 1.1: Gabriel graph. Left: The vertices defining the shaded disk are
adjacent because their disk doesn’t contain any other vertex, in contrast to
the other vertices defining the unshaded disk. Right: Witness Gabriel graph.
Black points are the vertices of the graph, white points are the witnesses. Each
pair of vertices defining a shaded disk are adjacent and the pairs defining the
unshaded disks are not.

eralization of proximity graphs).

1.1 The Witness Gabriel Graphs

The witness Gabriel graph [ADH10] GG−(P,W ) is defined by two sets of

points P and W ; P is the set of vertices of the graph and W is the set of

witnesses. There is an edge ab in GG−(P, W ) if and only if there is no point

of W in Dab\{a, b} (see Figure 1.1(Right)). The witness Gabriel graphs were

introduced by Aronov et al. [ADH10] in 2010.

1.2 The Witness Delaunay Graphs

The witness Delaunay graph [ADH11] of a point set P of vertices in the plane,

with respect to a point set W of witnesses, denoted DG−(P,W ), is the graph

with vertex set P in which two points x, y ∈ P are adjacent if and only if there
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is an open disk that does not contain any witness w ∈ W whose bounding

circle passes through x and y.

In graph drawing, a problem that is attracting substantial research is to find

the number of witness points to remove all the edges of a witness graph. This

problem can also be defined independently, as to find the size of the stabbing

set for a point set P under some proximity notion. Stabbing set for a point set

P is defined as follows: Let S be a family of geometric objects with nonempty

interiors, each one associated to a finite subset of P . We say that a point w

stabs an object Q ∈ S if w lies in the interior of Q [ADH11]. The problem

is to find the minimum number of points required to stab all the elements of

S, which we denote by stS(P ). We also alternately call it as stabbing set.

We derive bounds on the cardinality of this set for some objects and derive

approximation algorithms for some cases.

1.3 Problems considered in this thesis

Problem 1. For a point set P in general position, derive an upper bound on

the size of the stabbing set of
(

n
2

)
disks induced by each pair of points a, b ∈ P

as the diameter of the disks.

Problem 2. For a point set P in convex position, derive an upper bound on

the size of the stabbing set of
(

n
2

)
disks induced by each pair of points a, b ∈ P

as the diameter of the disks.

Problem 3. For a point set P in general position, derive an upper bound on

the size of the stabbing set of disks induced by each pair of points a, b ∈ P as

the chord of the disks. Note that here we are not considering finite number of

disks.
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Problem 4. For a point set P , where no two points have the same x or y

coordinate, derive an upper bound on the size of the stabbing set of
(

n
2

)
axis-

parallel rectangles induced by each pair of points a, b ∈ P as the diagonal of

the rectangles.

Problem 5. For a point set P in convex position, derive a lower bound on

the size of the stabbing set of
(

n
2

)
axis-parallel rectangles induced by each pair

of points a, b ∈ P as the diagonal of the rectangles.

Problem 6. For a point set P in convex position, derive an approximation

algorithm for the size of stabbing set of
(

n
2

)
axis-parallel rectangles induced by

each pair of points a, b ∈ P as the diagonal of the rectangles.

Problem 7. For a point set P , where no two points have the same x or y

coordinate, derive a lower bound on the size of the stabbing set of
(

n
2

)
axis-

parallel rectangles induced by each pair of points a, b ∈ P as the diagonal of

the rectangles.

Problem 8. For a point set P , where no two points have the same x or

y coordinate, derive an approximation algorithm for the size of stabbing set

of
(

n
2

)
axis-parallel rectangles induced by each pair of points a, b ∈ P as the

diagonal of the rectangles.

1.4 Organization of the thesis

We will discuss Problems 1 and 2 in Chapter 2.2, Problem 3 in Chapter 2.3.

We discuss Problems 4, 5, 6, 7 and 8 in Chapter 3.2.



Chapter 2

Stabbing Disks Induced by Points

on the Plane

2.1 Introduction

Consider a point set P in the plane. Let S be a family of geometric objects

with nonempty interiors, each one associated to a finite subset of P. We say

that a point w stabs an object Q ∈ S if w lies in the interior of Q [ADH11].

In this chapter, we consider the problem that how many points are required

to stab all the elements of S, which we denote by stS(P ), and how large this

number can be when all the point sets with |p| = n are considered. We

consider this extremal value by stS(n) = max|p|=nstS(P ) [ADH11].

2.2 Disks defined by pairs of points as diameter

Let P be a set of n points, and let S be the set of
(

n
2

)
disks induced by each

pair of points a, b ∈ P . The diameter of the disk is defined by the line segment

ab.
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2.2.1 Sufficiency of Points for Stabbing

In this section, we will prove that for n points in general position, the size of

the stabbing set is bounded above by 2n − 2 − k, where k is the number of

points on the boundary of the convex hull of the points of P .

Figure 2.1: Points in P are shown with filled dots and the stabbing points are
shown using dots whose interiors are empty.

The earlier bound on stabbing set was due to Aronov et al. [ADH10] which

we state here.

Theorem 2.1. [ADH10]. n− 1 witnesses are always sufficient to stab all the

disks in S.

Proof. We argue the upper bound here. Without loss of generality, assume

no two points of P lie on the same vertical lines, this can be achieved by an

appropriate rotation of the coordinate system. Put a witness slightly to the

right of each point of P , except for the rightmost one (see Figure 2.1). Every

disk with diameter determined by two points of P will contain a witness.

We now state a few lemmata that would be useful in proving our bound.

Lemma 2.2. A point sees the diameter of a circle with an angle greater than

π/2 if and only if the point lies inside the circle.
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A

B C
O

A

B C
O

Figure 2.2: Left: Point sees diameter with an angle greater than π/2. Right:
Point sees diameter with an angle less than π/2.

Proof. [⇒] Let the point A lies inside the circle. We will prove that ∠BAC >

π/2. See Figure 2.2 (left).

Let ∠OAC = α, ∠OAB = β, ∠ACO = γ, ∠ABO = δ.

As the point A lies inside the circle, OC > OA and OB > OA, ⇒ α >

γ and β > δ.

⇒ α + β > γ + δ, ∠AOB = α + γ.

In 4AOB, ∠AOB + ∠ABO + ∠OAB = π

⇒ α + β + γ + δ = π

⇒ 2(α + β) > π, α + β > π/2.

⇒ ∠BAC = α + β > π/2.

[⇐] Now, to prove the only if part we will prove that if a point lies outside

the circle than it will see the diameter of the circle with an angle < π/2 See

Figure 2.2(right).

As the point A lies outside the circle, OC < OA and OB < OA, ⇒ α <

γ and β < δ

⇒ α + β < γ + δ, ∠AOB = α + γ.

In 4AOB, ∠AOB + ∠ABO + ∠OAB = π

⇒ α + β + γ + δ = π
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⇒ 2(α + β) < π, α + β < π/2

⇒ ∠BAC = α + β < π/2

So we have proved that a point will see the diameter of a circle with an angle

greater than π/2 if and only if the point lies inside the circle.

So by Lemma 2.2, a point will stab a disk if and only if it sees the diameter

of the disk with an angle greater than π/2.

A

B

CO

Figure 2.3: Incenter sees the sides of the triangle with an angle greater than
π/2.

Lemma 2.3. The intersection of three disks having the sides of a triangle as

their diameters is always non empty.

Proof. To prove that the intersection of three disks is non empty, we need

to prove that there is at least one point which sees all the three sides of the

triangle with angles greater than π/2.
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Let O be the incenter of the triangle ABC (see Figure 2.3).

∠OAC + ∠OCA < π/2 (as ∠BAC + ∠BCA < π)

⇒ ∠AOC > π/2

This implies that O sees the side AC with an angle greater than π/2, or in

other words O lies inside the disk having AC as its diameter. Similarily, we

can prove that O lies inside the disks corresponding to sides AB and BC.

A

B C
E

O

Figure 2.4: Disk corresponding to AE contains the common region of disks
corresponding to AB, BC and CA.

Lemma 2.4. For any 4ABC, let E be a point on any side of 4ABC(say

BC) (see Figure 2.4). The disk corresponding to diameter AE (vertex A is

opposite to side BC) contains the common intersection region of disks, having

the sides of 4ABC as their diameters.

Proof. For any point O that lies in the common intersection of three disks
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corresponding to the sides of the 4ABC (see Figure 2.4), there will be the

following three cases.

(1) The point O will lie on the line segment AE.

(2) The point O will lie to the left of the line segment AE.

(3) The point O will lie to the right of the line segment AE.

In the first case, when the point O lies on AE, it is trivial to show that it will

lie in the disk with AE as diameter. In the second case, when the point O lies

to the left of AE, ∠AOE will be equal to the sum of ∠AOC and ∠EOC (see

Figure 2.4 ), which will be greater than π/2, as ∠AOC > π/2 and ∠EOC > 0.

This implies that point O lies inside the disk corresponding to AE. The third

case is similar to the second case.

A B
E

O

D

D′

Figure 2.5: Showing that D′ lies completely inside D.
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Lemma 2.5. Let D be a disk with AB as its diameter (see Figure 2.5). The

disk D′ with diameter EB, where E is a point that lies on AB, lies completely

inside D.

Proof. To prove that D′ will lie completely inside D, we will show that

any point O that lies inside D′ sees AB with an angle greater than π/2.

∠AOB = ∠AOE +∠EOB (see Figure 2.5). ∠AOB will be greater than π/2,

as ∠EOB > π/2 and ∠AOE > 0.

Triangulation of a Planar Point Set

Let P be a set of n points in the plane. To be able to formally define a tri-

angulation of P , we first define a maximal planar subdivision as a subdivision

S such that no edge connecting two vertices can be added to S without de-

stroying its planarity. In other words, any edge that is not in S intersects one

of the existing edges.

Definition 1. A triangulation of P is defined as a maximal planar subdivision

whose vertex set is P.

Lemma 2.6. [BCKO08]. Let P be a set of n points in the plane, not all

collinear, and let k denote the number of points in P that lie on the boundary

of the convex hull of P . Then any triangulation of P has 2n− 2− k triangles

and 3n− 3− k edges.

Proof. Let τ be triangulation of P , and let m denote the number of triangles

of τ . Note that the number of faces of the triangulation, which we denote by

nf , is m + 1. Every triangle has three edges, and the unbounded face has k

edges. Furthermore, every edge is incident to exactly two faces. Hence, the

total number of edges of τ is ne = (3m + k)/2. Euler’s formula tells us that
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n − ne − nf = 2. Plugging the values of ne and nf into the formula, we get

m = 2n− 2− k, which in turn implies ne = 3n− 3− k.

A

B

EC

D

F

G

H

Figure 2.6: 2n− 2− k points is sufficient to stab all the disks.

Theorem 2.7. Let P be a set of n points in the plane in general position, and

let k denote the number of points in P that lie on the boundary of the convex

hull of P . Then the size of stabbing set for P is bounded above by 2n− 2− k.

Proof. First we find a triangulation τ of the point set P . According to Lemma

2.6, there will be 2n − 2 − k triangles in τ . Then for each triangle we put

a stabbing point at the incenter of the triangle. So by Lemma 2.3, these

stabbing points will stab all the disks having any edge of the triangulation as

its diameter. Now, for the points A and B (see Figure 2.6), which are not

adjacent in the triangulation of P , if we draw an edge AB, that edge will

intersect one of the opposite side CD of A at point E and the opposite side
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GH of B at F in τ (see Figure 2.6). Now according to Lemma 2.4, the disk

with diameter AE will be stabbed by the stabbing point of triangle ACD and

by Lemma 2.5, the disk with diameter AB is stabbed as the point E lies on

AB. So we have stabbed all the disk with 2n − 2 − k stabbing points, this

completes the proof.

Figure 2.7: For the points in convex position there will be n − 2 triangles in
any triangulation.

Corollary 2.8. Let P be a set of n points in the plane in convex position.

Then the size of stabbing set for P is bounded above by n− 2.

Proof. If the points of P are in convex position, then we can triangulate P

with n−2 triangles(see Figure 2.7), and then follow the proof of Theorem 2.7,

to prove the sufficiency of n− 2 stabbing points.
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A

B

C

D

O

Figure 2.8: Two points are necessary to stab all the disks corresponding to
the edges of a quadrilateral.

2.2.2 Necessity of Points for Stabbing

Theorem 2.9. Two stabbing points are necessary to stab all the disk for a

point set P having four points.

Proof. Let the four points A, B, C and D form a quadrilateral, and there are

two stabbing points corresponding to 4ABC and 4ACD (see Figure 2.8).

To prove the necessity of two stabbing points, it is sufficient to prove that

any one of these two points can not stab all the disks corresponding to the

sides of the quadrilateral. Let O be the stabbing point which stabs the disks

with diameters AB, BC, and AC (see Figure 2.8). We prove that O can not

stab both the disk with diameters AD and CD as follows: ∠AOC will be

strictly less than π, this implies that either ∠AOD or ∠COD will be strictly

less than π/2. So O can not stab both the disk. Similarily, we can prove that

the stabbing point lies inside the 4ACD can not stab both the disk with

diameter as AB and BC.
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2.3 Disks defined by pairs of points as chords

Let P be a set of n points, and let S be the set of disks whose boundary

contains at least two points from P . We can easily observe that |S| will be
infinite. Now the problem is to find the number of stabbing points to stab all

the disks of S.

In this section, we will give an alternate proof to show that 2n− 2 points are

sufficient to stab all the disks. The earlier was due to Aronov et al. [ADH11].

A

B

C

D

O

PQ

Figure 2.9: Making sure that disk containing A and C on its boundary will
be stabbed by one of the stabbing point.

Lemma 2.10. Let A,B, C and D be four points forming a quadrilateral then

any disk having A and C on its boundary will be stabbed by the stabbing point

corresponding to 4ABC or 4ACD(see Figure 2.9).

Proof. The center of the disk passing through point A and C will lie either

to the right or to the left of the line passing through A and C. Suppose the
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center O lies to the right of the line passing through A and C. We can observe

that any point will see AC with an angle greater than π/2 only when the point

lies inside the disk. Let P be the stabbing point corresponding to 4ACD.

So ∠APC > π/2(see Figure 2.9). This implies that P lies inside the disk.

Similarily, we can prove the other case when the center of the disk lies to the

left of the line passing through A and C.

A

B

E

C

D

F

G

O

Figure 2.10: Showing that 2n− 2 points will be sufficient to stab all the disks
for the case where one of the end points of the chord is an internal point.

Theorem 2.11. Let P be a set of n points in general position and S be the

set of disks contains at least two points of P on its boundary. Then 2n − 2

points will be sufficient to stab all the disks of S.

Proof. Let τ be any triangulation of points of P . We place a stabbing point

at the incenter of each triangle of τ . We also place a stabbing point for every

edge of the convex hull, external and very close to its mid point. If the size of

the convex hull is k, there will be 2n−2−k triangles in τ . So the total number
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A

B

O

Figure 2.11: Showing that 2n− 2 points will be sufficient to stab all the disks
for the case where both the end points of the chord are boundary points.

of stabbing points we have placed is 2n− 2. Now we will show that, we have

stabbed all the disks. According to Lemma 2.10, the disks having any internal

edge of τ as a chord have been stabbed by the stabbing points of the triangles

sharing that edge. We have also stabbed the disks having a boundary edge as

a chord, as we have placed a stabbing point external and close to the middle of

each boundary edge. Now we are left with disks containing two non adjacent

points A and B of τ (see Figure 2.10) on their boundary. For any such disk

there can be following two possibilities:

(1) Both A and B will be the boundary points of τ .

(2) A or B will be an internal point of τ .

In the second case when one of the point A or B is an internal point. Let

O be the center of the circle passing through A and B. Then either OA or

OB will cut an opposite side of A or B(see Figure 2.10, in this case both
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OA and OB intersecting with FG and CD, the opposite sides of A and B

respectively). According to Lemma 2.4 and Lemma 2.5, all such disks have

been stabbed. In the first case when both the points A and B are boundary

points, OA and OB might not cut any opposite side of A and B, but in this

case the 4OAB will contain at least two stabbing points (see Figure 2.11).

So we have stabbed all the disks with 2n− 2 stabbing points as claimed.



Chapter 3

Stabbing Rectangles Induced by

Points on the Plane

3.1 Introduction

In this chapter, we will introduce another problem for stabbing sets, where

the objects are axis-parallel rectangles. We formally define the problem as

follows. For a given point set P of n points with no two x or y-coordinates

same, for any pair of points p, q ∈ P , there is an axes parallel rectangle in S

with one of its diagonal as pq. So the set of object S for point set P contains
(

n
2

)
axes-parallel rectangles, each corresponding to each pair of points.

3.2 Axis-parallel Rectangles induced by pairs of

points as diameter

The problem is again the same as to find the optimal size of stabbing set to

stab all such rectangles for a point set P . In this section, we will argue a 4-

approximation algorithm for the size of stabbing set of axis-parallel rectangles

for a set of points P in convex position.

We start with the upper bound for the size of the stabbing set.



20 Ch 3. Stabbing Rectangles

Figure 3.1: Making sure that all the rectangles have been stabbed.

Theorem 3.1. 2n − 2 stabbing points are always sufficient to stab all the

rectangles of S for a point set P having n points in general position.

Proof. We assume that no two points of P have same x or y coordinate. We

place two stabbing points one slightly above and another one slightly below to

the right of each point of P except the point having maximum x coordinate

(see Figure 3.1). If we consider p as origin, the stabbing point above p will

stab all the rectangles corresponding to diagonal pq where q belongs to the

first quadrant and the stabbing point below p will stab all the rectangles

corresponding to diagonal pq where q belongs to the fourth quadrant. Every

rectangle with diagonal determined by two points of P will contain a stabbing

point. So we have proved that 2n−2 stabbing points will be sufficient to stab

all the rectangles.

Now we will give a lower bound for the stabbing set of S when the points of

P are in convex position. We construct an intersection graph G(V,E) for the

rectangles corresponding to the edges of the convex hull of the points of P .

We call all such rectangles as boundary rectangles. The set V contains one
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vertex for each boundary rectangle. There is an edge between between two

vertices of G if and only if the rectangles corresponding to vertices intersect.

A

B

C

D

O

A

B
C

O

Figure 3.2: Left: No three rectangles corresponding to adjacent edges inter-
sect. Right: No three rectangles corresponding to non adjacent edges intersect.

Theorem 3.2. Let P be a point set of n points and the points are in convex

position. The intersection graph G of the rectangles corresponding to the edges

of the convex hull(boundary rectangles) of P does not contain any clique of

size three or more.

Proof. To prove that there is no clique in G of size three or more, we will prove

that no three rectangle intersect together. First we need to find out when the

two boundary rectangles intersect. There will be two cases. Either the rect-

angles will be corresponding to adjacent edges or they will be corresponding

to non adjacent edges. In the first case when the rectangles are corresponding

to adjacent edges, let the rectangles corresponding to edges AB(say R1) and

AC(say R2) intersect. In this case the point B and C both will lie in the same

quadrant if we consider A as origin. Due to the convexity condition all other
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points must lie in the region R bounded by lines passing through AB,AC

and BC (see Figure 3.2). Let point O lies in the region R. Then we can

claim that the rectangle corresponding to edge BO can not intersect with the

rectangle R1, as point A and O lies in the different quadrant if we consider

point B as origin. Similarly, we can prove that the rectangle corresponding

to edges AC and CO can not intersect. The rectangle corresponding to an

edge between two points from R can not intersect with rectangles R1 and R2,

as both the points will lie to the right to B and below to C. So we have seen

that in the case when two rectangles corresponding to adjacent edges intersect

there does not exist third rectangle which can intersect with both of them.

Now we consider the second case when R1 and R2 are corresponding to non

adjacent edges AB and CD (see Figure 3.2). There will be two regions where

the other points can be, the region bounded by the lines AB, CD and AC and

the region bounded by the lines AB, CD and BD. Let us consider the region

bounded by AB, CD and BD(say R). Let O be a point in R. We can claim

that rectangle corresponding to edge OB can not intersect with R1, as A and

O will lie in the different quadrant if we consider B as origin. Similarly, it

can be proved that the rectangle corresponding to edge OD can not intersect

with R2. The rectangle corresponding to two points from R will not intersect

with R1 and R2, as both the points will lie to the right of D and below B. So

we have proved that there is no point or a pair of points in R which can make

three rectangles intersect. Similarly, it can be proved for the other region too.

So as claimed we have proved that there will be no three boundary rectangles

intersecting in a common region. This, in turn, implies that there will be no

clique of size three or more in graph G.

Theorem 3.3. For a point set P in convex position, we derive a 4-factor
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approximation algorithm for the minimum size of the stabbing set of
(

n
2

)
axis-

parallel rectangles induced by each pair of points a, b ∈ P as the diagonal of

the rectangles.

Proof. By Theorem 3.2, we can say that there will be atleast n/2 disjoint

rectangles in S. This gives a lower bound on the optimal solution. The above

lower bound coupled with the constructive proof of upper bound of 2n− 2 in

Theorem 3.1 gives us a 4-factor approximation algorithm.

Now we will improve the lower bound of stabbing set, for the points in general

position.

Figure 3.3: Showing that there will be n− 1 disjoint rectangles

Theorem 3.4. Let P be a set of n points in general position. There will be

at least n− 1 disjoint axis-parallel rectangles in S.

Proof. We assume that no two points in P have the same x or y coordinate.

Sort the points of P with respect to x coordinate. Then the rectangles corre-

sponding to consecutive pairs (see Figure 3.3) in sorted list shall be disjoint.

So there will be atleast n− 1 disjoint rectangles.



24 Ch 3. Stabbing Rectangles

Theorem 3.5. For a point set P , where no two points have the same x

or y coordinate, we derive a 2-factor approximation algorithm for the size

of stabbing set of
(

n
2

)
axis-parallel rectangles induced by each pair of points

a, b ∈ P as the diagonal of the rectangles.

Proof. Replace Theorem 3.2 with Theorem 3.4 in the proof of Theorem 3.3

to get the result.

We end the chpater with the following comment. Finding the minimum stab-

bing set of arbitrary rectangles is NP-Complete [FPT81]. We do not have

any hardness result for the special case of rectangles considered here, nei-

ther do we have any polynomial time algorithm. Nielsen [Nie00] presented an

O(log n)-approximation algorithm for finding the stabbing set of axis-parallel

rectangles.



Chapter 4

Conclusion and future directions

In this thesis, we discussed the problem of finding the size of stabbing sets

for disks and rectangles. We claimed the upper bound for size of stabbing set

for disks induced by points on the plane as diameter, as 2n − 2 − k. This

bound is better than the previous bound given by Aronov et al. [ADH10],

when the points are in convex position. We also described an alternate proof

for the upper bound of 2n− 2 for the size of the stabbing set when the disks

are induced by the pair of points as chord.

We proved that the upper and lower bounds of the size of stabbing set are

2n− 2 and n− 1 respectively, for the axis parallel rectangles induced by the

pair of points as diagonal. We have given a 4-approximation algorithm for

stabbing sets for the axis parallel rectangles, when the points are in convex

position. We have also given a 2-approximation algorithm for stabbing sets

for the axis parallel rectangles, when the points are in general position.

Further work which can be done in future is to improve the bounds given in

this thesis and the development of algorithms to find optimal size of stabbing

sets for disks and rectangles.
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