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Abstract

One of the important problems in functional genomics is how to select the

disease genes. In this regard, the paper presents a new similarity measure

to compute the functional similarity between two genes. It is based on the

information of protein-protein interaction networks. A new gene selection

algorithm is introduced to identify disease genes, integrating judiciously the

information of gene expression profiles and protein-protein interaction net-

works. The proposed algorithm selects a set of genes from microarray data

as disease genes by maximizing the relevance and functional similarity of

the selected genes. The performance of the proposed algorithm, along with a

comparison with other related methods, is demonstrated on colorectal cancer

data set.
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Chapter 1

Introduction

Genetic diseases such as Alzheimer’s disease, breast cancer, leukemia, colorec-

tal cancer, down syndrome, and heart disease are caused by abnormalities in

genes or chromosomes. A genetic disease may be heritable disorder or may

not be. While some genetic diseases are passed down from the parent’s genes,

others are frequently caused by new mutations or changes to the DNA. In

other instances, the same disease, for example, some forms of cancer, may

stem from an inherited genetic condition in some people, from new mutations

in some people, and from non-genetic causes in other people. As the term

genetic disease suggests, these diseases are caused by the dysfunction of some

genes. Therefore, such genes are better known as disease genes [3].

Recent advancement and wide use of high-throughput biotechnologies

have been producing an explosion in using gene expression phenotype for

understanding the function of disease genes [11, 30]. Analyzing the differ-

ence of gene expression levels in particular cell types may provide an idea

about the propensity of a disease. Specifically, if a set of genes shows a con-

sistent pattern of different expression levels in sick subjects and a control

group, then that gene set is likely a strong candidate of playing a pathogenic

role. Differences in expression levels can be detected primarily by microar-

ray studies. In this background, microarray gene expression data has been

widely used for identification of disease genes using different feature selection

algorithms [20, 43, 52, 65].
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In [6, 26], it has been shown that the genes associated with the same

disorder tend to share common functional features, reflecting that their pro-

tein products have a tendency to interact with each other. Hence, another

indicative trait of a disease gene is that its protein product is strongly linked

to other disease-gene proteins. In this background, the protein-protein in-

teraction (PPI) data have been used in various studies to identify disease

genes [39, 57]. Individually microarray data or the PPI network data can be

used to identify potential disease genes, although there is a limited chance of

finding novel disease genes from such an analysis. In this regard, data inte-

gration methods have been developed to identify pleiotropic genes involved

in the physiological cellular processes of many diseases.

The integrated approaches assume that the protein products of disease

genes tend to be close to differentially expressed genes in the protein inter-

action network. Chao et al. [81] developed a method by integrating gene ex-

pression data and the PPI network data to prioritize cancer-associated genes.

Zhao et al. [87] also proposed an approach by integrating gene expression

data and the PPI network data to select disease genes. Jia et al. [34] devel-

oped a dense module searching method to identify disease genes for complex

diseases by integrating the association signal from genome wide association

studies data sets into the human PPI network. Li and Li [46] developed

another approach to identify candidate disease genes, where heterogeneous

genomic and phenotype data sets are used. In this method, separate gene

networks are first developed using different types of data sets. The various

genomic networks are then merged into a single graph, and disease genes

are identified using random walk. In [43], minimum redundancy-maximum

relevance (mRMR) [20] approach has been used to select a set of genes from

expression data, while maximum relevance-maximum significance (MRMS)

criterion [52] has been used in [65]. The selected gene set is then used for

identification of intermediate genes between a pair of selected genes using the

PPI network data. However, all the methods reported earlier consider gene

expression and PPI data separately while selecting candidate genes.

In this regard, this thesis presents a new gene selection algorithm to iden-

tify disease genes. It selects a set of disease genes by maximizing the relevance
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and functional similarity of the selected genes. A new similarity measure is

introduced to compute the functional similarity between two genes. The

proposed algorithm judiciously integrates the information of gene expression

profiles and PPI networks. The mutual information is employed to compute

the relevance of the genes with respect to class labels based on gene expres-

sion profiles, while the PPI data is used to calculate the functional similarity

between two genes. The mutual information is used to select differentially

expressed genes as disease genes using gene expression profiles, on the other

hand, the functional protein association network is used to study the mech-

anism of diseases. The performance of the proposed algorithm, along with a

comparison with other related methods, is demonstrated on colorectal cancer

data set. An important finding is that the proposed algorithm is shown to be

effective for selecting relevant and functionally similar genes from microar-

ray data, and the identified genes are significantly linked with colorectal

cancer. Extensive experimental study on colorectal cancer establishes the

fact that the genes identified by the proposed method have more colorectal

cancer genes than those identified by existing methods and using the gene

expression profiles alone, irrespective of any gene selection algorithm. All

the results indicate that the proposed method is quite promising and may

become a useful tool for identifying disease genes.
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Chapter 2

Basic Concept of Microarray

Data and Protein-Protein

Interaction Network

2.1 Microarray Data

Microarray technology has become one of the indispensable tools that many

biologists use to monitor genome wide expression levels of genes in a given

organism. A microarray is typically a glass slide on to which DNA molecules

are fixed in an orderly manner at specific locations called spots (or features).

A microarray may contain thousands of spots and each spot may contain a

few million copies of identical DNA molecules that uniquely correspond to a

gene. The DNA in a spot may either be genomic DNA or short stretch of

oligo-nucleotide strands that correspond to a gene. The spots are printed on

to the glass slide by a robot or are synthesized by the process of photolithog-

raphy.

Microarrays may be used to measure gene expression in many ways, but

one of the most popular applications is to compare expression of a set of

genes from a cell maintained in a particular condition (condition A) to the

same set of genes from a reference cell maintained under normal conditions

(condition B). Figure 2.1 gives a general picture of the experimental steps
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involved. First, RNA is extracted from the cells. Next, RNA molecules in

the extract are reverse transcribed into cDNA by using an enzyme reverse

transcriptase and nucleotides labeled with different fluorescent dyes. For

example, cDNA from cells grown in condition A may be labeled with a red

dye and from cells grown in condition B with a green dye. Once the samples

have been differentially labeled, they are allowed to hybridize onto the same

glass slide. At this point, any cDNA sequence in the sample will hybridize to

specific spots on the glass slide containing its complementary sequence. The

amount of cDNA bound to a spot will be directly proportional to the initial

number of RNA molecules present for that gene in both samples.

Figure 2.1: Steps required in a microarray experiment

Following the hybridization step, the spots in the hybridized microarray

are excited by a laser and scanned at suitable wavelengths to detect the

red and green dyes. The amount of fluorescence emitted upon excitation

corresponds to the amount of bound nucleic acid. For instance, if cDNA

from condition A for a particular gene was in greater abundance than that

from condition B, one would find the spot to be red. If it was the other way,

the spot would be green. If the gene was expressed to the same extent in

both conditions, one would find the spot to be yellow, and if the gene was

not expressed in both conditions, the spot would be black. Thus, what is

seen at the end of the experimental stage is an image of the microarray, in

which each spot that corresponds to a gene has an associated fluorescence

value representing the relative expression level of that gene. Further image

processing normalization and transformation steps are carried out to generate

the gene expression data.
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Figure 2.2 gives a general idea of a typical microarray gene expression

data. Every row in the expression data represents a gene and every column

represents the samples, either diseased or non-diseased. Every entry in the

matrix basically represents the expression level of a gene in a particular

sample. The last row defines the class to which every sample belongs, i.e.

diseased or non-diseased. Thus, the microarray data can be analyzed to

monitor the expression level of a set of genes in a particular region over sick

and control groups.

Figure 2.2: Microarray Gene Expression Data Matrix

2.1.1 Image Processing

The first step in the analysis of microarray data is to process the image. Most

manufacturers of microarray scanners provide their own software; however, it

is important to understand how data is actually being extracted from images,

as this represents the primary data collection step and forms the basis of any

further analysis. Image processing involves identification of the spots and

distinguishing them from spurious signals, determination of the spot area

to be surveyed, determination of the local region to estimate background

hybridization, and reporting summary statistics and assigning spot intensity

after subtracting for background intensity.

13



2.1.2 Expression Ratios - Primary Comparison

The relative expression level for a gene can be measured as the amount of

red or green light emitted after excitation. The most common metric used

to relate this information is called expression ratio. It is denoted here as Tk

and defined as follows:

Tk =
Rk

Gk

(2.1)

where, for each gene k on the array, Rk and Gk represent the spot intensity

metric for the test sample and the reference sample, respectively. The spot

intensity metric for each gene can be represented as a total intensity value or

a background subtracted median value. If we choose the median pixel value,

then the median expression ratio for a given spot is:

Tmedian =
Rspot

median − Rbackground
median

Gspot
median −Gbackground

median

(2.2)

where Rspot
median and Rbackground

median are the median intensity values for the spot

and background, respectively, for the test sample.

2.1.3 Transformations of the Expression Ratio

The expression ratio is a relevant way of representing expression differences in

a very intuitive manner. For example, genes that do not differ in their expres-

sion level will have an expression ratio of 1. However, this representation may

be unhelpful when one has to represent up-regulation and down-regulation.

For example, a gene that is up-regulated by a factor of 4 has an expression

ratio of 4 (R/G = 4G/G = 4). However, for the case where a gene is down

regulated by a factor of 4, the expression ratio becomes 0.25 (R/G = R/4R

= 1/4). Thus, up-regulation is blown up and mapped between 1 and infinity,

whereas down-regulation is compressed and mapped between 0 and 1.

14



Up− regulation
mapped
−−−−→ [1,∞]

Down− regulation
mapped
−−−−→ [0, 1]

2.1.4 Data Normalization

The expression ratios and their transformations are reasonable measures to

detect differentially expressed genes. However, when one compares the ex-

pression levels of genes that should not change in the two conditions (say,

housekeeping genes), what one quite often finds is that an average expres-

sion ratio of such genes deviates from 1. This may be due to various reasons,

for example, variation caused by differential labeling efficiency of the two

fluorescent dyes or different amounts of starting mRNA material in the two

samples. Thus, in the case of microarray experiments, as for any large-scale

experiments, there are many sources of systematic variation that affect mea-

surements of gene expression levels. Normalization is a term that is used

to describe the process of eliminating such variations to allow appropriate

comparison of data obtained from the two samples.

There are many methods of normalization. The first step in a normal-

ization procedure is to choose a gene set, which consists of genes for which

expression levels should not change under the conditions studied, that is, the

expression ratio for all genes in the gene set is expected to be 1. From that

set, a normalization factor, which is a number that accounts for the variabil-

ity seen in the gene set, is calculated. It is then applied to the other genes in

the microarray experiment. One should note that the normalization proce-

dure changes the data, and is carried out only on the background corrected

values for each spot. Total intensity normalization and mean log centring

are some normalization methods.
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2.2 Protein-Protein Interaction Networks

Protein-protein interactions (PPIs) refer to intentional physical contacts es-

tablished between two or more proteins as a result of biochemical events

and/or electrostatic forces.In fact, proteins are vital macromolecules, at both

cellular and systemic levels, but they rarely act alone. Diverse essential

molecular processes within a cell are carried out by molecular machines that

are built from a large number of protein components organized by their PPIs.

Indeed, these interactions are at the core of the entire interactomics system

of any living cell and so, unsurprisingly, aberrant PPIs are on the basis of

multiple diseases, such as Creutzfeld-Jacob, Alzheimer’s disease, and cancer.

To achieve a first level of understanding of such cellular complexity we

need to unravel the interactions that occur between all the proteins that

integrate a living cell. However, the definition of protein-protein interac-

tion intutively is restricted to the physical contact between the two protein

surfaces. Methods currently being used a bias towards detection of higher

levels of relations or associations between proteins. SUch protein relations

may include several factors like inclusion in multiprotein complexes, common

cellular compartments, signalling pathways, etc.

Figure 2.3: Protein-Protein Interaction Network

Large scale identification of PPIs generated hundreds of thousands inter-

actions, which were collected together in specialized biological databases that
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are continuously updated in order to provide complete interactomes. The

first of these databases was the Database of Interacting Proteins (DIP).[29]

Since that time, the number of public databases has been increasing. Exam-

ples of such databases include Biomolecular Interaction Network Database

(BIND), Biological General Repository for Interaction Datasets (BioGRID),

Human Protein Reference Database (HPRD), Known and Predicted Protein-

Protein Interactions (STRING), etc. Figure 2.3 gives an brief idea about a

PPI Network.
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Chapter 3

Existing Approaches for

Disease Gene Identification

3.1 Disease Gene Selection from Microarray

Data

3.1.1 Survey on Gene Selection Methods

An important application of gene expression data in functional genomics is

to classify samples according to their gene expression profiles, such as to clas-

sify cancer versus normal samples or to classify different types or subtypes

of cancer [27]. The small number of training samples and a large number

of genes/mRNAs make gene/mRNA selection a more relevant and challeng-

ing problem in expression based classification [74]. Furthermore, additional

experimental complications like noise and variability render the analysis of

microarray data an exciting domain. This is an important problem in ma-

chine learning and referred to as feature selection. In order to deal with these

particular characteristics of microarray data, the obvious need for dimension

reduction techniques was realized [1, 7, 27, 69] and soon their application

became a de facto standard in the field. Lot of gene selection algorithms

have been developed to select differentially expressed genes [72].

Because of the high dimensionality of most microarray analyses, fast and
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efficient feature selection techniques such as univariate filter methods [7, 22,

33, 41, 45, 75] have attracted most attention. Univariate methods can be

parametric [5, 24, 58, 77] or non-parametric [23, 48, 62, 64, 66, 78]. Univariate

techniques are fast, scalable, and independent of the classifier. The simplicity

of the univariate techniques has made it dominant in the field of gene selection

using microarray data. Univariate selection methods have certain restrictions

and may lead to less accurate classifiers by, for example, not taking into

account gene-gene interactions. Thus, researchers have proposed techniques

that try to capture these correlations between genes.

The application of multivariate filter methods ranges from simple bivari-

ate interactions [9] towards more advanced solutions exploring higher order

interactions, such as correlation-based feature selection [80, 85] and several

variants of the Markov blanket filter method [25, 54, 82]. The minimum

redundancy-maximum relevance [19, 67] and uncorrelated shrunken centroid

[86] algorithms are two other solid multivariate filter procedures, highlight-

ing the advantage of using multivariate methods over univariate procedures

in the gene expression domain. A f -information measure based method has

been proposed in [50] for selection of discriminative genes from microarray

data. Another gene selection algorithm based on rough-fuzzy hybridization

is given in [51].

Feature selection using wrapper or embedded methods offers an alterna-

tive way to perform a multivariate gene subset selection, incorporating the

classifiers; bias into the search and thus offering an opportunity to construct

more accurate classifiers. In the context of microarray analysis, most wrapper

methods use population-based, randomized search heuristics [8, 36, 44, 60],

although also a few examples use sequential search techniques [32, 83]. An in-

teresting hybrid filter-wrapper approach is introduced in [70], crossing a uni-

variately pre-ordered gene ranking with an incrementally augmenting wrap-

per method.

The embedded capacity of several classifiers to discard input features

and thus propose a subset of discriminative genes, has been exploited by

several authors. Examples include the use of random forests (a classifier

that combines many single decision trees) in an embedded way to calculate
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the importance of each gene [35, 79]. Another line of embedded feature

selection techniques uses the weights of each feature in linear classifiers, such

as support vector machines [28] and logistic regression [49]. These weights

are used to reflect the relevance of each gene in a multivariate way, and thus

allow for the removal of genes with very small weights.

Partially due to the higher computational complexity of wrapper and to

a lesser degree embedded approaches, these techniques have not received as

much interest as filter proposals. However, an advisable practice is to pre-

reduce the search space using a univariate filter method, and only then apply

wrapper or embedded methods, hence fitting the computation time to the

available resources. Other notable gene selection algorithms [47, 55, 63, 73,

84] are also developed for selection of genes from microarray data.

3.1.2 Statistical Tests

To measure the relevance of a gene, the t-value is widely used in the literature.

Assuming that there are two classes of samples in a gene expression data set,

the t-value t(Gi) for gene Gi is given by:

t(Gi) =
µ1 − µ2

√

σ2
1/n1 + σ2

2/n2

(3.1)

where µc and σc are the mean and the standard deviation of the expression

levels of gene Gi for class c, respectively, and nc is the number of samples in

class c for c = 1, 2. When there are multiple classes of samples, the t-value

is typically computed for one class versus all the other classes.

For multiple classes of samples, an F -statistic between a gene and the

class label can be used to calculate the relevance score of that gene. The

F -statistic value of gene Gi in K classes denoted by C is defined as follows:

F (Gi,C) =

[

K
∑

c=1

nc(w̄ic − w̄i)
2/(K − 1)

]

/σ2 (3.2)

where w̄i is the mean of wij in all samples, w̄ic is the mean of wij in the cth
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class, K is the number of classes, and σ2 = [
∑

c(nc − 1)σ2
c ]/(n − c) is the

pooled variance (where nc and σc are the size and the variance of the cth

class). Hence, the F -test reduces to the t-test for two class problem with the

relation F = t2.

3.1.3 InfoGain: Maximum Relevance Criterion

When selecting a subset of genes from the microarray data, it is critical to

minimize the classification error. Thus, the chosen subset of genes should

be such that it minimizes the misclassification error. In an unsupervised

situation where classifiers are not specified, minimal error requires maximal

dependency of the selected subset of genes to target class. This is known

as the Maximal Dependency Scheme. Maximum Relevance Criterion is one

of the most popular approaches to realize Maximal Dependency [19, 67].

Relevance is generally represented in terms of Mutual Information.

Given two random variables x and y, their mutual information is defined

in terms of their probabilistic density functions p(x), p(y) and p(x,y):

I(x; y) =

∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (3.3)

γx(y) = I(x; y) (3.4)

In Max-Relevance, the selected genes xi are required individually, to have

highest mutual information I(xi, c) with the target class c. Sequential selec-

tion is performed to select the m best genes, i.e. the genes are all ranked

based on their relevance scores, γc(xi) and the top m genes are selected.

However, the described method of gene selection doesn’t account for cases

when the microarray data may contain redundant information. Lets consider

two genes having a similar gene expression level in the microarray. In that

case the two genes would have a similar relevance level with the class of sam-

ples concerned. Thus, if both the genes bear a high relevance to the class of
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samples, then the top m genes selected may contain redundant information.

Therefore, the maximum relevance criterion alone isn’t sufficient for gene

selection.

3.1.4 mRMR: Minimum Redundancy Maximum Rel-

evance Criterion

The method ranks genes based on their relevance to the class labels, and

meanwhile it can also take the redundancy between genes into account. The

genes having best trade-off between the highest relevance to the target class

labels and minimum redundancy between genes, were considered as “good

biomarkers”.

Let C = {A1, · · · ,Ai, · · · ,Aj, · · · ,Am} denotes the set of m genes of a

given microarray data set and S is the set of selected genes. Define γAi
(D) as

the relevance of the gene Ai with respect to the class label D while λ(Ai,Aj)

as the redundancy between two genes Ai and Aj. The total relevance of all

selected genes is, therefore, given by

Jrelev =
∑

Ai∈S

γAi
(D) (3.5)

while the total redundancy among the selected genes is

Jredun =
∑

Ai,Aj∈S

λ(Ai,Aj). (3.6)

Therefore, the problem of selecting a set S of relevant and nonredundant

genes from the whole set C of m genes is equivalent to maximize Jrelev and

minimize Jredun, that is, to maximize the objective function J , where

J = Jrelev −Jredun =
∑

i

γAi
(D)−

∑

i,j

λ(Ai,Aj). (3.7)

To solve the above problem, a greedy algorithm is widely used that follows

next [19, 67]:

1. Initialize C← {A1, · · · ,Ai, · · · ,Aj, · · · ,Am}, S← ∅.
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2. Calculate the relevance γAi
(D) of each gene Ai ∈ C.

3. Select gene Ai as the most relevant gene that has highest relevance

γAi
(D). In effect, Ai ∈ S and C = C \ Ai.

4. Repeat the following two steps until the desired number of genes are

selected.

5. Calculate the redundancy between selected genes of S and each of the

remaining genes of A.

6. From the remaining genes of C, select gene Aj that maximizes

γAj
(D)−

1

|S|

∑

Ai∈S

λ(Ai,Aj). (3.8)

As a result of that, Aj ∈ S and C = C \ Aj.

The redundancy measure doesn’t take into account the supervised infor-

mation of classlabels. Thus, the mRMR criterion for gene selection may not

always be effective for identification of disease genes.

3.1.5 MRMS: Maximum Relevance Maximum Signifi-

cance Criterion

The current method uses maximum relevance-maximum significance criterion

to select the relevant and significant genes from high dimensional microarray

gene expression data sets. The gene set S is selected using Mutual Informa-

tion based MRMS method, where mutual information is used to compute the

relevance between genes and class of samples, and also the significance of a

gene w.r.t. other for a particular class label.

Let C = {A1, · · · ,Ai, · · · ,Aj, · · · ,Am} be the set of m genes of a given

microarray gene expression data set and S is the set of selected genes. Define

γAi
(D) as the relevance of the gene Ai with respect to the class labels D

while σ{Ai,Aj}(D,Aj) as the significance of the gene Aj with respect to the

set {Ai,Aj}. Mutual Information can be used to calculate both relevance

and significance of each gene.
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Definition The significance of a gene Aj with respect to another gene Ai

can be defined as follows

σ{Ai,Aj}(D,Aj) = γ{Ai,Aj}(D)− γAi
(D). (3.9)

That is, the significance of a gene Aj is the change in dependency when

the gene Aj is removed from the set {Ai,Aj}. The higher the change in

dependency, the more significant the gene Aj is. If the significance is 0, then

the gene Aj is dispensable.

Hence, the total relevance of all selected genes is

Jrelev =
∑

Ai∈S

γAi
(D), (3.10)

while the total significance among the selected genes is

Jsignf =
∑

Ai 6=Aj∈S

σ{Ai,Aj}(D,Aj). (3.11)

Hence, the problem of selecting a set S of relevant and significant genes from

the whole set C of m genes is equivalent to maximize both Jrelev and Jsignf ,

that is, to maximize the objective function

J = Jrelev + βJsignf , (3.12)

where β is a weight parameter. To solve the above problem, following greedy

algorithm is used in the current study:

1. Initialize C← {A1, · · · ,Ai, · · · ,Aj, · · · ,Am}, S← ∅.

2. Calculate the relevance γAi
(D) of each gene Ai ∈ C.

3. Select the gene Ai as the most relevant gene that has the highest rele-

vance value γAi
(D). In effect, Ai ∈ S and C = C \ Ai.

4. Repeat the following two steps until the desired number of genes is

selected.
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5. Calculate the significance of each of the remaining genes of C with

respect to the selected genes of S and remove it from C if it has zero

significance value with respect to any one of the selected genes.

6. From the remaining genes of C, select gene Aj that maximizes the

following condition:

γAj
(D) +

β

|S|

∑

Ai∈S

σ{Ai,Aj}(D,Aj). (3.13)

As a result of that, Aj ∈ S and C = C \ Aj.

7. Stop.

3.2 Disease Gene Selection from PPIN Data

3.2.1 Disease Candidate Gene Prioritization using PPI

Networks( Method proposed by Chen et al. ):

Most of the disease candidate gene identification and prioritization methods

depended on functional annotations. However the coverage of gene functional

annotations act as a limiting factor. Thus, this method was proposed based

entirely on the protein-protein interaction network analyses.

Based on the observation that biologi- cal networks share many proper-

ties with Web and social networks, is an attempt to extend the successful

graph analysis-based algorithms from computer science research to tackle

the disease gene prioritization problem. Literature -based and manually cu-

rated protein interactions were used to form the base network, and extended

versions of the PageRank algorithm and HITS algorithm, as well as the K-

Step Markov method, were applied to prior- itize disease candidate genes

in a training-test schema. The prioritization approaches are based on the

methods of White and Smyth , whose general framework, consisting of four

successive problem formulations, each building on the next.

1. Relative Importance of a node t with respect to a root node r.
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2. Rank of importance of a set of nodes T with respect to a root node r.

3. Rank of importance of a set of nodes T with respect to a set of root

nodes R.

4. Given G, rank all nodes.

The importance of a gene to the set of root genes is just the average sum

of the importance of it to each individual root gene. Thus, the key solution

to the above defined problems is to find the importance of the nodes with

respect to a root node. Three different algorithms are used for this purpose,

namely (a) PageRank with Priors, (b) HITS with Priors, and (c) K-step

Markov. Even though network-based methods are generally not as effec-

tive as integrated functional annotation-based methods for disease candidate

gene prioritization, in a one-to-one comparison, PPIN-based candidate gene

prioritization performs better than all other gene features or annotations [12].

3.2.2 The power of protein interaction networks for as-

sociating genes with diseases( Method proposed

by Navlakha et al. ):

The proposed method understands the fact that the association between ge-

netic diseases and their causal genes is an important problem concerning

human health. With the recent influx of high-throughput data describing

interactions between gene products, the above described associations can be

inferred. The authors assessed the utility of physical protein interactions for

determining genedisease associations by examining the performance of seven

recently developed computational methods (plus several of their variants).

The proposed method found that random-walk approaches individually out-

perform clustering and neighborhood approaches, although most methods

make predictions not made by any other method. It combines these meth-

ods into a consensus method yields Pareto optimal performance. It also

quantified how a diffuse topological distribution of disease-related proteins

negatively affects prediction quality and are thus able to identify diseases
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especially amenable to network-based predictions and others for which addi-

tional information sources are absolutely required [57].

3.2.3 Predicting disease genes using proteinprotein in-

teractions( Method proposed by Oti et al. ):

The method was proposed with the objective to investigate whether protein

protein interactions can predict genes for genetically heterogeneous diseases.

72 940 proteinprotein interactions between 10 894 human proteins were used

to search 432 loci for candidate disease genes representing 383 genetically het-

erogeneous hereditary diseases. For each disease, the protein interaction part-

ners of its known causative genes were compared with the disease associated

loci lacking identified causative genes. Interaction partners located within

such loci were considered candidate disease gene predictions. Prediction ac-

curacy was tested using a benchmark set of known disease genes.Almost 300

candidate disease gene predictions were made. Some of these have since

been confirmed. On average, 10percent or more are expected to be genuine

disease genes, representing a 10-fold enrichment compared with positional

information only. Thus, it could be concluded that exploiting proteinprotein

interactions can greatly increase the likelihood of finding positional candi-

date disease genes. When applied on a large scale they can lead to novel

candidate gene predictions [61].

3.3 Disease Gene Selection from Microarray

Data and PPIN

3.3.1 Integrating gene expression and protein-protein

interaction network to prioritize cancer-associated

genes( Method proposed by Wu et al. ):

The method was proposed to investigate the networks in which the genes as-

sociated with complex diseases play a role. A new method named, Networked
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Gene Prioritizer(NGP) was proposed to prioritize cancer-associated genes.

The methods assumes that between compared samples, cancer-associated

genes cause the differential expression of their interacting genes by Network

Rewiring(NR) and/or Networked Differential Expression(ND). In the men-

tioned study, the authors preprocess the data by removing all ambigous probe

sets and selecting only the ones having the most significant p-values. It pre-

selects a set of hub genes due to some reasons, (1) It is assumed that genes

with many interacting partners play important roles in cells, (2) NGP, re-

quires that a candidate gene must have more than 15 interaction neighbors,

and (3)the PPI Network is constructed using genes from the microarray and

the PPI database used. The PPIs were weighted differently in the NR and

ND models. Keeping the more than 15 interacting neighbors constraint in

mind,subnets of candidate genes were constructed and these were further

trimmed to get subnets of enriched Differentially Expressed (DE) genes. Us-

ing Z-score the statistical significance of the trimmed subnet was found and

the candidate genes were prioritized according to the sum of z-scores they

get in different subnet generation steps [81]. Applications on several breast

cancer and lung cancer datasets demonstrated that NGP performs better

than the existing methods. It provides stable top ranking genes between

independent datasets. The top-ranked genes by NGP are enriched in the

cancer-associated pathways.

3.3.2 Ranking Candidate Disease Genes from Gene

Expression and Protein Interaction: A Katz-Centrality

Based Approach(Method proposed by Zhao et al.):

In this study, the proposed method aims to integrate gene expression level,

protein-protein interaction strength and known disease genes. Their are two

simple biologically motivated assumptions, which can be stated as- a gene is

a good disease-gene candidate if (1) it is differently expressed in cases and

controls, and (2) it is close to other disease-gene candidates in its protein

interaction network. With the above assumptions in mind the authors pro-

posed a score inspired by Katz centrality. To improve of the performanceof
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the method, partial information of known disease genes were also incorpo-

rated. This study provides a novel, effective and easy- implemented algorithm

for the prioritization of candidate disease genes [87].

3.3.3 dmGWAS: dense module searching for genome-

wide association studies in proteinprotein inter-

action networks( Method proposed by Jia et al.

):

The proposed method here presents a dense module searching (DMS) method

to identify candidate subnetworks or genes for complex diseases by integrat-

ing the association signal from GWAS datasets into the human proteinpro-

tein interaction (PPI) network. The DMS method extensively searches for

subnetworks enriched with low P-value genes in GWAS datasets. Compared

with pathway-based approaches, this method introduces flexibility in defining

a gene set and can effectively utilize local PPI information [34].

The DMS method comprises of the following steps:

1. Score subgraphs : The module is defined as a subgraph within the whole

network with a locally maximum proportion of low-P-value genes. To

quantitatively evaluate the density of low P-value genes held by a mod-

ule. Based on this P-value assign a combined Z-score(Zm) to each

module.

2. Normalize the values of Zm using a random set of genes to determine

whether it was higher than expected.

3. Perform permutation-based normalization of Zm.

4. Define a searching strategy, using every gene in the network as a seed.
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3.3.4 Disease Gene Identification by Random Walk on

Multigraphs merging Heterogenous Genomic and

Phenotypic Data( Method proposed by Li and Li

):

This current study aims to merge the seperate list of candidate genes while

eliminating the noise and bias which inflates the uncertainity in the data.

and then prioritize a set of candidate genes. This work proposes an integra-

tion method to merge various genomic networks into a multi- graph which

is capable of connecting multiple edges between a pair of nodes. It then

operates a random walk on the multigraph to find disease genes. The phe-

notype data isn’t integrated to the multigraph gene network. Instead it is

connected, as a subgraph to the multigraph gene network. This approach

provides a data platform with strong noise tolerance to prioritize the disease

genes. A new idea of random walk is then developed to work on multigraphs

using a modified step to calculate the transition matrix. Our method is fur-

ther enhanced to deal with heterogeneous data types by allowing cross-walk

between phenotype and gene networks. Compared on benchmark datasets,

our method is shown to be more accurate than the state- of-the-art methods

in disease gene identification.

Figure 3.1: Schematic flow diagram of the insilico approach for identification
of disease genes
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3.3.5 Identification of Disease Genes Using Gene Ex-

pression and Protein-Protein Interaction Data :

This study validates the fact that gene expression data and protein-protein

interaction data alone does not suffice for identification of novel disease genes.

Thus, the method uses both gene expression and PPI data for disease gene

identification. The integrated method involves the main operational steps as

illustrated in Fig. 3.1. These steps can be outlined as follows:

1. Selection of Differentially Expressed Genes : The first step of the in-

tegrated method selects a set S of differentially expressed genes from

the whole gene set C of the given microarray gene expression data set.

The gene set S can be selected using the different gene selection meth-

ods, like MR, mRMR, MRMS, as discussed previously. In general, the

microarray data may contain a number of irrelevant and insignificant

genes. The presence of such genes may lead to a reduction in useful

information. On the other hand, a gene set with high relevance, or high

relevance and low redundancy or high relevance and high significance

can enhance the predictive capability. The relevance, redundancy and

significance parameters can all be computed using Mutual Information

in the same way as described in section 3.1 under the MR, mRMR and

MRMS headings.

2. Selection of Effective Gene Set I : In second step, a set of effective genes

is identified as disease genes. The effective gene set I, as mentioned in

Fig. 3.1 and denoted by SGE, is a subset of S, and defined as the gene

set for which the prediction model or classifier attains its maximum

classification accuracy. The K-nearest neighbor (K-NN) rule [21] is

used here for evaluating the effectiveness of the reduced gene set for

classification. The value of K, chosen for the current study, is 1, while

the dissimilarity between two samples is calculated as follows:

D(xi, xj) = 1−
xi · xj

||xi|| · ||xj ||
(3.14)

where xi and xj are two vectors representing two tissue samples, xi ·xj
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is their dot product, and ||xi|| and ||xj || are their moduli. The smaller

the D(xi, xj), the more similar the two samples are. To calculate the

classification accuracy of the k-NN rule, the jackknife test [68] is used,

although both independent data set test and subsampling test can also

be used. However, jackknife estimators allow to correct for a bias and

its statistical error.

3. Selection of Effective Gene Set II : Finally, the effective gene set II, de-

noted by SGE+PPI, is obtained from the PPI data based on the set SGE,

the effective gene set I. The STRING (Search Tool for the Retrieval

of Interacting Genes) [76] is an online database resource that provides

both experimental as well as predicted interaction information with a

confidence score. In general, the graph is a very useful tool for study-

ing complex biological systems as it can provide intuitive insights and

the overall structure property, as demonstrated by various studies on

a series of important biological topics [2, 4, 13, 14, 15, 16, 17, 88, 89].

In the current work, after selecting the gene set SGE, a graph G(V,E)

is constructed with the PPI data from the STRING using the gene set

SGE. In between each pair of genes, an edge is assigned in the graph.

The weight of the edge E in graph G is derived from the confidence

score according to the relation ωG = 1000× (1 − ω0), where ωG is the

weight in graph G while ω0 is the confidence score between two proteins

concerned. Accordingly, a functional protein association network with

edge weight is generated. In order to identify the shortest path from

each of the selected differentially expressed genes of SGE to remaining

genes of the set SGE in the graph, Dijkstra’s algorithm [18] is used. Fi-

nally, the genes present in the shortest path are picked up and ranked

according to their betweenness value. Let this set of genes be SPPI.

The effective gene set II, that is, SGE+PPI, is the union of sets SGE and

SPPI, that is, SGE+PPI = SGE ∪ SPPI [53].

Integrating MR Criterion and PPIN Data : Using the maxi-

mum relevance criteria for gene selection a set SGEmr
is obtained. This

gene set obtained is then fed into STRING to generate a new gene set
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SGEmr+PPI. This gene set generated incorporates along with itself the

disadvantages of using the maximum relevance criterion.

Integrating mRMR Criterion and PPIN Data : In this method

a similar approach is followed, making use of the mRMR criterion for

generating the effective gene set I. The gene set can be named SGEmrmr
.

Integrating the gene set obtained with the PPI Network data, we gener-

ate the effective gene set II, named SGEmrmr+PPI. This method is known

to perform better than the previously discussed method. However, the

mRMR criterion tends to overestimate the results and attains 100%

accuracy with very less number of genes in the effective gene set I.

Moreover, the supervised information of class labels still remains un-

touched in this method [43].

Integrating MRMS Criterion and PPIN Data : This approach

uses the MRMS criterion for gene selection, to obtain a gene set SGEmrms
.

Using this gene set with the PPI Network data, the new gene set gen-

erated, SGEmrms+PPI, is known to perform much better than the above

discussed methods of integration. The fact that the significance of one

gene with respect to another is being considered improves the predic-

tive capability of the method [53].

33



Chapter 4

Proposed Disease Gene

Identification Method

4.1 A New Protein-Protein Similarity Mea-

sure

In general, the genes, which are associated with the same disorder, tend to

share common functional features. The protein products of these genes also

have a tendency to interact with each other [6, 26]. Hence, an important

characteristic of a disease gene is that its protein product is strongly linked

to other disease-gene proteins. It has also been observed that proteins with

short distances to each other in the network are more likely to involve in

common biological functions [10, 40, 59], and that interactive neighbors are

more likely to have identical biological function than non-interactive ones

[37, 42]. This is because the query protein and its interactive proteins may

form a protein complex to perform a particular function or be involved in

a same pathway. Accordingly, a quantitative measure is required that can

efficiently compute the similarity between two genes. In this paper, the

information of PPI networks is used to calculate the functional similarity.

The PPI networks are commonly represented as graphs, with nodes corre-

sponding to proteins and edges representing PPIs. The weight of the edge in

graph depends on experimental as well as predicted interaction information.
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Let Ni be the set of interactive neighbors or successor genes of a candidate

gene Ai and ωij ∈ [0, 1] is the weight value of the edge between gene Aj ∈ Ni

and candidate gene Ai. The set of successors Ni of gene Ai and correspond-

ing weight value ωij can be obtained from the information of PPI network.

Let Nik be the set of genes, which are successors of both genes Ai and Ak,

that is, Nik = Ni ∩ Nk. Define Ñi = Ni \ Nik as the set of genes those are

successors of gene Ai but not of gene Ak. The functional similarity between

two genes Ai and Ak, having sets of successor genes Ni and Nk, respectively,

is as follows:

S(Ai,Ak) =

∑

Aj∈Nik

min{ωij , ωkj}

∑

Aj∈Ñi

ωij +
∑

Aj∈Nik

max{ωij, ωkj}+
∑

Aj∈Ñk

ωkj

. (4.1)

Hence, if the interactive neighbors and the corresponding edge weights of

two genes are same, then the functional similarity between these two genes

is high. On the other hand, two genes are functionally dissimilar if they have

no common interactive neighbors.

Figure 4.1: An example of protein-protein interaction network

The following properties can be stated about the measure:

1. 0 ≤ S(Ai,Ak) ≤ 1.

2. S(Ai,Ak) = 1 if and only if two sets Ni and Nk contain exactly same

set of successor genes, that is, Nik = Ni = Nk, and weight value

ωij = ωkj, ∀Aj ∈ Nik.

3. S(Ai,Ak) = 0 if and only if Nik = ∅.
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4. S(Ai,Ak) = S(Ak,Ai) (symmetric).

In this regard, it should be noted that if the weight value ωij ∈ {0, 1}, then

the proposed similarity measure reduces to

S(Ai,Ak) =
|Ni ∩ Nk|

|Ni ∪ Nk|
(4.2)

which is Jaccard index J(Ai,Ak).

4.2 Proposed Disease Gene Selection Algo-

rithm

Recent advancement and wide use of high-throughput biotechnologies have

been producing huge amount of gene expression profiles data, which have

been widely used in different studies to understand the function of disease

genes. If a set of genes shows a consistent pattern of different expression

levels in sick subjects and a control group, then that gene set is likely a

strong candidate of playing a pathogenic role. The difference of gene expres-

sion levels in particular cell types can be studied to get an idea about the

propensity of a disease. On the other hand, the genes associated with the

same disease tend to share common functional features. Also, the protein

products of disease genes have a tendency to interact with other disease-gene

proteins.

In this regard, the paper presents a new gene selection algorithm, inte-

grating judiciously the gene expression and PPI data, to identify pleiotropic

genes involved in the physiological cellular processes of the disease. The pro-

posed method assumes that the protein products of disease genes tend to

be close to differentially expressed genes in the protein interaction network.

Hence, the proposed gene selection algorithm selects a set S of disease genes

from the whole gene set C of the given microarray gene expression data set

by maximizing both relevance and functional similarity of genes present in

S. Let C = {A1, · · · ,Ai, · · · ,Aj, · · · ,Am} be the set of m genes of a given

microarray gene expression data set and S is the set of selected genes. Define

36



γAi
(D) as the relevance of the gene Ai with respect to the class labels D while

S(Ai,Aj) as the functional similarity between two genes Ai and Aj . Hence,

the total relevance of all selected genes is

Jrelevance =
∑

Ai∈S

γAi
(D), (4.3)

while the total functional similarity among the selected genes is

Jsimilarity =
∑

Ai 6=Aj∈S

S(Ai,Aj). (4.4)

Hence, the problem of selecting a set S of relevant and functionally similar

genes from the whole set C of m genes is equivalent to maximizing both

Jrelevance and Jsimilarity, that is, to maximize the objective function

J = aJrelevance + (1− a)Jsimilarity, (4.5)

where a is a weight parameter. To solve the above problem, following greedy

algorithm is used in the current study:

1. Initialize C← {A1, · · · ,Ai, · · · ,Aj, · · · ,Am}, S← ∅.

2. Calculate the relevance γAi
(D) of each gene Ai ∈ C.

3. Select the gene Ai as the most relevant gene that has the highest rele-

vance value γAi
(D). In effect, Ai ∈ S and C = C \ Ai.

4. Repeat the following two steps until the desired number of genes is

selected.

5. Calculate the functional similarity between each of the remaining genes

of C with respect to the selected genes of S and remove it from C if

it has zero functional similarity value with respect to any one of the

selected genes.

6. From the remaining genes of C, select gene Aj that maximizes the
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following condition:

aγAj
(D) +

(1− a)

|S|

∑

Ai∈S

S(Ai,Aj). (4.6)

As a result of that, Aj ∈ S and C = C \ Aj.

7. Stop.

The mutual information [65] can be used to calculate the relevance of

a gene with respect to class labels, while the proposed similarity measure,

based on the information of PPI data, can be used for computing functional

similarity between two genes. However, in microarray gene expression data

sets, the class labels of samples are represented by discrete symbols, while the

expression values of genes are continuous. Hence, to measure the gene-class

relevance of a gene with respect to class labels using mutual information, the

continuous expression values of a gene are divided into several discrete par-

titions. The a prior (marginal) probabilities and their joint probabilities are

then calculated to compute the gene-class relevance using the definitions for

discrete cases. In this paper, the discretization method reported in [20, 65] is

employed to discretize the continuous gene expression values. The expression

values of a gene are discretized using mean µ and standard deviation σ com-

puted over n expression values of that gene: any value larger than (µ+ σ/2)

is transformed to state 1; any value between (µ − σ/2) and (µ + σ/2) is

transformed to state 0; any value smaller than (µ − σ/2) is transformed to

state -1. These three states correspond to the over-expression, baseline, and

under-expression of genes. On the other hand, the STRING (Search Tool

for the Retrieval of Interacting Genes) is an online database resource that

provides both experimental as well as predicted PPI information, along with

a confidence score. In the current work, STRING is used for computing

functional similarity between two genes considering confidence score as the

weight value.
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4.3 Complexity Analysis

The Mutual Information based proposed gene selection algorithm has low

computational complexity compared to the number of genes in the original

microarray gene expression data set. Its computational complexity may be

established as follows:

1. The computation of the relevance of m genes is carried out in step 2 of

the proposed algorithm, which has a time complexity of O(m).

2. The selection of most relevant gene from the set of m genes, which is

carried out in step 3, has also a complexity O(m).

3. Since there is only one loop in step 4 of the proposed gene selection

method, which needs to be executed (d−1) times, where d is the desired

number of genes to be selected.

(a) The computation of functional similarity of a candidate gene with

respect to a gene in the already selected set of genes takes O(n2
0)

time, where n0 is the average number of neighbors to a protein

in the protein-protein interaction network. If m̃ represents the

cardinality of the already-selected gene set, the total complexity

to compute functional similarity of (m−m̃) candidate genes, which

is carried out in step 5, is O((m− m̃)n2
0)

(b) The selection of a gene from (m − m̃) candidate genes by max-

imizing both relevance functional similarity, which is carried out

in step 6, has also a complexity O(m− m̃)

Hence, the total complexity to execute the loop (d − 1) times is O((d −

1)(((m− m̃)n2
0) + (m− m̃))) = O(d(m− m̃)n2

0).

In effect, the selection of a set of d relevant and functionally similar genes

from the whole set of m genes using the proposed method has an overall

computational complexity of O(m) + O(m) + O(d(m − m̃)n2
0) = O(mn2

0)

since d, m̃ << m.
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Chapter 5

Experimental Results and

Discussion

This section presents the performance of the proposed maximum relevance-

maximum functional similarity (MRMFS) criterion based proposed gene se-

lection algorithm, along with a comparison with other related methods. The

algorithms compared are t-test, MR (maximum relevance), mRMR [20],

MRMS [52], MR+PPIN [65], mRMR+PPIN [43], and MRMS+PPIN [65].

The mutual information is used to compute the relevance, redundancy, and

significance of the genes. The value of a in (4.6) is set to 0.5.

5.1 Description of data Sets

5.1.1 Gene Expression Data

In this study, the gene expression data from the colorectal cancer study of Hi-

noue et al. [29] is used. The gene expression profiling of 26 colorectal tumors

and matched histologically normal adjacent colonic tissue samples were re-

trieve from the NCBI Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/)

with the accession number of GSE25070. The number of genes and samples

in this data set are 24526 and 52, respectively. The data set is pre-processed

by standardizing each sample to zero mean and unit variance [43].

The performance of different methods is compared with respect to the
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degree of overlapping with three gene lists, namely, LIST-1, LIST-2, and

LIST-3. The LIST-1 contains 742 cancer related genes, which are collected

from the Cancer Gene Census of the Sanger Centre, Atlas of Genetics and

Cytogenetic in Oncology [31], and Human Protein Reference Database [38].

On the other hand, both LIST-2 and LIST-3 consist of colorectal cancer

related genes. While the LIST-2 is retrieved from the study of Sabatas-

Bellver et al. [71], the LIST-3 is prepared from the work of Nagaraj and

Reverter [56]. While LIST-2 contains 438 colorectal cancer genes, LIST-3

consists of 134 colorectal cancer genes.

5.1.2 Protein-Protein Interaction Network Data Used

The initial weighted PPI network was retrieved from STRING which is a large

database of known and predicted protein interactions. Proteins in the inter-

action network were represented with nodes, while the interaction between

any two proteins therein was represented with an edge. These interactions

contain direct (physical) and indirect (functional) interactions, derived from

numerous sources such as experimental repositories, computational predic-

tion methods. In the network, each edge is marked with a score to quantify

the interaction confidence, i.e., the likelihood that an interaction may occur

[43].

5.2 Comparative Performance Analysis Be-

tween different Gene Selection Methods

5.2.1 Degree of Overlapping with Known Disease Genes

This section presents the comparative performance analysis of different gene

selection algorithms with respect to the degree of overlapping with the three

gene lists. The algorithms compared are t-test, MR, mRMR [20], MRMS

[52], and the proposed MRMFS. Results are reported for first twenty genes

selected by different algorithms.
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t-Test MR mRMR MRMS Proposed
Gene Y/N Gene Y/N Gene Y/N Gene Y/N Gene Y/N

GUCA2B y GUCA2B y GUCA2B y GUCA2B y GUCA2B y
ADH1B y BEST2 n PI16 n BCHE y GUCA2A y
SCARA5 y TMIGD1 n CDH3 y CLDN8 y BEST2 n
ESM1 n CLDN8 y SPIB y PI16 n CLCA4 y

TSPAN7 n PI16 n BEST2 n BEST2 n SCNN1B y
CA7 y SCNN1B y HMGCLL1 n TMIGD1 n NR3C2 y
LGI1 n CLCA4 y CILP n CILP n CA4 y

CEMIP n ADH1B y NR3C2 y CLCA4 y CA1 y
GLTP n CA1 y ADH1B y ADH1B y ELANE n
CLDN1 y CA4 y BOP1 n SCNN1B y AQP8 y
TMIGD1 n SCARA5 y ECI2 n ECI2 n GCG y
ACKR2 n GNG7 n CXCL8 n CA1 y PLCD1 n
NR3C2 y NR3C2 y CLCA4 y CXCL8 n CFD n
PLAC9 y ECI2 n TEP1 n TMEM37 n C7 y

PCOLCE2 n CXCL8 n LRP8 n GNG7 n BGN y
MMP7 y CILP n GCG y CA4 y CDK4 y
CLEC3B y TMEM37 n WISP2 n AFF3 y PRPH n
BEST4 n CLEC3B y TMIGD1 n NR3C2 y TGFBI y
AQP8 y ELANE n CFD n SCARA5 y KLF4 n

RUNDC3B n HEPACAM2 n C16ORF62 n WISP2 n MMP3 y

Table 5.1: Twenty Top-Ranked Genes and Overlapping With Known Disease
Genes

Table 5.2.1 presents the lists of genes selected by different gene selection

algorithms, along with their degree of overlapping with any one of the three

cancer gene lists. From the results reported in Table 5.2.1, it can be seen

that the proposed method provides better results than that of other methods

with respect to degree of overlapping with known gene lists. Out of 20

selected genes, 14 genes selected by the proposed algorithm overlap with

known disease genes, while t-test, MR, mRMR, and MRMS algorithms can

identify 10, 10, 7, and 11 disease genes.
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5.3 Comparative Performance Analysis Be-

tween Different IntegratedMethods of Dis-

ease Gene Identification

The performance of the proposed algorithm is compared with two algorithms,

namely, MR+PPIN [65] and mRMR+PPIN [43], which combine gene expres-

sion and PPIN data for selection of disease genes. The results are reported in

Table 5.2 considering 41 genes as both MR+PPIN and mRMR+PPIN meth-

ods consider 41 genes for their analysis. Table 5.2 also presents the statistical

significance test of the gene sets selected by the MR+PPIN, mRMR+PPIN,

and proposed methods with respect to the genes of LIST-1, LIST-2, and

LIST-3. Using the Fisher’s exact test, statistical analysis of the overlapped

genes is performed.

Table 5.2: Degree of Overlapping and Fisher’s Exact Test
Methods/ LIST-1 LIST-2 LIST-3 LIST
Algorithms Overlap P-ValueOverlap P-ValueOverlap P-Value 2-3
MR+PPIN 9 2.84E-05 7 2.10E-05 5 5.01E-06 10

mRMR+PPIN 8 1.91E-04 4 1.06E-02 3 2.02E-03 5
Proposed 5 2.33E-02 16 2.20E-16 8 1.29E-10 19

Out of total 41 genes selected by the proposed method, 16 and 8 genes

are related to colorectal cancer with respect to the LIST-2 and LIST-3, re-

spectively, while only 7 and 5 genes obtained using MR+PPIN are colon

cancer related genes. On the other hand, only 4 and 3 genes selected using

mRMR+PPIN are related to colon cancer with respect to two lists. Hence,

the Fisher’s exact test for the proposed method generates lower p-values for

both LIST-2 and LIST-3, which are significantly better than the p-values

obtained by other two methods. However, the degree of overlapping by the

proposed algorithm with cancer related genes of LIST-1 is lower than that by

existing methods. The last column of Table 5.2 depicts the degree of overlap-

ping with respect to the two colorectal cancer gene lists. While the proposed
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method can identify 19 colorectal cancer related genes, only 10 and 5 disease

genes are identified by the MR+PPIN and mRMR+PPIN methods.

The performance of the proposed algorithm is now compared with the

MRMS+PPIN algorithm [53],which combine gene expression and PPIN data

for selection of disease genes. The results are reported in Table 5.3 consid-

ering 97 genes as the MRMS+PPIN methods consider 97 genes for their

analysis. Table 5.3 also presents the statistical significance test of the gene

sets selected by the MRMS+PPIN, and proposed method with respect to

the genes of LIST-1, LIST-2, LIST-3 and LIST-2, LIST-3 taken together.

Using the Fisher’s exact test, statistical analysis of the overlapped genes is

performed.

Out of total 97 genes selected by the proposed method, 28 and 11 genes

are related to colorectal cancer with respect to the LIST-2 and LIST-3, re-

spectively, while only 15 and 9 genes obtained using MRMS+PPIN are colon

cancer related genes. Hence, the Fisher’s exact test for the proposed method

generates lower p-values for both LIST-2 and LIST-3, which are significantly

better than the p-values obtained by other two methods. However, the de-

gree of overlapping by the proposed algorithm with cancer related genes of

LIST-1 is lower than that of MRMS+PPIN algorithm.

Table 5.3: Degree of Overlapping and Fisher’s Exact Test
Methods/ LIST-1 LIST-2 LIST-3 LIST
Algorithms Overlap P-Value Overlap P-Value Overlap P-Value 2-3

MRMS+PPIN 22 2.792E-11 15 1.758E-09 9 8.338E-09 19
Proposed 14 3.169E-05 28 2.20E-16 11 1.895E-11 31

The last column of Table 5.3 again depicts the degree of overlapping with

respect to the two colorectal cancer gene lists. While the proposed method

can identify 31 colorectal cancer related genes, only 19 disease genes are iden-

tified by the MRMS+PPIN method.
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5.3.1 Graph of Resultant PPI Networks

The PPI network is generated for each gene selected by three gene selection

algorithms, namely, MR, mRMR, MRMS and the proposed method. These

networks are generated using the STRING database. The level of interac-

tion between the selected set SGE of genes and the proteins of the STRING

database is measured by their confidence score. For the MRMS method,

among the 20 genes of SGE, one gene, namely, TMIGD, does not have any

interaction with any other genes. The shortest path analysis is conducted on

this merged PPI network.

Fig. 5.1 and 5.2 shows the PPI network for 8 and 6 genes obtained by

the MR and mRMR method respectively, along with their confidence scores.

Fig. 5.3 shows the PPI network for 20 genes obtained by the MRMS method,

along with their confidence scores. The nodes marked yellow represent the

genes of SGE set identified by the MRMS method, while other genes of SPPI

are existing in the shortest paths. The values on the edges represent the edge

weights to quantify the interaction confidence. The smaller value indicates

the stronger interaction between the two nodes.
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Figure 5.1: PPI network for 8 genes obtained by the MR method, along with
their confidence scores

Figure 5.2: PPI network for 6 genes obtained by the mRMR method, along
with their confidence scores
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Figure 5.3: PPI network for 20 genes obtained by the MRMS method, along
with their confidence scores
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Figure 5.4: PPI network for 100 genes obtained by the MRMFS method,
along with their confidence scores
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5.3.2 KEGG Pathway Analysis

The hundred genes selected by the proposed method are further analyzed

using the functional annotation tool of David. The enriched p-value was cor-

rected to control family-wide false discovery rate under certain threshold (for

example,<0.05) with Benjamin multiple testing correction method. Table 5.4

represents the KEGG pathway enrichment analysis of the gene set obtained

by the proposed algorithm. From the table, it is seen that most of the net-

works are associated with cancer. Various processes, those are associated

with colon cancer like p53 signaling pathway and colorectal cancer, are also

observed in the result. Moreover, the gene set is found to be highly associ-

ated with colorectal cancer disease according to the OMIM disease database

as analyzed by the functional annotation tool of David.

Table 5.4: KEGG Enrichment Analysis

KEGG ID Term Count % P-Value Benjamin
05216 Thyroid cancer 5 0.429553.33E-04 3.37E-02
00910 Nitrogen metabolism 4 0.343642.33E-03 1.14E-01
05200 Pathways in cancer 11 0.945024.53E-03 1.44E-01
05219 Bladder cancer 4 0.343641.29E-02 2.85E-01
05222 Small cell lung cancer 5 0.429551.67E-02 2.94E-01
05210 Colorectal cancer 5 0.429551.67E-02 2.94E-01
04062 Chemokine signaling pathway 7 0.601372.20E-02 3.17E-01
05223 Non-small cell lung cancer 4 0.343642.53E-02 3.14E-01
04916 Melanogenesis 5 0.429552.87E-02 3.12E-01
04060 Cytokine-cytokine receptor interaction 8 0.687293.32E-02 3.21E-01
04115 p53 signaling pathway 4 0.343644.56E-02 3.81E-01
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Chapter 6

Conclusion and Future

Directions

The main contribution of the paper is to present a new gene selection al-

gorithm to identify disease genes. The proposed algorithm integrates judi-

ciously the information of gene expression profiles and protein-protein inter-

action networks. It selects a set of genes from microarray data as disease

genes by maximizing the relevance and functional similarity of the selected

genes. A new similarity measure is introduced to compute the functional

similarity between two genes. It is based on the information of protein-

protein interaction networks. The performance of the proposed algorithm,

along with a comparison with other related methods, is demonstrated on col-

orectal cancer data set. Extensive experimental study on colorectal cancer

establishes the fact that the genes identified by the proposed method have

more colorectal cancer genes than the genes identified by the existing gene

selection algorithms. All these results indicate that the proposed method is

quite promising and may become a useful tool for identifying disease genes.

The proposed approach has quite a lot of future directions to explore. The

study presented makes use of the Jaccard Index to compute the functional

similarity, in a similar manner various other similarity indexes stated in lit-

erature can be used. Their performances can be compared and an optimal

similarity criteria can be formulated.
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