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Abstract. In this dissertation, we designed a new two-layered keyed hash function having
provably low collision and differential probabilities. The first layer of the hash function uses
BRW [3] polynomial based Hash function for each portion of a fixed length of the input
message and the second layer uses usual Horner’s rule based Hash function on the digest
stream obtained from the first layer. This hash function is then integrated with the block
cipher Advanced Encryption Standard (AES) and the stream cipher Salsa20 to implement
some of the encryption and authentication primitives mentioned in [1].

1 Introduction

The study in the area of symmetric key cryptography can be broadly classified along two
major branches, namely Encryption and Authentication. Besides studying these in isolation,
Authenticated Encryption (AE) is also studied. Block ciphers, Stream ciphers, Hash function
are some of the basic primitives for performing these cryptographic operations. In [1] (to
be referred to as main paper in subsequent discussion) a systematic framework for using a
stream cipher supporting an initialization vector (IV) to obtain secure primitives for message
authentication code (MAC), authenticated encryption (AE), authenticated encryption with
associated data (AEAD) and deterministic authenticated encryption (DAE) with associated
data (DAE(AD)) has been proposed. Several schemes have been presented and analyzed.
Though the main paper uses only Stream ciphers supporting an IV, in this work the Block
cipher AES in counter mode with an encrypted IV has been used in place of it to implement
the primitives. In parallel some of the schemes have also been implemented using Salsa20 of
Bernstein [2] in place of the stream cipher. Along with stream cipher, a major component
of the constructions is a vector input (double-input hash function is required for AEAD
schemes, the inputs being data and header part) keyed hash function having provably low
collision and differential probabilities. Hence a suitable hash function has been designed and
implemented in the present work satisfying the required criteria. In fact, this hash function
design and implementations forms the major and most significant part of this present work.

Previous Related Works: Universal hash functions have been extensively used in cryp-
tography, especially in the construction of message authentication code (MAC) algorithms,
since these were introduced by Carter and Wegman [10]. A well-known universal hash func-
tion is the so called multi-linear universal hash function, defined as follows:
The message M = (M1, · · · ,Ml) and key K = (K1, · · · ,Kl) are sequences of elements over



a finite field F. The multi-linear hash function is the multi-linear map:

MLHash :(M1, · · · ,Ml)
K7−→ K1M1 + · · ·+KlMl

The probability (over random keys) that two distinct messages map to the same value for
this hash function is 1/|F|.
Although in [11] this construction has been credited to Carter and Wegman [10], Bernstein
in [3] mentions that this construction appears in an earlier work by Gilbert, MacWilliams
and Sloane [12], in the language of finite geometries. However, this basic idea of MLHash
has further been extended in [11], where they describe an efficient software implementation
of this construction in a finite field Fq with q = 232 + 15. Also, there are modifications to
the construction to align with 32-bit word boundaries and to reduce the total number of
modulo q operations.
Reducing the total number of multiplications necessary for a universal hash function has
been a goal for many works in the literature. In this regard two popular schemes are
pseudo dot-product (PDP) hash [26] and Bernstein-Rabin-Winograd (BRW) hash [3, 25],
both of which require n/2 multiplications for n message blocks. These are single block
hashes whereas Toeplitz construction is a d-block hash requiring d × n/2 multiplications.
The pseudo dot-product based hash PDP (e.g. NMH hash [11], NMH∗ [11], NH [13] and
others [27,28]) is defined as (for even l)

PDPk1,··· ,kl(m1, · · · ,ml) = (m1 + k1)(m2 + k2) + · · ·+ (ml1 + kl1)(ml + kl)

Another d-block universal hash, called EHC is introduced in [24] which requires (d−1)+n/2
multiplications for d ≤ 4. In the same work this quantity is claimed to be the lower bound on
the number of multiplications necessary to compute a universal hash over n message blocks.
The main ingredient of this construction is credited to [29] in [24]. The author claims that
in terms of key size and parallelizability, both Toeplitz and EHC are similar.
Another popular universal hash function is polynomial based hashing, called poly-hash [31–
33] defined as follows:
The message M = (M1, · · · ,Ml) is as defined before and key K is an element over the finite
field F. The polynomial based hashing is the map:

PolyHash :(M1, · · · ,Ml)
K7−→M1.K +M2.K

2 + · · ·+Ml.K
l

The probability (over random keys) that two distinct messages map to the same value for
this hash function is atmost l/|F|. One popular example is Ghash used in GCM [30].
The repeated attempts to obtain universal hash functions with high-speed software im-
plementations led to proposals such as UMAC [13], Poly1305 [14], PolyR [15], bucket
hashing [16, 17] and [18]. Design of hash functions involving linear feedback shift regis-
ters (LFSRs) has been pursued in [19–21]. Stinson [22] has also described various methods
of combining hash function constructions.
A new multi-linear universal hash family has been introduced in [23]. The focus of this
constructions is small hardware and other resource constrained applications. The focus of
this dissertation was designing the new universal hash function. After completing its im-
plementation, we have just started looking at its applications in different encryption and
authentication schemes. In this respect, as already mentioned, our guideline is the main
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paper [1] and hence, summarizing the literature on authentication and encryption has been
omitted here.

Importance of the Present Work: Though the primary goal of this dissertation was
initially set to implementation of the schemes described in [1], eventually, as mentioned
before, the design and implementation of a suitable and competitive (in terms of speed)
hash function forms the most significant contribution of this work so far. The hash functions
based on BRW polynomial and Horner’s rule are separately well discussed. Whereas BRW
polynomial based hash function has significant advantage over other hash functions in terms
of speed, its inherent recursive structure is not suitable, atleast without any nontrivial trick,
to efficiently hash a variable length message with this scheme. Hence, to utilize the speed
benefit given by this scheme we mixed it with Horner’s rule based hash function in two
levels. Now, this hash function was integrated with AES in counter mode to implement
some of the schemes mentioned in the main paper. Also, the hash function was separately
integrated with Salsa20 for the same purpose. For some of the cases, speed achieved from
these was measured and studied comparatively. In this work two underlying fields were
considered, namely the field GF(2128) and the field GF(2256).

The organization of the report is as follows: In Section 2 we provide an introduction
to some of the basic features of our work. In Section 3 we provide our implementation of
the basic field arithmetic and its different variations. In Section 4, we study the design and
implementation of the hash function, we used. In Section 5, we provide implementation
results of some of the schemes using AES in counter mode along with the hash function.
In Section 6 the preliminary implementation of some scheme using Salsa20 along with the
hash function is presented. In Section 7, we see a brief summary. We conclude the report in
section 8.

2 Preliminaries

2.1 Timing Measurement:

As indicated before, speeds achieved by all the implementations in the present work have
been measured and studied comparatively against the reported achievable speeds so far. For
timing measurement we basically used the following piece of code along with appropriate
iteration numbers for cache warming and stabilizing the result.

#define STAMP ({unsigned res; __asm__ __volatile__ ("rdtsc" : "=a"(res) : : "edx"); res;})

#define DO(x) do { \

int i,j; \

for (i = 0; i < M; i++) { \

unsigned c2, c1;\

for(j = 0;j < CACHE_WARM_ITER;j++) {x;}\

c1 = STAMP;\

for (j = 1; j <= N; j++) { x; }\

c1 = STAMP - c1;\

median_next(c1);\

} } while (0)
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This framework was used to produce the results in [34,35] to report the speed of OCB3.
Here, for measuring the number of CPU cycles elapsed to execute a piece of code repre-
sented by x the x86 time-stamp counter (TSC) is used. The Time Stamp Counter (TSC) is
a 64-bit register present on all x86 processors since the Pentium. It counts the number of
cycles since reset. The instruction rdtsc returns the value of TSC in EDX : EAX, which is
read by the macro STAMP. This strategy has a drawback. The TSC read instruction might
be executed out of order, in some cases it has high latency, and it continues counting when
other processes run. Hence, some precautions are taken. To reduce the effect of memory
access time, the set of instructions under test is executed sufficient number of times without
measuring time. This is the standard way to perform cache-warming, as a result of which
the instruction set is expected to reside in the cache before the timing measurement starts
and as a result memory access time should not be included in the measured time. Next,
the TSC is read by STAMP macro, followed by N iterations of the set of instructions (x)
under test. At the end, again the TSC is read by STAMP macro and the difference of these
two readings before and after the executions of x for N times gives the number of CPU
cycles required for N executions of x. This entire thing is done for a number of times, M,
say. For doing away with the imperfections in this measurement strategy, the median of
these M readings is taken as the result and dividing this by N gives the time taken by single
execution of x.

For timing measurement for this work, we have used the following environment:

– Hardware:
• Model name : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
• Graphics : Intel (R) Haswell Desktop
• L1 Cache size : 256 KB

– Software :
• OS : Ubuntu 14.04 LTS
• Compiler flags used : -mpclmul -mavx2 -O3 (optionally) -maes (optionally)

2.2 Intel Intrinsics: background

In compiler theory, an intrinsic function is a function available for use in a given program-
ming language whose implementation is handled specially by the compiler. In this work
we are concerned with the language C and hence the subsequent discussion will be with
reference to C. Intrinsics are assembly-coded functions that allow you to use C function
calls and variables in place of assembly instructions. These are expanded inline eliminating
function call overhead. Providing the same benefit as using inline assembly, intrinsics im-
prove code readability, assist instruction scheduling, and help reduce debugging. Intrinsics
provide access to instructions that cannot be generated using the standard constructs of
the C language. So, intrinsics must be supported by the specific compiler.
Intel(R) C compilers support a rich set of intrinsics, though not all Intel processors sup-
port all intrinsics. These C compilers enable easy implementation of assembly instructions
through the use of intrinsics, popular in the name of Intel Intrinsics. Intrinsics are provided
for the following instructions:
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– Intel(R) Advanced Vector Extensions (Intel(R) AVX) instructions
– Intel(R) Streaming SIMD Extensions 4 (Intel(R) SSE4) instructions
– Intel(R) Supplemental Streaming SIMD Extensions 3 (SSSE3) instructions
– Intel(R) Streaming SIMD Extensions 3 (Intel(R) SSE3) instructions
– Intel(R) Streaming SIMD Extensions 2 (Intel(R) SSE2) instructions
– Intel(R) Streaming SIMD Extensions (Intel(R) SSE) instructions
– MMX Technology instructions
– Carry-less Multiplication instruction and Advanced Encryption Standard Extensions

instructions
– Half-float conversion instructions

In this work we have basically used instructions available in SSE and its different exten-
sions, though the AVX compilation flag has been used. Some terminologies and data-types
associated with Intel Intrinsics are:

– m128: With the introduction of SSE in 1999, eight 128-bits registers were added to
the CPU, xmm0 through xmm7. To directly manipulate these 128 bit registers, new
data-types corresponding to any primitive data type used in C were added to the Intel
Intrinsics literature. The names of these new data-types start with m128: m128 is
used for float, m128d for double and m128i for int, short, char.

– Throughput: Throughput is the number of processor clocks it takes for an instruction to
execute or perform its calculations. An instruction with a throughput of t clocks would
tie up its execution unit for that many cycles which prevents an instruction needing
that execution unit from being executed. Only after the instruction is done with the
execution unit can the next instruction enter.

– Latency: Latency is the number of processor clocks it takes for an instruction to have
its data available for use by another instruction. Therefore, an instruction which has a
latency of l clocks will have its data available for another instruction that many clocks
after it starts its execution.
Note: Latency and throughput are typically used as the basis for instruction performance
on a microprocessor.

Here are some instructions which we have used most frequently and their brief intro-
duction:

– m128i mm clmulepi64 si128 ( m128i a, m128i b, const int imm8): This is the intrinsic
for the instruction pclmulqdq.
It performs a carry-less multiplication of two 64-bit integers, selected from a and b ac-
cording to imm8.
In the Haswell architecture it has latency 7 and throughput 2.
The compilation flag required to compile codes containing this instruction is -mpclmulqdq.
The pseudo-code for this instruction is as follows:

IF (imm8[0] = 0)

TEMP1 := a[63:0];

ELSE

TEMP1 := a[127:64];
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FI

IF (imm8[4] = 0)

TEMP2 := b[63:0];

ELSE

TEMP2 := b[127:64];

FI

FOR i := 0 to 63

TEMP[i] := (TEMP1[0] and TEMP2[i]);

FOR j := 1 to i

TEMP [i] := TEMP [i] XOR (TEMP1[j] AND TEMP2[i-j])

ENDFOR

dst[i] := TEMP[i];

ENDFOR

FOR i := 64 to 127

TEMP [i] := 0;

FOR j := (i - 63) to 63

TEMP [i] := TEMP [i] XOR (TEMP1[j] AND TEMP2[i-j])

ENDFOR

dst[i] := TEMP[i];

ENDFOR

dst[127] := 0

– m128i mm xor si128 ( m128i a, m128i b): This is the intrinsic for the instruction
pxor.
It computes the bitwise XOR of 128 bits (representing integer data) in a and b.
In the Haswell architecture it has latency 1 and throughput 0.33.

– m128i mm set epi8 (char e15, char e14, char e13, char e12, char e11, char e10, char e9,
char e8, char e7, char e6, char e5, char e4, char e3, char e2, char e1, char e0): It sets packed
8-bit integers in the target with the supplied values in reverse order.

– m128i mm set epi32 (int e3, int e2, int e1, int e0): It sets packed 32-bit integers in the
target with the supplied values.

– m128i mm slli si128 ( m128i a, int imm8): This is the intrinsic for the instruction
pslldq.
It shifts a left by imm8 bytes while shifting in zeros, and store the results in the target.
In Haswell architecture it has latency 1 and throughput 0.5.

– m128i mm srli si128 ( m128i a, int imm8): This is the intrinsic for the instruction
psrldq.
It shifts a right by imm8 bytes while shifting in zeros, and store the results in the
destination.
In Haswell architecture it has latency 1 and throughput 0.5.

– m128i mm shuffle epi32 ( m128i a, int imm8): This is the intrinsic for the instruction
pshufd.
It shuffles 32-bit integers in a using the control in imm8, and store the results in the
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destination.
In Haswell architecture it has latency 1 and throughput 1.
The psedo-code for this instruction is as follows:

SELECT4(src, control){

CASE(control[1:0])

0: tmp[31:0] := src[31:0]

1: tmp[31:0] := src[63:32]

2: tmp[31:0] := src[95:64]

3: tmp[31:0] := src[127:96]

ESAC

RETURN tmp[31:0]

}

dst[31:0] := SELECT4(a[127:0], imm8[1:0])

dst[63:32] := SELECT4(a[127:0], imm8[3:2])

dst[95:64] := SELECT4(a[127:0], imm8[5:4])

dst[127:96] := SELECT4(a[127:0], imm8[7:6])

3 Implementation of Basic Field Arithmetic: It’s variations

Let us start the discussion with the case of GF (2128). We started with a routine to im-
plement the field arithmetic for GF(2128). While addition is simply bitwise xor and is not
a costly operation, for reducing the cost of multiplication we tried out four methods and
measured their speed comparatively. Any finite field is generated modulo an irreducible
polynomial. If the field is GF (2n), the polynomial must be a binary polynomial of degree
n. For implementational cost issues its always better to have a polynomial, satisfying all
the required properties, with as less number of non-zero coefficients as possible. We take
the irreducible polynomial x128 + x7 + x2 + x + 1 to be defining the field GF (2128), as it
satisfies all the above properties and is used in [36]. As a result, we can use the algorithms
of [36] as it is. Now, multiplication of two field elements consists of two steps: the first one
is usual multiplication of the elements (if the field is GF (2n), then it should be carryless
multiplication as in this types of fields 1+1 = 0). The second step is to reduce this product
modulo the defining irreducible polynomial of the field.

3.1 Field multiplication:

Now, for only multiplication of two 128-bits string, we can use either the normal Schoolbook
algorithm or the asymptotically faster Karatsuba algorithm. In modern Intel processors, es-
pecially in Haswell architecture enabled ones, the intrinsic instruction PCLMULQDQ for
carryless multiplication of two 64-bit quantity gives significant speed advantage over other
available mechanisms for the same so far. Hence, we have used this in our work.
Let a and b represent two 128-bit quantities to be multiplied. As we used PCLMULQDQ
which multiplies two 64-bit quantity to give their carryless product, let the bit-string rep-
resentation of a and b be divided in lower 64 bit and upper 64 bit parts. Let the parts be
respectively au and al for a and bu and bl for b. So, a can be written as a = (au × 264 + al);
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similarly b can be written as b = (bu × 264 + bl). Now, the Schoolbook method multiplies a
and b like this:

a×b = (au×264+al)×(bu×264+bl) = (au×bu)×2128+(au×bl)×264+(bu×al)×264+(al×bl)

So, along with some additions and shifts, it requires four applications of PCLMULQDQ, all
of which are independent of each other and hence scheduling them consecutively reduces the
effective overhead of latency period. As the latency (7 cpu cycles) dominates over throughput
(2 cpu cycles) of PCLMULQDQ, this type of scheduling improves the overall speed via
instruction pipelining.
Now, the Karatsuba method does this by:

a× b = (au × 264 + al)× (bu × 264 + bl)

= (au × bu)× 2128 + (au + al)× (bu + bl)− (au × bu)− (al × bl)× 264 + (al × bl)

So, although this method needs some extra additions compared to that in Schoolbook
method, it requires only three multiplications, all of which are again independent of each
other and hence their consecutive scheduling improves the overall speed.
Here, we need to reduce the 255-bit (as carryless) product obtained by one of the previous
methods modulo the polynomial x128 +x7 +x2 +x+ 1. For this reduction we experimented
two strategies, one of them being the reduction by multiplication strategy as described in
[4] and another one is a modified version of the strategy to reduce by shifts (applicable only
in case of this particular polynomial) mentioned in the same paper.
The procedure of reducing the obtained product of degree 254 modulo g = x128 +x7 +x2 +
x+ 1 via multiplication is as follows:

Reduction by multiplication: Consider the product polynomial as a 256-bit string with
most significant bit (msb) set to zero. Let us split it to two 128-bit halves. The least
significant half just need to be xored with the final remainder as the degree of g is 128. So,
if the polynomial corresponding to the most significant half is denoted by c(x), we need an
efficient procedure to calculate

p(x) = c(x) · xt mod g(x) (1)

Where,

– degree of c(x) is s− 1. Here s = 128.

– degree of g is t. Here t = 128.

– so, t = s.

Let us use the notation Lu(v) to denote the coefficients of the u least significant terms
of the polynomial v and use Mu(v) to denote the coefficients of its u most significant terms.
The polynomial p(x) can be expressed as:
p(x) = c(x) · xt mod g(x) = g(x) · q(x) mod xt
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where q(x) is a polynomial of degree s − 1 which is the quotient from the division of
c(x) · xt by g. The dividend c(x) · xt can be expressed as

c(x) · xt = g(x) · q(x) + p(x) (2)

From (2), its evident that the t least significant terms of the polynomial g · q are equal to
terms in p. Hence,

p(x) = g(x) · q(x) mod xt = Lt(g(x) · q(x)) (3)

Now, let us define by g∗ the t least significant terms of the polynomial g. So, 2 can be
written as:

p(x) = Lt(q(x) · g∗(x)) (4)

So, we need to know q in order to compute p(x).

2⇔ c(x) · xt+s = g(x) · q(x) · xs + p(x) · xs (5)

Let

xt+s = g(x) · q+(x) + p+(x) (6)

where, q+ is an s-degree polynomial and p+ is a (t− 1) degree polynomial.So,

5 and 6⇔M s(c(x) · g(x) · q+(x) + c(x) · p+(x)) = M s(g(x) · q(x) · xs + p(x) · xs) (7)

Now, it is to be noted that the polynomials c · g · q+ and g · q · xs are of degree t+ 2s− 1,
the polynomial c · p+ is of degree t+ s− 2 and the polynomial p · xs is of degree t+ s− 1.
Hence,

M s(c(x)·g(x)·q+(x)) = M s(g(x)·q(x)·xs)⇒M s(g(x)·M s(c(x)·q+(x))·xs) = M s(g(x)·q(x)·xs)
(8)

which is satisfied for q given by

q = M s(c(x) · q+(x)) (9)

So, p can be found by

p(x) = Lt(g∗(x) ·M s(c(x) · q+(x))) (10)

where g∗(x) and c(x) are easily available. The interesting thing to be noted is that when
x256 is divided by the particular g we consider here the quotient is g itself, hence giving
q+ also easily. Thus (10) implies that the main operation in doing the reduction modulo
this particular g is two 128-bit multiplications. This means we need to use PCLMULQDQ
atleast six times for this reduction. But investigating (10) closely, we can reduce it to three,
one for (c(x) · q+(x)) part which must be done first and the other two owing to the other
multiplication depend on the first one. The next two are independent of each other, hence
can be scheduled consecutively in any order.
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Reduction by shift: The reduction can be sped up if the particular form of g is taken
into account. This g can be represented as the bit sequence [1 : 〈120zeros〉 : 10000111].
Multiplying this carry-less with a 128-bit value and keeping the 128 most significant bit can
be obtained by:
(i) Shifting the 64 most significant bits of the input by 63, 62 and 57-bit positions to the
right.
(ii) xoring these shifted copies with the 64 least significant bits of the input.
Next, we carry-less multiply this 128-bit result with g, and keep the 128 least significant
bits. This can be done by:
(iii) shifting the 128-bit input by 1, 2 and 7 positions to the left.
(iv) xoring the results.
We have achieved the same effects with slightly modified actions in our work for reducing
total number of bit-shifts in our work. This algorithm requires no multiplication, but only
shifts and xor.

3.2 Batch multiplication:

Batch multiplication is one of the things which we have studied in considerable detail in
this work. When there are a number of independent 128-bit multiplications, we can exploit
this independence for speed improvement. Each of the 128-bit multiplications consists of
three (for Karatsuba method) or four (for Schoolbook method) independent 64-bit multi-
plications. So, if the number of independent 128-bit multiplications at some point of the
implementation is n, effectively we have 3×n or 4×n independent 64-bit multiplications in
our hand. Instead of considering these multiplications separately, we can schedule them in
such a way so that the overall latency for a group of these multiplications is reduced. This
strategy is called multiplication in batches. The reason behind reduced latency is further
explained below.

PCLMULQDQ is used for each of these 64-bit multiplications. As mentioned earlier,
in Haswell architecture PCLMULQDQ has latency as 7 cpu cycles and throughput as 2
cpu cycles. So, from the moment when a multiplication operation is initiated, after 7 cpu
cycles the first bit of output is generated. If the second PCLMULQDQ instruction is trig-
gered only after the entire output for first PCLMULQDQ has been generated, then another
span of 7 cpu cycles is needed to get the next bit of output. This overall waiting time
could be reduced, if the second PCLMULQDQ instruction had been triggered just in the
next cpu cycle after the first one has been triggered. In this case, in fact we would have
to wait for only 7 cycles for the first bit of output. This strategy can be used in more
efficient way by batching more number of multiplications together by reducing the overall
waiting time for all of them to that for just one. But, all of these batched multiplications
must be independent of each other to get the desired speed up, otherwise the dependent
one will anyway have to wait for the result of the PCLMULQDQ instructions on which
it depends. This strategy can be exploited more efficiently here as we must break up each
128-bit multiplications into several 64-bit multiplications. The reason is the availability of
efficient instruction PCLMULQDQ for performing 64-bit product and absence of any such
instruction for 128-bit multiplication. As two independent 128-bit multiplications implies
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invoking PCLMULQDQ at-least six times independently it implies more batching. Here we
tried upto four independent 128-bit multiplications in a batch. Why not more?

Doing more multiplications in batch should lead to speed up, but, the effect may be-
come less noticeable if the batch size increases too much. If the batch size is such that
the latency time of the first PCLMULQDQ is saturated, i.e. if already seven independent
PCLMULQDQ instructions have been scheduled in the consecutive seven CPU cycles, then
from the eighth instruction onward will wait for the completion of first batch execution.
Again, at most next seven PCLMULQDQ instructions can fill up the latency time of the
eighth one and from fifteenth onward will have to wait for third slot. This may result in less
noticeable speed up. Hence we tried here upto a batch of four independent 128-bit multipli-
cations and experimenting with larger batch sizes can be taken up as a topic of further study.

Now, all these combinations for multiplication followed by reduction are comparatively
studied for speed and the results are as follows:

Size of Batch
Strategy

1 2 3 4

Schoolbook-mult 72.036 55.205 48.748 44.401
Schoolbook-shift 142.325 131.403 132.254 124.362
Karatsuba-mult 87.342 75.311 62.907 55.48
Karatsuba-shift 162.629 142.182 146.92 140.259

Table 1. Number of cycles per 128-bit multiplication for different options for basic and batched multiplica-
tions

Now, let us discuss the GF (2256) case, especially stressing upon the differences of it with
the previous case:

For 256-bit case: We worked in parallel for GF (2256). So that we don’t need to re-
implement all the things again for 256-bit case, we implemented an outer layer so that
choosing between 128-bit case and 256-bit case could be done with minimum effort. This is
done with the help of a header file, which chooses appropriate multiplication routine, some
basic operations and basic data-types depending on the value set to a variable, indicating
the correct field. Hence, we implemented only the multiplication routine separately for 256-
bit case.

The first basic issue to note for GF (2256) is that there is no support in Intel intrinsic
for 128-bit multiplication as is there for 64-bit multiplications (PCLMULQDQ). Hence, as
we divided each 128-bit multiplications into 64-bit ones, here we cannot break 256-bit mul-
tiplications into 128-bit ones and stop. We have to break each 256-bit multiplications into
corresponding 64-bit multiplications.
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For carryless multiplication of two 256-bit numbers by Karatsuba method, we need
three independent 128-bit multiplications, each of which can be further broken into three
independent 64-bit multiplications by Karatsuba method. Hence, we get nine independent
64-bit multiplications, each of which is done by PCLMULQDQ. So, if we have n indepen-
dent 256-bit multiplications at some point in the implementation, we effectively get 9 × n
independent use of PCLMULQDQ instructions, which can be scheduled in batches again
for batch multiplication.
Similarly, by Schoolbook method n independent 256-bit multiplications at any point in im-
plementation means 16×n independent 64-bit multiplications. Hence, these 16×n invoking
of PCLMULQDQ can be scheduled in batches, so that speed improvement is achieved due
to batch multiplication.

In this case, we consider the irreducible polynomial x256 + x10 + x5 + x2 + 1 of degree
256. For reducing by this polynomial we used the previous two algorithms, extended to the
256-bit case. Here, the reduction by multiplication needs four invoking of PCLMULQDQ,
out of which two depend on the other two. Let us see this method in detail:

The reduction by multiplication algorithm for 128-bit case applies similarly to this case
with some obvious modifications, like s = 256, t = 256 and g is the irreducible polynomial
of degree 256, as mentioned before. Now, we need to follow equation (10). Here, c(x) is
255-degree polynomial and q+(x) is the polynomial corresponding to g (for the same reason
as in the case of 128-bit). We need the most significant 256-bits of their product. Let c(x) be
denoted by y1||y0, where y1 is the most significant 128-bit part and y0 is the least significant
128-bit part. Similarly q+(x) can be denoted by 1||g∗ where, g∗ is the least significant 255
bits of g. Let, g0 denote the least significant 128 bits of g. Hence, equation (10) can be
calculated by the following method:
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c = y1||y0
q+ = 1||〈128 0’s〉||g0

= (1× 2256 + 〈least significant 256 bits of g〉)
M256(c.q+) = M256(c× (1× 2256 + 〈least significant 256 bits of g〉))

= M256(c× 2256 + c× 〈least significant 256 bits of g〉)
= c+M256(c× 〈least significant 256 bits of g〉)
= c+M256((y1||y0)× (〈128 0’s〉||g0))
= c+M256((y1 × g0)× 2128 + (y0 × g0))
= (y1||y0) + (〈128 0’s〉||〈most significant 128 bit of (y1 × g0)〉)
= y1||(y0 + most significant 128 bit of

(y1 × (〈64 0’s〉||〈64 least significant bit of g0〉)))
= y1||(y0 + most significant 128 bit of

(〈64 most significant bit of y1〉 × 〈64 least significant bit of g0〉 × 264

+ 〈64 least significant bit of y1〉 × 〈64 least significant bit of g0〉))
= y1||(y0 + (〈64 0’s〉||〈64 bit right shift of

(〈64 most significant bit of y1〉 × 〈64 least significant bit of g0〉)〉)
(1)

= y1||temp1(say)

L256(g∗ ×M256(c.q+)) = L256(g∗ × (y1||temp1))
= L256((〈128 0’s〉||g0)× (y1||temp1))
= L256((g0 × y1)× 2128 + (g0 × temp1))
= 〈least significant 128-bits of (g0 × y1)〉+ (g0 × temp1)
= 〈128 bit left shift of (g0 × y1)〉+ (g0 × temp1) (2)

Here, for (1) we need one use of PCLMULQDQ and for (2) there are three uses of
PCLMULQDQ: one for another part of g0 × y1, which is not needed in (1) and two for
two nontrivial 64-bit multiplications in g0× temp1 (note that most significant 64-bit of g0 is
all-zero, giving rise to two trivial 64-bit multiplications). Out of these four 64-bit multiplica-
tions, first two are independent of others and hence can be scheduled at the very beginning
of the corresponding code and can be scheduled consecutively for better performance. The
last two depend on temp1, i.e. the result of the first one, but they are independent of each
other. Hence, once temp1 is calculated these last two multiplications can be scheduled in
any order and specifically can be scheduled consecutively for better performance.

The reduction by shift algorithm is naturally extended to 256-bit case, which does not
require any multiplication similar to the 128-bit case.

As indicated earlier, in 256-bit case also we tried for batch multiplication upto batch-
size of four. Here, scope for batching is more, as there are more number of independent

13



multiplications than in the case of 128-bit. But as previously discussed, the speed up is
naturally less noticeable.

The timing results are as follows:

Size of Batch
Strategy

1 2 3 4

Schoolbook-mult 170.398 140.825 137.366 140.028
Schoolbook-shift 334.82 326.386 320.869 316.299
Karatsuba-mult 205.542 181.107 181.022 179.043
Karatsuba-shift 358.8909 360.537 361.068 355.775

Table 2. Number of cycles per 256-bit multiplication for different options for basic and batched multiplica-
tions

4 Design and Implementation of the two-level Hash Function

Let {Hashτ} be a family of keyed hash function on a common domain and a common range,
where the key τ is chosen from an appropriate finite set. Two kinds of probabilities are
defined for the hash function family:
Collision Probability: For all distinct x and x′, the collision probability of Hashτ cor-
responding to the pair (x, x′) is Pr[Hashτ (x) = Hashτ (x′)], where the probability is taken
over the uniform random choice of τ .
Differential Probability: For all distinct x and x′ and any y, the differential probability
of Hashτ corresponding to the triplet (x, x′, y) is Pr[Hashτ (x) ⊕ Hashτ (x′) = y ], where the
probability is taken over the uniform random choice of τ .
If all the collision probabilities are bounded above by ε, then Hashτ is said to be almost
universal (ε-AU); if all the differential probabilities are bounded above by ε, then Hashτ is
said to be almost XOR universal(ε-AXU). It is to be noted here that, this ε in any of the
two cases need not be an absolute constant. For many hash functions this is a constant,
which depends on the length of the input message.
The two issues regarding hash functions that
1. A hash function need not be defined for all possible input lengths and
2. Collision and differential probabilities of a hash function can be guaranteed to be low
only for equal length inputs
can be tackled by suitable padding technique, as a result of which we get a single input
hash function without any restriction on input length and with low collision and differential
probabilities for any two inputs. There are well known examples of both AU and AXU (for
equal length strings) single-input hash functions, from which vector input hash functions
which are AXU for variable length vectors can be constructed and some concrete construc-
tions for doing so have been described in the main paper.
As the basis of this construction, an efficient single-input hash function having the AU and
AXU properties(for equal length strings) are needed. A family of fast (single-input) hash
functions have been proposed by Bernstein based on an earlier work by Rabin and Wino-
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grad and the family has been called the BRW functions in [4]. This hash function satisfies
these properties. Moreover, Horner’s rule based hash function is well-known and satisfies
these properties. Both of them are used in the design of our Hash function.

4.1 Overview:

In this and subsequent sections, we use the following notation. Given a binary string S, let
len(S) denote the length of S, i.e., len(S) is the number of bits in S. Given an integer i with
0 ≤ i ≤ 2n − 1, let binn(i) denote the n-bit binary representation of i.

Here, we have designed a new universal hash function. Let, the domain or input message
space of the hash function be denoted by M and the range or digest space be denoted by
R. Let, the key space be denoted by K. Here,
M : {0, 1}i (i is any positive integer)
R : {0, 1}n
K : {0, 1}2n
In this work we consider two values of n, i.e. 128 and 256 separately. Initially, we take two
keys, each of length n-bit, independent of each other. These are the keys for the two levels
of our hash function. Later in some of schemes some tricks have been used to reduce the
requirement of the number of independent bits.

If needed the input message is padded by 0’s to make its length divisible by n, i.e. if
already it is not so. Then, it is divided into stream of strings each of length n, each of which
represents an element of underlying the field GF (2n). Each such string is called a block
here. This work uses a concept of superblock also, which represents a number of blocks. We
have considered that a superblock consisting of 31 blocks is a complete superblock and a
superblock consisting of lesser number of blocks is a partial superblock.

Our hash function is a two-level one, the first level of which is the BRW hash function.
As BRW functions can be implemented very efficiently when the length of the input mes-
sage is known beforehand, we have used 31-block BRW in the initial level. After padding
the input message if needed, the message is divided into superblocks, the last piece being
possibly a partial superblock. Now, we compute a digest for each of the superblocks after
applying the BRW based hash on it. For all other superblocks except the last one we apply
the BRW hash for 31 blocks. For the last one, if it’s a complete superblock we apply the
same. If it’s not and contains 1 ≤ i ≤ 30 blocks, we apply the BRW hash corresponding to
i blocks on it to compute the digest. As a result we get a stream of digests, each of which
is again a n-bit quantity.

Now, for security guarantee we pad this stream of digests with the initial length (before
padding) of the message expressed as a n-bit quantity, i.e. if the input message is M , here
padding is done by binn(len(M)). These n-bit blocks are now fed into Horner’s rule based
hash function to get the final n-bit digest. For these two levels of hashing two independent
keys has initially been chosen randomly. Later in some cases some tricks have been used.
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4.2 Lower level in 2-step hash: BRW based hashing

In [3], Bernstein has defined a family of polynomials based on a previous work by Rabin
and Winograd. This family of polynomials has been named as BRW polynomials in [4].
The definition of the family is as follows:
Definition of BRW polynomials: The polynomial H(M1,M2, · · · ,Ml) ∈ F[x], (F is the
underlying finite field) is defined as follows for l ≥ 0:

– H() = 0
– H(M1) = M1

– H(M1,M2) = M1x+M2

– H(M1,M2,M3) = (x+M1)(x
2 +M2) +M3

– H(M1,M2, · · · ,Ml) = H(M1, · · · ,Mt−1)(x
t+Mt)+H(Mt+1, · · · ,Ml) if t ∈ 4, 8, 16, 32, · · ·

and t ≤ l < 2t

When this family of polynomials is used for hashing, then x denotes the corresponding key
of hashing. This key is chosen randomly from the underlying field. The polynomial evalu-
ated at the particular x is denoted as Hx.

These polynomials on l message blocks defined over F have the interesting property that
they can be used for authentication, but, for l ≥ 2, Hx(M1, · · · ,Ml) can be computed using
bl/2c multiplications and dlg le squarings.

As discussed in [9], a BRW polynomial Hx(M1, · · · ,Ml) can be represented as a tree Tl
which contains three types of nodes, namely, multiplication nodes, addition nodes and leaf
nodes. This BRW tree can be recursively constructed using the following rules:
1) For l = 2, 3 it is trivial.
2) If l = 2s , for some s ≥ 2, the root of Tl is a multiplication node. The left subtree of
the root consists of a single addition node which in turn has the leaf nodes hl and Xl as its
right and left child, respectively. The right subtree of the root is the tree Tl−1 .
3) If 2s < l < 2s+1 for some s ≥ 2, the root is an addition node with its left subtree as T2s

and the right subtree as Tl−2s .

According to this construction, the following important property of BRW trees is ob-
served:
For a multiplication node, either, its left child is labeled by a message block Xj and the
right child is labeled by h; or, its left child is an addition node which in turn has a message
block Xj and hk as its children for some j and k. As a consequence, for a multiplication
node, there is exactly one leaf node in its left subtree which is labeled by a message block.

As indicated in [9], as we are only interested in multiplications, we can ignore the ad-
dition nodes and thus simplify the BRW tree by deleting the addition nodes from it and
reduce the tree Tl corresponding to the polynomial Hx(M1, · · · ,Ml) to a new tree by ap-
plying the following steps in sequence.
1) Label each multiplication node v by j where Xj is the leaf node of the left subtree rooted
at v.
2) Remove all nodes and edges in the tree Tl other than the multiplication nodes.
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3) If u and v are two multiplication nodes, then add an edge between u and v if u is the
most recent ancestor of v in Tl .
The resulting structure is a forest, which is called a collapsed forest, denoted by Fl. It can be
shown that, there is a unique multiplication associated with each node of a collapsed forest.
The structure of the collapsed forest corresponding to a polynomial Hx(·) helps us to vi-
sualize the dependencies of the various multiplications involved in the computation of Hx(·).

If there is no path between two nodes in the forest, it implies that the corresponding
multiplications are independent of each other. If level of a node v in the collapsed forest
is the number of nodes present in the longest path from v to a leaf node, then the nodes
with level 1 are independent and any node with level more than 1 are dependent on some
other multiplication. Hence, at first stage any of the independent multiplications can be
performed in any order in a batch, resulting in an increased efficiency due to pipelining.
Any of the level 2 multiplications can be started only when all the level 1 multiplications,
on which this level 2 multiplication depend, have been completed and so on. As a result, if a
pipelined multiplier with N stages are used, then as long as N independent(or dependent on
multiplications, which are already completed) multiplications are available at any point of
time during the computation, the efficiency is increased. The rigorous scheduling strategy,
which will maximize this efficiency for computation of BRW polynomial for any number of
blocks is discussed in the same paper.

We have used the 31-block BRW hash function for the lower level of our two-level hash
function. The implementation of BRW hash function was as follows:
Let the length of the input message to the lower level is B bytes. So, the number of n-
bit blocks in it is B×8

n . Now, we divide this message in superblocks containing 31-blocks,
with possibly the last superblock not consisting of as much as 31-blocks. So, we get d B×8n×31e
superblocks. Now, according to the definition of BRW-polynomial in [3] we implement the
digest-evaluation routine for 31-blocks and also a separate digest evaluation routine for
superblocks consisting of any number of blocks between 1 to 30, for evaluating the last
superblock in our message, if it does not contain 31 blocks.
The BRW tree for 31-block BRW polynomial is as follows:
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From the above diagram it is clear that, initially there are eight independent multi-
plications, which can be scheduled in any order in the first slot. Once the multiplications
corresponding to nodes labeled as 2, 10, 18, 26 are completed any of those corresponding
to nodes labeled as 4, 12, 20, 28 can be scheduled and so on. In primary (sequential) im-
plementation of this 31-block BRW polynomial evaluation these multiplications and other
associated operations are scheduled in any order compatible with the form of the polyno-
mial, i.e. it is ensured that the operations on which the present operation is dependent are
already complete. But, the batched multiplication routines have also been used here for
pipelining the independent multiplications available at any stage.

Batching in BRW hash evaluation: We utilized the pipelined multiplication routines
we already implemented, in the BRW digest evaluation of 31-blocks inputs in the following
manner. We need total 15 multiplications in 31-block BRW evaluation, as is evident from
the tree. In pipelining upto level 2, we tried to group them in bundles of 2 multiplications
whenever possible and implemented these using the routine for two multiplication at a time.
So along with other necessary associated operations, we performed the bundles of multipli-
cations in the following order:
{2, 6}, {10, 14}, {18, 22}, {26, 30}, {4, 12}, {20, 28}, {8, 24} and at last the single multiplica-
tion {16}.
Similarly, for pipelining upto level 3, we grouped the multiplications in bundles of 3 and
used the routine for 3 multiplications at a time. The multiplications ordering was like this:
{2, 6, 10}, {14, 18, 22}, {26, 30, 4}, {20, 12, 8}, {28, 24, 16}.
Similarly, for level 4 pipelining the multiplications ordering was:
{2, 6, 10, 14}, {18, 22, 26, 30}, {4, 12, 20, 28}, {8, 24}, {16}.
Clearly, only level 3 pipelining is nice in structure and does not require mixing with any
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other level. The timing results are as follows:

Level of Pipelining(cycles per byte)
Strategy

1 2 3 4

Schoolbook-mult 0.54 0.57 0.52 0.54
Schoolbook-shift 0.56 0.57 0.52 0.53
Karatsuba-mult 0.56 0.57 0.51 0.55
Karatsuba-shift 0.55 0.55 0.52 0.52

Table 3. Number of cycles required for BRW based Hash(128-bit) for one complete superblock: with different
strategies of multiplication and different levels of pipelining

As the last superblock can contain i blocks, where 0 < i < 31, we needed to implement
a routine that evaluate the BRW polynomial for this superblock. Here, we kept routines to
evaluate BRW polynomial starting from 1 block to 30 blocks. Here, we used batching for
multiplications only when the natural form of polynomial trivially suggests that; otherwise
we used sequential instructions, as the number of times this routine will be used in com-
puting digest for the input message is at most one.

Let us define the following function:

BRWx(M) = Hx(M1,M2, · · · ,Ml), where l =
len(M)

n

Essentially, M is a superblock here, either full or partial.

4.3 Upper level in 2-step hash: Horner’s rule based hashing

At this stage, we have a stream of n-bit blocks as input to the second level of our hash
function, which is Horner’s rule based hash. We have also a key of length n-bit chosen ran-
domly from GF (2n).

Let us recollect the Horner’s rule based hash function.
Let f(x) be a polynomial of degree d defined as:
f(x) = fdx

d + fd−1x
d−1 + · · ·+ f1x+ f0

For any x this can be evaluated at x by d multiplications as:

(((fdx+ fd−1)x+ fd−2)x+ · · ·+ f1)x+ f0 (11)

This evaluation technique of the above polynomial using only d multiplications and d
additions is famous in the name of Horner. For hashing a stream of n-bit blocks, a n-bit
element is randomly chosen from GF (2n) and used as x in the above formula. This x is
called the key in this hashing context.
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The input stream is considered as the stream of n-bit coefficients fi taken in consecutive
order, in the above scenario. Now, the polynomial is evaluated at that particular key, which
gives the final digest of our hash function.

Batching in Horner Rule’s based hash function evaluation: Now, the Horner’s rule
based hash function discussed above when implemented in its simplest form gives a routine,
which we call Horner1 here. Then we tried for pipelining (called decimation in this context)
in this routine too and got Horner2, Horner3 and Horner4 depending on the level of deci-
mation. The scheme with p level of decimation is as follows, for any integer p ≤ d:
a0 + a1x+ a2x

2 + · · ·+ adx
d

= (a0+apx
p+a2px

2p+· · · )+(a1+ap+1x
p+a2p+1x

2p+· · · )x+· · ·+(ap−1+a2p−1x
2p+· · · )xp−1

Now for evaluating the portion inside each of () we apply formula (11). When the level
of decimation is p, p such expressions inside () need to be evaluated, which means we can
do p multiplications, one for each of (), together.
When we opt for 2-decimation Horner, the expression is evaluated as:

(a0 + a2x
2 + a4x

4 + · · · ) + (a1 + a3x
2 + a5x

4 + · · · )x
If the degree of the overall polynomial is d, then the above expression can be written as:
(a0 + a2x

2 + a4x
4 + · · ·+ adx

d) + (a1 + a3x
2 + a5x

4 + · · ·+ ad−1x
d−2)x, if d is even

Or,
(a0 + a2x

2 + a4x
4 + · · ·+ ad−1x

d−1) + (a1 + a3x
2 + a5x

4 + · · ·+ adx
d−1)x, if d is odd.

m
(((adx

2 + ad−2)x
2 + · · ·+ a2)x

2 + a0) + (((ad−1x
2 + ad−3)x

2 + · · ·+ a3)x
2 + a1)x, if d is even

Or,
(((ad−1x

2 + ad−3)x
2 + · · ·+ a2)x

2 + a0) + (((adx
2 + ad−2)x

2 + · · ·+ a3)x
2 + a1)x, if d is odd.

So, in each level we need two independent multiplications, like {ad ∗ x2} and {ad− 1 ∗ x2},
(adx

2+ad−2)∗x2 and (ad−1x
2+ad−3)∗x2 or, (ad−1x

2+ad−3)∗x2 and (adx
2+ad−2)∗x2. Here,

we can use our routine for two multiplications. At last the result of second sequence (i.e the
expression inside second()) is multiplied by x and is added with the result of first sequence.
Similarly, the 3-decimation and 4-decimation Horner’s rule based hash is implemented.
Boundary conditions in each of the decimations is handled properly. The timing results are
as follows:

Let us now define the following function:

Hornerx(fd, · · · , f0) = (((fdx+fd−1)x+fd−2)x+· · ·+f1)x+f0, where fi’s, for 0 ≤ i ≤ d, are n-

bit blocks.

4.4 The Complete two-level hash function:

Now, that all components of the hash functions are ready to be integrated, we implement
the total hash function. Let the input message M contains B′ bytes and the pair of ran-
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Level of decimation(cycles per byte)
Strategy

1 2 3 4

Schoolbook-mult 2.3 1.5 1.2 1.1
Schoolbook-shift 1.8 1.2 1.1 1.04
Karatsuba-mult 2.2 1.3 0.99 0.98
Karatsuba-shift 1.7 1.14 0.98 0.94

Table 4. Number of cycles for Horner’s Rule based Hash(128-bit) for 50 Superblocks :with different strategies
of multiplication and different levels of decimation

domly chosen independent keys for the two levels be (τ1, τ2), where each of them is a n-bit
element of GF (2n).

If len(M), i.e.B′ × 8 is not a multiple of n, we pad the message with as many zeros as
required to make it so. Let this padding function applied on the message M be denoted by
the notation padn(M), which either returns the original message as it is if padding is not
required or returns the appropriately padded message if padding is required. Let the length
of the padded message be B bytes.

Now, we divide this padded message from the beginning into superblocks each contain-
ing 31 blocks. The last superblock may or may not contain 31 blocks, depending on the
length of the input message. Now, for each superblock, the BRW polynomial based hashing
is applied and the digest is calculated. As a result, we get a sequence of n-bit blocks. If
the number of bits in the padded message is not more than 30 × n, then only the routine
for partial superblock(1 to 30 blocks) BRW evaluation is applied on the message. If it is
more than that, then on the initial complete superblocks, the BRW hash evaluation routine
for complete superblock is applied and on the last superblock, if it is partial, the routine
for BRW hash evaluation for partial block is applied. Now, the initial length of the input
message (before padding), in number of bits, is expressed as a n-bit quantity. So, we get
binn(len(M)) and it is appended to the digest sequence. Then on this sequence, the Horner’s
rule based hashing is applied. The result obtained is the final digest.

Let us define the following notation for this new hash function:
If M denotes the input message and (τ1, τ2) denotes the two randomly chosen independent
keys, then the digest is denoted by:

Hashτ1,τ2(M)

The pseudo-code for the complete hash function is as follows:
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Algorithm 1 Evaluating Hash(·,·)(·)
Input Input message M and the randomly chosen independent keys (τ1, τ2)

Compute padn(M)

Let l = d len(padn(M))

n×31
e

Divide the bit-representation of padn(M) into l superblocks.
Let the corresponding representation be (M1||M2|| · · · ||Ml)
for i from 1 to l do

Compute BRWτ1(Mi)
Output: Hashτ1,τ2(M) = Hornerτ2(〈BRWτ1(M1))|| · · · ||BRWτ1(Ml)||(binn(len(M))〉)

The design of the hash function can be explained with the following flow-chart:

padn(·)

division into
superblocks

BRWτ1(·) BRWτ1(·) · · · BRWτ1(·)

Hornerτ2(·)

· · ·τ1

M

Hashτ1,τ2(M)

τ2

binn(len(M))

padn(M)

BRWτ1(M1) BRWτ1(M2) BRWτ1(Ml)

M1 M2
Ml
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As mentioned in the very beginning our target was to get a vector-input hash function
with provably low collision and differential probabilities. We did not yet extend this hash
function to a vector-input one, which we target to do in future.

But as a single input hash function, that it has provably low collision and differential
probability can be proved.

Proposition 1. Suppose the collision probability of {BRWτ1}τ1 and {Hornerτ2}τ2 for equal
length strings are at most ε1 and ε2 respectively. Suppose their differential probabilities for
equal length strings are at most ε3 and ε4 respectively. (Note: As mentioned earlier these εi’s
depend on length of the input. We consider that these particular values are corresponding
to the length of the message, used in this proof.)
Let M 6= M ′ be two input messages and our hash function is {Hashτ1,τ2}τ1,τ2. Then

Pr[Hashτ1,τ2(M) = Hashτ1,τ2(M ′)] ≤ ε5

and for every α in the underlying field

Pr[Hashτ1,τ2(M)⊕ Hashτ1,τ2(M ′) = α] ≤ ε6.

Here the probabilities are taken over uniform random choice of τ1, τ2.

Proof. Let C and C ′ be the input bit-strings to the second level of our hash function,i.e.
the Horner’s rule based hash, corresponding to M and M ′ respectively. Then,

C = 〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉
C ′ = 〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′t)||binn(len(M ′))〉

where Mis and M ′is are superblocks, as defined earlier. It should be noted that, Ms and M ′t
may be incomplete superblocks and may have trailing zeros due to padding.

Now, for the first part of the proposition let us consider two cases:

– Case 1:When the input messages are of different lengths:
In this case s and t may or may not be equal and binn(len(M)) and binn(len(M ′)) parts
of C and C ′ are certainly different. Hence,if s and t are equal,

Pr[Hashτ1,τ2(M) = Hashτ1,τ2(M ′)]

= Pr[Hornerτ2(C) = Hornerτ2(C ′)]

= Pr[Hornerτ2(〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉)
= Hornerτ2(〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′s)||binn(len(M ′))〉)]

≤ ε2 from collision probability of Horner’s rule based hash, since C and C ′ are different

messages of same length.
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If s and t are not equal, without loss of generality, assume that s > t. In this case,

Pr[Hashτ1,τ2(M) = Hashτ1,τ2(M ′)]

= Pr[Hornerτ2(C) = Hornerτ2(C ′)]

= Pr[Hornerτ2(〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉)
= Hornerτ2(〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′t)||binn(len(M ′))〉)]

= Pr[Hornerτ2(〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉)
⊕ Hornerτ2(〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′t)||binn(len(M ′))〉) = 0]

≤ s/]F, if F is the underlying field.

The reason is that the left hand side of the expression inside the probability calcula-
tion is a non-zero polynomial in τ2 of degree at most s over F. It is non-zero, because
the constant terms of the polynomials, i.e. binn(len(M)) and binn(len(M ′)) are certainly
different. So, it has at most s roots in F. The polynomial is zero only if τ2 takes one of
these s values.

– Case 2: When the input messages are of same length:
Here, certainly s = t and len(M) = len(M ′). So,

Pr[Hashτ1,τ2(M) = Hashτ1,τ2(M ′)]

= Pr[Hornerτ2(C) = Hornerτ2(C ′)]

= Pr[Hornerτ2(C) = Hornerτ2(C ′)|C = C ′]Pr[C = C ′]

+ Pr[Hornerτ2(C) = Hornerτ2(C ′)|C 6= C ′]Pr[C 6= C ′]

≤ 1.P r[C = C ′] + ε2, as Pr[C 6= C ′] ≤ 1 (1)

Now, let us find out Pr[C = C ′].
We know,

C = 〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉
C ′ = 〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′s)||binn(len(M ′))〉

As M 6= M ′, there must exist atleast one i in the range [1, s], such that Mi 6= M ′i .
Hence,

Pr[C = C ′]

= Pr[〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)〉
= 〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′s)〉]

≤ Pr(BRWτ1(Mi) = BRWτ1(M ′i))

= ε1, from collision probability assumption of BRW.
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Hence, from (1),

Pr[Hashτ1,τ2(M) = Hashτ1,τ2(M ′)]

= 1.P r[C = C ′] + ε2

≤ ε1 + ε2

= ε5 (say), which proves the first part of the proposition.

Now, for the second part of the proposition, let us again consider similar cases: Here let
α be an arbitrary element in the field.

– Case 1:When the input messages are of different lengths:
In this case s and t may or may not be equal and binn(len(M)) and binn(len(M ′)) parts
of C and C ′ are certainly different. Without loss of generality, assume that s ≥ t. Hence,

Pr[Hashτ1,τ2(M)⊕ Hashτ1,τ2(M ′) = α]

= Pr[Hornerτ2(C)⊕ Hornerτ2(C ′) = α]

= Pr[Hornerτ2(〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉)
⊕ Hornerτ2(〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′t)||binn(len(M ′))〉) = α]

= Pr[Hornerτ2(〈BRWτ1(M1)||BRWτ1(M2)|| · · · ||BRWτ1(Ms)||binn(len(M))〉)
⊕ Hornerτ2(〈BRWτ1(M ′1)||BRWτ1(M ′2)|| · · · ||BRWτ1(M ′t)||binn(len(M ′))〉)⊕ α = 0] (2)

Now the left hand side of the expression inside probability of (2) is a polynomial whose
constant term is α⊕ binn(len(M))⊕ binn(len(M ′)), which may vanish depending on the
value of these elements. So, the previous type of argument fails here.

Hence, to make the differential probability of the designed hash function low, we need an
extra multiplication by the key at the Horner level.
So, our function for the Horner’s rule is redefined as follows:
Hornerx(fd, · · · , f0) = ((((fdx+ fd−1)x+ fd−2)x+ · · ·+ f1)x+ f0)x, where fi’s, for 0 ≤
i ≤ d, are n-bit blocks as usual.

In this case the left hand side of the expression inside probability of (2) is a polynomial
of degree at most s + 1 and with constant term only α. Moreover, as the lengths of C
and C ′ are different, this is definitely a non-zero polynomial.
Hence, by similar arguments as in first part of the proposition, the differential probability
in this case is bounded by s+1

]F .

– Case 2: When the input messages are of same length:
Here, certainly s = t and len(M) = len(M ′). So,
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Pr[Hashτ1,τ2(M)⊕ Hashτ1,τ2(M ′) = α]

= Pr[Hornerτ2(C)⊕ Hornerτ2(C ′) = α]

= Pr[Hornerτ2(C)⊕ Hornerτ2(C ′)⊕ α = 0|C = C ′]Pr[C = C ′]

+ Pr[Hornerτ2(C)⊕ Hornerτ2(C ′)⊕ α = 0|C 6= C ′]Pr[C 6= C ′]

≤ 1.ε1 + Pr[Hornerτ2(C)⊕ Hornerτ2(C ′)⊕ α = 0|C 6= C ′].1, putting values from first part.

≤ ε1 + ε4, from differential probability of Horner

= ε6(say), which completes the proof of the second part of the proposition.

Hence, the proposition is proved. ut

Now, in each of the two levels of the hash function, we have four different choices due to
batching or decimation. Any choice for the first level can be integrated with any choice for
the second level. Very reasonably in most of the cases, we integrated a particular level of
batching for BRW with the same level of decimation for Horner, as level of batching/deci-
mation is related to speed proportionally. We also tried to integrate third level of batching
of BRW with fourth level of decimation of Horner, as the structure of BRW in level three
batching is nice and it does not mix with other levels of batching. Therefore, we expected a
competitive result from third level of pipelining for BRW than others and the timing result
mostly supports that expectation. Again, as usual Horner at fourth decimation level was
expected to be the best among all decimation levels. Hence, we integrated these two also.
The comparative study of speed of the total Hash function is as follows:
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Number of Bytes
Strategy+Batching level

1 10 100 1000 10000 30000

Schoolbook-mult + 1 4.04 0.4 1.28 0.7 0.6 0.57
Schoolbook-mult + 2 4.53 0.45 1.25 0.68 0.55 0.55
Schoolbook-mult + 3 4.53 0.45 1.24 0.68 0.53 0.53
Schoolbook-mult + 4 4.55 0.45 1.29 0.69 0.53 0.52
Schoolbook-mult + 5 4.55 0.45 1.29 0.67 0.53 0.52
Schoolbook-shift + 1 4.04 0.4 1.14 0.68 0.58 0.58
Schoolbook-shift + 2 4.56 0.46 1.09 0.65 0.56 0.56
Schoolbook-shift + 3 4.53 0.45 1.1 0.66 0.54 0.53
Schoolbook-shift + 4 4.53 0.45 1.15 0.66 0.54 0.52
Schoolbook-shift + 5 4.53 0.45 1.15 0.65 0.53 0.52
Karatsuba-mult + 1 3.65 0.36 1.32 0.74 0.6 0.59
Karatsuba-mult + 2 4.6 0.45 1.2 0.72 0.6 0.57
Karatsuba-mult + 3 4.5 0.45 1.29 0.69 0.54 0.53
Karatsuba-mult + 4 4.5 0.45 1.31 0.71 0.54 0.53
Karatsuba-mult + 5 4.53 0.45 1.31 0.7 0.54 0.53
Karatsuba-shift + 1 4.05 0.4 1.15 0.71 0.59 0.59
Karatsuba-shift + 2 4.53 0.45 1.06 0.69 0.58 0.57
Karatsuba-shift + 3 4.53 .45 1.12 0.65 0.54 0.53
Karatsuba-shift + 4 4.53 0.45 1.15 0.66 0.53 0.52
Karatsuba-shift + 5 4.54 0.45 1.15 0.66 0.53 0.53

Table 5. Speed of Hash (in number of cycles per byte): with different strategies of multiplication and
different levels of batching

4.5 Theoretical comparison between the new hash function and conventional
Horner’s rule based hash function:

The major time consuming operation in both the conventional Horner’s rule based hash
and the new hash function is multiplication of field elements. Let us compare between the
number of multiplications required for same length message in the two schemes.

Let M be the input message. For simplicity of notation let us assume that len(M) is

multiple of n. Hence, number of blocks in the message is len(M)
n .

Number of superblocks in the message is d len(M)
n×31 e = k (say).

So, the number of field multiplications required in Horner’s rule based hash is clearly
one less than the number of blocks in the message, i.e.

len(M)

n
− 1

If we now consider the new hash function, in the first level, i.e. in the BRW level com-
puting the hash value for each superblock requires fifteen multiplications, possibly except
the last superblock. Again, for simplicity, we ignore this fact about last superblock and take
the number of multiplications required for it also to be fifteen.
So, the total number of multiplications in this level is 15× k.
In the second level there are k+ 1 blocks, k digests from k superblocks along with the block
for length padding and as ususal this requires k multiplications.
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So, the total number of field multiplications required in the new hash function is

16× k = 16× d len(M)

n× 31
e ≈ 0.5× d len(M)

n
e,

which is almost 0.5 times the number of multiplications required for the Horner’s rule
based hash.

5 Integration of Hash function with AES to obtain some encryption and
authentication primitives:

In [1] different encryption and authentication primitives have been proposed. All of these
require one stream cipher supporting an IV along with a suitable hash function. A Block
cipher in counter mode can also be used in place of a stream cipher along with some minor
modifications to achieve the same level of security.

5.1 Counter mode:

Counter mode is one of the well known modes of operation for a block cipher. Let, the
plaintext or the message to be encrypted be denoted by M . In counter mode, we choose a
counter, which is a bitstring of length len(M). This counter is encrypted with the key. The
encrypted result is xored with the plaintext to produce the ciphertext. Counter for each
plaintext will be different. We can use as a counter any function which produces a sequence
which is guaranteed not to repeat for a long time. For PRF security, this counter is selected
in the following way: a bitstring of length len(M) is randomly chosen, which is termed as
nonce or IV. If Ek denotes the block cipher with k as key, then the counter is set as, ctr =
Ek(IV ). This nonce, generally, is not a secret quantity.

Let T denotes the counter, ctr derived in that way and Ci denotes the ciphertext cor-
responding to plaintext Pi then the counter mode encryption can be described as:
Oi = Ek(i)
Ci = Pi ⊕Oi
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Here, we have used here Advanced Encryption Standard (AES) in counter mode in place
of the stream cipher and the hash function described above in place of the hash function
to implement some of the primitives described in the main paper. For this work, AES in
counter mode, along with its different modules, have been implemented by Dr. Chakroborty.
Among some of the primitives designed in the paper [1] and implemented here let us take
one example of a MAC scheme and another example of an AE scheme:

SC−MACaK(M1)

1.τ = SCK(fStr);

2.N = Hashτ (M1);

3.tag = SCK(N);

return tag.

fStr is a fixed string, which is generally a parameter of the specific algorithm. We have
fixed it to all-zero string. For implementing this scheme, we have at first expanded the
input key, as is natural in AES, just once. Reasonably enough, this is not included in tim-
ing measurement. Then wherever, more than one block (n-bit string) is output of stream
cipher application in the above scheme, we use AES in counter mode in place of it. Only
when output of some stream cipher application is one block, we use normal AES encryption
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in its place. In place of Hash, we have used our hash function. The speed achived is as follows:

Number of Bytes
Strategy+Batching level

1 10 100 1000 10000 30000

Schoolbook-mult + 1 106.785 10.65 3.03 0.82 0.58 0.57
Schoolbook-mult + 2 108.927 10.69 3.03 0.82 0.56 0.55
Schoolbook-mult + 3 106.797 10.68 3.03 0.805 0.54 0.52
Schoolbook-mult + 4 107.115 10.71 3.03 0.84 0.56 0.53
Schoolbook-mult + 5 107.1 10.71 3.03 0.82 0.56 0.54
Schoolbook-shift + 1 106.572 10.65 2.88 0.82 0.59 0.58
Schoolbook-shift + 2 107.022 10.7 2.88 0.81 0.57 0.55
Schoolbook-shift + 3 106.803 10.68 2.89 0.8 0.54 0.53
Schoolbook-shift + 4 107.112 10.71 10.89 0.81 0.56 0.54
Schoolbook-shift + 5 107.115 10.71 2.89 0.799 0.54 0.52
Karatsuba-mult + 1 106.575 10.65 3.02 0.85 0.62 0.6
Karatsuba-mult + 2 106.938 10.69 3.02 0.86 0.59 0.58
Karatsuba-mult + 3 106.812 10.69 2.99 0.81 0.56 0.54
Karatsuba-mult + 4 107.109 10.71 2.99 0.83 0.57 0.55
Karatsuba-mult + 5 107.097 10.94 2.99 0.83 0.57 0.54
Karatsuba-shift + 1 106.581 10.75 2.84 0.85 0.6 0.59
Karatsuba-shift + 2 106.971 10.69 2.84 0.83 0.59 0.57
Karatsuba-shift + 3 106.782 10.67 2.83 0.79 0.54 0.53
Karatsuba-shift + 4 107.31 10.73 2.85 0.8 0.54 0.53
Karatsuba-shift + 5 107.313 10.73 2.85 0.792 0.54 0.52

Table 6. Speed of SC-MACa (in number of cycles per byte for 128-bit): with different strategies of multi-
plication and different levels of batching

AE− 2a.EncryptK(N,M)

1.K ′ = SCK(fStr);

2.τ = SCK(K ′);

3.(R,Z) = SCK(N);

4.C = M ⊕ Z;

5.tag = Hashτ (C ⊕R);

return (C, tag).

Here also fStr is set to all-zero string and N is nonce. Similar implementation strategy
as the above MAC scheme is also taken here and the speed result is as follows:
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Number of Bytes
Strategy+Batching level

1 10 100 1000 10000 30000

Schoolbook-mult + 1 288.147 28.82 3.35 1.5 1.28 1.34
Schoolbook-mult + 2 290.259 29.02 3.36 1.5 1.25 1.31
Schoolbook-mult + 3 290.26 28.98 3.35 1.48 1.23 1.29
Schoolbook-mult + 4 287.304 28.84 3.34 1.5 1.23 1.29
Schoolbook-mult + 5 289.038 28.90 3.35 1.49 1.25 1.30
Schoolbook-shift + 1 288.273 28.82 3.2 1.5 1.28 1.34
Schoolbook-shift + 2 290.265 28.98 3.21 1.48 1.25 1.31
Schoolbook-shift + 3 290.262 29.02 3.20 1.46 1.23 1.29
Schoolbook-shift + 4 289.044 28.67 3.21 1.48 1.24 1.31
Schoolbook-shift + 5 288.135 28.81 3.22 1.47 1.23 1.29
Karatsuba-mult + 1 288.024 28.80 3.34 1.54 1.3 1.36
Karatsuba-mult + 2 287.289 28.78 3.32 1.5 1.2 1.35
Karatsuba-mult + 3 289.821 29.02 3.33 1.5 1.25 1.31
Karatsuba-mult + 4 289.041 28.904 3.31 1.52 1.25 1.31
Karatsuba-mult + 5 289.041 28.904 3.31 1.47 1.25 1.31
Karatsuba-shift + 1 288.267 28.82 3.21 1.49 1.30 1.35
Karatsuba-shift + 2 289.821 28.98 3.19 1.477 1.29 1.34
Karatsuba-shift + 3 289.818 28.98 3.20 1.47 1.23 1.29
Karatsuba-shift + 4 288.144 28.92 3.19 1.481 1.24 1.29
Karatsuba-shift + 5 288.792 28.88 3.19 1.468 1.23 1.28

Table 7. Speed of AE-2a (in number of cycles per byte for 128-bit): with different strategies of multiplication
and different levels of batching

6 Integration of Hash function with Salsa20 to obtain some encryption
and authentication primitives:

One implementation of Salsa20, obtained from [6], has also been used in place of the stream
cipher to implement some of the primitives described in the main paper. This particular im-
plementation of Salsa20 is available in assembly language and uses SSE2 instructions. Along
with it, all necessary supporting header files are also taken from the same source. Now, we
integrate this implementation along with our hash function implementation to implement
some of the basic primitives. One of the primitives mentioned above is implemented in this
way also and the scheme is once again repeated here for ease of referencing.
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AE− 2a.EncryptK(N,M)

1.K ′ = SCK(fStr);

2.τ = SCK(K ′);

3.(R,Z) = SCK(N);

4.C = M ⊕ Z;

5.tag = Hashτ (C ⊕R);

return (C, tag).

In the implementation, key setup is done just once and is not included in timing mea-
surement, as is natural for any stream cipher application. Each time the stream cipher is
invoked, the IV is set up. In place of Hash, the hash function we implemented has been
used.

This is just a basic implementation of ae2a using salsa20. Speed achieved has not yet
been taken as of main concern here. The target was to get just a working example of in-
tegration of Salsa20 with our hash function. That target is achieved. After this we may
modify some input techniques to improve the speed achieved and we target for the same.

7 Conclusion

So far the most significant and fundamental part of this work is the design of the hash func-
tion, which seems to be quite competitive in terms of speed with the other hash functions
available so far. Its utility has been shown by integrating with AES or Salsa20 to get the
implementation of the primitives mentioned in [1]. In that sense, it gives a practical form
to this primitives defined only theoretically so far. Though it seems that the integration of
this hash function with AES could be done reasonably here, the integration with Salsa20
needs to be done more carefully and then only proper comparison of speeds achieved from
these two schemes can be done. That forms the immediate scope of improvement for this
work.

Moreover, this work of implementing some encryption and authentication schemes by
integrating the hash function with AES or Salsa20 has so far been done only when n = 128,
i.e. when the underlying field is GF(2128). The same work must be done for n = 256, i.e.
for the field GF(2256).
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