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Abstract

Increasing design complexity, skyrocketing fabrication costs for modern digital systems cou-
pled with an unacceptably large number of silicon respins led to growing importance of
comprehensive and automated design verification. This thesis is an attempt to enhance the
state of the art in a verification and debugging of hardware systems.

Assertions play a vital role in specifying and testing the expected behavior of the digital
circuit designs. The current generation of hardware simulation tools evaluate each asser-
tion separately by converting them into finite state automatons before simulation. In this
dissertation, we propose an efficient technique for linear temporal logic (LTL) assertion
evaluation. The proposed technique, EAST (Efficient Assertion Simulation Techniques),
creates a shared data structure from the set of assertions using some simple rules, based
on the operators during preprocessing. EAST infers the decision of the assertions during
simulation without evaluating the assertion expressions. This approach is scalable for large
designs.

Akin to software configuration management, it is becoming commonplace to maintain
large hardware design code-bases with hardware configuration management tools. A miss-
ing piece of crucial technology in the approach of hardware configuration management tools
is to manage design verification across evolving hardware designs. In this work, we propose
an efficient methodology, EvoDeb for automatically localizing design errors across design
variants. EvoDeb can be seamlessly integrated into existing hardware design flows. Exper-
imental results exhibit the efficacy of our proposals.

Keywords: Dynamic Assertion Based Verification, LTL, Debugging, Bug localization,
Bug fix suggestion.
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Chapter 1

Introduction

In recent times, with growing hardware design complexity, it is becoming extremely im-
portant to integrate assertion based property verification to verify the functionality of such
designs. With such growth, it is common place to reuse existing designs and incrementally
supplement their functionality, with the objective to cut down on overall design time. How-
ever, while debugging, designers are faced with the mammoth challenge of trying to localize
the cause of errors by looking at long, failing execution traces. The designers treat the
supplemented design as a fresh design while debugging and do not use the knowledge of the
existing older stable version of the design. With these practical issues to solve, we set out
to develop methodologies for fast and efficient assertion based verification and automated
tool flow to reduce debugging efforts of the designer while debugging evolving designs.

Assertion-Based Verification (ABV) is assuming a significant role in the design validation
flow of chip design companies. In recent times active participation from the design and EDA
industries have led to the adoption of several formal languages for assertion specification.
These include Forspec (of Intel) [8], Sugar/PSL (of IBM/Accellera) [9] and SVA (of
Synopsys) [41]. Assertion specifications written in these languages are used to verify given
implementations, either through formal property verification (FPV) techniques like model
checking or through dynamic assertion-based verification (ABV) which is typically done by
monitoring the properties over simulation runs. In this dissertation, we have used ABV
as the background for our work with the input assertions written using Linear Temporal
Logic(LTL).

Debugging denotes the process of detecting root causes of unexpected observable behaviour
in design codes (e.g. an unexpected output value being produced or an assertion violation).
Assertion violations give the developers a peek into what has gone wrong in during simu-
lation, however the violated assertion might be affected by a large portion of the hardware
design code, hence does not give a concise reason of the violation. Debugging errors is a
difficult process, and often takes a significant fraction of the time in the development stage.

9



10 1. Introduction

To ease the effort of manual debugging, of late there have been several attempts [17], [20],
[27] to automate the debugging activity in the context of software programs by fully au-
tomated / semi-automated formal analysis of the program and the failed execution trace.
These methods with rich theoretical foundations have found a moderate degree of accep-
tance in the software debug community. In the context of hardware pro- grams, research
on automated debugging has been relatively scarce. In any programming community, it is
a widely accepted reality in any large-scale development that a complex piece of program
is never written from scratch. Usually a program evolves from one version to another. This
is termed as program evolution. To allow management of diverse and complex hard- ware
blocks along the evolution path, hardware management tools are gaining widespread indus-
trial acceptance [12], [32]. The roots of these hardware management tools remain in the
traditional software configuration management flows. It is natural to think at this juncture,
whether the debugging of hardware designs can be automated for an evolving design, which
forms one of the core motivations of this work.

1.1 Motivation of the dissertation

Given the fact, that the set of assertions for a design under test share multiple common
signals, we focus on devising an efficient strategy for assertion evaluation in such a way that
we are be able to infer the evaluation results of the assertions without actual evaluation
of the assertions. Thereby in this dissertation, we propose a shared graph data structure
based assertion evaluation strategy devised on the aforementioned ideal.

When we change a piece of code to produce a new version, we may introduce bugs. The
change introduced may either be structural or a behavioural one, depending on the intent
of the change and the original code. In particular, we study in this dissertation the effect
of changes in some specific programming constructs in the Verilog programming language,
and show how the presence of the earlier version can help in debugging the new one. The
effect of a change varies depending on the semantics of the programming construct. A
change in the sensitivity list of a programming statement (e.g. always / assign in Verilog,
process in VHDL) may lead to new executions of the sensitised block as we explain in
the Chapter 4. Similarly, changes in conditional statements may lead to different program
paths being followed at simulation time. The effect of a change may percolate from one
block to another as well. Bugs resulting out of such programming changes are extremely
hard to debug, considering the fact that neither a textual difference of the source nor of
the execution profile carries enough semantic meaning for which the change was initiated.
Thereby we devise an efficient means for debugging change-induced bugs in the context of
a hardware design flow.
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1.2 Contribution of the dissertation

In this dissertation, we propose two methodologies for speeding up and at the same time
reducing development efforts of hardware designs. One of the aspects in focus is regarding
design of an efficient simulation strategy for Linear Temporal Logic (LTL) that leverages
the presence of common signals across multiple assertions in an assertion suite to minimize
the computational overhead of assertion evaluation during simulation. The second aspect
of the dissertation focuses on efficient use of a stable version of source code of hardware
designs for debugging an evolved version of the same design. Our proposed methodology
can successfully pinpoint control flow errors, code missing errors and even incorrect data
assignments. With rapid pace of evolution of existing hardware devices be it cheap sensors
to high end flagship electronics products to keep up with the market demands, our proposed
methodology is poised to play a crucial role in assisting developers in reducing debugging
efforts during design of such evolved hardware systems.

1.3 Organization of the dissertation

The rest of the dissertation is organized into 6 chapters. A summary of the contents of the
chapters is as follows:

Chapter 2 Detailed study of existing relevant research and a brief introduction to the
semantics of LTL is presented here.

Chapter 3 The chapter presents a novel and efficient simulation strategy for LTL simulation
based on shared graph data structures.

Chapter 4 The chapter presents an automated methodology for debugging change induced
bugs in the source code of evolving hardware design, by leveraging the stable version of the
hardware design.

Chapter 5 The chapter demonstrates the performance of our proposed methodologies on
standard benchmarks.

Chapter6 The chapter concludes this thesis and presents avenues for future research based
on the presented methodologies.





Chapter 2

Background and related work

In this chapter, we first present a few background concepts necessary for understanding our
work. We also present an overview of different schemes proposed in literature in the field
of verification and debugging of hardware systems, that are relevant to our context.

2.1 Background

In this section, we discuss a few background concepts.

2.1.1 Propositional Logic

Propositional logic is widely used in diverse areas such as database queries, in artificial
intelligence, automated reasoning etc. A proposition is a sentence which is either true or
false. If a proposition is true, then we say its truth value is true, and if a proposition is
false, we say its truth value is false. The syntax of formulas in propositional logic is defined
by the following grammar:

formula = formula ∧ formula|¬formula|(formula)|atom
atom = BooleanIndicator|True|False

Other Boolean operators such as OR (∨) can be constructed using AND (∧) and NOT (¬).

13



14 2. Background and related work

2.1.2 Satisfiability

In computer science, Boolean, or propositional, satisfiability (often written SATISFIABIL-
ITY or abbreviated SAT) is the problem of determining if there exists an interpretation
that satisfies a given Boolean formula. In other words, it establishes if the variables of a
given Boolean formula can be assigned in such a way as to make the formula evaluate to
TRUE. If no such assignments exist, the function expressed by the formula is identically
FALSE for all possible variable assignments. In this latter case, it is called unsatisfiable,
otherwise satisfiable. SAT was the first known example of an NP-complete problem [1].

2.1.3 Linear Temporal Logic

The use of temporal logics [15] in verification was proposed by Pnueli in a seminal paper [35].
Since then several different logics have been proposed for specifying temporal properties.
All these logics use the two basic temporal operators – next and until. Some of these logics
also use additional temporal operators that can be derived out of the basic two. The logics
differ in terms of how we are allowed to mix these operators to express the desired formula.

In this section, we introduce the popular temporal operators and the logics that are built
around them. In this part we also introduce some formalisms in an intuitive way that show
us how these logics are interpreted over time.

The basic temporal operators

The formal introduction to a language has two main parts, namely the syntax and the
semantics. The syntax defines the grammar of the language – it tells us how we may
construct properties using the basic set of signals and operators. The semantics define the
meaning of the properties.

The semantics of the traditional temporal logics were defined over closed systems, which are
finite state machines without any inputs. This tradition has been followed in languages such
as SVA and PSL as well – there is no distinction between input and non-input variables in
these languages. At this point we present the semantics of these languages in the traditional
form over a non-deterministic finite state machine. Open systems (modules having input
bits) can be modeled by treating the input bits also as state bits. This typically yield a
non-deterministic state machine, since the choice of inputs in the next state lies with the
environment, and is not a function of the present state.

Suppose J is a finite state machine having k state bits. Each of the 2k valuations of these
state bits represent a state of the machine. Let S denote the set of these states. Let R
denote the state transition relation of J . R consists of pairs of states, (si, sj), where it is
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possible to transit from state si to state sj . Finally, J has a start state s. Formaly we say
that J is a tuple 〈S, s,R〉.

Figure 2.1: A sample finite state machine

Example 2.1 Fig 2.1 shows a 3-bit finite state machine. Let the state bits be n0, n1, n2.
The state bits are shown on the nodes. The start state is s0. Fig 2.1 shows 5 states – the
remaining three states are not reachable from the start state and are not shown. The circuit
has three outputs, which are functions of the state bits. These are:

p = n0 ∨ n1

q = n2

r = ¬n0 ∧ ¬n1 ∧ ¬n2

The nodes of Fig 2.1 are labeled by the outputs that are true at that state. We shall use this
toy example to demonstrate the meaning of various temporal properties. �

Intuitive explanation

To convey the semantics of the basic temporal operators, we first introduce the notion of a
run (alternatively, a path or a trace). A run, π, of J is a sequence of states, ν0, ν1, . . ., where
s = ν0 is the start of the run, and for each i, νi represents a state in S, and R contains a
transition from the state represented by νi to the state represented by νi+1. In other words,
the run is a sequence of states representing a valid sequence of state transitions of J . For
example the run, π = s0, s1, s3, s1, s4, . . ., is one run of the state machine shown in Fig 2.1.
States of the machine may be revisited in the run – for example we have ν1 = ν3 = s1 in π.
The run, π′ = s0, s2, s0, . . ., does not belong to this state machine, since it has no transition
from s2 to s0.

Let us now consider the two fundamental temporal operators, namely next(©) and until(U),
and a run π = s0, s2, s3, . . ..
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Next operator(©): A property, ©f , is true at a state of a run iff the property f is true
at the next state on the run. For example, ©q is false at the state, s0, of the run,
π = s0, s2, s3, . . ., since q is false at the next state s2. The property ©© q is true at
s0, of π, because q is true at s3.

Until operator(U): A property, fUg, is true at a state of a run iff the property g holds
on some future state, z, of the run, and the property f holds on all states preceding z
on the run. For example, the property, pUq, is true at the start state of π, since q is
true at the state s3 and p is true at the states s0, s2 preceding s3 in π. The property,
pUr, is false on all paths of Fig 2.1, because no r-labeled state can be reached along
a p-labeled path starting from s0.

We now define the two other operators namely, always(�) and eventually(♦). To do this, we
need the definitions of the propositions, TRUE and FALSE. We say that the proposition,
TRUE, holds in all states, and the proposition, FALSE, is false in all states.

Eventually operator(♦): A property, ♦f , is true at a state of a run iff the property
f holds on some future state in the run. Since the proposition, TRUE, holds on all
states, we can express the ♦ operator using the U operator as:

♦ f = TRUE U f

The property, U q, holds on all runs starting from s0 in Fig 2.1. The property, U r,
does not hold in the run which loops forever in the loop s0, s2, s3, s0.

Always operator (�): A property, � f , is true on a run iff the property f holds on all
states of the run. This is the same as saying that ¬f never holds on the run. In other
words we may write:

� f = ¬♦ ¬f
♦ f = ¬� ¬f

The first equation allows us to express the � operator using the ♦ operator, and in
turn, in terms of the U operator. The second, says: sometimes is not never – there is
a seminal paper with this title by Leslie Lamport [33].

The property, � p is true in the run which loops forever in the loop, s0, s2, s3, s0, in
Fig 2.1. The property is false in all other runs of the same state machine.

The duality between the always and eventually operators is not surprising. In fact, it is a
variant of DeMorgan’s Laws when we interpret the properties over time. This is because:

♦f = f ∨©f ∨©© f ∨©©©f . . .
= ¬(¬f ∨©¬f ∨©©¬f ∨©©©¬f . . .)
= ¬(�¬f)
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Linear Temporal Logic (LTL) is the most popular among linear time logics. We can define
the syntax of linear temporal logic recursively as follows:

• All Boolean formulas over the state variables are LTL properties.

• If f and g are LTL properties, then so are: ¬f , ©f , and fUg.

Formal semantics

It is very important to know the formal semantics of a formal property specification lan-
guage. If the semantics is specified ambiguously, there may be a gap between the property
that the designer intends to express and the formal property tool’s interpretation of the
property that she writes. Bugs may hide in this gap thereby defeating the whole purpose of
formal property verification. Language lawyer volunteers who make up the working groups
of the language standards committees spend years debating over the exact formal seman-
tics of the languages that they standardize. The goal of standardization is to ensure that
languages with precise definitions are made available to improve communcation within the
industry.

The problem with understanding formal semantics is that they are replete with terse nota-
tions. It is widely suspected that the intimidating nature of the notations used in existing
literature on formal property verification is one of the main deterrents to its wider adoption
in practice.

Let π = ν0, ν1, . . . denote a run, and πk = νk, νk+1, . . . denote the part of π starting from
νk. We use the notation π |= f to denote that the property f holds on the run π. Given
a run π, we also use the notation νk |= f to denote πk |= f . In other words, a property is
said to be true at an intermediate state of the run iff the fragment of the run starting from
that state satisfies the property. The formal semantics of the basic temporal operators are
as follows:

• π |= Xf iff π1 |= f

• π |= f Ug iff ∃j such that πj |= g and ∀i, 0 ≤ i < j we have πi |= f .

Fg is a short-form for TRUE U g, and Gf is a short-form for ¬F¬f .

Bounded temporal logics

The temporal operators discussed so far, namely next (X), until (U), always (�), and even-
tually (♦), are temporal because they can define sequences of events over time. Significantly,
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none of these operators with the exception of the next operator, attempt to quantify time.
For example the property, ♦f , requires f to be true in future, but does not specify any time
bound by which f needs to be true.

Real time temporal operators are intuitively simple extensions of the basic untimed temporal
operators where we annotate the operator with a time bound. The real time extensions of
CTL and LTL simply use these bounded operators (as well as the unbounded ones).

The bounded Until operator: The property fU[a,b]g is true on a run, π = s0, s1, . . .,
iff there exists a k, a ≤ k ≤ b such that g is true at sk on π, and f is true on all
preceding states, s0, . . . , sk−1. Formally,

π |= f U[a,b] g iff ∃k, a ≤ k ≤ b, νk |= g and ∀i, 0 ≤ i < k we have νi |= f

The bounded LTL property p U[1,3] q is true at the state s0 of Fig 2.1. The bounded
CTL property:

A[p U[1,3] E[q U[1,2] r]]

is also true at s0. This is because s3 and s1 satisfy E[q U[1,2] r] (since they can reach
s4 within the time bound [1, 2]), and we reach s1 or s3 along all paths from s0 within
the time bound [1, 3].

The bounded Eventually operator: The property ♦[a,b]g is true on a run, π = s0, s1, . . .,
iff there exists a k, a ≤ k ≤ b such that g is true at sk on π. For example, the bounded
LTL property ♦[1,3]q is true at the state s0 of Fig 2.1.

The bounded Always operator: The property �[a,b]f is true on a run, π = s0, s1, . . .,
iff f is true in every state in the sequence, sa, . . . , sb. The bounded LTL property
�[0,1]¬r is true at s0 of Fig 2.1 no run can reach s4 is less than 2 cycles.

Real time operators are extremely useful in practice. Most design properties have a well
defined time bound, and must be satisfied within that time.

Since the real time operators deal with finite bounds, a and b, they can be expressed in
terms of the X operator. For example, the property ♦[2,4]q can be rewritten as:

♦[2,4] q = ©© (q ∨ ©q ∨ ©© q)

and p U[3,4] q can be rewritten as:

p U[3,4] q = (p ∧ ©p ∧ ©© p) ∧ ©©©(q ∨ (p ∧ ©q))

The first part of the property specifies that p be must be true in the present cycle and the
next two cycles. The second part of the property specifies that q must be true in the third
cycle, failing which, p must be true in the third cycle and q must be true in the fourth cycle.

Therefore, real time operators actually help us to succinctly express properties that would
require too many © operators otherwise.
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2.2 Related Work

In recent times, active participation from the design and EDA industries have led to the
adoption of several formal languages for assertion specification. These include Forspec
[7], Sugar/PSL [9] and SVA [44]. There is a rich body of literature ([8, 11, 6, 14]) for
dynamic ABV of LTL [36] and other LTL based languages. Industrial simulators such
as [5], [4] translates each assertion to a finite state automaton, and thereafter deploys a
thread based simulation strategy for dynamic assertion evaluation. In [11], PSL assertions
are translated to Verilog and thread based monitoring is undertaken for simulation based
assertion checking. In [8], assertions are compiled to deterministic automata and simulated
in a thread-less uniprocessor environment. In [41], a methodology has been proposed for
development of temporal monitors for SystemC.

To the best of the our knowledge, there has not been any research work reported till date on
automated bug localization for evolving HDL programs that take into account the evolution
and version change information between the two program versions. However, some work
has been done on automated bug localization for HDL programs in general. In this area,
basically there are two approaches to fault localization [29]: simulation-based approaches
[25, 32, 37, 45] and symbolic approaches [24]. Symbolic approaches are accurate but suffer
from combinatorial explosion whereas simulation-based approaches, although scalable with
design size, require numerous test vectors to be accurate enough.

There has been only a few articles on slicing [28] and its applications in the HDL context.
[21] reports the application of static program slicing to VHDL. In [30, 31] the authors de-
scribe a diagnosis tool for VHDL that employs functional fault models and reason from first
principles by means of constraint suspension. [26] discusses an application of algorithmic de-
bugging to automatic fault localization in VLSI designs. In [18], a comprehensive overview
of automated source-level fault localization techniques are given. Their work is based on
modeling of abstract behavior and extracting functional or value-change dependencies for
HDL programs. [19] presents the idea behind model-based diagnosis and its application to
localizing faults in Verilog programs is discussed. In [22], a hierarchical approach for au-
tomated debugging is introduced. In [16], synchronization bugs are identified by applying
a bug model to isolate a set of possible bug candidates. In addition to fault localization,
[23] proposed an approach to explain the fault for improved automated diagnosis. There
is a steady foray of automated debugging tools in commercial arena. A prime example of
that is Synopsys Verdi automated debug system [40]. This tool does efficient tracing of be-
havior for code analysis, explores the interaction between design, assertions and testbench
and provides an intuitive graphical front-end. Recently, [39] commercialized a tool for au-
tomated bug localization, explanation of the bug together with hints to fix it. The closest
to our work is reported by [43], with a bug localization tool called PinDown. This tool
provides a combined version management system for the design and the bugs. With every
new design modification, an interactive diagnosis interface is provided to search through the
revisions that might have caused a bug. However, no automated analysis of bug localization
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across revisions is done, which is exactly what we propose in this work. Our work can be
looked at as an adaptation of the debugging efforts for evolving software programs proposed
in [17] and the slice and WP construction in [28] in the evolving design debug context. The
default concurrency semantics of HDLs along with several other programming constructs
(sensitivity list, process etc) makes our approach novel.



Chapter 3

EAST : Efficient Assertion
Evaluation Techniques

Assertion-Based Verification (ABV) plays a vital role in the design validation flow of chip
design companies. With growing hardware design size, it is of utmost importance to have
a low overhead and efficient ABV. LTL is a commonly used language for assertion spec-
ification. In this chapter, we present a novel methodology for LTL assertion simulation
consisting of two stages namely preprocessing stage and simulation stage. The semantics of
LTL has been already explained in detail in section 2.1.3. The preprocessing stage processes
the assertion set to store the requisite information in a look up table format. This look up
table can be visualized as a shared graph data structure. By using look up tables, instead
of individual assertion for simulation in the simulation stage, we leverage the presence of
common propositional variables across assertions to accelerate the simulation of assertions.

3.1 Existing approach for assertion evaluation

We present a small set of LTL assertions and explain briefly how they are simulated. Let
the set of assertions be the following :-

P1 : �(a ∨ c)
P2 : �(a ∧©b)
P3 : ♦(c ∨ d ∨ e)

The common approach in the semiconductor industry is transaction-based monitoring,
which in effect constructs the monitor dynamically. For example, in monitoring the prop-
erty �(¬p ∨ ♦q), the simulator spawns a new thread waiting for q each time it observes

21
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Φ1 Φ2 Φk
...

∧

F/F
F/F

F/F
U/U

U/U

U/U

(T)

Φ1 Φ2 Φk
...

∨

T/T
T/T

T/T
U/U

U/U

U/U

(F)

(b)AND (c)OR

Φ

F/F U/F

(d)Global

(U)

(e)Eventually

Φ

T/T

(U)

a

¬

T/F F/T

(a)NOT

Figure 3.1: Graph data structures for various operators

p ∧ ¬q. Such a thread is called a transaction. With this approach the number of active
transactions is potentially unbounded, resulting in degraded performance for long simula-
tion runs. (The conventional methodology [10] advises users to prevent this problem by
bounding the number of active transactions.) Each assertion is evaluated separately by
the assertion evaluation engine, by reading the values of the propositional variables and
thereafter computing the result of the assertion as per the LTL semantics by implementing
transaction-based monitoring, with automata-based monitors.

However, from the above example,it is easy to note that if c is found to be True during
evaluation of the assertion P1, we can conclude the expression (c ∨ d ∨ e) in assertion P3 is
also True. Similarly if a is found to be False using evaluation of assertion of P1, we can
say the expression (a ∧ Xb) in assertion P2 will evaluate to False. Thus, we can see the
presence of common variables across assertions can be used to minimize evaluation efforts
of the assertion set and thereby speedup simulation.

For ease of understanding of the readers, we proceed by explaining the building blocks of
a shared graph data structure in the following section and then present the preprocessing
and simulation steps in Section 3.3 and 3.4 respectively. Thereafter we present a couple of
optimizations to speed up our methodology in Section 3.5. In addition, we give a detailed
walk through of our methodology in Example 3.1.

3.2 Building blocks of the shared graph data structure

Our methodology uses a look up table for simulation of the assertions which can be equiv-
alently represented as a shared graph data structure. We assume that the assertions are
present in Negation Normal Form (NNF)[2]. Before we explain our methodology in detail,
we present the building blocks of the graph, namely nodes, edges and basic rules of graph
generation that will be used in the subsequent sections.



3.2. Building blocks of the shared graph data structure 23

• Nodes : There are three types of nodes.

– Input Node : Each propositional variable present in the set of assertions to be
simulated is assigned an input node. Input nodes have zero in-degree.

– Internal Node : Each internal node is associated with a subexpression, which
consists of only a single type of operator and one or more operands. The internal
node holds the evaluated value of the subexpression. Internal nodes have a non-
zero in-degree as well as a non-zero out-degree.

– Assertion Node : Each assertion node corresponds to a particular assertion and
holds the result of that assertion across cycles. Assertion nodes have non-zero
in-degree and zero out-degree.

The level of a node is defined as follows.
Level of input node = 0
Level of other nodes = max(level of the immediate predecessors of the node) +1

• Edges : There are two types of edges.

– Strong Edge : A directed edge between two nodes which causes the destination
node to be assigned a fixed value that is not going to change in the future clock
cycles is termed as a strong edge, marked by thick lines. Thereby, once a strong
edge has been traversed, the destination node is never evaluated again in the
future. Figure 3.1 (d) shows the example of a strong edge, where the source
node contains φ and the destination node contains �, shown as thick line.

– Ordinary Edge : A directed edge that connects two nodes, where the value of the
destination node may change across cycles. Figure 3.1 (a) shows the example of
an ordinary edge, shown as dashed line.

Edges are marked using valin/valout notation where valin and valout take values from
the set {True(T ), False(F ), Unknown(U)}. For example, in Figure 3.1 (a), the edge
is annotated by T/F and F/T. The markings signify that if the source node has value
valin, then valout is propagated to the destination node. There can be one or more
markings corresponding to an edge.

We present simple rules for creating an equivalent graph representation of the LTL expres-
sions below. We define path as a sequence of truth values spread across consecutive cycles,
corresponding to one evaluation result of the assertions.

1. Operator NOT (¬): For an expression, ¬φ, where φ is a propositional variable, the
corresponding graph is shown in Figure 3.1(a). If the source node is True (False), then
the destination node will be set False (True). Hence the edge markings are T/F and F/T .

2. Operator AND (∧): For the expression φ1 ∧ φ2 ∧ · · · ∧ φn, the corresponding graph
is shown in Figure 3.1(b). If any one of the operands is False, then the result is False,
irrespective of the value of the other operands. Hence the edges from source to destination
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are marked by F/F . If the source is Unknown (which may happen for temporal expression),
then the destination node can be Unknown and hence the edges have the marking U/U
as well. The default value of the destination node in this case is set to True because it
implies that none of the operands were False / Unknown, otherwise the node would have
been set to False / Unknown by the corresponding source node. The destination node will
be set by a value only when it holds True / Unknown and a different value is propagated
through the edge. For example, if the destination node is currently holding a value True,
it will be overwritten with the value False / Unknown depending on what value appears
on the edges. It is to be noted that the value True is never propagated in case of the AND
operator, as apparent from Figure 3.1(b) edge markings. These rules are summarized in
Table 3.1 a) where EV is the Evaluated Value sent via the edge and NV is the source node’s
existing value.

EV/NV T F U EV/NV T F U
F F F F T T T U
U U F U U U U U

a) AND b) OR

Table 3.1: Rules for setting operator node values

3. Operator OR (∨): For the expression, φ1 ∨ φ2 ∨ · · · ∨ φn, the corresponding graph is
shown in Figure 3.1(c). If any one of the operands is True, then the result is True, as per
the semantics of the OR operator. Hence the edges from the operator node to operand node
are marked by T/T . If the operand is Unknown, then the operator node will be Unknown
and hence the edges have the marking U/U as well. The default value of the operator node
is False because it implies that none of the operands were True / Unknown. The rules for
evaluation of OR operator node are presented in Table 3.1 (b).

4. Operator GLOBAL (�): For the expression �φ, the corresponding graph structure
is shown in Figure 3.1(d). The GLOBAL operator signifies that φ has to hold on the entire
path from the current cycle onwards. Hence if φ is False or Unknown in a given clock cycle,
the expression will be False all through from that clock cycle. The source to destination
is thereby connected by a strong edge marked F/F and U/F . The default value for the �
operator node is Unknown.

5. Operator EVENTUALLY (♦): For the expression ♦φ, the corresponding graph
structure is shown in Figure 3.1(e). The EVENTUALLY operator signifies that φ eventually
has to hold. Once φ is True, the expression will be True all through from that clock cycle,
and hence the operator to operand is connected by a strong edge marked T/T . The default
value for the ♦ operator node is Unknown.

6. Operator UNTIL (U):The graph structure corresponding to φ1 U φ2 is shown in
Figure 3.2(a). UNTIL operator signifies φ1 has to hold at least until φ2, which holds at the
current or a future position. If internal ∨ node is False, from the definition of UNTIL, the
U operator node is set to False from the current cycle. On the other hand, if φ2 is True,
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Figure 3.2: Graph Structure of Until and nested temporal operators

the UNTIL operator node will be True from the current cycle onwards. The default value
here is Unknown.

7. Operator NEXT (©): We do not explicitly create a node for the NEXT operator,
rather at each node, we store a delay td of that node as a property of that node. We
use the following properties for the next operator, i.e., ©(Φ1 ∨ Φ2) = ©(Φ1) ∨ ©(Φ2);
©(Φ1 ∧ Φ2) = ©(Φ1) ∧ ©(Φ2); ©(¬(Φ1) = ¬(©(Φ1)). Therefore we can associate the
next operator with the variable itself, instead of associating it with an expression. Each
assertion is transformed into our desired form. We now introduce the notion of the delay
corresponding to a node. The delay of an input node is the number of next operators
preceding the corresponding variable present in this node. The delay of an internal node is
the maximum delay of its predecessor nodes.

Nested temporal operators require special handling during simulation. We explain below
two specific cases.

• �(♦(φ)): The corresponding graph structure is shown in Figure 3.2(b). Instead of a
single value, the EVENTUALLY operator node stores a vector of truth values. Each
value in the vector corresponds to the value of an instance of the EVENTUALLY
operator starting at each new cycle. Whenever the propositional expression φ eval-
uates to True, the corresponding value in the vector is set to True. At the end of
simulation, the value of GLOBAL operator node is set to True if all the values in
the EVENTUALLY operator node value vector are True, otherwise to False since
it implies that at least one instance of EVENTUALLY operator evaluated to either
Unknown or False.

• ♦(�(φ)) : The treatment of ♦(�(φ)) is similar. The corresponding graph structure is
shown in Figure 3.2(c). At the end of simulation, the value of the GLOBAL operator
node is set to True if at least one value in the value vector of the GLOBAL operator
is not False.
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3.3 Pre-processing assertions to generate Look Up Table

The preprocessing stage of the methodology is executed only once for a set of assertions
and generates a look up table corresponding to the assertions. We explain below what a
look up table is and how we obtain it from the graph structures presented earlier. For
each source node we store a list of destination nodes that need to be considered for this
source node with value annotations as appropriate. For an edge ni to nj with edge marking
valin/valout, we store node nj with valout in the associated list (also called the valin) list
of node ni. In addition, the type of the edge is also saved in the entry corresponding to nj
in the same list of ni. Thus during simulation if node ni has value valin, we can set the
value of the successor nodes of ni by looking up the valin list of node ni that we created in
the preprocessing step. We define this set list structures as the Look Up Table (LUT). It is
to be noted that such a look up table captures all the elements of the corresponding graph
data structures.

Initially the assertions are converted to postfix form using standard transformations [34].
and processing individually in a manner similar to postfix evaluation to generate the look
up table corresponding to the set of assertions. We explain the preprocessing stage using a
detailed example using the set of assertions presented earlier in the chapter.

Example 3.1 Let the set of assertions be the following :-

P1 : �(a ∨ c)

P2 : �(a ∧©b)

P3 : ♦(c ∨ d ∨ e)

The set of assertions converted to postfix is :-

P1 : ac ∨�

P2 : ab©∧�

P3 : cd ∨ e ∨ ♦

a

c

n1 n2 a

b

a

b[1]

n3[1] n4[1] c

d

n5 n5

e

n5 n6

Figure 3.3: Preprocessing the assertion set
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The input nodes a, b, c, d and e are at level 0 from the definition of level. For assertion P1,
a and c are pushed to the stack. Thereafter, the ∨ operator is encountered and hence a and
c are popped from stack. We create a new operator node n1 corresponding to this operator
with default value False as per the Rule 3. In addition, n1 is added to True and Unknown
list of a and c respectively as per Rule 3. Since a and c are at level 0, level of n1 is set
to 1 as per the definition of level. Then, n1 is pushed into the stack. We encounter the
GLOBAL operator and pop n1 from the stack. A GLOBAL operator node n2 is generated
with default value Unknown and n2 is added to the False list of n1 as per Rule 4 with
strong edge marking. This concludes preprocessing of assertion P1. Assertion 2 presents
an interesting case due to the presence of NEXT operator before operand b. Operands a
and b are pushed to the stack. On encountering the NEXT operator, b is marked with delay
equal to 1 as per Rule 8 without creating any additional node. For the AND operator, a new
AND operator node n3 with default value True is created and it is added to the False and
Unknown lists of a as well as that of c according to rule 2. The delay of n3 is set to 1 since
the maximum delay of its immediate predecessors is 1. The GLOBAL operator node n4 is
generated with default value Unknown and n4 is added to the False list of n3 as per Rule
4 with strong edge marking. n4 is also assigned a delay 1 as its only predecessor n3. For
assertion 3, we proceed similarly. The only fact to note is that for the second ∨ operator
in P3 that we encounter, we do not create an additional node, rather we place in the True
and Unknown list of input node e, the previously created ∨ operator node n5. The look up
table generated after completion of the preprocessing stage, is presented in Table 3.2. For
ease of visualization, the shared graph structure is also presented in Figure 3.4.

The generated look up table is used as input to the simulation stage described in Sub-
section 3.4.
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Level Type Node List type List

0 Input a True n1
False n3

Unknown n1,n3
0 Input b[1] False n3
0 Input c True n1,n5

Unknown n1,n5
0 Input d True n5

Unknown n5
0 Input e True n5

Unknown n5
1 ∨ n1 False n2[s]

1 ∧ n3[1] False n4[s]

1 ∨ n5 True n6[s]

2 � n2 - -

2 � n4[1] - -

2 ♦ n6 - -

Table 3.2: Look Up Table

3.4 Assertion simulation using Look Up Tables

In this section, we discuss our thread based assertion simulation strategy. Nodes that are
in assertions without any temporal operators, are evaluated using value substitution at the
start of simulation and results are reported. Otherwise, in each cycle, a new thread is
created for the evaluation. If the evaluation of an assertion starts at clock cycle t0, each
node ni at delay td is evaluated at the (t0 + td)th cycle. The maximum number of threads
that can be active in memory simultaneously is equal to the maximum delay of any node
in the shared data structure. We now present a level-based assertion simulation strategy.
This method arranges the nodes in order of the level to which it belongs. The algorithm
proceeds by initializing the nodes to their default values. Thereafter, it starts a new thread
for simulation, say at clock cycle t0. In clock cycle ti(>= t0), the thread reads the simulation
inputs for input nodes with temporal delay (ti − t0) and then processes nodes in increasing
order of level. Processing involves checking the current value valcurr of the node ni and
setting the values of the nodes in the valcurr list of the node ni as saved in the LUT. Once
all the nodes in the current level have been processed, the nodes in the next level are taken
up. If an internal node has not been set to a value, it stays at its default value. To take
into account the delay of the nodes, the simulation thread only starts by processing the
input nodes at the current delay and waits across cycles to process the other input nodes
at greater delays. The assertion nodes are set to their default value at start of simulation
and shared amongst all the threads so that there is a consistent visible result of assertion
evaluation. To do so, assignment of truth value to assertion nodes by threads is done in a
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thread safe manner, keeping in mind the execution semantics of LTL operators. Algorithm
1 presents the detailed methodology of the work done by a single thread. Intuitively, each
thread reads the simulation values and handles the evaluation mechanism based on the look
up table up to a maximum delay of any assertion.

Algorithm 1 Algorithm for level based assertion simulation

Input: Look-up table, max level, max temporal depth in
Output: out
1: Initialization : Set each node to default value according to the type of node.
2: Start a new thread for evaluation
3: for timecurr = 0 to max delay do
4: Read simulation inputs to input nodes with temporal delay timecurr
5: for level = 0 to max level do
6: for nodei ε level and (nodei[time] == timecurr or isEvaluated(nodei) == True)

do
7: if (nodei == True) then
8: Set values to nodes in True list of nodei
9: else if (nodei == False) then

10: Set values to nodes in False list of nodei
11: else
12: Set values to nodes in Unknown list of nodei
13: end if
14: Set evaluated flag for the new value assigned nodes to True
15: end for
16: end for
17: Wait till next clock cycle
18: end for

We explain the working of our algorithm on Example 3.1. The order of evaluation can be
visualized as shown in Table 3.3 (a).We explain the demonstration of simulation shown in
Table 3.4, using simulation inputs stated in Table 3.3 (b),

Level Nodes[0] Nodes[1] Time a b c d e
0 a c d e b cc0 T F T F T
1 n1 n5 n3 cc1 T T T T T
2 n2 n6 n4 cc2 T F T F T

... ...
a) Nodes visualized

level-wise
b) Simulation inputs

Table 3.3: Nodes of LUT visualized level-wise and the simulation inputs

• In clock cycle 0 (cc0), Thread 0 (T0) starts execution. We note that the maximum
delay is 1 (due to P2), and hence each thread will be alive for two clock cycles. T0
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cc0 cc1 cc2
T0

n1 = True
n5 = True

n3 = True

n2 = U
n6 = True

n4 = U

T1
n1 = True
n5 = True

n3 = False

n2 = U n4 = False

Table 3.4: Simulation of assertions

reads the inputs a, c, d, e needed for this clock. As per the semantics of our level order
simulation strategy, b is not present at level 0 and hence not read. As a is True, n1
is assigned True. Similarly, since c is True, n5 is assigned True. Since a is True
but b is not known, no value is assigned to node n3 which is at delay 1. Thereafter,
as n5 is True, n6 is assigned True via a strong edge and hence n6 is eliminated and
reported as True. n2 stays at assigned default value U . Thus we can observe that the
algorithm proceeds level wise to assign the values to nodes in the next level depending
on their present value.

• In clock cycle 1 (cc1), T0 reads the value of b which is True and it does not assign
a value to n3. n3 stays at the default value True. Similarly, n4 stays at its default
value U . T0 terminates at the end of this cycle. In this clock cycle, a new thread T1
starts execution. Similar to T0 at cc0, T1 assigns both n1 and n5 to True at this cycle.
However, now n5 does not assign any value to n6 since the strong edge was already
traversed by T0 in cc0. n2 stays at its default value U .

• In clock cycle 2 (cc2), T1 reads b which is False and thereby sets n3 as False, which
in turn sets n4 to False. n4 is eliminated and False is reported as the final value of
n4. T1 terminates. Another new thread will begin and proceed as mentioned above.

The values of the assertions after 3 cycles of simulation (cc0, cc1, cc2) are available as the
assigned values of the nodes n2, n4 and n6 as done above.

3.5 Optimizations

We propose two simple optimizations that would help in speeding up our methodology.

• Once an assertion with a GLOBAL or EVENTUALLY operator that has been eval-
uated to False or True respectively, has been processed, these assertions will not be
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affected by the simulation inputs in the future clock cycles. Thus the inputs that
drive these assertions need not be considered as well in the future clock cycles, pro-
vided these inputs are not driving other assertions. This can be achieved by using an
outdegree field in the input nodes. In the assertion nodes that do not change values
once evaluated, the list of inputs (inputlist) driving the assertion is stored. Once the
assertion has been evaluated, we decrement the outdegree of the nodes in the inputlist
by one. If any of the input node has outdegree zero, it is not considered in the future
clock cycles.

• For common subexpressions in different assertions, we have duplicate nodes in the
same level. Thereby, in the preprocessing stage, we can merge nodes with identical
immediate predecessors and edge marking in the same level, to reduce the number of
lookups by utilizing these common subexpressions.

3.6 Conclusion

We presented the foundation of the LTL assertions simulation based on inferring the eval-
uation results of the assertions without actual evaluation by using a shared data structure
implemented as a LUT. The developed framework can be easily integrated into existing
standard simulation tool flows and the performance results are shown in Subsection 5.1.





Chapter 4

EvoDeb: Debugging Assertion
failures in Hardware Designs using
evolution information

Assertions provide a concise way of specifying expected behavior of a hardware design.
Assertion violations present a brief idea of what has gone wrong in a hardware design to
the developer. Current debugging methodologies do not leverage the knowledge of existing
stable version of a hardware design for debugging an evolved version of the design. In this
chapter, we study how the presence of a stable bug-free earlier hardware version can be
effectively exploited for debugging bugs (assertion violations, structural bugs, etc) in an
evolved buggy version. We employ a combination of dynamic program slicing and weak-
est precondition (as in [17]) in the hardware design context for effective bug localization.
Our method involves simultaneously performing dynamic slicing and symbolic constraint
analysis in both the programs - the stable version as well as the modified implementation.
In conjunction with the dynamic slice, we perform a step-by-step weakest pre-condition
computation along the dynamic slice. The constraints generated out of the weakest pre-
condition computation in the two design versions are then compared to find new / missing
constraints in the new version. There is a rich body of literature [6], [9] for localizing version
change bugs in the software verification and debugging community. However, to the best of
our knowledge, no such work has been proposed for debugging version change bugs in the
context of designs written in Hardware Description Languages (HDL). As we show later in
Chapter 5, this yields orders of magnitude reduction in the number of statements to be
examined by the developer.

33
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Figure 4.1: Source code of the modules

4.1 Demonstrative Example

In this section, we demonstrate our methodology through a simple example. Consider a
simple Verilog design D with ports a, b, x, y and its evolved version D’ with additional ports
c and z, with some added functionality, as shown in Figure 4.1. The evolved design D′ in
Figure 4.1 is expected to implement the same functionality as the reference design D with
respect to the variables x and y while adding a new feature z. To implement the feature
z, we have new internal registers t2 and t3 and a change in the sensitivity list of the first
always block with an inclusion of c in it. For the sake of simplicity and ease of illustration,
we have considered a simple Verilog code that can be simulated by a standard simulator
like VCS [5]. Both the designs are simulated with a common testbench and outputs are
recorded. Examining the simulation waveforms in Figure 4.2, we notice at clock cycle 2,
the values of the register y (yD′) produced by the evolved design D′ and the register y
(yD) produced by the reference design D are different. The execution statement dump of
the simulation traces of the two designs are shown in Figure 4.3. Since design D′ is an
evolved variant with an expectation to preserve the functionality of the design D, this is
undesirable.

The change in the behavior of y occurs due to an additional execution of the code inside
the first always block of design D′ triggered by changes in signal c in the sensitivity list. As



4.1. Demonstrative Example 35

Figure 4.2: Waveform of simulation output

per the semantics of an always block, an execution is triggered whenever any signal in its
sensitivity list changes. A change in a (from 1 to 0) as shown by dotted lines in Figure 4.2
triggers an execution of the first always block in both the designs in the first cycle. The
value of t1, which was 1 earlier, is now changed to 0, triggering an execution of the second
always block. As a result, the signal y is assigned a value 1 for both the designs. At clock
cycle 2, the value of a does not change, and thus there are no executions of any of the always
blocks in design D. However due to a change in c, the first always block in D′ is triggered.
This triggers an additional execution of the second always block, leading to the assignment
of y to 0 (b is 0 in this clock) due to the blocking assignment. This explains the difference
between yD and yD′ .

We now discuss ways by which this bug can be localized. A simple comparison of the
source files shows a number of lines as the difference, most of which do not have a role to
play in the functionality of y and are related to z. The always block [lines 21 - 23] can
be completely discarded since it has no role to play in the computation of y. The other
two always blocks influence the computation of y in a direct / indirect way, however, some
statements like 10, 11, 16 and 17 inside them are irrelevant. For a large design, distributed
across multiple source files, it is difficult to isolate the conditions triggering the bug by pure
textual difference analysis. Moreover, much of this effort is needless, since many of the lines
appearing in the source difference may not have been executed at all.

A more effective approach would be to compare the execution statement dump of the
simulation traces obtained for the two design variants. This will remove the statements
which are not executed, thereby reducing the effort of the developer in understanding the
bug. However, in this case as well, there may be too many statements in the trace dump
that are completely unrelated to the bug and need not be examined.

To motivate our proposal, let us study the effect of the other statements on the bug in
y. Looking back from line < 2, 16 > in the execution trace of the design D′ shown in
Figure 4.3, we can see that this assignment is guarded by the always statement < 2, 14 >
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Figure 4.3: Execution Traces of the Designs from Figure 4.1

triggered by t1. Changes in t1 that trigger this execution depend on the values of a and
b which are primary inputs. This takes us to statements < 1, 9 > and < 2, 9 > which are
guarded by an always block with a and c in the sensitivity list. This is evident in both
the instantiations of the always block in the execution trace of design D′. Therefore it is
quite obvious that the remaining statements do not contribute in the analysis of this bug.
A similar construction on the reference design D with respect to the variable y at < 1, 14 >
yields the statements < 1, 7 >,< 1, 8 >,< 1, 10 >. A simple comparison of these statement
sets can lead us to the bug. This method of statement filtering based on some condition is
termed as slicing [42] in the software debugging literature.

We put forward the proposal of use of a functional program slice in the context of HDL
designs for debugging. This is combined with a symbolic analysis of the slice with the
construction of the weakest precondition that is easily amenable to automated analysis.

4.2 Detailed Methodology

Our methodology consists of four main steps.

• Bug scenario identification
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• Backward dynamic time-domain slicing

• Weakest pre-condition Computation

• Source reverse mapping

In the following subsections, we explain the steps in detail.

4.2.1 Bug scenario identification

Both the reference design D and the evolved design D′, are simulated with a common
simulation input S, resulting in the execution traces λ and λ′ respectively, as shown in
Figure 4.3. Since HDL variables have different values across clock cycles, we represent the
instance of each variable v at the clock cycle ti by < v, ti >. The first observable difference
in the simulation behavior for the output variables which are expected to remain unchanged
or an assertion violation, serve as our bug scenario.

Definition 4.1 A bug scenario is a tuple < v, ts > where v is the value of interest and ts
is the clock instance where the first difference is observed or assertion is violated. �

The value of interest can be an output signal with an incorrect value or the variables in the
assertion which was violated. In our case, we have < y, 2 > as the bug scenario, as can be
seen from Figure 4.2.

4.2.2 Backward dynamic time-domain slicing

Backward dynamic time-domain slicing takes a simulation trace λ and a bug scenario <
v, ts > as input and returns a subset of λ, called the slice with respect to < v, ts >. The
slice consists of the statement instances that influence the computation of v at clock cycle
ts, either through a direct / indirect assignment of value or through conditional statements
guarding the statements that get executed. The former are called data dependencies and
the latter control dependencies, which constitute the program slice.

To compute the slice, we proceed backwards along the trace from the clock cycle ts, specified
by the bug scenario. The slice computation algorithm is similar in spirit to the classical
dynamic slicing paradigm as used in [17] with the additional task of propagating the compu-
tation along multiple cycles for each variable instance over time across multiple concurrent
statements as outlined in [28]. We outline the philosophy below. The statements executed
during simulation, beyond time ts in the trace are ignored since they do not contribute to
the error in simulation output which we are investigating. We initialize the slice to empty to
start with. Therefore, initially we have the following: (i) dynamic slice slice set to empty (ii)
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set of variables θ whose dynamic data dependencies are unresolved, initialized to < v, ts >
i.e. the bug scenario (iii) set of statement instances π whose dynamic control dependencies
need to be resolved, initially set to empty. For each statement instance < t, stmt > that
we encounter while traversing the trace backwards, we can classify the statement as a data
or control dependency, and proceed as follows.

Analyzing dynamic data dependencies: In Verilog, the semantics of execution of a data
assignment statement varies depending on whether the assignment is blocking, non-blocking
or a continuous assignment. The essential difference is when any change in the right hand
side flows into the left hand side. In our framework, we handle all the variations unlike
the proposal in [28]. Let vtstmt be the net or register assigned by stmt in clock cycle t of
simulation.

• For a blocking / assign assignment (denoted by = in Verilog), if the left hand side
variable i.e. the one being assigned in < t, stmt > is v, and vtstmt ∈ θ, we have found
the definition of vtstmt. v

t
stmt is removed from θ and for each of the variables w in the

right hand side of < t, stmt >, wt
stmt is added to θ.

• For a non-blocking assignment (denoted by <= in Verilog), if the left hand side
variable i.e. the one being assigned in < t, stmt > is v and vt+1

stmt ∈ θ, we have found
the definition of vt+1

stmt. Similarly, vt+1
stmt is removed from θ and for each of the variables

w in < t, stmt >, wt
stmt is added to θ.

In both cases, < t, stmt > is added to slice and π.

Analyzing dynamic control dependencies: All statement instances in π which are dynami-
cally control dependent on stmt at clock cycle t are removed from π. Additionally, for each
variable v used by stmt, vtstmt is inserted into θ and < t, stmt > is inserted into slice and
π. HDL conditional constructs like if-else, while, case appear as control dependencies and
are handled in this step. In addition, always statements also get examined as a conditional
because of the sensitivity condition. The underlying execution semantics of an always state-
ment demands a change in value of at least one of the members in the sensitivity list, which
is interpreted as a conditional comparison between the instances of the variables.

The slice construction terminates when the start of the simulation trace is reached. The
slice is reported as the final dynamic time-domain slice. Through this process, we are able
to filter out variables and statements irrelevant to the bug scenario, since at each step
we check for membership in θ and π, which are initialized to the bug scenario and empty
respectively.

Example 4.1 Consider our example in the previous section. As discussed, our bug scenario
is set to < y, 2 >. Dynamic time-domain slicing on the simulation trace λ of D with the
bug scenario < y, 2 > yields the statements {< 1, 7 >,< 1, 8 >,< 1, 10 >,< 1, 14 >},
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of which < 1, 7 > and < 1, 10 > are inserted as control dependencies and < 1, 8 > as a
data dependency. It is interesting to note that < y, 2 > is not recorded in the trace for
D (since we use a value change dump format) indicating the value of y is preserved from
the previous clock cycle. Therefore, we find < y, 1 > and since it exists, we proceed from
there. A similar backward dynamic time-domain slice computation on the execution trace
λ′ for the evolved design D′ for the slicing criteria < y, 2 > yields the statement instances
{< 1, 7 >,< 1, 9 >,< 2, 7 >,< 2, 9 >,< 2, 14 >,< 2, 16 >}. �

It may be noted that the slice computation is quite different from the software context. As
seen in the example above, the absence of a variable at a particular clock cycle is interpreted
as the value being preserved from earlier clock cycles and therefore has to be considered
carefully in this slicing step. There are more such differences in the HDL execution semantics
that make the slice construction task different than the classical one.

4.2.3 Weakest pre-condition (WP) Computation

The weakest precondition is a symbolic representation of the dynamic slice that helps us
in automating the comparison between the reference and the evolved versions. Intuitively
this is a conjunction of the path condition obtained on the slice with respect to the bug
scenario. In our approach, this is computed along with the dynamic time-domain slice
computation. Hence, WP-computation finishes as soon as the slice computation terminates.
WP computation needs us to set a post condition p with respect to which the WP is required
to be computed. The post condition is the bug scenario < v, ts >. Proceeding backwards
along the trace λ from clock cycle ts specified by the post condition, in a manner similar
to dynamic time-domain slicing, we can encounter either data dependency statements or
control dependency statements. We use the following data structures (i) α, to store the
current WP, initialized to the post condition p (ii) map, a set of three tuples of the form
(stmt, t, lineno), initially set to empty, where stmt is a statement executed at simulation
cycle t and occurs on lineno in the source code of the design. For each statement stmt
encountered during computation of backward dynamic time-domain slicing, WP is updated
as follows:

Analyzing Data Dependency (Assignment statements):

• For each blocking assignment / assign statement of the form v = rhs executed at
clock cycle t, we replace all occurrences of < v, t′ > for all t′ ≥ t, from WP with rhs,
after annotating each variable w in rhs with the clock cycle t.

• For nonblocking assignments of the form v <= rhs executed at clock cycle t, we replace
all occurrences of < v, t′ > for all t′ ≥ t+ 1, from WP with rhs, after annotating each
variable w in rhs with the clock cycle t.
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In both the cases, v is a net or register and rhs is a valid HDL expression. We substitute in
this manner, since a net or register may be assigned a value, which is used in a later clock
cycle t′, with the value actually having been assigned in an earlier clock cycle t.

Analyzing Control Dependency (Branch statements): For each conditional statement with
condition C, we conjoin C with the current WP α to update the WP i.e. α = α∧C. For an
always statement, the conjunct is a disjunction of terms of the form < v, t > ⊕ < v, t−1 >,
where v is an element of the sensitivity list of the always statement.

In both the cases, the statement stmt, the simulation clock cycle t and the line number of
the stmt is stored in map. The algorithm terminates on reaching the start of the trace.
The WP present in C is the final WP. It should be noted that only those statements that
are part of the backward time-domain slice are considered during WP computation. This
computation is performed on both the designs D and D′. We explain this construction on
our example below.

Example 4.2 The WP α for trace λ is computed as follows. The conditional contributed
by the guarding always triggered by t1 is added in WP as (< t1, 0 >6=< t1, 1 >) which in
the next backward step elaborates as (< t1, 0 >6= (¬ < a, 1 > ⊕ < b, 1 >). In this case, as
noted earlier, < y, 2 > is absent and we start with < y, 1 >. Similarly we have the term
(< a, 0 >6=< a, 1 >) from the other always block. Thus we have the WP condition for α
as (< a, 0 >6=< a, 1 >) ∧ (< t1, 0 >6= (¬ < a, 1 > ⊕ < b, 1 >)) The corresponding WP α1

for the post-condition (< y, 2 >== 1) is ((< a, 0 >6=< a, 1 >) ∨ (< c, 0 >6=< c, 1 >)) ∧ (<
t1, 0 >6= (¬ < a, 1 > ⊕ < b, 1 >)) ∧ ((< a, 1 >6=< a, 2 >) ∨ (< c, 1 >6=< c, 2 >)) ∧ ((¬ <
a, 1 > ⊕ < b, 1 >) 6= (¬ < a, 2 > ⊕ < b, 2 >))�

4.2.4 Source reverse mapping

Computing the weakest pre-condition of the reference design D and the evolved design D′

by analyzing their trace λ and λ′ respectively, we obtain the weakest preconditions α and
α′ respectively which are basically a conjunction of constraints in the following form:

α = φ1 ∧ φ2... ∧ φm

α′ = φ′1 ∧ φ′2... ∧ φ′m
Our objective is to find a constraint φi (or symmetrically φ′j) such that α′ 6⇒ φi (symmetri-
cally α 6⇒ φj). Such constraints are the reason for the difference in functionality between D
and D′. Once we have found such unimplied constraints, we map back to the source code
with the help of map that we had defined earlier in the WP-computation step. We find that
the unimplied constraints are ((< a, 0 >6=< a, 1 >) ∨ (< c, 0 >6=< c, 1 >)), ((< a, 1 >6=<
a, 2 >) ∨ (< c, 1 >6=< c, 2 >)), and ((¬ < a, 1 > ⊕ < b, 1 >) 6= (¬ < a, 2 > ⊕ < b, 2 >))
which map to statement instances < 1, 7 >,< 2, 7 > and < 2, 14 > of design D′ respectively.
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These statements are reported in the bug report. We can notice that the additional signal
c in the sensitivity list in line number 7 of design D′ is the reason behind the always block
getting executed for the second time in clock cycle 2 in design D′, leading to register y being
incorrectly set in clock cycle 2. Thus we are able to pinpoint the bug.

4.3 Conclusion

We believe the proposed methodology is expected to serve a pivotal role in debugging in
evolving hardware designs. The methodology has been implemented as a framework and
the performance has been evaluated on open source designs, as presented in Subsection 5.2.





Chapter 5

Implementation and Results

5.1 Implementation and performance of EAST

The proposed LTL simulation architecture [Chapter 3] is shown in Figure 5.1. LTL asser-
tions in Negated Normal Form act as input to the preprocessing stage. The preprocessing
stage parses individual assertions to check for syntactical validity and converts them into
postfix form. The assertions in postfix form are passed on to the LUT Generator which
generates the LUT representation of the assertions. The preprocessing stage has been im-

Figure 5.1: Proposed LTL Simulation Architecture

plemented using Python. For simulating the same assertion set, the preprocessing stage

43
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needs to be executed only once for generating the LUT. The LTL simulation engine, imple-
mented in Java, takes the LUT generated from the preprocessing stage as input along with
the simulation inputs. The simulation inputs for a given clock cycle are input as a hash
table with the input variable name as key. For each clock cycle, the simulation engine needs
to be provided with the corresponding simulation input. The simulation engine simulates
the assertion using level based assertion evaluation algorithm stated in Subsection 3.4.

We put to test our proposed Level Based Simulator (LBS) with an in-house LTL simulator
that implements transaction-based monitoring (TBM), with automata-based monitor using
randomly generated simulations: simulation inputs, assertions and number of simulation
cycles. The performances, shown in Table 5.1 demonstrate the considerable gains of LBS
over TBM. Experimental setup was : Intel Core 2 Duo P8700 (2.53 GHz), 3 GB RAM,
Ubuntu. LBS was also evaluated using the Open Cores Protocol (OCP) assertion suite [3].

Exp #Assertions #signals #cycles LBS(secs) TBM(secs)

1 31 4 753 0.083 38.847

2 26 6 899 0.125 114.687

3 33 6 1159 0.154 148.99

4 15 18 1690 0.181 177.29

Table 5.1: Performance comparison of LBS vs TBM

The assertions manually written in LTL NNF, consist of 45 assertions and 46 signals. The
results of simulation using random inputs are shown in Table 5.2 and visualized in Figure
5.2.

No of signals 46

No of assertions 45

Look up Table
Generation Time

0.455s

No of cycles
simulated

Simulation time
(in secs)

100 0.0442

1000 0.1032

10000 0.5652

100000 5.1282

Table 5.2: LBS performance for OCP assertions
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Figure 5.2: LBS performance for OCP assertions

5.2 Implementation and Results of EvoDeb

The entire work-flow of EvoDeb is depicted in Figure 5.3. To obtain the statement dump,
we insert Verilog Procedural Interface (VPI) call statements in the original source code of
the reference design D and evolved design D′ to get the statement level execution dump,
without affecting the functionality, using a Verilog parser. We record the simulation traces λ
and λ′ by simulation with a common test bench using the VCS [5] simulator. The algorithms
for slicing and WP computation, comparison and source reverse mapping were implemented
by us in Python. We used YICES2 [38] for constraint implication checking as needed in
the final step of our approach. Our framework translates the WPs originally in HDL to
YICES2’s specification language and then proceeds to determine the unimplied constraints
followed by source remapping. We put to test our framework for locating change induced
bugs on two open-source designs using our in-house random test generator.

5.2.1 Experience with UART16550

UART16550 [13] defines the UART core WISHBONE interface. We used this design as the
reference design. We modified the condition of an if statement (line no 203 in the original
source file) if ( wb stb is wb cyc is ) to if ( wb stb is ) to test our framework as shown in
Figure 5.4. We simulated the designs for 10000 clock cycles. Even though the designs differ
by a single line, it is worth mentioning that simulation trace difference of the two designs for
the same testbench, has 29279 lines, which shows how much a single change can affect the
design. Due to the change in the design, the first difference in the output that we observe
is the value of wb ack o in clock cycle 7751, and hence we chose < wb ack o, 7751 > as the
bug scenario. The WP consists of around 2400 constraints for each of the designs. Our
framework determined the unexplained constraints correctly and returned the line number
of the first statement in the source code that caused the bug in the changed design. Our
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Figure 5.3: Proposed Framework of EvoDeb

framework returned the line corresponding to the else part of the if condition that we had
changed in the new design. The runtime for our debug step was a few seconds.

5.2.2 Experience with PCI bridge

We used the pci wb slave.v as our second test case. This is part of the PCI bridge
project [10]. We modified two sensitivity lists [line number 587 and 651 of the original
file] to create a buggy version and considered the original file as the reference design. By
reducing the number of signals in the two sensitivity lists, we created a code missing bug
scenario. The modified sensitivity lists are shown in Figure 5.5. The traces obtained were of
183319 and 91091 lines for the original and the modified design respectively. The first dif-
ference in the output of the two designs that we observe is the value of sample address out
to differ at clock cycle 2970. Thereby we consider < sample address out, 2970 > as our
bug scenario. The WPs were around 80000 constraints in each design. In this case as well,
our framework found the presence of unexplained constraints and reported line 587 and 651
as bugs successfully, in addition to other lines that were executed as a result of the always
blocks in the original design getting triggered a greater number of times as compared to the
one in the modified design, due to more signals present in the sensitivity list.
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Figure 5.4: Source code fragment of uart wb.v

Figure 5.5: Source code of pci wb slave.v





Chapter 6

Conclusion and Future Work

In this work, we presented an efficient methodology for simulation of LTL assertions. The
foundation of the work is based on inferencing the evaluation results of the assertions with
actual evaluation of the assertions by using a shared data structure. The methodology
has been demonstrated to offer better performance in simulation of LTL assertions than
transaction- based monitoring (TBM), with automata-based monitor on random assertions
as well as on a standard benchmark assertion suite. The developed framework can be easily
integrated into existing standard simulation tool flows.

The work on debugging evolving designs, EvoDeb presents a novel and efficient automated
methodology for debugging change induced bugs. The application of classical program anal-
ysis in the context of HDL programs makes our proposal useful and attractive in practice.
Results indicate the efficiency of our approach.

In our future work, we are interested in extending our research towards automated assertion
generation for evolving designs. For an existing reference design, there usually exists a set
of assertions to validate the functionality of the given design, along with a test suite. We
aim at extending our approach presented in EvoDeb such that we could obtain an assertion
suite for the evolved design from the reference assertion suite that would validate the evolved
design. We plan to use the differences in source code of the designs to mutate the reference
assertion suite to obtain the new assertion suite for the evolved design. We believe that our
methods can be extended to reduce efforts in designing assertion suites for evolved designs
with minimal designer intervention. .
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Chapter 7

Disseminations out of this work

• D. Bhattacharjee, A. Banerjee, and A. Chattopadhyay, “EvoDeb: Debugging Evolving
Hardware Designs”, in VLSI Design (VLSID), 2015 28th International Conference on,
pp. 481-486. IEEE, 2015.

• D. Bhattacharjee, S. Chattopadhyay, and A. Banerjee, “EAST: Efficient Assertion
Simulation Techniques”, under review 24th IEEE Asian Test Symposium, IEEE, 2015.
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