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Abstract

Blind Signature is a special form of digital signature, where the signer remains
oblivious about the message, he signs and at the same time, the user can not
generate any signature without the help of the signer. A seminal result in
Cryptography is that signature schemes can be constructed (in a black-box
way fashion) using Lossy-Trapdoor Permutations (LTDPs). In this thesis,
we survey on the security of blind signature schemes in various models like
in Random Oracle Model, Common Reference String Model and in Standard
Model. We also survey on the security of special types of Blind Signature
schemes like Partial Blind Signature scheme and Universally Composable
blind Signature schemes and consider techniques like Blind Signature under
Abort. Then we considered Lossy Trapdoor Permutations and it’s impor-
tance in Cryptology and then proved that, there can not be any black-box
constructions of Blind Signature schemes from Lossy Trapdoor Permutations
(LTDPs).
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Chapter 1

Introduction

In this chapter, we’ll first introduce digital signature and it’s importance in
public key Cryptography. Then we’ll claim that, in some application digital
signature is not enough and introduce blind signature scheme to overcome
those situations. Next, we’ll formally define blind signature scheme, give
some examples of blind signature schemes and give real life applications of
blind signature schemes. Then we state the main result of the thesis and
some required preliminaries.

1.1 Digital Signature Scheme

A digital signature scheme is a mathematical scheme for demonstrating the
authenticity of a digital message or document. A valid digital signature gives
a recipient reason to believe that the message was created by a known sender,
and that it was not altered in transit. Digital signatures are commonly used
for software distribution, financial transactions, and in other cases where it
is important to detect forgery or tampering. A digital signature scheme typ-
ically consists of three algorithms: a Key Generation algorithm that outputs
a private key and a corresponding public key, a Signing algorithm that, given
a message and a private key, produces a signature and a Verification algo-
rithm that, given a message, public key and a signature, either accepts or
rejects the message’s claim to authenticity.

The most common reasons for applying a digital signature to communi-
cations are :

• Authentication : Digital signatures can be used to authenticate the
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source of messages. When ownership of a digital signature secret key
is bound to a specific user, a valid signature shows that the message
was sent by that user.

• Integrity : If a message is digitally signed, any change in the message
after signature will invalidate the signature. So, receiver can conclude
that message has been tampered.

• Non-repudiation : By this property a signer who has signed some in-
formation, cannot deny that he had signed it, at a later time.

These are various facilities given by a digital signature. Now, notice one
thing, that the content of the message is revealed to the signer for generating
the signature. So, we can not apply simple digital signature schemes in
applications like E-Voting where the vote needs to be valid as well as should
not be revealed to any one, not even the signer. To overcome this problem,
a new form of signature namely blind signature, is introduced.

1.2 Basic Idea of blind signature

In cryptography, blind signature, as introduced by David Chaum [23], is
a form of digital signature in which the content of a message is disguised
(blinded) before it is signed. The resulting blind signature can be publicly
verified against the original, unblinded message in the manner of a regular
digital signature. Blind signatures are typically employed in privacy-related
protocols where the signer and message author are different parties. Exam-
ples include cryptographic election systems and digital cash schemes.

An often-used analogy to the cryptographic blind signature is the physical
act of enclosing a message in a special write-through-capable envelope, which
is then sealed and signed by a signing agent. Thus, the signer does not view
the message content, but a third party can later verify the signature and
know that the signature is valid within the limitations of the underlying
signature scheme. Blind signatures can also be used to provide unlinkability,
which prevents the signer from linking the blinded message it signs to a later
un-blinded version that it may be called upon to verify. In this case, the
signer’s response is first “un-blinded” prior to verification in such a way that
the signature remains valid for the un-blinded message. This can be useful
in schemes where anonymity is required.
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Blind signature schemes can be implemented using a number of common
public key signing schemes, for instance RSA. To perform such a signature,
the message is first “blinded”, typically by combining it in some way with
a random “blinding factor”. The blinded message is passed to a signer,
who then signs it using a standard signing algorithm. The resulting message,
along with the blinding factor, can be later verified against the signer’s public
key. In some blind signature schemes, such as RSA, it is even possible to
remove the blinding factor from the signature before it is verified. In these
schemes, the final output (message/signature) of the blind signature scheme
is identical to that of the normal signing protocol.

1.3 Motivation behind Blind Signature Scheme

Blind signature schemes see a great deal of use in applications where sender
privacy is important. This includes various “digital cash” schemes and voting
protocols. For example, the integrity of some electronic voting system may
require that each ballot be certified by an election authority before it can
be accepted for counting, this allows the authority to check the credentials
of the voter to ensure that they are allowed to vote, and that they are not
submitting more than one ballot. Simultaneously, it is important that this
authority not learn the voter’s selections. An unlinkable blind signature
provides this guarantee, as the authority will not see the contents of any
ballot it signs, and will be unable to link the blinded ballots it signs back
to the un-blinded ballots it receives for count. Here we discuss Electronic
cash and Electronic Voting – the main two applications of blind signatures
in details.

1.3.1 Electronic Cash

As early as 1982, Chaum’s [23] pioneering work aimed at creating an elec-
tronic version of money. To achieve this goal, he introduced the notions of
“coins” and “randomized blind signatures” (or simply “blind signatures”).
He claimed that this was the only way to ensure the required anonymity: in
real life, a coin cannot be easily traced from the bank to the shop, further-
more, two spendings of a same user cannot be linked together. These are two
main properties of real coins that Chaum wanted to mimic: untraceability
and unlinkability. He proposed to define an electronic coin as a number with
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a certificate (a signature) produced by the bank, it is withdrawn from the
bank, spent by the user, and deposited by the shop (see Fig.1.1)

Bank

User Shop

Withdrawl

Spending

Deposit

Figure 1.1: Coin Life

On-line electronic cash : In his first scheme, Chaum used blind sig-
natures for the production of coins. The user makes the bank blindly sign
a coin. Then the user is in possession of a valid coin that the bank itself
cannot recognize nor link with the user. When the user spends the coin, the
shop immediately returns it to the bank. If the coin has already been spent,
the bank detects the fact and informs the shop so that it refuses payment.
It is an “on-line” context: there is a continuous communication between the
shop and the bank in order to verify the validity of coins. In order to define
the scheme, Chaum introduced the first blind signature scheme, based on the
RSA hypothesis. It is a by now classical transformation of the original RSA
signature scheme.

Off-line electronic cash and the “cut-and-choose” methodology :
In an “off-line” context one cannot prevent a user from spending a coin twice
or even more, since the detection is made too late to refuse payment. This
fraud is called “doublespending.” We only can hope that the double-spender
will be discovered later and punished. Chaum et al. [24] were able to build
such schemes by introducing the identity of the user in the coin in such a
way that it remains concealed, unless double-spending happens. Once, blind
signatures were a critical point for anonymity, and, as before, the authors
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used the blind RSA signature, together with the “cut-and-choose” technique:
in their proposition, a coin is a kind of list of k blind signatures, each hav-
ing an embedded copy of the identity of the user. To be sure that double-
spending will reveal the real identity of the user, the bank would like to verify
that the signatures actually have the requested format, which would revoke
anonymity. Then the bank helps the user to get 2k signatures, randomly
chooses k of them, and verifies the inner structure of the selected signatures.
Since these signatures are no longer anonymous, the user throws them away
and constructs the coin with the k other ones. The probability for a cheater
to be finally in possession of a fraudulous coin is about 2−2k. The main
drawback of the “cut-and-choose” technique is that the coins are very large,
as well as the amount of computations.

In 1993 Ferguson [28] and Brands [15] proposed new schemes without “cut-
and-choose.” The first one uses once again the blind RSA signature, whereas
Brands’ scheme uses a new blind signature derived from the Schnorr signa-
ture scheme. In both schemes Ferguson and Brands managed to hide the
identity of the user in a much more efficient way than the “cut-and-choose”
methodology. Again, the identity is revealed after double-spending. Those
blind signatures which hide a specific structure, such as the identity, are
called “restrictive blind signatures”.

1.3.2 Electronic Voting System

With a rapid growth in computer networks, many people can access the
network through the Internet and therefore an electronic voting can be a
viable alternative for conducting an election. Electronic voting system must
attempt to achieve at least the same level of security as ordinary elections.
A prototype of EVS, called E-Voting, is a type of EVS, that satisfies four
security requirements for a safe election : Confidentiality, Integrity, Authen-
tication and Verifiability. Confidentiality means, the voter’s ballot should
be kept confidential. Integrity demands that only valid votes are counted in
the final tally. Authentication ensures a voter who is allowed to vote must
be an eligible voter and by verifiability, a voter can check that his vote was
properly received and has been taken into account in the final tally.

Blind Signature is the most popular cryptographic technique in Electronic
Voting System that is used to provide confidentiality of the voter’s ballot.
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The signature is used to authenticate the voter without disclosing the content
of a ballot. Hence the authority whose function is to verify the eligibility of
a voter will not know whom a voter votes for.

1.4 Definition (Blind Signature Scheme)

To define blind signatures formally we introduce the following notation for in-
teractive execution between algorithms X and Y . By (a, b)←

〈
X (x), Y(y)

〉

we denote the joint execution, where x is the private input of X , y defines the
private input for Y , the private output of X equals a, and the private output
of Y is b. We write Y<X (x),·>∞(y) if Y can invoke an unbounded number of
executions of the interactive protocol with X in sequential order. Accord-
ingly, X<·,Y(y0)>1,<·,Y(y1)>1

(x) if Y can invoke sequentially ordered executions
with Y(y0) and Y(y1), but interact with each algorithm only once.

Definition 1. A blind signature scheme consists of a tuple of effcient algo-
rithms BS = (KG,

〈
S, U

〉
,Vf) where

Key Generation. KG(1n) generates a key pair (sk, pk).

Signature Issuing. The joint execution of algorithm S(sk) and algorithm
U(pk,m) for message m ∈ {0, 1}n generates an output σ of the user,
(⊥, σ)←

〈
S(sk), U(m, pk)

〉

Verification. Vf (pk, m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e., for any (sk,pk)→ KG(1k),
any message m ∈ {0, 1}n and any σ output by U in the joint execution of
S(sk) and U(pk,m) we have Vf(pk, m, σ) = 1.

1.5 Definition (Secure Blind Signature Scheme)

Security of blind signature schemes requires two properties, unforgeability
and blindness [35, 48]. A malicious user U∗ against unforgeability tries to
generate k + 1 valid message-signatures pairs after at most k completed in-
teractions with the signer, where the number of interactions is adaptively
determined by the user during the attack. The blindness condition says that
it should be infeasible for a malicious signer S∗ to decide upon the order in
which two messages m0 and m1 have been signed in two executions with an
honest user U .
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Definition 2. A blind signature scheme BS = (KG,
〈
S,U

〉
,Vf ) is called

secure if the following holds:

i. Unforgeability : For any effcient algorithm U∗ the probability that
experiment ForgeBSU∗ evaluates to 1 is negligible (as a function of n) where

Experiment ForgeBS
U* :

(sk, pk) ← KG(1n)

((m1, σ1), ...., (mk+1, σk+1)) ← U∗
〈
S(sk),·

〉∞
(pk)

Return 1 iff
mi 6= mj for 1 ≤ i < j ≤ k + 1 and
Vf (pk, mi, σi) = 1 for all i = 1, 2, ..., k+1 and at most k interactions
with

〈
S(sk), ·

〉∞
were completed.

ii. Computational resp. Statistical Blindness : For any (effcient
resp. unbounded) algorithm S∗ working in modes find, issue and guess, the
probability that the following experiment BlindBSS∗ evaluates to 1 is negligibly
close to 1/2, where

Experiment BlindBS
S* :

(p,m0,m1, stfind)← S∗(find, 1n)
b← {0, 1}
stissue ← S∗<.,U(pk,mb)>1,<.,U(pk,m1−b)>1

(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs of U(pk,mb)
resp. U(pk,m1−b).
set (σ0, σ1) = (⊥,⊥) if σ0 =⊥ or σ1 =⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
Return 1 iff b = b∗.

We remark that, even if occassionally not mentioned, all algorithms re-
ceive the security parameter 1n as additional input.

1.6 Examples (Blind Signature Scheme)

Many blind signature schemes have been proposed in the literature, e.g.,
[23, 35, 48, 2, 28] with varying characteristics of security and efficiency. Here,
examples of two basic blind-signature schemes are given.
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1.6.1 The Blind FDH-RSA Signature :

Here we present one of the modified version of RSA blind signature scheme,
namely FDH-RSA blind signature scheme. We will first describe the scheme
and then claim it’s security in random oracle model.

• Key Generation. Let p and q be two large primes each of k bits, where
k is the security parameter. let, N = pq. Hence φ(N) = (p−1).(q−1).
A random no. e ∈ Zn∗ is chosen s.t. gcd(e, φ(N)) = 1. Choose d s.t.
e.d ≡ 1 mod φ(N).
Public key = (N , e)
Secret key = (p, q, d)

• Signature Issuing. Let the user wanst to get signature on the message
m. Then the user choose a random no. r ∈ Zn∗ and computes m′ =
H(m).re mod N and send it to signer. Here, H is a Hash function
known to both the party during initial set-up.

The Signer generate signature σ
′

= (m
′
)d on the message m

′
. and send

it to the user. The user then computes σ = σ
′
.r−1.

Now, (m, σ) is a valid message-signature pair.

• Verification. (m, σ) is a valid message-signature pair if σe= H(m).

One can get a proof of unforgeability for this scheme, in the random oracle
model, under the assumption that the RSA known-target inversion problem
is hard. From [23] one can easily verify that, the blindness condition is
satisfied.

1.6.2 The Blind Schnorr Signature :

Now, we give the details of another blind signature scheme in random oracle
model namely blind Schnorr scheme. Like the previous one, we first describe
the scheme and then claim it’s security.

• Key Generation. The generation algorithm produces two large prime
numbers p and q such that q divides p− 1 as well as an element g ∈ Z∗p
of order q. A random no. x ∈ Z∗q is chosen. Then y is computed s.t.
y = g−x mod p
Public Key = (y).
Secret Key = (x).
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• Signature Issuing. In order to get the signature of a secret message
m, the user asks the signer to initiate a communication. He chooses a
random K ∈ Z∗q, computes and sends a commitment r = gK mod p.
The user then blinds this value with two random elements α, β ∈ Z∗q ,

into r
′

= r.g−α.y−β mod p, computes the value e
′

= H(m, r
′
) mod q

and sends the “challenge” e = e
′

+ β mod q to the signer who returns
the value s such that gs.ye = r mod p. Finally, the user computes s

′
=

s − α mod q.

• Verification. The pair (e
′
, s
′
) is a valid Schnorr signature of m since

it satisfies e
′

= H(m, gs
′
.ye
′

mod p).

The proof of the unforgeability for the scheme, in random oracle model, is
given under the assumption that discrete log problem is hard. It is easy to
verify that the blindness property also hold.

1.7 Main Result

There is no black-box construction of blind signature schemes from
Lossy Trapdoor Permutations (LTDPs).

At a high level, our approach is similar to the one used by Dominique
Schroder in the context of ruling out constructions of blind signatures from
one-way functions [37], which in turn require the basic frameworks used by
Barak and Mahmoody-Ghidary in the context of of black-box constructions of
(standard) signature schemes from one-way functions [7]. The result imposes
no restrictions on the blind signature scheme, and applies even to schemes
with imperfect completeness. Moreover, the impossibility result even rules
out constructions of blind signature schemes for 1-bit messages that achieve
security only against honest-but-curious parties.

1.8 Thesis Organization

The remainder of this thesis is organized as follows. In chapter 2, we present
a survey on various Blind Signature schemes in Random Oracle Model, Stan-
dard Model, Common Reference String Model and discuss on the security
aspect. Moreover, we have also surveyed techniques like Blind Signature
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under Aborts, Partial Blind Signature schemes etc. We prove the impossibil-
ity of Blind Signatures from Lossy-Trapdoor-Permutations in chapter 3. In
chapter 4, we conclude with a brief discussion of the significance of the thesis
and an open question in the field of Blind Signature and security issues.
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Chapter 2

Survey on Existing
Blind-Signature Schemes and
their Security

The various blind signature schemes differ in round complexity, underlying
computational assumptions, and the model in which the security proof is
given. For example, many schemes [2, 48] rely on the Random Oracle heuris-
tic, where a hash function is considered as a truly random function. It is
well-known, however, that a security proof in the random oracle model does
not necessarily imply security in the standard model when a random oracle
is instantiated by an efficient hash function. Therefore, alternative solu-
tions are necessary. Several blind signature schemes that achieve security
in the standard model have also been proposed. These instantiations differ
in the underlying number-theoretic assumptions and their round complexi-
ties. Constructions based on general assumptions are also known [35], but
the minimal assumptions in terms of round complexity and computational
assumptions without assuming setup assumptions are unknown.

In this section, we give a brief introduction to various Blind Signature
Schemes proposed in Random Oracle, Standard and Common-Reference String
Model and discuss about their security aspects. We also mentioned the im-
portant security results that were proved on various Blind Signature Schemes,
on various models along with a proof idea for each of them. Then we
give a notion of special Blind-Signature schemes like Partial Blind-Signature
Scheme, Blind Signatures with Aborts, Universally Composable Blind Sig-
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nature schemes and discuss about various security results, proved on these
schemes.

2.1 Security of Blind Signature Schemes in

the Random Oracle Model

In Random Oracle Model, all the algorithms of the blind-signature scheme –
KG, S, U , Vf gets a black-box access to an oracle O : {0, 1}n → {0, 1}n, and
can query the oracle on any input x. Initial constructions of blind signature
schemes were in the random oracle model [9], and, in fact, until 2004, all
efficient constructions relied on random oracles.

Pointcheval and Stern [49] were the first to give a secure blind signature
schemes. They first proposed various definitions of unforgeability –

• (The (l, l + 1)-Forgery). For any integer l, an (l, l + 1)-Forgery comes
from an attacker that provides l+ 1 signatures after l interactions with
the signer Σ.

• (The “One-More” Forgery). A “One-More” Forgery is an (l, l + 1)-
Forgery for some integer l, polynomially bounded in the security pa-
rameter k.

• (The Strong “One-More” Forgery ). A Strong “One-More” Forgery is
an (l, l+ 1)-Forgery for some integer l, polylogarithmically bounded in
the security parameter k i.e. l ≤ (logk)α for some constant α.

They also focus on two kinds of attacks –

• The sequential attack : the attacker interacts sequentially with the
signer. This attack can be performed by a user who withdraws coins,
one after the other.

• The parallel attack : the attacker interacts l times in parallel with
the signer. This attack is stronger. Indeed, the attacker can initiate
new interactions with the signer before previous ones have ended. This
attack can be performed by a group of users who withdraw many coins
at the same time.
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The signer - Σ

Common : p,q,g,h
Keys : y = g−rh−s mod p

t, u ∈ Zq∗
a = gt.hu mod p

R = t+ er mod q
S = u+ es mod q

Message to sign : m

β, γ, δ ∈ Zq
α = agβhγyδ mod p
ε = H(m, α)
e = ε − δ mod q

gRhSye = a mod p
ρ = R + β mod q
σ = S + γ mod q

(m, α, ε, ρ, σ) s.t. α = gρhσyε mod p with ε = H(m, α).

a

e

R, S

Figure 2.1: Okamoto-Schonorr Blind-signature scheme

Then, they showed the security of a certain type of efficient blind signature
in the random oracle model [48]. Namely, they showed security of Okamoto-
Schnorr. They use the concept of the “Witness Indistinguishable” proofs. In
such a proof system:

• Many secret keys are associated to a same public key.

• The views of two proofs using two distinct secret keys (witnesses) asso-
ciated to a same public key are indistinguishable, even from the point
of view of the verifier.

• The knowledge of two distinct secret keys associated to a same public
one provides the solution of a difficult problem.

Then, they gave witness indistinguishable adaptation of the Schnorr iden-
tification of Okamoto blind signature schemes and proved their security as
long as the number of issued signatures are bounded logarithmically in the se-
curity parameter (in a restricted variant of the parallel setting). They proved
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the security, by reducing the Strong “One-more” Forgeability to solve Dis-
crete logarithm problem.

They also gave witness indistinguishable adaptation of Guillou-Quisquater
identification of Okamoto blind signature schemes and proved their security
as long as the number of issued signatures are bounded logarithmically in
the security parameter (in a restricted variant of the parallel setting) similar
as the previous scheme.

Common : p, q, g, h

Keys : y = g−rh−s mod p

ti, ui ∈ Zq
ai = gti .hui mod p

I ∈ {0, 1}

Verification of hI and eI

R = tJ + eJ .r mod q

S = uJ + eJ .s mod q

i = 0, 1 and J = 1− I
βI , γi, δi ∈ Zq
φi, ψi random

µi = H(m, φi)
hi = H(βi, γi, δi, µi, ψi)

αi = ai g
βi hγi yδi mod p

ei = H(µi, αi)−δi mod q

aJ =? gRhSyeJ mod p

ρ = R+βJ mod p
σ = S+γJ mod q

hi

ai

ei

I

βI , γi, δI , µI , ψI

R, S

The Signer User

α = gρhσyε mod p, µ = H(m, φ) and ε = H(µ, α)

where α = αJ and φ = φJ

Figure 2.2: Modified Scheme by Pointcheval

Later, in [46], Pointcheval developed a generic approach that converts log-
arithmically secure schemes into polynomially secure ones at the cost of two
more data transmissions between the signer and the receiver. With a kind of
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“cut-and-choose” method, he imposed the user to play honestly. A dishonest
user will be detected before it is too late.

He presented a generic transformation which makes the scheme secure af-
ter polynomially many synchronized interactions against poly-logarithmically
many attackers and remains practical and efficient. In the paper, he proposed
a new blind signature scheme that requires five data exchanges and proved
by reduction that forgery of the new scheme under a syncronized parallel
attack imply a forgery under parallel attack in the Okamoto-Schnorr Blind
signature scheme using witness indistinguishability.

Σ S

f

A

H

poly
poly+1

log
log+1

Signer

Attacker

New Scheme : Signer signer , A attacker

OS Scheme : Σ signer , Attacker attacker

S : Simulator
f : Random Oracle
H : S-controlled

Random Oracle

Figure 2.3: Strengthen Security for Blind-signature

He first proved that, if an adversary A perform an (l, l+1)-forgery against
Signer, under a Synchronized parallel Attack; then Discrete logarithm prob-
lem can be solved after polynomial many calls to A. Then he showed a
reduction, from A performing an (l, l + 1)-forgery against Signer, under
a Synchronized parallel Attack to S ∪ A performing an (λ, λ + 1)-forgery
against Σ, under parallel Attack. Refer to Fig.2.1 for the reduction. By the
above two steps, he proved the security of the scheme against parallel attack
assuming Discrete Logarithm problem is Hard.

Till 2000, known practical blind signature schemes whose security against
adaptive and parallel attacks can be proven in the random oracle model either
needed five data exchanges between the signer and the user or are limited to
issue only logarithmically many signatures in terms of a security parameter.
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Abe [2] presented an efficient blind signature scheme that allows a poly-
nomial number of signatures to be securely is- sued while only three data
exchanges are needed. The proposed scheme is based on the partially blind
signature scheme, a witness indistinguishable variant of the Schnorr signa-
ture scheme where the signer uses two public keys y(= gx) and z(=gw), which
we call the real public key and the tag public key, respectively, in such a way
that the signature can be issued only with real secret key x but no one can
distinguish which secret key, i.e., x or w, was used.

rnd ∈ {0, 1}∗
z1 = H2(rnd), z2 = z\z1
u, s1, s2, d ∈U Zq

a = gu

b1 = gs1z1
d, b2 = hs2z2

d

c = e − d mod q

r = u − cx mod q

b1, b2 ∈?
〈
g
〉

z1 = H2(rnd)

ζ = zγ , ζ1 = z1
γ , ζ2 = ζ\ζ1

t1, t2, t3, t4, t5 ∈U Zq

α = agt1yt2

β1 = b1
γgt3ζ1

t4 , β2 = b2
γht5ζ2

t4

γ, τ ∈U Zq

η = zτ

ε = H3(ζ||ζ1||α||β1||β2||η||m)

e = ε − t2 − t4 mod q

ρ = r + t1 mod q

$ = c + t2 mod q

σ1 = γ s1 + t3 mod q
σ2 = γ s2 + t5 mod q
δ = d + t4 mod q
µ = τ − δγ mod q

$ + δ ≡? H3(ζ||ζ1||gρ.y$||gσ1ζ1
δ||hσ2ζ2

δ||zµζδ||m) mod q

x, z, g, h y, z, g, h, m

Signer User

rnd, a, b1, b2

e

r, c, s1, s2, d

ζ, ζ1, ρ, $, σ1, σ2, δ, µ

Figure 2.4: Abe’s secure Blind-signature scheme

Their scheme then allows the signer to sign with several different tag
public keys to achieve partial blindness. It was proven that the same tag
key could be used only for logarithmically many signatures but the signer
could use polynomially many tag keys. Accordingly, if the signer generates a
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one-time tag key each time he signs, it achieves polynomial security, though
the blindness is lost.

The scheme given by Abe provides polynomial security, i.e., one-more
unforgeable even if polynomially many signatures are issued in an adaptive
and concurrent manner. The security is proven in the random oracle model.
The scheme remains practical as it requires only three to four times more
computation than the original Schnorr signatures. Another advantage of the
scheme is its potential support of protocols that need additional functional-
ity. One can easily extend the scheme to be partially blind schemes. Fur-
thermore, it is shown that a variant of their scheme gives a provably secure
solution for double-spender-traceable electronic cash systems. Note that such
e-cash schemes in the literature, rely on a variant of blind signatures called
restrictive blind signatures, whose security has been proved only under non-
standard and strong assumptions and only against certain restricted attacks
while Abe’s solution withstands the most general attacks.Thus, its security
is proven in the random oracle model. Bellare, et al. [9] and Boldyreva [10]
present 2-round blind signature schemes, note that 2-round protocols (which
consist of a single message from the user and a response by the signer) are
automatically secure in a concurrent setting.

2.2 Security of Blind Signature Schemes in

the standard model

In cryptography the standard model is the model of computation in which
the adversary is only limited by the amount of time and computational power
available. Cryptographic schemes are usually based on complexity assump-
tions, which state that some problem, e.g. factorization, cannot be solved in
polynomial time. Schemes which can be proven secure using only complexity
assumptions are said to be secure in the standard model. Security proofs
are notoriously difficult to achieve in the standard model, so in many proofs,
cryptographic primitives are replaced by idealized versions.

Relatively early, it was suggested [25] that blind signatures might be con-
structed using protocols for generic secure 2-party computation. Juels, Luby,
and Ostrovsky [35] point out that the naive way of implementing this ap-
proach does not work, but show how to adapt and extend this idea so as to
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achieve a secure solution. Their approach was based on two protocols :

• Firstly, they assumed that one-way trapdoor permutation exist and
there exist a polynomial time blind digital signature scheme namely
Naor-Yung [43] signature scheme, which is secure against adaptive in-
terleaved chosen message attack.

• Secondly, the two party completeness theorem which says that for any
two parties A and B, where A is given a secret input x and B is given
a secret input y, and any polynomial-time computable function g(., .)
there exist a protocol for computing g(x, y) s.t. nothing except the
output of the function is revealed to the parties, moreover, the schemes
could be easily extended to require that only one player learns g(x, y),
other learns nothing.

The idea that Juels et.al have was, engage the user and signer in a 2 party
protocol with the Naor-Yung’s signature scheme [43], at the end of which the
user learns the signature of the document and signer learns nothing, thus con-
structing a blind signature. But this approach suffers from several problems.
Juels et.al showed, how to overcome those; and finally gave the modified blind
signature based on the above protocols. This was the first complexity theo-
ratic proof of security for blind digital signatures. All previous proofs were
in random oracle model only and were not fully polynomial. They showed
how to achieve their protocol based on any one way trapdoor permutations.
All previous schemes were based on number theoratic assumptions only. But
the disadvantage of the scheme is that, although they claim security in the
concurrent setting, no details of the proof in this case are provided, as best
as one can tell, their solution is secure in the sequential setting only. In-
deed, security of their protocol in the concurrent setting seems to require a
concurrently-secure protocol for 2-party computation. Till 2004, this in fact
was the only known blind signature scheme that is secure in the standard
model [36] , based on general results about multi-party computation, and
thus it was extremely inefficient.

In [16] Camenisch et.al present the first provably secure blind signature
scheme which is also efficient. Their construction was of two steps :

• In the first step, which is a significant result on its own, they devised
and proved the security of a new variant for the Cramer-Shoup-Fischlin
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signature scheme, named mCSF. They showed that for generating sig-
natures, instead of using randomly chosen prime exponents one can se-
curely use randomly chosen odd integer exponents which significantly
simplifies the signature generating process.

• In the second step based on mCFS, they obtain a blind signing function
as a secure and efficient two-party computation that cleverly exploits its
algebraic properties and those of the Paillier encryption scheme. This
protocol is proven unforgeable only for the case of sequential attacks
reling on the Strong RSA assumption and the hardness of decisional
composite residuosity, they stress that it does not rely on the existence
of random oracles.

Lindell [41] has shown the impossibility of concurrently-secure blind sig-
natures if simulation-based definitions of security are used. In an effort to
overcome the limitations of the above protocols, as well as Lindell’s impos-
sibility result, much recent work has focused on proving security for blind
signature schemes in the concurrent setting by assuming a common refer-
ence string [38]. However, although Lindell’s impossibility result was used
as justification for relying on a common reference string in these works, Lin-
dell’s results do not apply if game-based security definitions (rather than
simulation-based security definitions) are used.

Hazay et al. [33] present a concurrently-secure blind signature scheme and,
as part of this, they also introduce a notion called a-posteriori blindness.
This notion considers blindness of multiple executions between the signer
and the user (as opposed to two sessions as in the basic case), and addresses
the question how to deal with executions in which the user cannot derive a
signature. As sketched in [33], the basic idea lies in an experiment where
the adversary first outputs a public key pk together with a message distri-
bution M. The malicious signer then concurrently interacts with l honest
user instances, where each user instance gets as input the public key pk and
a message sampled according to M. Afterwards, when the signer has fin-
ished all l interactions, it receives l

′
message-signature pairs in a randomly

permuted order, where 1 ≤ l
′ ≤ l denotes the number of non-aborted execu-

tions. The adversary wins the game if it associates one non-aborted execution
to a messages-signature pair. As mentioned, the detailed discussion about
a-posteriori blindness in the concurrent setting is given in [33]. The protocol
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relies on standard cryptographic assumptions (e.g., trapdoor permutations
and the decisional Diffie-Hellman assumption), and they prove security with
respect to game-based definitions that are stronger than others that have
appeared in the literature, bypassing the impossibility result of Lindell [41].

2.3 Security of Blind-Signature Schemes in

Common Reference String Model

In cryptography, the common reference string (CRS) model captures the as-
sumption that a trusted setup in which all involved parties get access to
the same string crs taken from some distribution D exists. Schemes proven
secure in the CRS model are secure given that the setup was performed cor-
rectly. The common reference string model is a generalization of the common
random string model, in which D is the uniform distribution of bit strings.

Definition 3. A blind signature scheme, in Common Reference String (CRS)
model, consists of a tuple of effcient algorithms BS = (C, KG,

〈
S, U

〉
, Vf)

where

CRS Generation. C(1n) generates a common reference string crs.

Key Generation. KG(crs) generates a key pair (sk, pk).

Signature Issuing. The joint execution of algorithm S(crs, sk) and algo-
rithm U(crs, pk, m) for message m ∈ {0, 1}n generates an output σ of the
user,
(⊥, σ) ←

〈
S(crs, sk), U(crs, m, pk)

〉

Verification. Vf (crs, pk, m, σ) outputs a bit.

It is assumed that the scheme is complete, i.e. for any (sk, pk)← KG(1k),
any message m ∈ {0, 1}n and any σ output by U in the joint execution of
S(crs, sk) and U(crs, pk, m) we have Vf (crs, pk, m, σ) = 1. Schemes
based on factoring related assumptions have been given in in the common
reference string (CRS) model [16], schemes based on discrete logarithm re-
lated assumptions have been given in the CRS model [29], schemes based
on a combination of discrete logarithm and factoring based assumption have
been given in the CRS model [38], Finally in [27, 35] schemes in the CRS
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are given under general assumptions. Due to the round optimal nature of
a two-move signature request phase, and the desire to avoid the use of the
random oracle, much recent work has focused on developing round optimal
blind signatures in the CRS model.

In [27] Fischlin presented a scheme in the CRS which has a two move signa-
ture request protocol. The scheme is a generic construction from basic prim-
itives, namely schemes for commitment, encryption and signatures as well
as generic non-interactive zero knowledge (NIZK) proofs for NP-languages.
The signature request protocol consists of the user sending a commitment
to the message to the signer, who responds with a signature on the commit-
ment. The user then uses this signature on the commitment to construct
the blind signature, by first encrypting the commitment and the signature,
and then adding a NIZK proof that the encrypted signature is a valid signa-
ture on the encrypted commitment, and that the encrypted commitment is
a commitment to the specific message.

Using the notion of automorphic signatures Fuchsbauer [29], presents a
variant of the construction of Fischlin, using specifc efficient components. In
particular he makes use of the efficient NIZK proofs of Groth and Sahai [31]
which hold for only specific NP-statements in pairing groups. In Fuchsbauer’s
scheme the blind signature is constructed by providing a Groth-Sahai proof
of knowledge of a signature on a message (as opposed to a signature on a
commitment as in Fischlin’s generic construction). This makes the under-
lying NIZK proofs simpler, but makes use of a different signature request
phase. The resulting blind signature consists of around 30 group elements,
and is the most efficient round optimal blind signature scheme in the CRS
known to date.

Fuchsbauer’s scheme is based on a new intractibility assumption called
the ADH-SDH problem, which he shows holds in the Generic Group Model
(GGM). This is a falsifiable assumption, in the sense of Naor [42], which is
closely related to the q-SDH problem lying behind the Boneh-Boyen signa-
ture scheme [14]. However, the resulting blind signature is not a standard
signature, e.g. it is not a true BonehBoyen signature.
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Then E. Ghada and N.P. Smart, present a round optimal blind signature
scheme in the CRS model which is significantly more efficient than Fuchs-
bauer’s scheme, a signature only consists of three group elements. Indeed the
resulting signature is a standard Camenisch-Lysyanskaya (CL) signature on
the message m [17]. Their required hardness assumption, being interactive,
is not falsifiable. However, this property is inherited from the underlying CL
signature where the underlying hardness assumption is the LRSW assump-
tion.

2.4 Universal Composability Security of Blind

Signatures

Canetti introduced the Universal Composability (UC) framework as a new
approach for analyzing the security of cryptographic primitives and proto-
cols [19]. In the UC framework, it is guaranteed that a secure primitive/
protocol maintains its security even if other primitives/ protocols run con-
currently. Since UC security requirement is very strong, it raises the new
question of whether conventional security notions satisfy UC security.

Canetti gave a positive answer to this question on digital signatures and
Public Key Encryption (PKE). He showed that a UC-secure signature scheme
is equivalent to a secure (existential unforgeable against chosen-message at-
tacks) signature scheme, and that UC-secure PKE is equivalent to secure
(semantically secure against chosen-ciphertext attacks) PKE [19]. On the
other hand, as a negative answer, Canetti, Kushilevitz and Lindell showed
that no (non-trivial) two-party protocol can be UC-secure in the plain model
where we use no setup assumptions except for authenticated communica-
tion [21].

Since a Blind Signature scheme is not just a two party protocol nor a simple
primitive like signatures and PKE, it is far from trivial to show the relation-
ship between UC security and the conventional security of blind signatures.
In the paper [26], Seiji Doi, Yoshifumi Manabe and Tatsuaki Okamoto showed
that the conventional security of blind signatures is truly weaker than UC
security. They formulated the security of blind signatures in the UC frame-
work (i.e., define the ideal functionality of Blind Signatures), and showed
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that the class of UC-secure Blind Signatures is a proper subset of that of
secure (in the sense of [35]) Blind Signatures, assuming a one-way trapdoor
permutation. Then, they introduced a stronger security definition (stronger
blindness, SB-security) of blind signatures than that by Juels et al. [35]. SB-
security is more appropriate in many applications (e.g., electronic cash and
voting) than Juels et al.s. Then they also showed that SB-security of blind
signatures is also truly weaker than security in the UC framework. That is,
the class of UC-secure blind signatures is a proper subset of that of SB-secure
blind signatures, assuming a one-way trapdoor permutation.

2.5 Security of Partial Blind Signature Schemes

Partially blind signature schemes are an extension of blind signature schemes
that allow a signer to explicitly include necessary information (expiration
date, collateral conditions, or whatever) in the resulting signatures under
some agreement with the receiver. As partially blind signatures can be re-
garded as ones lying between ordinary non-blind digital signatures and fully
blind signatures, they should satisfy the security requirements assigned to
ordinary digital signatures and those of blind signatures.

In tradition blind signature, the signer has no control over the attributes
except for those bound by the public key. For instance, if a signer issues
blind signatures that are valid until the end of the week, the signer has to
change his public key every week! This will seriously impact availability and
performance. A similar shortcoming can be seen in a simple electronic cash
system where a bank issues a blind signature as an electronic coin. Since
the bank cannot inscribe the value on the blindly issued coins, it has to use
different public keys for different coin values. Hence the shops and customers
must always carry a list of those public keys in their electronic wallet, which
is typically a smart card whose memory is very limited. Some electronic
voting schemes also face the same problem when an administrator issues
blind signatures to authorize ballots. Since he can not include the vote ID,
his signature may be used in an unintended way. This means that the public
key of the administrator must be disposable. Accordingly, each voter must
download a new public key for each vote. A partially blind signature scheme
allows the signer to explicitly include com- mon information in the blind
signature under some agreement with the receiver. For instance, the signer
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can attach the date of issue to his blind signatures as an attribute. If the
signer issues a huge number of signatures in a day, including the date of issue
will not violate anonymity. Accordingly, the attributes of the signatures can
be decided independently from those of the public key.

In the scenario of issuing a partially blind signature, the signer and the
user are assumed to agree on a piece of common information, denoted as
info. In some applications, info may be decided by the signer, while in other
applications it may just be sent from the user to the signer. Anyway, this
negotiation is done outside of the signature scheme. In 2000, Masayuki Abe
and Tatsuaki Okamoto [3] formalize this notion by introducing a polynomial-
time deterministic function Ag() which, takes two arbitrary strings infos and
infou that belong to the signer and the user, respectively, and outputs info.
To compute Ag, the signer and the user will exchange infos and infou with
each other. However, if an application allows the signer to control info, then
Ag is defined such that it depends only on infos. In such a case, the user
does not need to send infou.

Definition 4. A Partially blind signature scheme is a four-tuple
(G, S, U , V).

– G is a probabilistic polynomial-time algorithm that takes security param-
eter n and outputs a public and secret key pair (pk, sk).

– S and U are a pair of probabilistic interactive Turing machines each of
which has a public input tape, a private input tape, a private random
tape, a private work tape, a private output tape, a public output tape,
and input and output communication tapes. The random tape and the
input tapes are read-only, and the output tapes are write-only. The
private work tape is read-write. The public input tape of U contains
pk generated by G(1n),the description of Ag, and infou. The public
input tape of S contains the description of Ag and infos. The private
input tape of S contains sk, and that for U contains message msg.
The lengths of infos, infou, and msg are polynomial in n. S and U
engage in the signature issuing protocol and stop in polynomial-time.
When they stop,the public output tape of S contains either completed
or notcompleted. If it is completed,then its private output tape contains
common information info(s). Similarly,the private output tape of U
contains either ⊥ or (info, msg, sig).
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– V is a (probabilistic) polynomial-time algorithm that takes (pk, info,
msg, sig) and outputs either accept or reject.

In [3], then Masayuki Abe and Tatsuaki Okamoto have constructed an
efficient partial blind signature scheme (shown in Fig. 2.5) based on the
Schnorr signature scheme.

u, s, d ∈R Zq

z = F(info)
a = gu, b = gszd

t1, t2, t3, t4 ∈R Zq

α = agt1yt2

β = bgt3zt4

ε = H(α||β||z||msg)

e = ε− t2 − t4 mod q
c = e - d mod q

r = u - cx mod q

ρ = r + t1 mod q

σ = s+ t3 mod q
δ = d+ t4 mod q

ω = c+ t2 mod q

ω + δ =? H(gρyω||gσzδ||z||msg)

z = F(info)

a, b

e

r, c, s, d

Signer User

(p, q, g, x, info) (y = gx, info, msg)

Figure 2.5: Partially Blind WI-Schnorr signature scheme

Then, they gave a proof of security in the random oracle model assuming the
intractability of the discrete logarithm problem.

Since the technique developed by Pointcheval and Stern for proving the
one-more-unforgeability [49] is not applicable in the scheme, they provided a
new technique, applicable to variety of schemes based on the witness indis-
tinguishable protocols, to prove the security of the scheme. As well as the
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result of [48, 49] their proof guarantees that the proposed scheme is secure as
long as only a logarithmic number of signatures are issued. So plugging the
scheme into the generic, but yet practical scheme of [46] will yield a scheme
secure up to polynomial number of signatures. For the sake of simplicity, they
put off the generic description of our approach and concentrate on describing
one particular scheme based on the original (i.e. not Okamoto version of)
Schnorr signature scheme.

One can, however, construct a scheme in a similar way based on Guillou-
Quisquater signatures [32] or variants of modified ElGamal signatures [49]
at the cost of doubling the computation and communication compared to
the underlying schemes. Although the primary goal was partially Blind sig-
natures, their approach also yielded secure fully Blind signatures. One can
easily transform fully blind signature schemes from partially blind ones and
the reverse is also possible i.e. partially blind signature schemes can be de-
rived from fully blind witness indistinguishable signature schemes.

2.6 Security of Blind Signature Under Abort

Blind signatures under aborts, is a technique, where the user or the signer
may stop the interactive signature issue protocol prematurely. Several works
on Blind signatures discuss security only in regard of completed executions
and usually do not impose strong security requirements in case of aborts. One
of the exceptions is the paper of Camenisch, Neven and shelat (Eurocrypt
2007).

Camenisch et al. [18] considered the limitations of the standard blindness
notion. They have introduced an extension called selective-failure blindness
in which the a malicious signer should not be able to force an honest user to
abort the signature issue protocol because of a certain property of the user’s
message, which would disclose some information about the message to the
signer. They define the Selective Failure blind signature as follows :
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A Blind Signature scheme, BS = (KG,
〈
S, U

〉
,Vf) is called Selective Fail-

ure blind, if the probability that the following experiment SFBlindBSS∗ (n)
evaluates to 1 is negligibly close to 1/2, where

Experiment SFBlindBS
S* (n) :

(pk,m0,m1, stfind)← S∗(find, 1n)
b← {0, 1}
stissue ← S∗<·, U(pk,mb)>1,<·, U(pk,m1−b)>1

(issue, stfind)
and let σb, σ1−b denote the (possibly undefined) local outputs of U(pk,mb)
resp. U(pk,m1−b).
define answer as : left, if only first execution has failed,

right, if only second execution has failed,
both, if both execution has failed
and (σ0, σ1) otherwise.

b∗ ← S∗(guess, answer, stissue)
Return 1 iff b = b∗.

Camenisch et. al. presents a construction of a simulatable oblivious trans-
fer protocols from so-called unique selective-failure Blind signature schemes
(in the random oracle model) for which the signature is uniquely determined
by the message. Since the main result of the work [18] is the construction
of oblivious transfer protocols, the authors note that Chaum’s scheme [23]
and Boldyreva’s protocol [28] are examples of such selective-failure Blind
schemes, but do not fully explore the relationship to (regular) blindness.
Thus, selective-failure blindness does not follow from this notion. Aborts
of players have also been studied under the notion of fairness in two-party
and multi-party computations, especially for the exchange of signatures,
e.g. [30, 5]. Fairness should guarantee that one party obtains the output
of the joint computation if and only if the other party receives it. Note, how-
ever, that in case of Blind signatures the protocol only provides a one-sided
output to the user (namely, the signature). In addition, solutions providing
fairness usually require extra assumptions like a trusted third party in case
of disputes, or they add a significant overhead to the underlying protocol.

Marc Fischlin and Dominique Schroder pick up the idea of selective-failure
blindness to deal with signer aborts and expand the work of Camenisch et
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al. [18] towards its relationship to blindness and further constructions of such
schemes. In their paper on Security of Blind Signature Under Aborts They’ve
done the following :

• They showed that, selective-failure blindness is indeed a strictly stronger
notion than regular blindness.

• They extended the notion of selective-failure blindness to multiple exe-
cutions, particularly addressing aborts of a subset of executions. They
gave two possible definitions for the multi-execution case :

1. The first definition is an ordering-based definition where the ad-
versary has to distinguish the order of two different executions.

2. The second definition is a prediction based one, where the mali-
cious signer has to link an execution to a message-signature pair.

Then proved them to be equivalent and then showed that blindness in
the basic case of two executions suffices to guarantee security in the
case of many sessions.

• Then, they presented a general transformation which turns every secure
Blind signature scheme into a selective failure Blind scheme with an
additional commitment of the message, which the user computes before
the actual protocol starts and which the user then uses in the original
protocol instead of the message itself. Since the commitment is non-
interactive, the transformation inherits important characteristics of the
underlying protocol like the number of moves and concurrent security
though, the transformation destroys uniqueness (i.e. each message has
only one valid signature per key pair), as required by [18] to derive
oblivious transfer from such Blind signatures.

• However, they showed that the transformation was still applicable by
modifing the oblivious transfer protocol of [18] slightly. Hence, they
obtained an adaptive oblivious transfer from any unique Blind signature
scheme such that the protocol is simulatable in presence of failures.
They showed that selective-failure blindness is not necessary to obtain
such oblivious transfer protocols, but uniqueness is sufficient. Their
result was in the random oracle model.
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• They finally studied the case of user aborts and showed that every
three-move Blind signature scheme is unforgeable under user aborts.
While this is clear for two-move schemes like Chaum’s protocol [23]
they showed that this remains true for other schemes like the ones
by Pointcheval and Stern [48] but in general, this does not hold for
schemes with four or more moves, assuming the existence of a secure
two-move Blind signature scheme.

In summary, their transformation to achieve selective-failure blindness, to-
gether with the result about user aborts, showed that any scheme with two or
three moves can be efficiently turned into one, which is secure under aborts
(of either party).

2.7 Impossibility Results on 3 move Blind Sig-

nature Schemes

Marc Fischlin and Dominique Schroder investigate investigate the possibil-
ity of instantiating the random oracles in the schemes by Chaum and by
Pointcheval and Stern, and of giving a security proof based on standard
assumptions like RSA or discrete logarithm. Although both schemes are dif-
ferent in nature we can subsume them under a more general pattern of Blind
signature schemes where

• Blindness holds in a statistical sense, i.e., where even an unbounded ma-
licious signer cannot link executions of the issuing protocol to message-
signature pairs,

• The interactive signature issuing has three (or less) moves, and

• One can verify from the communication between a possibly malicious
signer and an honest user if the user is eventually able to derive a valid
signature from the interaction.

Given a Blind signature scheme with the properties above they show that
for such schemes fnding black-box reductions from successful forgers to any
underlying non-interactive cryptographic problem (like RSA, discrete-log or
general one-wayness or collision-resistance) is infeasible. The key idea to
their result is as follows: Assuming a three-move Blind signature scheme
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as above and a reduction R reducing unforgeability to a presumably hard
problem (given only black-box access to an alleged forger). Vice versa, if
the problem is indeed infeasbile, then the reduction therefore shows that the
scheme is unforgeable.

Their approach is to show that the existence of a reduction R as above
already violates the assumption about the hardness of the underlying prob-
lem. Our starting point is to design an oracle Σ with unlimited power and
a “magic” adversary A breaking the unforgeability of the Blind signature
scheme with the help of Σ. By assumption, the reduction R with access to
AΣ is then able to break the underlying cryptographic problem (see the left
part of Figure 2.6). Note that, at this point, we are still in a setting with an
all-powerful oracle Σ and the non-interactive problem may indeed be easy
relative to this oracle, without contradicting the presumed hardness in the
standard model.

Then, they apply meta-reduction techniques, to remove the oracle Σ from
the scenario. Given R we show how to build a meta-reductionM (a “reduc-
tion for the reduction”) to derive an efficient solver for the problem, but now
without any reference to the magic adversary and Σ (right part of Figure
2.6). To this end, the meta-reduction M fills in for adversary AΣ and sim-
ulates the adversary’s actions without Σ, mainly by resetting the reduction
R appropriately. We have then eventually derived an algorithm MR solv-
ing the underlying non-interactive problem in the standard model, meaning
that the problem cannot be hard. In other words, there cannot exist such a
reduction R to a hard problem.

They consider very general reductions running multiple instances of the
adversary in a concurrent and resetting manner, covering all known reduc-
tions for Blind signatures in the literature. Yet, since the meta-reduction
itself uses rewinding techniques, they somewhat need to restrict the reduc-
tion in regard of the order of starting and finishing resetted executions of
different adversarial instances (called resetting with restricted cross-resets).
This saves them from an exponential running time forM. For example, any
resetting reduction running only a single adversarial instance at a time obeys
our restriction. At this point it seems as if they have not used the blindness
property of the scheme and that the idea would paradoxically also apply to
regular signature schemes (for which we know secure constructions based on
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Figure 2.6: Meta Reduction Technique

any one-way function). This is not the case.

The blindness subtly guarantees that the meta reduction’s simulation of
the adversary is indistinguishable from the actual behavior of AΣ, such that
the success probabilities of RAΣ

and of MR are close. For these two cases
to be indistinguishable, namely R communicating with AΣ or with M, we
particularly rely on the fact that blindness holds relative to the all-powerful
oracle Σ used by A, as in case of statistically-Blind signature schemes.

They have formally defined signature derivation check, which can tell
whether user is able to compute a valid signature or not from public data and
communication between a malicious signer and honest user and then using
this idea of meta reduction, proved the following :

• There is no vanilla black-box reduction from unforgeability of the Blind
signature scheme with signature derivation checks to a hard non-interactive
problem.

• There is no three-move Blind signature scheme, with resetting (with
restricted cross-resets) black- box reduction from unforgeability of the
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Blind signature scheme BS, having the property signature derivation
check, to a hard non-interactive problem.

Thus, using a technique named, Meta-reduction, they have shown impossi-
bility results on 3 move blind signatures.
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Chapter 3

Impossibility of Blind
Signatures From Trapdoor
Permutations (LTDPs)

3.1 Preliminaries

In this section, we first start with the definitions and security properties of
trapdoor permutations. Then, we give the definition of lossy trapdoor func-
tion as given by Peikert and Waters [45]. Then, we state the importance
of lossy trapdoor permutations in cryptology. Then, we give the lossy trap-
door permutation oracles and prove that, using those oracle as black-box,
the impossibility result of constructing secure blind signature scheme.

3.1.1 Trapdoor Permutations (TDPs)

Definition 5. A trapdoor permutation family is a triplet of PPTM (Tdg, F, F−1).
Tdg is probabilistic and on input 1n outputs a key-pair (pk, td) ← Tdg(1n).
F (pk, ·) implements a permutation fpk over {0, 1}n and F−1(td, ·) implements
the corresponding inverse fpk

−1.
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3.1.2 Security Properties of Trapdoor Permutations
(TDPs)

• One-Wayness : The most standard security property of TDP is one-
wayness which says that it is hard to invert a random element with-
out knowing the trapdoor. Formally, for any PPTM A Pr[(pk, td) ←
Tdg(1n), x← {0, 1}n : A(fpk(x)) = x] ≤ negl(n).

• Partial one-Wayness :Another standard security property of TDP
is partial one-wayness which says that it is hard to invert a random
element without knowing the trapdoor. Formally, for any PPTM A
Pr[(pk, td) ← Tdg(1n), x ← {0, 1}n, x

′← {0, 1}n : A(fpk(x)) = x
′

,
fpk(x) = fpk(x

′
)] ≤ negl(n).

• Claw-Freeness : Let f0, f1 be permutation over a common domain
D. We say that (x, y, z) is f-claw if f0(x) = f1(y) = z.

Definition 6. A family F = {f0, i, f1, i : Di → Di } ∈ I is called a
family of Claw-free Trapdoor Permutations if:

1. There exist an algo G such that G(1k) outputs two pairs (f0, t0),
(f1, t1) where ti is trapdoor information for fi.

2. There exists PPT, an algorithm that given fi and x ∈ Di computes
fi(x)

3. ∀ ( inverting algo) I, there exists some non-negligible func nonnegl
such that for all sufficiently large k,
Prob[f0(x) = f1(y) = z : ((f0, t0), (f1, t1)) ← G(1k), (x, y, z) ←
I (f0, f1)] < nonnegl(k)

3.1.3 Lossy Trapdoor Permutations(LTDPs)

Lossy Trapdoor Permutations (LTDPs) were introduced by Peikert et. al. in
[45]. In the paper [45], they considered a straightforward generalization to
permutations.

Definition 7. A family of (n, l) Lossy Trapdoor Permutations (LTDPs) is
given by a Tuple (S,F ,F ′) of PPTMs. S is a sampling algorithm which on
input 1 invokes F and on input 0 invokes F ′. F (called “Injective Mode”)
describes a usual trapdoor permutation, i.e. it outputs (f, f−1) where f is
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a permutation over {0, 1}n and f−1 is the corresponding inverse. F ′ (called
“LossyMode”) outputs a function f

′
on {0, 1}n with range size at most 2l.

For any distinguisher D, LTDP-Advantage is defined as,

Advltdp(F,F−1),D = |Pr[Df (·) = 1 : (f, f−1)← F ]− Pr[Df ′(·) = 1 : f
′ ← F ′] |

We call F “lossy” if it is the first component of some lossy LTDPs.

3.1.4 Imporatance of Lossy Trapdoor Permutations(LTDPs)
in Cryptology

Lossy Trapdoor functions, proposed by Peikert et.al. [45] have the following
advantages :

• Lossy Trapdoor Permutations (LTDPs) can be realized based on the
hardness of the decisional Diffie-Hellman (DDH) problem in cyclic
groups, and the hardness of worst-case problems on lattices.

• Lossy Trapdoor Functions (LTDPs) imply injective (one-to-one) trap-
door functions in the traditional sense. This yields the first known
trapdoor functions based on number theoretic problems that are not
directly related to integer factorization.

• A black-box construction of a CCA-secure cryptosystem can be con-
structed based on Lossy Trapdoor Permutations (LTDPs). Peikert
et.al, in their paper [45] showed it. Their approach has two main bene-
fits: First, the construction is black-box, making it more efficient than
those following the general NIZK paradigm and moreover, their’s is
the first known construction of a CCA-secure cryptosystem based en-
tirely on lattice assumptions, for which there is currently no known
realization in the NIZK framework.

• Moreover, Lossy Trapdoor Permutations (LTDPs) can be used to con-
struct collision-resistant hash functions and oblivious transfer (OT)
protocols, in a black-box manner. Using standard (but non-black box)
transformations, this implies general secure multiparty computation for
malicious adversaries.
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3.1.5 Lossy Trapdoor Permutation Oracle

According to [11] , one can define a pair of oracle (T, T
′
). Choose 2n + 1

permutations π0,. . . ,π2n−1 and g uniformly at random from the set of all per-
mutations over {0, 1}n. Moreover choose 2n functions f0, . . . , f2n−1 uniformly
at random from the set of all functions from {0, 1}n to {0, 1}l.

Oracle T works as follows:
T1(td) → g(td) (generate public key from the trapdoor)
T2(pk, y) → πpk(y) (evaluate)
T3(td, z) → π−1

g(td)(z) (inversion)

On the other hand T
′

is defined as follows :
T
′
(pk, x) = πpk(0

n−l||fpk(x))

Now we define the LTDP T,T
′

= (S, (F, F−1, F
′
) as follows :

• S(b) If b = 1, choose a uniform random td ← {0, 1}n, compute pk =
T1(td) and return (pk, td), otherwise choose a uniform random pk ←
{0, 1}n and return (pk, ⊥).

• F (pk, y) returns T2(pk, y).

• F−1(td, z) returns T3(td, z).

• F ′(pk, y) returns T
′
(pk, x).

Lemma 1. LTDP T,T
′

implements a secure (n, l) Lossy Trapdoor Permuta-

tion when l = O(n
1
c
) for a positive constant c.

Proof. To show the security of LTDP T,T
′
, we need to argue that for any

efficient distinguisher D, |Pr[DF = 1]− Pr[DF
′

= 1]| is negligible. Consider
a random function f : {0, 1}n → {0, 1}l and a random permutation,
π : {0, 1}n → {0, 1}n. It is easy to check that π(0n−l||f()) has the same
distribution of a random permutation until a collision in f . f being a random
function, the collision probability is q2\2l, which is negligible for q = O(nc1)
for some constant c1 > 0.

Now using the fact that a function (permutation) chosen uniformly at
random from the set of exponentially many functions (permutations) is indis-
tinguishable form a random function (permutation), the lemma follows.
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Hence, for F we can use the general trapdoor permutation oracle π(·) and
for F

′
, π(0n−l||f(·)) can be used as an Lossy Oracle, where f is a many-to-one

function, given by, f : {0, 1}n → {0, 1}l.

3.2 Overview of the Proof Technique.

From a technical point of view, this proof technique is similar to that of Katz
and Schroder [37]. We are interested to show that there can’t be any Blind
signature scheme in standard model from Lossy Trapdoor Permutation, we’ve
chosen appropriate oracles that will implements lossy trapdoor permutations.
Now, we will prove, that a blind signature scheme, using any of the two
oracles, will fail to achieve the unforgeability property with non negligible
probability and the views of the two prove are indistinguishible, proving the
property of lossy trapdoor oracle, holds.

Katz and Scroder [37], gave the idea, how to prove that there is no black-
box construction of blind signature from trapdoor permutations. Now, we
have to prove the result for lossy permutation oracle and claim that, both
the views are indistinguishable because otherwise, it wouldn’t hold the lossy
trapdoor permutation property.

Here we are giving the intuition of the proof technique that there is no
blackbox construction of blind signature from trapdoor permutations, which
is similar to that of [37]. An interactive signature issue protocol between a
signer and a user, is considered. The input of the signer is a private key
sk and the users input is a public key pk and a message m. At the end of
this protocol the user outputs a signature σ on the message m. Both of the
algorithms are given black-box access to the Lossy permutation oracle, given
above. It is assumed that both players follow the protocol. The players are
given the power to be computationally unbounded, but require that they can
query the Lossy Permutation oracle, a polynomial number of times.

Now, in the setting of Blind signatures, security demands 2 properties :
Unforgeability and Blindness. If schemes that only achieve property Un-
forgeability are considered, then it is well-known that these can be built in a
black-box way from Lossy Trapdoor Permutations (LTDPs) as this is just a
standard signature scheme. On the other hand, schemes that are only Blind
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but trivially forgeable can be constructed without any assumption letting the
verification algorithm always output 1. Our job is to show that, if one wish
to satisfy both conditions above then Lossy Trapdoor Permutations (LTDPs)
are not sufficient.

To illustrate the main idea why this is true, consider the setting where
both the user and signer are given access to a Lossy Trapdoor Permutation
Oracle. Now consider two protocol executions in which the user first obtains
a signature on the message m0 and then obtains a signature on the message
m1. We observe the following :

• Correctness intuitively requires that in each interaction the user learns
sufficiently many of the queries, in order to be able to derive a valid
signature.

• Unforgeability requires that the user must not learn “too many” of the
queries in each interaction, that it can derive another signature on some
other message. In particular, the user should not learn enough queries
in the first interaction during generating signature on m0, so that he
can derive a valid signature on m1.

• Now, Blindness implies that, from the point of view of the signer, the
queries the user learns in the first interaction should be distributed
identically to the queries the user learns in the second interaction.

I’ll show that all these requirements are in conflict. More formally, the main
idea rely on results of [8], [34] showing that for any two-party protocol there
is an algorithm Findδ that takes as input a transcript of an execution of the
protocol and outputs, with high probability, a set that contains every oracle
query that was asked by both parties (“intersection queries”). Viewing that
the signer can run this algorithm, the blindness requirement thus implies
that the set obtained by running Findδ on the signature-issue protocol for
m0 must contain a set of intersection queries that are sufficient to derive
a signature on the message m1. Otherwise, the signer knows that the first
execution could not possibly have been for m1. Using this property, I’ve
construct the forger, in a similar manner to the forger given in [37]. The
forger executes the following steps during the attack:
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1. Set-up Algorithm and Generation of Input Keys. The signer
obtains (sk, pk) from the security parameter. The forger (i.e. the user)
gets as input a public key pk.

2. Request signature for a Message. Engage in an interactive signa-
ture issue protocol using the honest user algorithm on the message m0

to get a signature σ0.

3. Learn Oracle Queries used in the Protocol. Let trans0 be the
transcript that corresponds to the above protocol execution. Then first
run the algorithm Findδ to compute the set I0 that contains the set of
intersection queries and then also run the verification algorithm on the
signature σ0 corresponding to m0.

4. Guess a Possible Transcript. Conditioned on the knowledge learned
from the previous step, i.e., all query/answer pairs that the user and the
verification algorithm made and also all query/answer pairs determined

by Findδ, guess a secret key s̃k and an oracle Õ that agree with the
information collected about the real secret key sk and oracle O.

5. Forge a Signature for another Message. Forge a signature for
m1 using the key s̃k and the oracle Õ, by running the signature issue
protocol locally.

Using the blindness property of the scheme, I’ll claim that, the adversary
outputs an additional message/ signature pair in the last step with high
probability showing that both blindness and unforgeability cannot hold si-
multaneously for such constructions.

3.3 Notation and Oracles Used

The basic notations are borrowed from the paper [37]. O is the oracle used,

defined as O : π(0n−n
′
||f(·)) where

f : {0, 1}n → {0, 1}n
′
, is a many to one function and π : {0, 1}n → {0, 1}n, is

a trapdoor permutation. On input x, the oracle O outputs the value O(x).
Blind signatures with black-box security with respect to an lossy trapdoor
permutation oracle O : π(0n−l||f(·)) is considered. By AO(x) we mean that
an algorithm A on input x gets black-box access to O. Let BS be an oracle

44



Blind signature scheme. For message 0 (resp. 1), let trans0 (resp. trans1)
be a transcript of the execution with U(pk, 0) (resp. with U(pk, 1)), and
let σ0 (resp. σ1) be a corresponding signatures. Let Q(V f 0) (resp. Q(V f 1))
denote the set of O queries made by the verification algorithm Vf O(pk, 0,
σ0) (resp. Vf O(pk, 1, σ1)). Finally, let Q(S0) (resp.Q(S1)) be the set of
queries asked by the signer when interacting with U(pk, 0) (resp. with U(pk,
1)).

3.4 Finding Intersection Queries from the Tran-

script of a 2-party protocol execution

Before proposing the attacker, we look at the necessary lemma from Barak
and Mahmoody-Ghidary [8] . Informally, it states that for any two-party
protocol where each party has access to a random oracle there exists an
algorithm that, upon observing the transcript of the interaction, finds with
high probability all the intersection queries (queries that have been asked by
both parties). This result was first discovered by Impagliazzo and Rudich
[34] , and a more efficient protocol was given by Barak and Mahmoody-
Ghidary [8]. Formally, this result is given in the following lemma.

Lemma 2. Using [8], we can claim that, if
∏

be a two-party (randomized)
protocol where each party asks at most q oracle queries to the Lossy Trapdoor
Permutation Oracle, then for every 0 < δ < 1, there is an algorithm Findδ
that has access to the messages sent between the 2-party and asks at most
(104q2\δ2) oracle queries such that the queries made by Findδ contain all the
intersection queries of the 2 parties with probability at least 1− δ.

We apply this lemma to the scenario of Blind signatures defining the
protocol

∏
as follows: Corresponding to any oracle Blind signature scheme

BS(.), define the following two-party protocol
∏

between a signer S and a
user U :

1. S runs (sk, pk)← KGO(1n) and sends pk to U .

2. U and S then run the signature-issuing protocol on the message 1, at
the end of which U obtains a signature σ1.

3. U runs Vf O(pk, 1, σ1).
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Now we’ll fix some δ and define Findδ (as per Lemma 1) relative to the
above protocol

∏
. Say the above protocol is run in the presence of the trap-

door oracle O. If we let Q(S∏) and Q(U∏) denote the O-queries made by
each party during an execution of the above protocol that resulted in tran-
script trans, then Lemma 1 guarantees that, with high probability, that the
set I contains all the intersection queries, i.e. Q(S∏) ∩ Q(U∏) ⊆ I.

Since the protocol
∏

is fixed, we omit this additional input in the following,
i.e., Findδ(trans) := Findδ(

∏
, trans). Note that the message in

∏
is fixed,

but the transcript might correspond to a different message. Due to the blind-
ness, however, the success probability of the algorithm Findδ is independent
of the transcript.

3.5 Properties from Blindness

In this section we study the question of what blindness means with respect to
the set of intersection queries. The main observation is that due to blindness
the set I that contains all intersection queries must be somehow “indepen-
dent” of the message. Recall that in the blindness game the semi-honest
signer first outputs a public key together with two messages. Then, it in-
teracts with two honest user instances in a random order. The task for the
attacker is to predict which user had which message as input. Recall that the
algorithm Findδ, gets as input a transcript (i.e., all the messages exchanged
between both parties) of a protocol execution and outputs a set that contains
all intersection queries.

Now, consider two protocol executions and suppose that the set of intersec-
tion queries depends on the message. Then just by looking at these queries
it is possible to determine the order of the messages. To formalize this in-
tuition, consider a (semi-honest) signer S∗ in the blindness game. Since the
attacker is semi-honest and by perfect completeness, the user instances get a
valid signature. Then, the adversary obtains both signatures in the original
order together with the transcripts of both executions.

Now, it is to show that the set of queries that the verification algorithm
makes to verify the second message 1 are already contained in the intersection
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queries of the first execution.Let’s denote Im, to indicate the set output when
Findδ is run on the protocol execution

〈
S(sk), U(pk,mb)

〉
. In the blindness

game, where the message being signed is unknown and trans0 to indicate the
transcript of the first protocol execution

〈
S(sk), U(pk,mb)

〉
. trans1 is defined

similarly for the second execution. Let I0 ← Findδ(trans0) and define I1

similarly. We also define the sets Q(S0) and Q(S1) similarly for the queries
made by the signer.

Now, it’s remain to show that, due to blindness all the intersection queries
that occur when signing the message 1 are contained in the set I0. That is,
similar to [7], we’ll show that 0 is “useful” for 1.

Lemma 3. Let BS be an oracle Blind signature scheme satisfying blindness.
Consider an execution of the blindness experiment, and let Q(KG), Q(Sb),
transb, and Q(Vfb) be as defined above. Then with probability at least 1−δ−
negl(n) over random coins of the experiment it holds that, Q(Vf1) ∩ (Q(KG)
∪ Q(S0)) ⊆ Findδ(trans0)

Proof. We first observe that with probability at least 1− δ, we have,
Q(Vf1) ∩ (Q(KG) ∪ Q(S1)) ⊆ Findδ(trans1) This follows immediately from
Lemma 2 and our definition of protocol π in the previous section.

Now, let’s consider now the following adversary S∗ :

1. S∗ runs the honest key-generation algorithm to obtain (sk,pk). It
records the O-queries Q(KG) made during this step.

2. S∗ then runs the honest signing protocol with the first user instance.
Let trans denote the transcript of this execution, and let Q(S) denote
the O-queries made during this step.

3. S∗ then runs the honest signing protocol with the second user instance.

4. S∗ is given signatures σ0, σ1 on the messages 0 and 1, respectively. (By
perfect completeness, both user instances always obtain valid signa-
tures.) S∗ verifies σ1 and records the O-queries Q(Vf1) made in doing
so.

5. Finally, S∗outputs 1 iff Q(Vf1) ∩ (Q(KG) ∪ Q(S)) ⊆ Findδ(trans).
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If b = 1, and so the first user instance represents an interaction with U(pk,1),
then trans = trans1 and Q(S) = Q(S1) and so S∗ outputs 1 with probabil-
ity at least 1 − δ. blindness property thus implies that S∗ outputs 1 with
probability at least 1− δ − negl(n) when b = 0 (and the first user instance
represents an interaction with U(pk,0)). This concludes the proof.

3.6 Detailed Proof of the Impossibility Re-

sult of Blind Signatures, constructed from

Lossy Trapdoor Permutations

In this section, building on the previous definitions and notations, we’ll show
that there is no black-box construction of Blind signatures from lossy trap-
door functions. To this end, we describe a malicious user U∗ who wins in the
unforgeability game when the security of the Blind signature scheme depends

on a lossy trapdoor permutation oracle O : π(0n−n
′
||f(x)), where both f is

a many to one function and π is a random permutation. This rules out such
constructions of Blind signatures.

Like in [37], we also assume that the protocol proceeds in some fixed num-
ber of rounds and w.l.o.g. that no party queries O twice on the same input.
We say that any message sent from one party to the other party is a move
and assume the signer sends all even moves and the user all odd ones.

Theorem 1. Let BS be an oracle Blind signature scheme (with perfect com-
pleteness) where each party has access to a random oracle. Let q = poly(n)
be an upper bound on the number of oracle queries made by KG, S, U , and
Vf. Then there exists an adversary which makes at most poly(n) queries and
breaks the unforgeability of the scheme with non-negligible probability, where
the probability is taken over the randomness of the oracle, key generation,
and the randomness of the adversary.

Proof. To prove this theorem lets first describe the attacker and then analyze
its success probability.

Description of the Attacker. Our adversary U∗ works in 5 steps. All
the details of the steps are given below :
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1. Setup Algorithm and Key Generation : The signer generates
(sk, pk) from the KG algorithm. The input of the attacker U∗ is a
public-key pk. It picks a random values r0 ← {0, 1}n and r1 ← {0, 1}n.

2. Signature Issue Protocol as an Honest User. The adversary U∗
engages in an interactive signing protocol with the external signing ora-
cle on the message 0. U∗ executes the honest user algorithm U(pk, 0, r0)
obtaining a valid signature σ0. U∗ then verifies the received signature
(observing the oracle queries made by the verification). Let trans0 be
the transcript (not including the randomness r0) of this protocol ex-
ecution. U∗ then computes the set I0 ← Findδ(trans0). Remember,
that by the properties of Findδ the set I0 contains all the intersec-
tion queries made by the signer (including key generations) and user
(including verification) for this signature. Next, denote by T0 the com-
plete transcript of the algorithm run so far. i.e., we assume that T0

contains the secret key sk, public key pk, the message signature pair
(0,σ0), the randomness r0 of the user and all query-answer pairs made
by the key generation Q(KG), the signer Q(S), and the user Q(U).
Note that since the user verifies the generated signature, the set Q(U)
includes the queries asked by verification Q(Vf(0)). Note further that
the attacker U∗ has only partial knowledge of T0.

3. Learn Orace Query/Answer Pairs used in the protocol. Let L0

be the information that U∗ has about T0 and the oracle O following
Step 1. This includes : pk, 0, r0, σ0, Q(U0) and I0. Let q be an upper
bound on the number of queries asked by each of the BS protocols and
let δ = 1/10 be the failure probability of the algorithm Findδ. Let
ε = δ/q and M = q/εδ =100q2. For i = 1, ...M do the following:

• Let Di−1 be the distribution of T0, the transcript of the first step,
conditioned on only knowing Li−1.

• Denote by Q(Li−1) the oracle queries that appear in Li−1. If a
query x ∈ {0, 1}n / Q(Li−1) appears with probability at least ε in
Di−1, then U∗ makes this query to O and adds the query/answer
pair to Li. If there is more than one such query, then he adds the
lexicographically first one.

4. Guess a Possible Transcript. U∗ samples a random transcript T̃0

according to the distribution DM . Observe that T̃0 also defines a secret
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key s̃k that may be distinct from the real secret key sk. Moreover, T̃0

may include some new mappings that were not defined in LM . These
most likely will not match the real oracle O. We let Õ be the following
oracle. If a query x appears in T̃0 then Õ(x) returns the value contained

in T̃0. Otherwise, Õ(x) = O(x).

5. Forge a Signature for another Message. To forge a signature, U∗
runs the interactive signing protocol locally using s̃k and Õ, i.e., σ1 ←〈
SÕ( s̃k), U Õ(pk, 1; r1)

〉
on the message 1. It then verifies the signature

σ1 for the message 1 using the real oracle O. If the signature verifies,
then U∗ outputs (σ0, σ1) and aborts otherwise.

Analysis of the Attack:

Complexity : U∗ makes at most poly(n) = M + 104q2/δ2 + O(q) ora-
cle queries:

• M for the learning queries step,

• 104q2/δ2 for running Findδ, and

• O(q) for generating and verifying the two signatures.

Success Probability : Now, we’ll argue that U∗ outputs a successful forgery
with probability at least 4

5
− δ− negl(n). To analyze the success probability

of U∗ let Q̃(KG), Q̃(S) be the queries made by the key generation and the

signer during the computation of σ1. Q̃(U) denotes the users queries to Õ
during the computation of σ1. Note that the forger only initiated a single
protocol execution with the signer but returns two message/signature pairs.
Since the forger runs the honest user protocol in the first execution, (0,σ0) is
a valid message/signature pair. Thus, U∗ wins in the unforgeability game as

long as Vf Õ(pk, 1, σ1) = 1.

In the following we show that, with high probability, the verification algo-
rithm on (1, σ1) never asks a query on which the oracles Õ and O disagree.
But if the verification algorithm does not ask such a query, it follows by the
perfect completeness of the signature scheme that (1, σ1) must verify as well.
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Lemma 4. Let Q(Vf1) denote the set of oracle queries made when verifying

the signature σ1. Let Q̃(KG) and Q̃(S) denote the set of oracle queries made
by the key generation and signing algorithms, respectively, in the sampled
transcript T̃0. Then with probability at least 4

5
− δ − negl(n) it holds that,

Q(Vf(1)) ∩ (Q̃(KG) ∪ Q̃(S)) ⊆ Findδ(trans0)

Clearly, lemma 4 implies our Theorem1. To see this, note that Vf Õ (pk,
1, σ1) = 1 by perfect completeness of the signature scheme. But the only

queries on which Õ and O can possibly differ are queries in Q̃(KG) ∪ Q̃(S)
\ Findδ(trans0). If verification makes no such queries, then Vf O(pk, 1,σ1)

= Vf Õ(pk, 1,σ1) = 1.

Now, let E denote the event considered in Lemma 4. The proof of Lemma 4
follows the proof in [7] : A series of hybrid distributions are defined where

the first hybrid corresponds to the invented transcript T̃0 and the transcript
of the forgers signature and verification protocols for 1 and the last hybrid
corresponds to the transcript produced if all these procedures are executed
with respect to the real trapdoor oracle O. The crucial point to look is that,
due to the blindness of the signature scheme, event E holds for any pair of
messages, and in particular the fixed messages 0 and 1. not only to find any
two messages for which event E occurs by searching through exponentially
many (in the number of oracle queries made by the signature scheme) mes-
sages. This difference allows the attack to be much more efficient than theirs
and in particular, the attack only needs polynomially many oracle queries.
Now the Hybrids are defined.

Definition of Hybrid Distributions : We formally define four hybrid
distributions H0, H1, H2 and H3 as follows:

1. Hybrid H0 :. The first hybrid is the distribution ( T̃0, T1), where T̃0 is
the invented transcript created by U∗ in Step 4 and T1 is the transcript
of the signature issue and verification protocols for 1 in Step 5. Note
that T0 also includes the queries of the key generation, while T1 does
not.

2. Hybrid H1 :. The second hybrid is defined identically to H0, except
that we use Õ to verify the forgers signature σ1. In H0, the O oracle
is used instead.
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3. Hybrid H2 : The third hybrid has the same distribution as H1, except
that we change the definition of Õ as follows. Recall that LM is the
set of O query/answer pairs that U∗ knows after the learning queries

step (Step 3). We define Õ to answer any query contained in LM with
the answer stored there and all other queries x with a random value.
This modification results in an oracle Õ that agrees with O on all the
queries U∗ has asked from O until the end of Step 3 and all the other
queries are answered completely at random.

4. Hybrid H3 : The distribution of the last hybrid is the same as H2.
except that T̃0 is replaced with T0. Thus the output of this hybrid is
(T0, T1) which describes the experiment where :

• The keys are generated (sk, pk) ← KG(1n)

• The signing algorithm uses sk to run
σ0 ←

〈
SO(sk), UO(pk,0; r0)

〉
, and σ1 ←

〈
SO(sk), UO(pk,1; r1)

〉
.

• The verification algorithm uses pk to verify both signatures. Note
that all algorithms here use the original trapdoor oracle O and
thus verification succeeds for both signatures.

The distributions considered in each hybrid are taken over random choice of
the oracle and random coins of the key-generation algorithm, the signer, and
the adversary. We prove Lemma 4 by showing that,

1. event E occurs with high probability in H1 and

2. the probability that event E occurs in H0 is not much smaller than its
probability in H3.

Now, the target is to show that E occurs with high probability in H3.

Claim 1: PrH3 [E ] ≥ 1 − δ − negl(n)

This clearly is an immediate consequence of Lemma 2.

Next to show is that the probability of E remains unchanged when we move
from H3 to H2.

Claim 2: H2 ≡ H3 Thus, PrH2 [E ] = PrH3 [E ]:
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Proof. One can view H3 as being sampled as follows: first, fix LM ; then
choose the transcript T0 at random from DM . This, however, is exactly the
same distribution as H2 where LM is fixed and we then choose T̃0 from DM .

Next is to show that H1 and H2 are “close”.

Claim 3 : PrH1 [E ] ≥ PrH2 [E ] −1/5

To prove this, the concept of Statistical Distance, is needed. So, first see
what Statistical Distance is.

Statistical distance: If X and Y are two random variables taking val-
ues in a finite set A, then Statistical Distance of X,Y denoted by, SD(X,Y )
= 1/2. Σa∈A |Pr[X = a]− Pr[Y = a]|.

Now, it is to prove that, SD(H1,H2) ≤ 1/5 and hence, PrH1[E ] ≥ PrH2[E ]
−1/5

Proof. Let Q(T0) be the queries contained in the transcript T0. Let B be the
event that U∗ ever asks a query in Q(T0)\Q(LM). It is clear that H1 =H2

as long as event B does not occur in either of them, since in both distribu-
tions any queries outside of Q(T0) are answered randomly. This implies that
PrH1[B]= PrH2 [B], and SD(H1,H2) ≤ PrH2 [B].

Now the task is to show that PrH2 [B] ≤ 1/5. (In the following, all
probabilities are in H2.) Recall that in Step 2 of the attack, we set ε = δ/q
and U∗ learns at most M = 100q2 query/answer pairs from O. Let Di be
the distribution of T0 sampled in this step by U∗ given the set Li of known
query/answer pairs. Let C be the event that there are more than M queries
that become likely during the attack. That is, C is the event that there exists
a query x /∈ Q(LM) such that x is asked in DM with probability at least ε.
Now, one can claim that,

1. Pr[C] ≤ δ = 1/10 and

2. Pr[B|¬C] ≤ δ = 1/10.

This completes the proof, as,

53



Pr[B] = Pr[C]. Pr[B|C] + Pr[¬C]. Pr[B|¬C]
≤ Pr[C] + Pr[B|¬C]
≤ 2δ = 1/5.

Now as we’ve use lossy trapdoor permutation and for two inputs x and x
′

s.t. x 6= x
′
, it may be possible that O(x) 6= O(x

′
) because the function f

is a many-to-one function. So, it could well happen that, f(x) = f(x
′
) for

x 6= x
′

due to collision in the function f . So, for a query x0, asked during
signing and verification in H1, the answer could be same as a guessed answer
for a query x1 in T̃0. Similarly, for a query x0

′
, asked during signing and

verification in H2, the answer could be same as a guessed answer for a query
x1
′

in Q(T0)\Q(LM). So, we don’t need any modification in the analysis,
that we require in case of blind signature from random permutation.

The following two claims complete the proof that H1 and H2 are close.

Claim 3.1 : Let C be the event defined in the proof of the previous claim.
Then PrH2 [C] ≤ δ.

Proof. All probabilities here are in H2 . Consider an arbitrary query x and
let queriedx be the event that x is queried to O by the signer and then by
the user when generating the signature on 0.

Let’s assume the following :
qx = Pr[queriedx]
Qx

(i) be the event that x is asked in the ith iteration of Step 3.
px(i) = Pr[Qx

(i)] and
px = Pr[∪i Qx

(i)].

Note that,

1.
∑

x qx ≤ q, since q is an upper bound on the total number of queries
asked when running each algorithm of the Blind signature scheme.

2. Pr[queriedx|Qx
(i)] ≥ ε, since U∗ adds a query to its list only if the

probability that this query is asked is at least ε.

Hence, qx = Pr[queriedx]
≥ ∑iPr[queriedx|Qx

(i)].Pr[Qx
(i)]
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≥ ε.ΣiPr[Q
(i)
x ]

= ε.px.

Assume for the sake of contradiction that, Pr[C] > δ. Since C is the event
that M queries are learned in Step 2, this implies that the expected number
of queries asked,

∑
x px > δM.

But this would imply, δM <
∑

xpx ≤
∑

x qx/ε ≤ q/ε, contradicting the fact
that M = q/δε.

Now, it is left to show the next claim.

Claim 3.2 : Let B and C be as defined earlier. Then PrH2 [B|¬C] ≤ δ

Proof. Recall that in Step 5, U∗ relies only on the mappings stored in LM ,
and all queries from Q(T0)\Q(LM) are answered at random. But then H2

is independent of T0 conditioned on LM (whereas LM has the distribution
DM). This means that we can imagine defining H2 by choosing LM first,
then running U∗ (using LM) to sample H2, and then choosing T0 conditioned
on LM and H2. Recall that event C is determined by LM , and assume that
LM is such that event ¬C occurs. This implies that every query asked by
U∗ that is not in Q(LM) must appear in DM with probability less than ε.
Since U∗ asks at most q queries in Step 5, the probability that Q(T0)\Q(LM)
contains one of these queries is at most εq = δ.

Finally, we show that E occurs with the same probability in H0 and H1.

Claim 4 : PrH0 [E ] = PrH1 [E ]

Proof. This claim follows easily if both hybrid distributions H0 and H1 use
the same oracle O and if they are sampled using the same random coins for
key generation and the adversary (note that the randomness of the adversary
fully determines the randomness used to run the honest user algorithm during
the signature-issue protocol). But then it follows that event E occurs in H0

if and only if it also occurs in H1.

This completes the proof of Lemma 4, and thus the proof of Main Theo-
rem.
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Chapter 4

Conclusion

This dissertation thesis is based on Blind Signatures, a special form of digital
signature, where the signer remains oblivious about the message, he signs and
at the same time, the user can not generate any signature without the help of
the signer. The motivation behind constructing blind signatures is mainly its
application in Electronic Voting System. With a rapid growth in computer
networks, many people can access the network through the Internet and
therefore an electronic voting can be a viable alternative for conducting an
election. Electronic voting system must attempt to achieve at least the same
level of security as ordinary elections that satisfies Confidentiality, Integrity,
Authentication and Verifiability as security requirement. Clearly we need
blind signature to implement it.

We have surveyed on existing blind signature schemes, and their security.
We considered various important blind signature schemes in different models
like random oracle model, where a hash function can be seen as an oracle
which produce truly random value for each new query, standard model, where
no random oracle is used and common reference string model where it is
assumed that both parties have access to some string chosen uniformly at
random or a string chosen according to some other probability distribution
respectively . We also analyzed te various properties used to construct the
schemes along with the security proof techniques of the schemes and also
the importance of the schemes in the literature of blind signature. We also
study different proof techniques of various blind signature schemes. We have
also studied blind signatures with some agreed common informations, namely
partial blind signature and techniques where the user or the signer may stop
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the interactive signature issue protocol prematurely, namely blind signature
under aborts. We also considered various prove techniques of impossibility
results of blind signatures.

This dissertation thesis considered Lossy Trapdoor Permutations (LTDPs)
and their significance in constructing blind signature schemes and proved
impossibility of constructing blind signatures from Lossy Trapdoor Permu-
tations (LTDPs) in Random Oracle Model.

Although blind signatures from one way functions and lossy trapdoor
functions are ruled out but still the minimal requirement of Blind Signature
schemes remain unclear and the most important open question in the context
of security of Blind Signature.
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