
Indian Statistical Institute

Kolkata

M.Tech. (Computer Science) Dissertation

Facility Location on Spherical
Surfaces

A dissertation submitted in partial fulfillment of the requirements
for the award of Master of Technology

in
Computer Science

Author:
Subhadeep R Dev
Roll No: MTC1325

Supervisor:
Prof. Sandip Das

ACMU

1

M.TECH(CS) DISSERTATION THESIS COMPLETION CERTIFI-
CATE

Student: Subhadeep R Dev (MTC1325)
Topic: Facility Location on Spherical Surfaces
Supervisor: Prof. Sandip Das

This is to certify that the thesis titled ”Facility Location on Spherical
Surfaces” submitted by Subhadeep R Dev in partial fulfillment for the award
of the degree of Master of Technology is a bona fide record of work carried out
by him under my supervision. The thesis has fulfilled all the requirements
as per the regulations of this Institute and, in my opinion, has reached the
standard needed for submission. The results embodied in this thesis have
not been submitted to any other university for the award of any degree or
diploma.

Prof. Sandip Das

Date : 13th July, 2015

2

Acknowledgements

At the end of my dissertation and my M.Tech training at the Indian Sta-
tistical Institute, Kolkata, I want to thank and give credit to all individuals
who have provided me with invaluable assistance. Whether be it gentle guid-
ance or access to materials or services that helped me a lot in my research
work, it is greatly appreciated.

First and foremost I offer my sincerest gratitude to my supervisor, Prof.
Sandip Das, who has supported me throughout my thesis with his patience
and knowledge. It was a memorable learning experience. For his patience,
for all his advice and encouragement and for the way he helped me to think
about problems with a broader perspective, I will always be grateful. One
simply could not wish for a better or friendlier supervisor.

I would like to thank all the professors at the Indian Statistical Institute
Kolkata who have made my educational life exciting and helped me to gain
a better outlook on Computer Science. I would like to express my gratitude
to Harmender, Archan, and Sanjana for interesting discussions.

I would like to thank everybody at Indian Statistical Institute, Kolkata
for providing a wonderful atmosphere for pursuing my studies. I thank all
my classmates, seniors and juniors who have made the academic and non-
academic experiences very delightful.

My most important acknowledgement goes to my family and friends who
have filled my life with happiness.

3

Abstract

The facility location problem in Computational Geometry deals with the
placement of facilities with respect to some optimizing criteria. One of the
most common facility location problems is the k-center problem or the min-
imax problem. The problem is defined as, given n sites, we need to find k
facilities such that the maximum distance of any site to its nearest facility is
the minimum over all placements of the k facilities. More formally, let C be
the set of sites, then the problem is to find a set of facilities F such that the
value p = maxf∈F (minc∈C(d(f, c))) is minimized; d(f, c), f ∈ F and c ∈ C is
the distance metric. This problem is NP -hard if the value of k is a part of
the input.

The 1-center problem, also know as the minimum enclosing circle problem
involves with placing only 1 facility. In Eucledian plane this problem can be
solved in O(n) time, using the famous Megiddo prune and search technique.
Here we consider a different version of the 1-center problem. The sites are
located on the surface of a sphere, and the problem is to find a facility (on
the surface of the sphere) with the same criteria and the distance metric
set as d(p̂, q̂) = arccos (p̂.q̂) where p̂ and q̂ are points on the surface of the
sphere. The solution uses the Voronoi Diagram construction of points on
spherical surfaces, which is an extension of the fortune’s algorithm.[Sweeping
the Sphere, Denis and Memede] The time complexity of our algorithm is
O(n log n) and the space complexity is O(n).

We also look into the problem of 2-disk cover, which is, given a set of
sites on the spherical surface, to find two circles whose union can cover all
the sites whose radius are not more than a given value r. This may then be
extended to solve the 2-center problem for spherical surfaces.

CONTENTS 4

Contents

1 Introduction 6

2 Voronoi Diagram of a Sphere 7
2.1 Introduction . 7
2.2 Preliminaries and Definitions 7
2.3 Algorithm Overview . 9
2.4 Voronoi Diagram Algorithm 11
2.5 Running Time and Storage . 13

3 Spherical Minimum Enclosing Circle 14
3.1 Introduction . 14
3.2 Definition and Characteristics 14
3.3 Observations . 16
3.4 Algorithm for Computing Spherical MEC 17
3.5 Complexity . 18
3.6 Restricted Spherical MEC . 18

3.6.1 Finding the Hemisphere 18
3.6.2 Restricted Spherical MEC with Center on a Query Line 19
3.6.3 Algorithm . 20

4 The Spherical Two Disc Cover problem 22
4.1 Introduction . 22
4.2 Dynamic Maintenance of the Intersection of Congruent Disks . 22
4.3 Solving the 2DC Problem: the Case Where the Centers Are

Well-Separated . 24
4.4 Solving the 2DC Problem: the Case Where the Centers Are

Close to Each Other . 26

5 Conclusion and Future Work 28

LIST OF FIGURES 5

List of Figures

1 Voronoi diagram of some random sites 9
2 Parabola created by a point p̂ 10
3 K(P) = ∩p∈PBr(p) . 23
4 The case r < |c1c2| ≤ 3r . 24
5 The case where |c1c2| < r . 26

1 INTRODUCTION 6

1 Introduction

One of the important problems of facility location is the k-center problem.
The problem is defined as, given n sites, we need to find k facilities such that
the maximum distance of any site to its nearest facility is the minimum
over all placements of the k facilities. More formally, let C be the set of
sites, then the problem is to find a set of facilities F such that the value
p = maxf∈F (minc∈C(d(f, c))) is minimized; d(f, c), f ∈ F and c ∈ C is the
distance metric. This problem is NP -hard if the value of k is a part of the
input. A result [9] shows that their is an nO(

√
k) algorithm for any k-center

problem.
The 1-center problem and the 2-center problem are special cases of the

k-center problem where the value of k = 1 and 2 respectively. In euclidean
plane the best algorithm to solve the 1-center problem had been given by [8]
and can be computed in O(n) time. The planar 2-center problem has been
solved in O(n2 log3 n) time by [6]. More recent algorithm by [10] and [11]
solve the planar version in O(n log9 n) and expected O(n log2 n) time.

Here we consider a different version of the k-center problem. The sites are
located on the surface of a sphere, and the problem is to find k facility (on
the surface of the sphere) with the same criteria and the distance metric set
as d(p̂, q̂) = arccos (p̂.q̂) where p̂ and q̂ are points on the surface of the sphere.
We give an algorithm for the spherical version of the 1-center problem. The
solution uses the voronoi diagram construction of points on spherical surfaces,
which is an extension of the Fortune’s algorithm on spherical surfaces[4] and
[5]. We give a detailed description of the voronoi diagram construction in
Section 2. In the subsequent section we explain the construction of the
spherical minimum enclsoing circle. The time complexity of our algorithm is
O(n log n) and the space complexity is O(n).

In Section 4 we look into the problem of 2-disk cover, which is, given
a set of sites on the spherical surface, to find two circles whose union can
cover all the sites whose radius are not more than a given value r. This
is an important sub problem for the computation of the spherical 2-center
problem. Our algorithm follows from the work of [10] done on planar 2-center
problem. We provide a simple data structure to keep track of whether a set
of sites on the surface of a sphere can be covered by a circle of given radius
r. We then use this to solve the 2-disc cover problem in O(n2 log n) time.

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 7

2 Voronoi Diagram on a Spherical Surface

2.1 Introduction

The Voronoi tessellation associates a discrete set of given points, called
sites, with regions of space, called cells, such that all points in the cell associ-
ated with a given site are closer to that site than to any other. In addition to
generating grids, the Voronoi tessellation can be used to find facilities, such
as hospitals or fuel depots, nearest to a given location, to identify the nearest
neighbours of a site, as well as for many other applications in biology, physics
and computer science. In 2D, Voronoi cells are polygons in the plane, each
containing the associated site. Edges of Voronoi cells are bisectors of the
line joining neighbouring sites and consist of points equidistant from them.
Vertices of Voronoi cells are intersections of edges and are equidistant from
three or more sites. The Voronoi diagram shows the sites and the boundaries
of the cells.

In 2D, the simple algorithm which finds the Voronoi tessellation by com-
puting the common intersections of bisectors formed by the site i and all other
sites j 6= i; requires O(N2 logN) time. Algorithms of complexity O(N logN)
exist; these include incremental construction with randomization [1], divide
and conquer algorithm [2], and Fortune’s sweep line algorithm [3]. The For-
tune algorithm uses a sweep line, and generates parabolas defined by the sites
and the sweep line. The intersections of neighbouring parabolas are used to
determine the cell edges.

The sweep line algorithm for constructing the Voronoi diagram can be
extended to manifolds other than the 2D plane; in our case, to the surface of
the sphere. The structure of this algorithm presented by [4] and [5] is similar
to that of Fortune for the tessellation of the 2D plane, but with a different
definition of distance, and with interesting new features due to the topology
of the sphere. One simplification also arises, since tessellation of the sphere is
necessarily on a closed domain. We explain their algorithm in the following
sections.

2.2 Preliminaries and Definitions

Since any sphere can be scaled and shifted only the tessellation of the
unit sphere centred at the origin is considered. The unit sphere is denoted
as

S2 = {p̂ ∈ R3 : ||p̂||2 = 1}

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 8

where ||.||2 is the L2 norm. The (geodesic) distance between any two
points p̂ and q̂ on sphere is denoted as d(p̂, q̂), and

d(p̂, q̂) = arccos (p̂.q̂)

This is the arclength of the shorter segment of the great circle through p̂
and q̂, with p̂ and q̂ as endpoints. A region H ⊂ S2 is convex if a geodesic
joining any two points in H is contained in H.

The site is a set of N distinct points P := {p̂}Nt=1 on the sphere. The
Voronoi diagram of P is denoted by V or(P). And V (p̂i), the Voronoi cell for
the site p̂i, the set of points on the sphere that are closer to p̂i than to any
other site:

V (p̂i) = {r̂ ∈ S2 : d(r̂, p̂i) < d(r̂, p̂j),∀j 6= i}
The bisector Bij is the set of points equidistant to sites p̂i and p̂j,

Bij = {r̂ ∈ S2 : d(r̂, p̂i) = d(r̂, p̂j)}
The bisector is a great circle with normal along p̂j − p̂i. Each Voronoi

cell V (p̂i) is a closed convex region on sphere, since it is formed by N − 1
intersection of bisectors. A Voronoi edge Eij between sites p̂i and p̂j is the
intersection of Bij with the boundary of the Voronoi cell,

Eij = δV (p̂i) ∩Bij = δV (p̂j) ∩Bij

All edges in the Voronoi diagram on the sphere are circular arcs; segments
of great circles. A Voronoi vertex v̂ij...k shared by sites p̂i, p̂j, . . . , p̂k is the
point on the boundary of Voronoi cell and equidistant to those sites,

v̂ij...k = {r̂ ∈ δV (p̂i) : d(r̂, p̂i) = d(r̂, p̂j) = . . . = d(r̂, p̂k)}
A circumcircle on a sphere which passes through the three sites p̂i, p̂j, . . . , p̂k

is the intersection of the plane determined by these sites and the sphere. The
circumcenter of the circle is defined to be on the sphere, and is equidistant
to these three sites, thus it is the intersection of any two of the three possi-
ble bisectors. The intersection v̂kjij between two bisectors Bij and Bkj, is on
both great circles, thus orthogonal to both normals, and is given by the cross
product of the normals of the respective great circles,

v̂kjij = ±(p̂i − p̂j)x(p̂k − p̂j)
|p̂i − p̂j)x(p̂k − p̂j|

There are two such intersections which lie on the two ends of the diameter
of the sphere. The radius of the circumcircle is given by

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 9

Figure 1: Voronoi diagram of some random sites

r = d(v̂kjij , p̂i) = arccos(v̂kjij .p̂i)

Note that the radius depends on the choice of the circumcenter v̂kjij , and

may be greater than π
2
. For the Voronoi diagram V or(P), a circumcenter v̂kjij

is a vertex of V or(P) if and only if the circumcircle is empty, that is, if it
does not contain any sites in the interior. The interior of the circumcircle is
defined to be the spherical cap of the sphere cut by the plane determined by
the three sites, containing the circumcenter v̂kjij .

2.3 Algorithm Overview

The Voronoi edge has the property that the points it contains are equidis-
tant from two sites. If a parabola β1 is defined as the locus of points that are
equidistant from a point p1 and a circumcircle, which we denote as the line
L; and parabola β2 as the locus of points equidistant from a second point p2
and the same line L, then the intersection between β1 and β2 is equidistant
from both p1 and p2, assuming both sites are on the same side of the line L.
Making use of this fact is the central point of the Fortune algorithm.

The sweep line L on the sphere is defined as the intersection of a plane -
the sweep-plane - with the sphere. The normal of the sweep-plane is n̂, the
point defined by n̂ is called the north pole. The line L is characterized by
the normal n̂; and a parameter ξ, so that

L(n̂, ξ) = {r̂ : r̂.n̂ = cos ξ}

In the algorithm, the line sweeps the sphere as follows. First from top
(ξ = 0) to bottom (ξ = π), and then from bottom (ξ = π) towards top

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 10

(ξ = 2π). It is convenient to imagine that, for ξ > π, the line is on the inside
surface of the sphere. The line starts to sweep from the north pole towards
the south pole, with increasing ξ.

Each site pi above (north of) the sweep line, together with the sweep line,
determines a parabola βi. The boundary of the union of all such parabolas is
the front, called the beach line, situated above the sweep line for η ≤ π. It is
easy to show that all points which lie above the beach line are closer to some
site pi ∈ P above the beach line than to the line L, thus their closest site
will not be below the sweep line. Hence points which lie above the beach line
have already been incorporated into the diagram, leaving the region below
the beach line to be considered. Two neighbouring arcs on the beach line
intersect, and such intersections are called breakpoints. Each breakpoint is
equidistant from two sites, which define the arcs of the parabolas, and hence
must lie on some Voronoi edge. The sweep plane algorithm maintains the
beach line as the line L sweeps, and traces the paths of the breakpoints as
they move along the edges of the Voronoi diagram. The beach line is a line
of latitude, any great circle passing through the north pole n̂ intersects with
the beach line exactly twice. The azimuthal angles of the intersections differ
by π.

Figure 2: Parabola created by a point p̂

A key difference between this scheme and the planar case is that the
beach line on the sphere is a closed curve, while in the planar case it is a
curve with open ends. In the planar case, the domain is usually infinite, and
the line can sweep indefinitely to finish the diagram. However, the surface
of a sphere is a closed domain. When sweep line reaches the south pole, the
diagram is not finished. Even though all sites are located above the beach
line, the region below the beach line has not yet been processed. Therefore
the sweep line continues to sweep the line upward, figuratively on the inside
of the sphere, for values ξ > π, until the tessellation is complete.

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 11

2.4 Voronoi Diagram Algorithm

The sweep line algorithm consists of simulating the growth of the beach
line as the sweep line moves first down, outside then up, inside, the sphere.
The beach line formed by the parabolas changes its shape continuously dur-
ing the line sweep. As with in the case of the plane-sweep algorithm, only
discrete ”events” are of interest when there is change in the topology of the
Voronoi diagram and structure of the beach line, all intermediate steps are
skipped.

Input: A set P := {p̂i}Ni=1 of N distinct points on the sphere.
Output: The Voronoi diagram V or(P) given in a doubly-connected edge list
D.

1. Sort the sites in P and put them in the event queue Qsite; Initialize the
empty event queue Qcircle; initialize the empty skiplist, and a doubly
connected edge list D.

2. While Qsite or Qcirlce is not empty

3. if Qsite is not empty, and the site p̂ is before the events in the Qcircle

4. then HandleSiteEvent(p̂i), and remove the node from Qsite

5. else HandleCircleEvent(γ), where γ is a node in the skiplist that
represents the arc that will disappear

6. Traverse the half-edges of the doubly-connected edge list to add cell
records and pointers to and from them.

The Procedures to handle the events are defined below.

HandleSiteEvent(p̂i)

1. If the skiplist is empty, insert p̂i into it, and set the previous and
next pointers to point to itself. If the skiplist only contains one node,
then simply append p̂i to it, and reset all pointers correspondingly.
Otherwise, continue with steps 2-4.

2. Search the skiplist from the reference position for the arc α which will
intersect with the great circle through p̂i and north pole n̂. Assume
that the two end points of α are (θ1, φ1) and (θ2, φ2) such that points
on α with azimuthal angle which lies between φ1 and φ2. If

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 12

φ1 ≤ φi ≤ φ2, for φ1 < φ2

or

φi ≤ min(φ1, φ2) or φi ≥ max(φ1, φ2), for φ1 > φ2

then the arc is found. If the arc α has a pointer to a circle event in
the Qcircle, then the circle event is a false alarm, and is removed from
Qcircle.

3. Duplicate arc α and insert the new arc for p̂i between them in the
skiplist. Set the previous and next pointers appropriately. Suppose
that prior to the insertion, the beach line sequence was

. . . p̂1, p̂2, p̂3, p̂4, . . .

The insertion of p̂i splits the arc associating p̂j into two, denoted p̂
′
i and

p̂
′′
i , involving the same site, p̂j , the new sequence will be

. . . , p̂1, p̂2, p̂
′

j, p̂i, p̂
′′

j , p̂3, p̂4, . . .

4. Check the triple of consecutive arcs p̂2, p̂
′
j, p̂i and p̂i, p̂

′′
j , p̂3 for valid circle

events. If found, insert the circle event(s) into Qcircle and add pointers
between the node(s) in the skiplist and in Qcircle.

HandleCircleEvent(γ)

1. Let p̂i, p̂j, p̂ik be the three sites that generate this circle event. Delete
the node for p̂j representing the disappearing arc from the skiplist and
remove the circle event from the Qcircle; Suppose that prior to the
deletion, beach line sequence was

. . . p̂1, p̂i, p̂j, p̂k, p̂2, . . .

after the event, the sequence this becomes

. . . p̂1, p̂i, p̂k, p̂2, . . .

2 VORONOI DIAGRAM ON A SPHERICAL SURFACE 13

2. Add the circumcenter of the circumcircle causing the circle event as a
vertex record to the doubly-connected edge list D. Create three half-
edge records starting with the new vertex in three cells corresponding
to p̂i, p̂j, p̂k.

3. Remove all circle events associated with the triples p̂1, p̂i, p̂j and p̂j, p̂k, p̂2
from Qcirlce, this can be done by using pointers from the predecessor
and the successor of p̂j in the skiplist. Check two new triples of con-
secutive arcs involving both former left and right neighbor arcs of α,
that is, p̂1, p̂i, p̂j and p̂j, p̂k, p̂2 for valid circle events. If found, insert
the circle event(s) into Qcirlce.

2.5 Running Time and Storage

The total running time is O(N logN), and the required total storage
space is O(N).

Handling each site event requires searching for the arc where the new
parabolic arc can be inserted; this requires time O(logN). Inserting the arc
into the beach line requires constant time O(1). Handling each circle event
requires constant time O(1). Checking for the circle events requires constant
time O(1) as well. There are N site events and 2N-4 circle events, thus the
total running time is O(N logN) +O(N).

All data structures require the storage space O(N). The beach line has at
most 2N−2 arcs. Since all circle events in the queue are associated with sites
in the beach line, the maximum length of the circle event queue is 2N − 2.
The site event queue has N nodes. The expected number of edges in the
Voronoi diagram is 3N − 6.

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 14

3 Spherical Minimum Enclosing Circle

3.1 Introduction

The smallest-circle problem or minimum covering circle problem is a
mathematical problem of computing the smallest circle that contains all of a
given set of points in the Euclidean plane. The smallest-circle problem was
initially proposed by the English mathematician James Joseph Sylvester in
1857 [7]. The smallest-circle problem in the plane is an example of a facility
location problem (the 1-center problem) in which the location of a new facil-
ity must be chosen to provide service to a number of customers, minimizing
the farthest distance that any customer must travel to reach the new facility.

The minimal enclosing circle is used in planning the location of a shared
facility. For example, a shared facility is a hospital servicing a community.
If we consider each home in a community as points in the plane, finding
minimal enclosing circle gives a good place to put the hospital i.e, the center
of the minimal circle. Placing the hospital at the center of minimal circle
minimizes the distance between the hospital and the farthest home (point)
in the community. This problem is also useful to examine the point that lie
on the boundary of the minimal enclosing circle.

The simplest algorithm considers every circle defined by two or three of
the n points, and finds the smallest of these circles that contains every point.
There exits O(n3) such circles, and each takes O(n) time to check, for a
total running time of O(n4). Elzinga and Hearn gave an O(n2) algorithm in
1972, and Shamos and Hoey (1975), Preparata (1977), and Shamos (1978)
discovered the first O(n log n) algorithms. Finally, in 1983 Nimrod Megiddo
showed that the minimal enclosing circle problem can be solve in O(n) time
using the prune-and-search techniques for linear programming.

We considered here the spherical version of the minimal enclosing circle
problem. The set of sites P is located on the surface of a sphere S and we
need to find a 1-center i.e. the point with the least maximum distance from
all points in the set P .

3.2 Definition and Characteristics

Since any sphere can be scaled and shifted, we only consider the spherical
minimum enclosing circle of points on a unit sphere. The unit sphere is
denoted as

S2 = {p̂ ∈ R3 : ||p̂||2 = 1}

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 15

where ||.||2 is the L2 norm. The (geodesic) distance between any two
points p̂ and q̂ on a sphere is denoted as d(p̂; q̂), and

d(p̂; q̂) = arccos (p̂.q̂)

This is the arclength of the shorter segment of the great circle through p̂
and q̂, with p̂ and q̂ as endpoints.

Two points p1 and p2 on the surface of a sphere S are said to be antipodal
to each other if the line joining them passes through the center of the sphere
S.

A circle C on the spherical surface is defined as the intersection of a the
boundary of the sphere S with a plane L. Its normal n̂ is defined as the
normal to the plane L which passes through the center of the sphere S. The
center of C is the intersection of its normal n̂ with the boundary of the sphere
S. Note that a circle has two centres which are an antipodal pair.

The spherical minimum enclosing circle M of a set of points P on the
surface of the sphere, is defined as the circle with the minimum radius which
covers the set P . By covering we mean that all the points in P lie on one
side of the plane L whose intersection with the sphere S forms the circle M .
The center of the spherical minimum enclosing circle M is the center of the
circle M on that side of L on which all of P lies. The radius is defined as the
geodesic distance between the boundary of the spherical minimum enclosing
circle M and its center.

Alternatively, the spherical minimum enclosing circle problem can also be
formulated as the 1-centre problem. Given a set of points P on the surface
of a sphere S, to find a point c (also on the surface of the sphere), such that
the maximum distance between c and any other point p ∈ P is the minimum
over all point c ∈ δS. δS is defined as the boundary of the sphere S.

Some characteristics of the spherical minimum enclosing circle are as fol-
lows:

• The spherical MEC must have at least two points on its boundary.

• If the spherical MEC passes through two points then the great circle
joining these two points passes through the center of the spherical MEC.

• If the spherical MEC passes through three points or more than the
three points together will form an acute angled triangle.

• Unlike the MEC in aplane the spherical MEC is not unique.

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 16

3.3 Observations

The observations that can be made about the MEC and the vornoi dia-
gram are as follows

Observation 1: For a point set P = p1, p2, p3, . . . on the surface of a sphere the nearest
neighbour voronoi diagram V is also the farthest pair voronoi diagram
of the set of points P

′
= p

′
1, p

′
2, p

′
3, . . . where p

′
i is the antipodal point

with respect to pi.

Proof. For points x, y ∈ S we have d(x, y) = π−d(x, y
′
). It follows that

for a site u ⊂ S, we have d(x, u) = π − d(x, u
′
). Therefore, x belongs

to the region of V or(P) where u belongs if and only if x belongs to the
reqion of farthest-V or(P) where u

′
belongs.

Observation 2: The dual of the spherical minimal enclosing circle is the spherical max-
imum empty circle i.e. both the circles have the same boundary and
their center forms an antipodal pair.

Proof: The maximum empty circle is defined as the circle with the
maximum radius which does have any site inside it. The proof is trivial
in the sense that if the radius of the minimal enclosing circle is r then
the radius of the maximal empty circle is π − r.

Observation 3: The complexity of the nearest neighbour voronoi diagram with respect
to the number of points is linear.

Proof. Considering the general case when the sites do not all lie on a
great circle. The Euler characteristic for a convex polyhedron with v
vertices, e edges and f faces is

v − e+ f = 2

This can be applied here, only the number of faces needs to be replaced
by number of cells. If Nn is the number of n-sided cells, then, for a
nondegenerate Voronoi diagram, where each edge is shared by two, and
each vertex by three sites, we have

∑
n

(Nn
n

3
−Nn

n

2
+Nn) = 2∑

n

(6− n)Nn = 12

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 17

The average number of edges of the Voronoi cell is∑
n nNn

N
= 6− 12

N

Thus the average number of edges of Voronoi cells is less than 6, and
approaches 6 as the number of sites becomes large. The total number
of vertices is 2N − 4, and the total number of edges is 3N − 6.

3.4 Algorithm for Computing Spherical MEC

Based on the above observations we now proceed to give an algorithm for
computing the spherical minimum enclosing circle for a set of points P on
the surface of the sphere. The algorithm takes help of the computation of
the nearest neighbour voronoi diagram explained in the previous section. We
first compute the nearest point voronoi diagram of P . Then for each of the
edges and vertices of V or(P) we compute the maximum empty circle with
center on it. The largest of all these maximum empty circles is the global
maximum empty circle and its complement is the minimum enclosing circle.

Input: S, the sphere; P = {p1, p2, p3, . . .}, the set of points on the sur-
face of the sphere.
Output: The spherical MEC of P .

1. Compute the voronoi diagram of P by the algorithm for voronoi dia-
grams in a sphere. For each vertex of the voronoi diagram maintain
any one of at least three points of P which forms that vertex. Also
for every edge of the voronoi diagram maintain the pair of points of P
which are associated with it.

2. For each vertex of the voronoi diagram compute the radius of the max-
imum empty circle that can be drawn with center on the vertex. This
is nothing but the distance between the vertex and the point associated
with it. For an edge of the voronoi diagram, compute the intersection of
that edge with the line joining its associated pair of site points. If there
is no intersection than this is not the candidate for the global maximum
empty circle and so can be skipped. Else the radius of the maximum
empty circle with center as the intersection point is computed.

3. Out of all the maximum empty circle considered, find the one with the
maximum radius. We call it the global maximum empty circle.

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 18

4. The complement of the global maximum empty circle is the spherical
minimum enclosing circle for the points set P . If the center and radius
of the global maximum empty circle are c and r respectively then, the
spherical minimum enclosing circle has radius R = π − r and center
C = c

′
, where c

′
is the antipodal point of c.

3.5 Complexity

The total running time is O(N logN), and the required total storage
space is O(N).

As already has been discussed computing the voronoi diagram in a sphere
takes O(N logN) time. At creation of any vertex or edge of the voronoi
diagram its associated site points can be inserted in O(1) time. Computation
of each maximum empty circle takes O(1) time. And since the complexity of
the voronoi diagram is O(N) the total time to compute all valid maximum
empty circles and finding the global maximum among them takes O(N) time.

All data structures need only O(N) space to store the voronoi diagram
and the associated site points for each of vertices and edges. This is because
the total number of vertices and edges is O(N). The maximum empty circle
can be defined by just the radius and center and needs O(1) storage per
circle.

3.6 Restricted Spherical MEC

In this section we look at a restricted version of the 1-center problem.
Let C be a set of sites on the unit sphere S such that their exists a plane
passing through the center of the sphere and all points in C lie on one side
of the plane. The problem is to find a circle which encloses all the points,
and whose radius is the minimum among all possible such circles. We call it
the restricted spherical minimal enclosing circle problem.

3.6.1 Finding the Hemisphere

The first problem is to find a hemisphere such that all points in C are on
that hemisphere. We give an O(n) algorithm for it as follows:

Input: S, the sphere; P = {p1, p2, p3, . . .}, the set of points on the sur-
face of the sphere.
Output: A hemisphere H such that H encloses p, ∀p ∈ P .

1. Let pi be any point in P .

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 19

2. For each point pj ∈ P we compute d(pi, pj).

3. Let pf be the point which is farthest from pi, i.e. d(pf , pi) ≥ d(pj, pi),∀pj ∈
P . Note that pf lies on the convex hull of P and ∃ a hemisphere h which
covers all the points in P and which passes through pf .

4. We consider the great circle passing through pi and pf as the 0◦ merid-
ian and pf as the north pole.

5. ∀pj ∈ P , find the points pmax and pmin with the maximum and mini-
mum azimuthal angel. We say that both these points lie on the convex
hull of the point set P .

6. Therefore the great circle passing through pf and pmax(or pmin) is the
required hemisphere H.

3.6.2 Restricted Spherical MEC with Center on a Query Line

Here we describe the sub problem required by Megiddo’s prune and search
technique to find the 1-center for a set of a set of points. We change some
of the definitions to fit the algorithm for the restricted spherical MEC. For
any pair of orthogonal great circles, consider their intersection with the com-
puted hemisphere H. There will be 2 semi great circle segments; we call
one of them as the NS axis and the other as the EW axis, with their point
of intersection with H being N , S and E, W respectively. We then try to
find the spherical 1-center of the set of sites C, with the restriction that the
1-center lies on the EW great circle segment.

Input: H, the hemisphere; P = {p1, p2, p3, . . .}, the set of points on the
surface of the sphere; the 2 axes NS and EW .
Output: The 1-center for P restricted on the semi great circle segment EW .

1. If P has no more than 2 points we compute the restricted 1-center by
brute force.

2. Form disjoint pair of points of P as (p1, p2), (p3, p4), If there are
odd number of points in P then set the last pair as (pn, p1).

3. For each pair of points (pi, pi+1) find the point xi on EW such that
d(xi, pi) = d(xi, pi+1). Note that their will always be 1 such points for
any pair of points in the EW semi great circle segment.

4. Find the median of the n
2
xi’s. Let it be called xm.

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 20

5. Computer the set I of points in P which are farthest from xm.

6. Let m be a meridian passing through N , S and xm. If points in I lie
on both sides of m, we have found a solution.

7. Else if all points in I are to the left of m, then for each xi to the right of
m discard the point farthest from xm in the pair (pi, pi+1). The other
case is symmetric.

8. Repeat steps 1 - 7.

At each step we prune 1
4

th
of the points. Therefore the running time of

this algorithm is given by the recursion

T (n) = T (
3n

4
) +O(n)

= O(n)

3.6.3 Algorithm

After finding out the hemisphere H we can compute the minimal enclos-
ing circle by megiddo’s prune and search technique.

Input: H, the hemisphere; P = {p1, p2, p3, . . .}, the set of points on the
surface of the sphere.
Output: The 1-center for P .

1. If the number of points in P is ≤ 16, then we find the restricted 1-
center problem using brute force. We compute all possible pair of sets
which are a cover of P and check for which pair we get the circles with
the minimum radius.

2. Form disjoint pair of points of P as (p1, p2), (p3, p4), If there are
odd number of points in P then set the last pair as (pn, p1).

3. For each pair of points (pi, pj) we compute the perpendicular bisector
of ¯pipj. This is a great circle which intersects EW segment at atleast
1 point. Let them be denoted by Li’s.

4. We compute the slopes of all the bisectors with the horizontal axis and
find the median. Then we rotate the coordinate axis such that exactly
half of the slopes are positive and the rest of them negative. Note that
the points N,S,E,W also gets rotated accordingly.

3 SPHERICAL MINIMUM ENCLOSING CIRCLE 21

5. Construct a set of disjoint pair Li, Li+1 such that Li has a positive slope
and Li+1 has a negative slope with the horizontal axis. Calculate their
point of intersection and let them be denoted by xi’s.

6. We find the median of the xi’s first in the horizontal direction and find
a great circle v passing through N , S such that half the xi’s are to
its left and half the points to its right. We then apply the query line
restricted 1-center algorithm in the previous section on the segment
EW to check if the optimal 1-center lies to the left or to the right of v
or on v.

7. If the optimal 1-center lies to the left of v then for all xis to the right
of v we compute thier median in the vertical direction. We find a
horizontal lattitute h passing thorough E,W such that half of these
xi’s are above and the other half below. We then apply the query line
restricted 1-center algorithm on the query line v to determine which
direction of h the optimal point lies. This is similar for the case when
optimal point lies to the right of v.

8. If we have found the optimal point we stop. Else if say the optimal
point is to the left of v and below h. Then for each xi to the right of v
and above h, let Li be the bisector with the negative slope associated
with xi. We prune away that point in the pair of Li which is closer to
the intersection of v and h. The case is symmetric for other directions
of the 1-center with respect to v and h.

9. Continue from step 1.

At each step we do O(n) computations. The number of xi’s is n
4

and for
1
4

th
of these xi’s we prune away one point of P associated with it. Therefore

the time complexity of this algorithm can be given by the recursion

T (n) = T (
15n

16
) +O(n)

= O(n)

4 THE SPHERICAL TWO DISC COVER PROBLEM 22

4 The Spherical Two Disc Cover problem

4.1 Introduction

Let S be a set of n points on the surface of the sphere. The 2-center
problem for S is to cover S by (the union of) two congruent closed disks
whose radius is as small as possible. This is a special case of the general p-
center problem, where we wish to cover S by p congruent disks whose radius
is as small as possible. When p is part of the input, the problem is known to
be NP-complete [8]. A result [9] shows that their is an nO(

√
P) algorithm for

any p-center problem.
A major component of the algorithm for computing the 2-center problem

is a procedure for solving the fixed-size problem: Given a radius r, we want
to determine whether S can be covered by two closed disks of radius r. This
problem is refereed to as the 2DC (2-disk cover) problem. The strategy is to
assume that such a pair of disks exist, call them D1, D2, and to conduct a
search for their centres. Let ci denote the center of Di , and let Ci denote the
circle bounding Di , for i = 1, 2. We may assume, with no loss of generality,
that |c1c2| is as small as possible.

We describe an algorithm for the 2DC problem in the subsequent section.
The algorithm uses a routine which we explain in the next section. Section
4.3 and 4.4 then describe the algorithm for two different cases. Both of these
cases are related to the work done by [10] for euclidean plane.

4.2 Dynamic Maintenance of the Intersection of Con-
gruent Disks

We first describe a procedure, which the algorithm will use repeatedly,
for solving the 2DC problem. We want to maintain dynamically a set P of
points in the plane, under insertions and deletions. After each update, we
wish to determine whether the intersection K(P) = ∩p∈PBr(p) is nonempty,
where Br(p) is the closed disk of radius r centered at p. This condition is
equivalent to the condition that P can be covered by a disk of radius r.

At every insertion and deletion of Br(p) we keep track of the boundary
region of K(P). K(P) is maintained as an alternating sequence of points
and circles. For e.g. for the Figure 3 we maintain the region K(P) as

q1, Br(p1), q2, Br(p2), q3, Br(p3).

At every insertion of a new circle Br(p) we find in O(n) time the inter-
section of Br(p) with K(P). We then update the region of K(P) as will be

4 THE SPHERICAL TWO DISC COVER PROBLEM 23

Figure 3: K(P) = ∩p∈PBr(p)

described. Suppose the present K(P) be given by the sequence

q1, Br(p1), q2, Br(p2), q3, Br(p3), q4, Br(p4), q5, Br(p5), q6, Br(p6)

and let the newly inserted circle Br(pi) intersect K(P) at the curves Br(p2)
and Br(p5) at points pj and pk respectively. Then the K(P)new = K(P)old ∩
Br(pi) is given by the sequence

q1, Br(p1), q2, Br(p2), qj, Br(pi), qk, Br(p5), q6, Br(p6)

and we store the sequence q3, Br(p3), q4, Br(p4), q5 at some place index by
Br(pi). If the inserted circle Br(pi) doesn’t intersect K(P) at all, then we
insert the circle into a queue T .

In the case of deleting a circle Br(pi), this data structure only deletes
circles in the order in which they were inserted. We check K(P) and find
the position of Br(pi) in the sequence. We delete Br(pi) and its immediate
predecessor and successor and insert in its place the sequence of points stored
at the location refereed to by Br(pi). If T is non-empty then we insert the
circles into the now modified K(P); we stop inserting at the very first circle
which doesn’t intersect with K(P).

Each circle is inserted into K(p) at most once, so if there are n insertions
and m deletions, the total amortized complexity is O(n2) as m < n.

4 THE SPHERICAL TWO DISC COVER PROBLEM 24

4.3 Solving the 2DC Problem: the Case Where the
Centers Are Well-Separated

Suppose first that |c1c2| > r. Let δ > 0 be some sufficiently small constant
angle. Now let us imagine 2 orthogonal axes one in the north-south direction
and the other in the east-west direction. We rotate the sphere by jδ, for
j = 0, 1, . . . , b2π

δ
c on both the axes. In one of the orientations, the plane

passing through the great circle passing through c1 and c2 will be almost
horizontal.

Assume further that |c1c2| > 3r, say. Then a vertical meridian separating
D1 and D2 exists. To detect whether this case arises, sort the points of S
by their azimuthal coordinates, and scan them from left to right. Let SL
denote the set of points on the left hemisphere of the meridian which passes
through the currently scanned point q, including q, and let SR denote the
complementary set. We maintain the sets SL and SR dynamically, repeat-
edly moving each scanned point from SR to SL, and checking, after each
update, whether K(SL) and K(SR) are nonempty. If both are nonempty,
we have found two disks of radius r whose union covers S. If the currently
assumed configuration does exist and we are at the correct orientation, then,
in exactly one of these steps, both intersections must be nonempty, so the
above procedure will detect the existence of a 2DC of this kind. Using the
technique described in Section 4.2, the cost of handling this case is O(n2).

Figure 4: The case r < |c1c2| ≤ 3r

4 THE SPHERICAL TWO DISC COVER PROBLEM 25

Next assume that r < |c1c2| ≤ 3r. Let v1 and v2 denote the points of
intersection of C1 and C2, with v1 lying to the left of v2. See Figure 4. If
D1 and D2 are disjoint, we define v1 to be the leftmost point of D2 and
define v2 to be the rightmost point of D1; if v1 lies to the right of v2, we
can proceed as in the previous case, because D1 and D2 are then separated
by a vertical line; so we still assume that v1 lies to the left of v2. Since we
assume that the orientation of c1c2 is at most some δ in absolute value and
that θ(c2) − θ(c1) > 0.99r, it is easily seen that θ(v1) − θ(c1) > 0.4r. Note
that the left semicircle of C1 must pass through at least one point q of S
(or else we could have brought D1 and D2 closer together, by moving D1 to
the right). Let λ be any vertical meridian separating c1 from v1, and let SL
denote the subset of points of S lying to the left hemisphere of λ. Then SL
contains q and is fully contained in D1. Note that the difference between the
largest and smallest azimuthal coordinates of points of S is at most 5r, so
we can draw a constant number of vertical meridians λ, say with horizontal
separation 0.3r between adjacent meridians, so that at least one of them will
separate c1 and v1. Assume that λ is the correct meridian. We then have the
set SL available, and we compute the region K(SL) = ∩p∈SL

Br(p), in O(n2)
time. The above arguments imply that c1 must lie on the (right) boundary
of K(SL). For each p ∈ SR = S \SL, we intersect δBr(p) with δK(SL). As is
well known, each such intersection consists of at most two points. We obtain
all these points, and sort them, including the vertices of K(SL) along δK(SL,
into a list Γ. This can easily be done in O(n2) time.

We now iterate over each point v in Γ, place the center c1 of D1 at v, or
on the subarc of δK(SL) between v and the next point in Γ, and update the
set S

′
(c1) of points of S not covered by D1. We note that when c1 moves

from a point in Γ to an adjacent subarc, or from a subarc to an adjacent
point, either a single point is added to S

′
(c1), or a single point is removed

from that set, or the set remains unchanged. At each point c1 that we visit,
we test whether S

′
(c1) can be covered by a disk of radius r , and stop as

soon as this happens, for we have obtained an affirmative solution to the
2DC problem (with radius r). Otherwise, we continue until Γ is exhausted,
and conclude that λ cannot be the desired line. If this procedure fails for
all of the O(1) lines λ and for all the O(1

δ2
) orientations, we conclude that

there is no solution to the 2DC problem (with radius r) with the currently
assumed configuration. Here we can not use the technique of Section 4.2 as
the deletions are not in the order necessary. Therefore using the solution of
the spherical 1-center problem, the cost of handling this case is O(n2 log n).

4 THE SPHERICAL TWO DISC COVER PROBLEM 26

4.4 Solving the 2DC Problem: the Case Where the
Centers Are Close to Each Other

Figure 5: The case where |c1c2| < r

Finally, assume that |c1c2| < r. In this case the area of D1 ∩ D2 is at
least O(r2), whereas the entire S can be covered by a circle R of radius
O(r), which we can easily compute in O(n log n) time. It follows that we
can construct O(1) points within R, so that at least one of them will lie in
D1 ∩D2 (and fairly close to both c1 and c2). Let z be such a point. We sort
the points of S in angular order about z, and partition the sorted list into two
sublists, Q+, Q−, by the horizontal great circle passing through z. Assume
that Q+ is sorted in clockwise direction about z and that Q− is sorted in
counterclockwise direction. See Figure 5

We now apply a technique that resembles standard searching in monotone
matrices. Let M be the matrix whose rows correspond to points in Q+ (in
clockwise angular order), and whose columns correspond to points in Q (in
counterclockwise order). For a ∈ Q+, b ∈ Q, we define Mab as follows. Let
ρ+ be a ray emanating from z and passing between a and the next point of
Q+, and let ρ− be a ray emanating from z and passing between b and the
next point of Q. Let S+

L be the prefix of Q+ consisting of points that lie
counterclockwise to ρ+, and let S−L be the prefix of Q− consisting of points
that lie clockwise to ρ−. Let SL = S+

L ∪ S
−
L and let SR = S \ SL. Then

Mab =

’YY’ if both SL and SR can be covered by disks of radius r

YN’ if SL can be covered by a disk of radius r but SR cannot

’NY’ if SR can be covered by a disk of radius r but SL cannot

’NN’ if neither SL nor SR can be covered by a disk of radius r.

4 THE SPHERICAL TWO DISC COVER PROBLEM 27

(Note that the number of rows plus the number of columns of M is n.)
Our goal is thus to determine whether M has an entry YY. We denote by
M (L) (resp. M (R)) the matrix containing the left (resp. right) characters of
the entries of M. The matrices M (L),M (R) have the following monotonicity
properties, whose proof is obvious:

(a) If M
(L)
ab = N then M

(L)

a′b′
= N for any a

′ ≥ a, b
′ ≥ b.

(b) If M
(R)
ab = N then M

(R)

a′b′
= N for any a

′ ≤ a, b
′ ≤ b.

We first compute all entries in the middle column of M . Using the tech-
nique of Section 4.2, this can be done in O(n2) time. If an entry YY has
been detected then we are done. Suppose we have found an entry Mab = NN.
Then properties (a) and (b) imply that the top-left submatrix {Ma′b′}a′≤a,b′≤b
and the bottom-right submatrix {Ma

′
b
′}a′≥a,b′≥b of M can be discarded from

further analysis, because they cannot contain a YY entry. We thus recurse
with the remaining bottom-left and the top-right submatrices of M . If no
NN entry is detected, then either all entries in the middle column are YN,
or all are NY, or there is a single transition from a YN entry to a following
NY entry. In the first case we can discard the left submatrix of M, and in
the second case we can discard the right submatrix of M. In the third case
we can discard, as above, the top-left and the bottom-right submatrices of
M. (The difference from the previous case is that, if Mab = YN and Ma+1,b =
NY, then now we discard {Ma′b′}a′≤a,b′≤b and {Ma′b′}a′≥a+1,b′≥b+1.) In each
case we thus recurse on subproblems whose total size is half the size of the
original matrix, so the procedure will terminate after logarithmically many
steps. The terminal stage is when the current submatrix has only a single
column. We then scan this column, as above; if a YY entry has been found,
we have an affirmative solution to the 2DC problem. Otherwise, if no YY
entry is found in any subproblem, for all possible orientations, we conclude
that the currently assumed configuration cannot arise, which implies a neg-
ative solution to the 2DC problem, because by now we have exhausted all
possible cases. The total cost of this procedure is O(n2 log n).

We thus conclude that the 2DC problem, for a set of n points in the plane
and for any fixed radius r, can be solved in O(n2 log n) time.

5 CONCLUSION AND FUTURE WORK 28

5 Conclusion and Future Work

The optimal time to compute the largest empty circle for a set of points
in the euclidean plane is O(n log n) [12]. The restriction being that the center
of the circle lies inside the convex hull. Since the spherical minimal enclosing
circle is the dual of the maximum empty circle, we can fairly assume that
the optimal spherical minimal enclosing circle construction is also O(n log n).
Further work can be to design an incremental algorithms for the spherical
1-center algorithm. This could facilitate us to design solution for some re-
stricted version of the 1-center problem.

We have given an algorithm for the 2-disk cover problem. Further work
can be to improve the efficiency of the method in Section 4.2 and also to uplift
the restriction on the order of deletion of points. The algorithm can also be
used along with Megiddo’s [8] parametric searching technique to design a
solution for the spherical 2-center problem.

REFERENCES 29

References

[1] L.J. Guibas, D.E. Knuth and M. Sharir, Randomized incremental con-
struction of Delaunay and Voronoi diagrams, Algorithmica 7 (1-6),
381413, 1992.

[2] M.I. Shamos and D. Hoey. Closest-point problems. In Proc. 16th Annu.
IEEE Sympos. Found. Comput. Sci., 151-162, 1975.

[3] S.J. Fortune, A sweepline algorithm for Voronoi diagrams. Algorithmica,
2: 153174, 1987.

[4] Xiaoyu Zheng, Roland Ennis, Gregory P. Richards, and Peter Paly-
Muhoray, A Plane Sweep Algorithm for the Voronoi Tessellation of the
Sphere, electronic-Liquid Crystal Communications, 2011.

[5] Joao Dinis, Margarida Mamede, Sweeping the Sphere, International
Symposium on Voronoi Diagrams in Science and Engineering, 2010.

[6] Pankaj K. Agarwal and Micha Sharir, Planar Geometric Location Prob-
lems, Algorithmica (1994) 11: 185-195

[7] J.J. Sylvester, A question in the geometry of situation, Quart. J. Math.,
(1857), p. 79.

[8] N. Megiddo, Linear-time algorithms for linear programming in R3 and
related problems, SIAM J. Comput. 12 (1983), 759776.

[9] J. Hershberger and S. Suri, Offline maintenance of planar configurations,
Proc. 2nd ACM-SIAM Sympos. Discrete Algorithms, 1991, 3241.

[10] Micha Sharir, A Near-Linear Algorithm for the Planar 2-Center Prob-
lem, 2006

[11] David Eppstein, Faster Construction of Planar Two-centers, Tech. Re-
port 96-12, 1996

[12] G. T. Toussaint, ”Computing largest empty circles with location con-
straints,” International Journal of Computer and Information Sciences,
vol. 12, No. 5, October, 1983, pp. 347-358.

