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Abstract

This report presents a probabilistic greedy algorithm for solving the chan-
nel assignment problem (CAP) in cellular networks. We took each call as a
vertex of a complete edge weighed graph, termed as CAP graph, where an
edge weight represents the minimum frequency separation needed between
the calls represented by the terminal vertices of that edge. Our objective is
to assign non-negative integers representing colors or frequencies to the ver-
tices of the CAP graph such that the required span (maximum frequency -
minimum frequency) is minimized while satisfying the frequency separation
constraints represented by the edge weights. We begin with a probabilistic
ordering of the vertices and apply frequency exhaustive strategy to color
them. During the coloring, when color of a vertex exceeds the maximum
color of previously allocated vertices, we apply a forced assignment phase
to reduce the so far obtained span. Then we propose an iterative compres-
sion phase to further reduce the span obtained from applying the frequency
exhaustive strategy with forced assignment phase. Finally we introduce a
smoothing phase which will try to reduce the higher frequencies obtained
by the compression phase with a view to increasing the channel utilization.
This essentially helps to cope up with the short term demand fluctuation in a
latter phase. It is observed that there is a tradeoff between the computation
time and the resulted span. Our proposed algorithm is tunable in a sense that
we can get better result by allowing more computation time. The proposed
polynomial time algorithm is applied over the well-known benchmark in-
stances and the obtained spans are measured. The obtained results show that
the proposed algorithm performs better than the existing assignment strate-
gies with respect to deviation from optimality and/or computation time. The
time taken by our algorithm is less than 1.77 seconds (HP Z400 Worksta-
tion) even for the most difficult benchmark instances and thus is very much
suitable where fast channel assignment is of primary importance while a
marginal deviation from optimality may be tolerated.
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Chapter 1

Introduction

In the modern mobile dominated era, the number of mobile communication de-
vices is increasing day by day. A mobile station (MS) can communicate with
a base station (BS) through a specific channel. Because of the large number of
MS, it is almost impossible to satisfy each MS by a distinct channel as the avail-
able bandwidth is very limited. Two MS cannot communicate with the same
frequency at the same time if they are not far away, because of the interference.
This increases the noise hugely and cross-talk and/or breach of security may oc-
cur. To encounter this, the geographical region is split into several cells and a
base station is established in each cell. The same channel can simultaneously be
used by multiple base stations, if their mutual separation is sufficient enough to
satisfy the interference. However, the frequencies assigned to two nearby stations
must differ by certain minimum value in order to avoid the channel interference.
The task of assigning frequency channels to the cells satisfying the interference
constraints and using as small bandwidth as possible is known as the channel as-
signment problem (CAP ). For simplicity, we assume that the frequencies are
non-negative integers. The interference avoidance is then achieved by requiring a
minimum separation between the frequencies assigned to a pair of stations. Here
both the intra-cell and inter-cell frequency separation requirement are represented
by non-negative integers. We regard the calls originated at a cell as the demands
of that cell and we need to allocate one frequency for each such call. Traditionally
the CAP is represented by a triplet (X,M,Λ) where 1) X = {0, 1, · · · , n − 1}
is the set of n cells, 2) M = (mxy) is the frequency separation matrix where mxy

represents the minimum frequency separation needed between a call of cell x and
a call of cell y, and 3) Λ = λx is the demand vector where λx represents the
demand of cell x. Here mxy = 0 implies that cells x and y are non-interfering
to each other and hence are allowed to transmit simultaneously using the same
channel. Under this traditional representation of the CAP , our problem is to find
a frequency assignment matrix C = cxu where cxu represents the frequency as-
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signed to call u of cell x (0 ≤ x ≤ n−1, 0 ≤ u ≤ λx−1) such that the frequency
separation constraints are satisfied. Here the frequency separation constraints are
represented by |cxu − cyv| ≥ mxy for all x, y, u and v except when both u = v
and x = y. The objective is to minimize the span where the span is defined as
max
x,u

cxu − min
x,u

cxu. The CAP can be modeled as a graph multi-coloring prob-

lem on a graph where each node represents a base station and there is an edge if
the corresponding base stations are interfering to each other. The edge between
nodes x and y has a weight mxy representing the minimum frequency separation
needed between a call of cell x and a call of cell y. At each node we have to as-
sign number of colors equal to the demand of that node. Thus CAP is basically a
graph multi-coloring problem on this graph where the objective is to assign colors
to the vertices satisfying the frequency separation constraints and demand vector
while using as small span as possible. The CAP is known to be a NP-hard prob-
lem, because a special case (λx = 1 for all x; and mxy = 1, if cells x and y are
adjacent and 0, otherwise) of the problem is equivalent to the classical graph col-
oring problem. In our discussion, we will use the terms frequency/color, cell/base
station and bandwidth/span interchangeably.

In this report, we present a new powerful technique to solve the CAP . We first
represent the CAP in terms of a CAP graph. Then we introduce three techniques
to reduce the span of the CAP represented by this CAP graph. We break the
boundary of determinism and define a probabilistic ordering of the vertices of the
CAP graph. Then we start coloring vertices of the CAP graph using the frequency
exhaustive strategy following the obtained probabilistic ordering. During the col-
oring, when color of a vertex exceeds the maximum color of previously allocated
vertices, we go for a forced assignment phase to reduce the so far obtained span.
After all vertices are colored, we use a compression phase, where we choose the
maximum colored vertex and try to reduce its color by increasing some of the
other vertices’ colors. We iteratively go on this compression phase till no further
reduction is possible. At last we apply a smoothing phase where following the
same probabilistic ordering of the vertices we put the minimum color to each ver-
tex satisfying the already allocated vertices. We iteratively go on this phase as long
as at least one vertex’s color is reduced. This smoothing phase helps to increase
the channel utilization. Our proposed algorithm is tunable in a sense that we can
get better result by allowing more computation time. The proposed polynomial
time algorithm is applied over the well-known benchmark instances and shown
that it performs better than the existing assignment strategies with respect to de-
viation from optimality and/or computation time. The computation time taken by
our algorithm is order of seconds and thus is very much suitable for solving the
practical channel assignment problem.
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Chapter 2

Previous literature and benchmarks

Because of the hardness of the problem, authors use deterministic, randomized,
approximation, and heuristic algorithms to solve the CAP . Heuristic algorithms
like genetic algorithms [8, 9, 17, 6], neural networks [22, 15], tabu search [5] and
simulated annealing [7] are popularly used for solving the CAP by several au-
thors. In [14], a hybrid meta-heuristic is proposed which is based on a hybridiza-
tion of a heuristic namely randomized adaptive search procedure (GRASP ) with
a frequency exhaustive strategy. In [1] authors have presented a probabilistic
greedy algorithm based on two diversification techniques namely randomization
and perturbation. Authors have argued that while deterministic greedy algorithm
may get trapped in local optima, probabilistic greedy is sometime helpful. In [18]
an elegant technique is presented which first maps a given CAP to a coalesced
CAP with reduced search space and the solution of this coalesced CAP is used to
solve the original CAP . In [19] a technique is presented where a CAP with non-
homogeneous demand is first partitioned into a sequence of smaller subproblems
with homogeneous demands only. Solutions of these subproblems then constitute
the solution of the original problem.

The existing CAP algorithms have been applied on well-known benchmark
problems to evaluate and compare their performance. Most widely used bench-
marks are the Philadelphia benchmarks [9, 8, 21, 20, 16, 17, 18]. These bench-
marks are defined on a 21-cell network, as shown in Figure 2.1. The demand

Table 2.1: Two different demand vectors for the Philadelphia benchmarks

Cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
D1 8 25 8 8 8 15 18 52 77 28 13 15 31 15 36 57 28 8 10 13 8
D2 5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25
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vectors used for these benchmarks are given by D1 and D2 as shown in Table 2.1.
The column-i of Table 2.1 refers to the channel demand from cell i. Table 2.2
shows the specifications of these eight benchmark problems (problems 1 through
8) in terms of the specific values of the frequency separation constraints s0, s1
and s2. Here s0, s1 and s2 (s0 ≥ s1 ≥ s2) are the minimum frequency separation
required between the calls in the same cell, and in cells at distance one and two
apart, respectively. It is assumed that the channel interference does not extend
beyond two cells for these benchmark instances. That is, the same channel can be
reused to two cells if they are distance three or more apart. The frequency sep-
aration matrix M = (mij) can be generated from the values of s0, s1 and s2 as
follows: mii = s0, mij = s1 if cells i and j are distance one apart, mij = s2, if
they are distance two apart, and mij = 0, if their distance is 3 or more. Apart from
these Philadelphia benchmarks, we also consider a practical assignment problem
from Helsinki, Finland defined on a 25-node benchmark network [16, 20]. The
frequency separation matrix M = (mij) and the demand vector D3 for this prob-
lem (problem 9) are shown in Tables 2.3 and 2.4, respectively. The entry corre-
sponding to the i-th row and j-th column of Table 2.3, i.e., mij , represents the
minimum frequency separation requirement between a call in cell i and a call in
cell j (0 ≤ i, j ≤ 24). The column-i of Table 2.4 indicates the channel demand
from cell i. We also have considered two relatively larger benchmarks defined
on a 55-node network as shown in Fig. 2.2 [16]. For these two benchmarks the
values of s0, s1 and s2 are given as 7, 1 and 1, respectively. The demand vectors of
these two problems (problems 10 and 11) are given by D4 and D5 respectively, as
shown in Table 2.5. Some other benchmark instances (problems 12 through 14)
are used by [1, 2] and defined on 15-, 30- and 40-cell networks shown in Figures
2.3, 2.4 and 2.5 respectively. All these instances use unit demand per cell. The
frequency separation matrix is given by M = (mij) where mij is 1 when cells i
and j are distance one or two apart and 0, otherwise.

Among the Philadelphia benchmarks, problems 1, 3, 4, 5 and 7 are relatively
easy as the required span is mainly determined by the value of s0. As a result, most
of the existing algorithms can find optimal solutions for them within few seconds
only. The most difficult to solve are the instances - problems 2 and 6 [8, 20].
The lower bounds on the span for problems 2 and 6 are known as 426 and 252
respectively [10, 18, 8]. For problems 2 and 6 many solutions have been proposed
previously. For example [9] proposed an algorithm which requires 165 hours to
produce a span of 267 for problem 6 in HP Apollo 9000/700 workstation. The ge-
netic algorithm reported in [17] produces optimal solution for both the problems
but the computation time was varied between 12-80 hours on a DEC Alpha Work-
station. The algorithm reported in [6] combines a sequential heuristic method into
a genetic algorithm and produces solutions for problems 2 and 6 with spans 431
and 252 respectively by taking a time of 10 hours. The combined genetic algo-
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rithm [8] got optimal solutions for both problems with a running time of 8 and
10 minutes respectively. The frequency exhaustive strategy with rearrangement
(FESR) proposed in [21] for CAP produces solutions for problems 2 and 6 with
spans 432 and 259 respectively. However, the computation time is not mentioned
in the paper. An adaptive local-search algorithm presented in [23] produces spans
of 432 and 262 for problems 2 and 6 requiring time 200-300 seconds. Random-
ized saturation degree (RSD) heuristic in combination with a local search (LS)
algorithm reported in [20] produces solutions for problems 2 and 6 with spans 426
and 253 respectively with computation time varied between 110-170 seconds. The
algorithm in [18] produces optimal solutions for both the problems with compu-
tation time varied between 10-20 seconds only. The heuristic in [16] produces the
spans of 462 and 272 for problems 2 and 6 with time 9.5 and 7.7 seconds respec-
tively. Most recently the algorithm presented in [19] requires only 5 milliseconds
of running time for problems 2 and 6 to result the spans 448 and 267 respectively.
From the above discussion, it appears that some algorithms take long computation
time but produces results very close to the optimal. Whereas, some others produce
results very quickly but the obtained span is far from the optimality. In this re-
port, we have developed an algorithm that produces span close to the optimality
and takes time less than 1.77 seconds only even for the most difficult instances.
Thus the proposed algorithm is very much suitable for real life application where
fast channel assignment is of primary importance while a marginal deviation from
optimality may be tolerated.

Table 2.2: Specification of Philadelphia benchmark problems.

Problems 1 2 3 4 5 6 7 8
Frequency s0 5 5 7 7 5 5 7 7
Separation s1 1 2 1 2 1 2 1 2
Constraints s2 1 1 1 1 1 1 1 1
Demand vector D1 D1 D1 D1 D2 D2 D2 D2
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Table 2.3: Frequency separation matrix for problem 9.

C =



2 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 2 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 1 1 0 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0
0 0 1 1 1 0 1 1 1 1 2 0 1 1 1 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 1 1 2 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 1 1 1 1 2 1 1 1 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 1 0 1 1 2 1 1 1 1 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 2 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 2 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 2 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 2 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 2 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 1 2 1 1 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 2 1 1
0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 2 1
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 2
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Figure 2.1: The 21-cell benchmark network.
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Figure 2.2: The 55-cell benchmark network.
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Figure 2.3: The 15 cell benchmark network.

Figure 2.4: The 30 cell benchmark network.

Figure 2.5: The 40 cell benchmark network.
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Chapter 3

The CAP graph

The CAP can be represented by a complete edge weighted graph, CAP graph,
G(V,W ) where each vertex v ∈ V represents a call and the edge weight wuv of
the edge (u, v) represents the minimum frequency separation needed between the
calls representing the vertices u and v. We put an edge between two vertices u and
v with weight 0 if wuv = 0. We can build the CAP graph from the frequency sep-
aration matrix and the demand vector. The number of vertices of the CAP graph
is equal to the summation of demands across all the cells. We need to find a fre-
quency assignment vector F = (fv) where fv represents the frequency assigned
to vertex v. Our goal is to find fv ∀v ∈ V , such that ∀u, v ∈ V , |fu − fv| ≥ wuv

and max(F ) = max
v∈V

fv is minimized. Under this CAP graph representation, the

CAP is basically a graph coloring problem where each vertex has to be assigned
only one color instead of multiple colors required as per the traditional represen-
tation of the problem. We can now state the following simple result.

Lemma 1. Let g be the gcd of the positive edge weights of the CAP graph
G(V,W ). If g > 1 then we can build a new CAP graph G′(V,W ′) where
W ′ = W/g. The frequency assignment vector F for the original CAP graph
G(V,W ) can be deduced from the frequency assignment vector F ′ of G′(V,W ′)
by F = gF ′.

In view of the result above, from now onwards we will assume that gcd of
the positive edge weights of the CAP graph is 1. The following example demon-
strate the construction of the CAP graph from the demand vector and frequency
separation matrix.

Example 1. Consider a CAP represented by (X,M,Λ) where X = {0, 1, 2} and
Λ = (2, 1, 1). The frequency separation matrix M for this example is given by:

14



M =

 2 1 1
1 2 0
1 0 2


Figure 3.1 shows the corresponding CAP graph where 4 vertices represent the

4 calls. Vertices a0 and a1 represent the two calls generated at cell 0, vertex b0
represents the call generated at cell 1 and vertex c0 represents the call generated
at cell 2. The edges of the CAP graph are labeled with weights according to matrix
M.

Figure 3.1: An example CAP graph
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Chapter 4

The proposed algorithm

The proposed algorithm is based on the CAP graph representation of the problem
and we have used the frequency exhaustive (FE) strategy in our approach. In FE,
we start with an ordering of vertices and then color vertices one by one following
that order. Let (v0, v1, · · · , vn−1) be an ordering of n vertices of the CAP graph.
In FE, we apply color 0 to v0 and then for each vi we check the frequency sep-
aration constraints with the already allocated vertices v0, v1, · · · , vi−1 and put the
minimum color that satisfies these constraints. We will introduce the probabilistic
ordering, a forced assignment phase and a compression phase to reduce the span
while coloring the CAP graph. Finally a smoothing phase is applied to increase
the channel utilization. We break the boundary of determinism and define a prob-
abilistic ordering of the vertices of the CAP graph. Then we will start coloring
vertices using FE following that probabilistic ordering, but when color of a ver-
tex will exceed the maximum color of previously allocated vertices we will go for
a forced assignment phase to reduce the so far obtained span. After all vertices
will be colored we will use a compression phase where we choose the maximum
colored vertex and try to reduce its color by increasing some of the other vertices’
colors. We iteratively go on this compression phase till no further reduction is
possible. The smoothing phase is applied over the assignment obtained by the
compression phase. It will consider the vertices in the derived probabilistic order-
ing and try to reduce the color of each vertex by putting the minimum color that
satisfies all the already allocated vertices. This phase will be iteratively applied as
long as a vertex’s color can be reduced. Formally these four phases are described
below.

16



4.1 Probabilistic ordering
In probabilistic ordering, we choose the vertex to be present in the beginning
of an order with a probability. Let dvi =

∑
x∈V

wvix be the degree of vertex vi.

Note that the degree of a vertex is nothing but the sum of the edge weights of the
edges incident to that vertex. We give the high degree vertex a higher probability
to be at the beginning of an order. Let the degree vector corresponding to the
vertices v0, v1, · · · , vn−1 is D = (dv0 , dv1 , · · · , dvn−1), where dvi is the degree
of vertex vi. We now define ωvx = (dvx + rvx) mod Dmax where Dmax is the
maximum value in the degree vector D and rvx is a random number belonging
to {0, 1, · · · , (Dmax − 1)}. Then we sort the vertices according to the decreasing
order of their ω values. Essentially this step produces an order where high degree
vertex has higher probability of being at the beginning.

4.2 Forced assignment
In FE if a vertex’s color exceeds the maximum of the previously allocated ver-
tices’ colors, there is no chance to look back and change the color of any already
allocated vertex in order to reduce the span. In the forced assignment we tries
to look back to the already allocated vertices and find a way to reduce the so far
obtained span. Basically, it tries to change one of the previously allocated vertex’s
color to reduce the span, if possible. While coloring a CAP graph with FE if
fvi > max(fv0 , fv1 , · · · , fvi−1

) then we will go for a forced assignment phase.
The strategy is formally presented in Algorithm 1 and demonstrated in Example
2.

Example 2. Consider the CAP graph shown in Figure 4.1 (a). The label associ-
ated with an edge represents the weight of that edge. The edges with weight zero
are not shown in the figure. We start FE with order (e, c, a, d, b). We will put 0 at
e, 2 at c, and 4 at a. Next we go for forced assignment as color of a exceeds the
previous maximum. In the first iteration, we will first free the colors of e and a
and then put the minimum color at a that satisfied the frequency separation con-
straint with the already allocated vertex c. Next we put the minimum color at e
that satisfied the constraint with c and a. Thus a will get the color 0 and e will get
4. So forced assignment could not reduce the span in this iteration. In the next
iteration, we will free the colors of c and a and then put the minimum color at a
that satisfied the constraint e. Next we put the minimum color at c that satisfied
the constraints with e and a. Thus a will get the color 1 and c will get 3. Thus in
this iteration the span is reduced to 3 from 4. Up to this the coloring of (e, c, a) is
(0, 3, 1). If we continue with FE, we will allocate 3 at d and 5 at b. Once again we

17



Algorithm 1: Forced Assignment
Input: vi, F = (fvj )
Output: F
Fmax = fvi ;1

for ∀vx ∈ {v0, v1, · · · , vi−1} do2

if wvxvi > 0 then3

bi = fvi , bx = fvx ;4

Erase the colors of vi and vx;5

Set fvi = minimum color that satisfies the constraints with all already6

allocated vertices {v0, v1, · · · , vx−1, vx+1, · · · , vi−1};
Set fvx = minimum color that satisfies the constraints with all already7

allocated vertices {v0, v1, · · · , vx−1, vx+1, · · · , vi};
if max(fv0 , fv1 , · · · , fvi) < Fmax then8

Return F ;9

fvi = bi, fvx = bx;10

Return F ;11

will go for forced assignment but now we will see that this phase cannot further
reduce the span. So, we end up with an assignment (0, 3, 1, 3, 5) which has been
shown in the figure. The label [x] associated with a vertex represent that color x
has been assigned to that vertex.

Figure 4.1: Example for (a) forced assignment (b) compression.
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4.3 Compression
The FE with forced assignment will produce a conflict-free assignment of the
CAP graph. We now apply compression over this conflict-free assignment to
further reduce the span, if possible. We choose the maximum colored vertex and
then reduce the span by reducing the color of this vertex by increasing the colors
of other vertices. Note that this strategy is independent of the frequency assign-
ment we had started with. The only criteria is that it should be conflict-free. In
this compression phase, we will first compress a triangle (a complete graph of 3
vertices) and then propagate the effect of the triangle compression over the whole
graph. To formally describe the compression phase we need to consider the fol-
lowing results.

Theorem 1. If (fu, fv, fx) is a conflict-free frequency assignment of a triangle
T = (u, v, x), where fu ≤ fx ≤ fv, then (f

′
u, f

′
v, f

′
x) = (fu, f

′
u+wuv,max(fx, f

′
v + wvx))

is also a conflict-free frequency assignment of T .

Proof. In order to show that (f ′
u, f

′
v, f

′
x) is a conflict-free frequency assignment

of T = (u, v, x), we have to show that this assignment satisfies the frequency
separation constraints. It is obvious that |f ′

v − f
′
u| = wuv since f

′
v = f

′
u + wuv.

Since f ′
x = max(fx, f

′
v+wvx), depending on the relative values of fx and f

′
v+wvx

we have the following two cases.
When fx ≥ f

′
v+wvx, f ′

x = fx . Hence |f ′
x−f

′
v| ≥ wvx. Also |f ′

x−f
′
u| = |fx−

fu| ≥ wux since (fu, fv, fx) is given to be a conflict-free frequency assignment of
T and f

′
u = fu.

When f
′
v + wvx ≥ fx, f ′

x = f
′
v + wvx ≥ fx. This implies |f ′

x − f
′
v| = wvx.

Now, |f ′
x − f

′
u| ≥ |fx − f

′
u| = |fx − fu| ≥ wux, since f

′
u = fu and (fu, fv, fx)

is given to be a conflict-free frequency assignment of T . Hence |f ′
x − f

′
u| ≥ wux.

Hence the result.

Corollary 1. The largest frequency in the assignment (f
′
u, f

′
v, f

′
x) of T is f

′
x.

Proof. Since f
′
v = f

′
u + wuv, f ′

u ≤ f
′
v. Since f

′
x = max(fx, f

′
v +wvx), depending

on the relative values of fx and f
′
v + wvx we have the following two cases. When

f
′
v + wvx ≥ fx, f ′

x = f
′
v + wvx. This implies f ′

x ≥ f
′
v. For the other case when

fx ≥ f
′
v + wvx, f ′

x = fx. So f
′
x ≥ f

′
v . Hence f

′
u ≤ f

′
v ≤ f

′
x.

Notice that fv and f
′
x are the maximum in the previous and next assignment

of T respectively. Now if we found that f ′
x < fv then this reassignment certainly

minimize the maximum frequency of the previous assignment of T . We will call
this new assignment as triangle compression of T .
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Corollary 2. In the assignment (f
′
u, f

′
v, f

′
x) of T , f

′
u − fu = 0, f

′
v − fv ≤ 0 and

f
′
x − fx ≥ 0. That is, only the new frequency assigned to x is increased from its

previous value and frequency of u remains unchanged.

Proof. We know that f ′
u = fu and f

′
x = max(fx, f

′
v + wvx). So f

′
x ≥ fx. We

are left to show f
′
v ≤ fv. Now |fv − fu| ≥ wuv since (fu, fv, fx) is given to be a

conflict-free assignment of T . Since we know that fv ≥ fu, fv ≥ fu +wuv. Since
f

′
v = fu + wuv, f ′

v − fv ≤ 0.

We will call (f ′
x − fx) as extra value of the new assignment because only fre-

quency of vertex x could increase and the extra contain that amount of increment.
Also we denote u as the µ vertex with respect to the new assignment as its fre-
quency will remain the minimum in the triangle. In our strategy (µ , extra) pair
will be used to spread the effect of triangle compression over the whole graph.
To compress the overall span using the triangle compression, we will follow the
strategy described in Algorithm 2. We will give input as the maximum colored
vertex vi, the frequency assignment vector F and get a reassignment F ′′ as output.

Algorithm 2: Compression
Input: vi, F
Output: F ′′

F ′′ = F ;1

for ∀ triangle T ∈ G such that T has a triangle compression do2

Set F ′ = F ;3

for ∀x ∈ T do4

Set f
′
x according to triangle compression;5

for ∀x ∈ (G \ T ) do6

if fx > fµ then7

Set f
′
x = fx + extra;8

if F ′ is conflict-free and max
x

(f
′
x) < max

x
(f

′′
x ) then9

F ′′ = F ′;10

return F ′′;11

The assignment F ′ obtained by executing Lines 3 to 8 in Algorithm 2 may or
may not be conflict-free. We now state the following theorem to know the number
of comparison required to test whether F ′ is conflict-free or not.

Theorem 2. To ensure whether F
′

obtained in Algorithm 2, is conflict-free or not
we need to check only the constraints between vi and vertices of (G \ {vi}).
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Proof. To prove the above statement first we will partition vertices of (G \ {vi})
into 2 disjoint sets H and L. Here H contains all those vertices x for which
f

′
x > fµ, and L contains the remaining vertices from (G \ {vi}). Observe from

Algorithm 2 that frequencies assigned to the vertices in H have been increased
by extra and frequencies of vertices of L remained unchanged. So there cannot
be any conflict in between vertices of H as their relative frequency difference
remains same. Same logic applies for the vertices of L. Also there will be no
conflict in between vertices of H and L because their frequency difference could
only increase. Thus to ensure whether F ′ is conflict-free, it is sufficient to check
the constraints between vi and (G \ {vi}). Thus it requires only O(n) comparison
to check whether F ′ is conflict-free.

The F ′′ returned by Algorithm 2 either contains the previous assignment F or
a conflict-free assignment F ′ with a reduced span. If it contains an assignment
with reduced span we will call this reassignment as compression. Example 3
illustrates this compression phase.

Example 3. Consider the CAP graph and its assignment (0, 3, 1, 3, 5) correspond-
ing to the order (e, c, a, d, b) as produced by the FE with forced assignment phase
shown in Figure 4.1 (a). Now we will try to compress the span further by our
compression phase. Notice that b has the largest color assigned. Thus we will
consider all the

(
4
2

)
triangles that includes b as a vertex together with their tri-

angle compressions. Among them if we consider triangle (e, b, a) and its triangle
compression we will see that by increasing the color of a by 1 we can reduce the
color of b to 0. The extra value of this triangle compression is 1 and e becomes
the µ vertex and hence its color remain unchanged. Among the colors of the set of
vertices {e, c, a, d, b} \ {e, b, a} = {c, d} whose colors are more than 0 will be in-
creased by 1. Thus after compression the color assignment becomes (0, 4, 2, 4, 0)
as shown in Figure 4.1 (b) which is a conflict-free assignment. Thus total span is
reduced by 1.

4.4 Smoothing
After the compression phase we get an assignment of the vertices of graph G. In
this assignment, some of the vertices’s color may be expanded due to the addi-
tion of extra value in the compression phase. If we keep the assignment in this
form the potential to satisfy further demands may be reduced. Thus we will try
to reduce the colors of some of the vertices so as to cope up with the demand
fluctuations that may arise in a latter phase. To take into consideration this effect,
we introduce a smoothing phase whose objective is to reduce the colors of some
of the vertices while satisfying the required frequency separation constraints. To
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do this, we introduce a metric called channel utilization as Y =
∑
v∈V

fv/|V |. Note

that Y is nothing but the summation of all colors by total number of calls. If Y is
high then we can say that more higher colors are in F . In contrast to this, where
Y is less we can say that more lower colors are there in F . Our objective is to
reduce Y .

In the smoothing phase we will start with an order of vertices and then traverse
through vertex by vertex in that order. While visiting a vertex we will first free its
color and then find the minimum color that satisfies constraints with all already
allocated vertices. Once every vertices are visited we will check whether the value
of Y is reduced. If yes, we will repeat this process as long as a reduction is
possible and then terminate. The algorithm is formally described in Algorithm 3.

Algorithm 3: Smoothing
Input: V , F
Output: F, Y
Y =

∑
v∈V

fv;
1

for ∀v ∈ V do2

Erase color of v;3

fv = minimum color that satisfies constraints with all already allocated4

vertices;

Ynew =
∑
v∈V

fv;
5

while Y > Ynew do6

Y = Ynew;7

for ∀v ∈ V do8

Erase color of v;9

fv = minimum color that satisfies constraints with all already allocated10

vertices;

Ynew =
∑
v∈V

fv;
11

Y = Y/|V |;12

return F, Y ;13

4.5 The overall algorithm
We first find the probabilistic ordering (v0, v1, · · · , vn−1) of the vertices of the
CAP graph. Then we assign color 0 to v0 and then following this order for each
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vertex we put the minimum color that satisfies the constraints with already allo-
cated vertices. But in this process when color of a vertex exceeds the previous
maximum color we will go for a forced assignment phase. Finally when all ver-
tices are colored we will go for a compression phase, where we will try to com-
press the span till it is possible. Finally the smoothing phase is applied to increase
the channel utilization. Formally the overall algorithm is presented in Algorithm 4
where set of vertices V and the degree vector D are the inputs and final assignment
F ′ is the output.

Algorithm 4: Proposed Algorithm
Input: V , D
Output: F ′

for ∀v ∈ V do1

ωv = (dv + rv)mod max(D);2

Sort vertices according to decreasing order of their ω values;3

Let (v0, v1, · · · , vn−1) be this sorted order;4

Set F = φ;5

for ∀vi ∈ V do6

fvi = minimum color that satisfies the constraints with already allocated7

vertices;
if fvi > max(fv0 , fv1 , · · · , fvn−1) then8

F = ForcedAssignment(vi, F );9

Let vx be the maximum colored vertex of F ;10

F ′ = Compression(vx, F );11

while max
y

f
′
y < max

y
fy do12

F = F ′;13

Let vx is the maximum colored vertex of F ;14

F ′ = Compression(vx, F );15

Smoothing(V ,F ′);16

return F ′;17
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Chapter 5

Generalized algorithm

In the generalization of the algorithm we had generalized the forced assignment
and compression phase. In forced assignment we picked up a tuple instead of
picking a pair and in compression we generalized our triangle compression for
higher clique. More formally the steps are explain bellow.

5.1 Generalized forced assignment
The force assignment phase is called when we have an conflict free assignment of
the vertices v0, v1, · · · vi with fvi >

i−1
max
k=0

fvk . Now we form i pairs of vertices by

selecting one from v0, v1, · · · vi−1 and vi. For a pair (vi, vk) we first free the colors
of vi and vk and then allocate minimum color that satisfies the constraints with all
already allocated vertices to vi and vk in this order. Now if this operation reduces
the span we terminate. Else we return back the original colors to those vertices
and go for the next pair.

In the generalization, we choose a k-tuple instead of a pair. We will make all
possible k-tuples (where k is constant) where vi is a member of that tuple. Let
such a k-tuple be (vi, x1, x2, · · · , xk−1). Now we color them in this order. While
coloring we always put the minimum color that satisfies constraints with all the
already allocated vertices. During the process, once we get reduced span, we will
terminate. Else we return back the previous color to those vertices and go for the
next tuple. More formally the algorithm is described in Algorithm 5.

5.2 Generalized compression
We start with a compression algorithm which first compress a triangle then prop-
agate its effect throughout the graph and do overall compression. But the traingle
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Algorithm 5: Generalize Forced Assignment
Input: vi,k, F
Output: F
Set maxCol =

i
max
l=0

(fvl);1

for All possible combination of k − 1 vertices x1, x2, · · · , xk−1 from2

{v0, v1, · · · vi−1} do
Choose an arbitrary permutation (x1, x2, · · · , xk−1) of the selected vertices;3

First save and then free the colors of x1, x2, · · · , xk−1 and vi;4

Allocate minimum color that satisfies the already allocated vertices to the5

vertices x1, x2, · · · , xk−1, vi in order;
Let fvk be the color assigned to vk;6

if i
max
k=0

(fvk) < maxCol then7

return F ;8

Return back the saved values to the vertices x1, x2, · · · , xk−1, vi;9

return F ;10

compression could be generalized further. It could be generalized for a k-clique
instead of a triangle. The generalization is explained in following.

Theorem 3. If (v, u, x1, x2, ...xk−2) is a k-clique and fv, fu, fx1 , fx2 · · · fxk−2
is

a conflict free assignment of it, where fu ≤ fx1 ≤ fx2 · · · ≤ fxk−2
≤ fv then

(f
′
v, f

′
u, f

′
x1
, f

′
x2
· · · , f ′

xk−2
) is also a conflict free assignment where f

′
u = fu,f

′
v =

f
′
u + wuv and ∀i, f ′

xi
= max(fxi

, f
′

v + wvxi
,

i−1
max
j=1

(f
′

xj
+ wxjxi

)).

Proof. In the above reassignment color of u will remain the same. Since f ′
v = f

′
u+

wuv, color of v is conflict free with u. For any i, f ′
xi
≥ fxi

and f
′
xi
≥ f

′
v+wvxi

and

∀j ∈ [1 · · · i−1], f
′
xi
≥ f

′
xj

because f
′

xi
= max(fxi

, f
′

v+wvxi
,

i−1
max
j=1

(f
′

xj
+wxjxi

)).

Thus |f ′
xi

− f
′
u| ≥ |fxi

− fu| ≥ wuxi
as fxi

and fu were conflict free. Also
|f ′

xi
− f

′
v| ≥ wvxi

as f ′
xi

≥ f
′
v + wvxi

. Also ∀j ∈ [1 · · · i − 1]|f ′
xi
− f

′
xj
| ≥ wxixj

as ∀j ∈ [1 · · · i− 1]f
′
xi
≥ f

′
xj

. Hence the proof.

Corollary 3. In the above reassignment, f
′

u ≤ f
′

v ≤ fx1 ≤ fx2 · · · ≤ fxk−2
.

Proof. Since f
′
v = f

′
u + wuv, we get f ′

u ≤ f
′
v. Since f

′

xi
= max(fxi

, f
′

v +

wvxi
,

i−1
max
j=1

(f
′

xj
+wxjxi

)), f ′
xi
≥ f

′
v+wvxi

≥ f
′
v ∀i and f

′
xi
≥ f

′
xj
+wxixj

∀i & ∀j <

i. This implies f ′
xi
≥ f

′
xj
∀i & ∀j < i. Hence the proof.
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In the above reassignment, the color of u remain unchained, color of v de-
creases and color of xi ∀i may increase or remain the same. We will call the
above reassignment as k-clique compression and u as µ vertex and the value
k−2
max
i=1

(f
′

xi
− fxi

) as extra.

Algorithm 6: Generalize Compression
Input: vi,k,F
Output: F ′′

F ′′ = F ;1

for ∀ k-clique Kk ∈ G such that Kk has a k-clique compression do2

Set F ′ = F ;3

for ∀x ∈ Kk do4

Set f
′
x according to k-clique compression;5

for ∀x ∈ (G \Kk) do6

if fx > fµ then7

Set f
′
x = fx + extra;8

if F ′ is conflict-free and max
x

(f
′
x) < max

x
(f

′′
x ) then9

F ′′ = F ′;10

return F ′′;11

Theorem 4. To ensure whether F ′ in Algorithm 6 is conflict free we have to check
the constrains between S = {vi, x1, x2 · · ·xk−2} and vertices of G \S and within
the vertices of S.

Proof. We divide the set of vertices in G into 3 subsets S, L and H . Let S = {vi,
x1, x2 · · ·xk−2}, L = {∀x ∈ V f

′
x ≤ fµ} and H be the set of remaining vertices.

Note that any two vertices in L are conflict free as their colors remain unchanged.
Any two vertices of H are also conflict free as their colors are increased by a
constant value. So we have to check the constraints between vertices of G \S and
S and within the vertices of S.

5.3 The overall generalized algorithm
The overall algorithm is same as Algorithm 4 except we use here the generalized
forced assignment and compression phases. We pass another constant k which
will determine the size of clique we are taking. In formal words the overall gen-
eralized algorithm is presented in Algorithm 7.
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Algorithm 7: Proposed Generalized Algorithm
Input: V , D,k
Output: F ′

for ∀v ∈ V do1

ωv = (dv + rv)mod max(D);2

Sort vertices according to decreasing order of their ω values;3

Let (v0, v1, · · · , vn−1) be this sorted order;4

Set F = φ;5

for ∀vi ∈ V do6

fvi = minimum color that satisfies the constraints with already allocated7

vertices;
if fvi > max(fv0 , fv1 , · · · , fvn−1) then8

F = GeneralizedForcedAssignment(vi, k, F );9

Let vx be the maximum colored vertex of F ;10

F ′ = GeneralizeCompression(vx, k, F );11

while max
y

f
′
y < max

y
fy do12

F = F ′;13

Let vx is the maximum colored vertex of F ;14

F ′ = GeneralizeCompression(vx, k, F );15

Smoothing(V, F ′);16

return F ′;17
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Chapter 6

Complexity of the algorithm

Finding degree of a vertex takes O(n) time. Thus for all vertices it takes O(n2)
time. Sorting the vertices based on these computed values takes O(n log n) time.
So, overall complexity of finding a probabilistic ordering is O(n2). To compute
the complexity of frequency exhaustive with forced assignment phase, we need to
know the worse case span that may result by this phase. The following theorem
computes this worse case span.

Theorem 5. Let ∆ =
∑
u,v

w′
uv where w

′
uv = 1 if wuv ≥ 1, and 0, otherwise. The

upper bound of the span obtained by frequency exhaustive with forced assignment
applied on the CAP graph G(V,W ) is max

uv
(wuv).∆.

Proof. We first transfer the CAP graph G(V,W ) to G′(V,W ′) where w
′
uv = 1

if wuv ≥ 1, and 0, otherwise. Also ∆ is the maximum degree of a vertex in
G′. We know that for any graph a upper bound of span obtained by frequency
exhaustive algorithm is ∆. For forced assignment we only put the minimum color
that satisfied constraints with already allocated vertices. Since a color can conflict
with at most ∆ colors in G′, FE with forced assignment cannot produce a span
greater than ∆. Now we replace all the edge weight 1 of G′ by max

uv
(wuv) and

make a graph G′′. Now, according to Lemma 1, max
uv

(wuv).∆ will be the worst

case span of the G′′. It is evident that any conflict-free assignment of G′′ is also
a conflict-free assignment of G. Thus max

uv
(wuv).∆ is a trivial upper bound of the

span of G.

Note that in FE we visit each node only once and assign the minimum color
that satisfied the constrains with already allocated vertices. Thus finding the min-
imum color for a vertex takes O(nk) where k = max

uv
(wuv).∆, in the worse case.

28



If color of vi exceeds the previous maximum color, we will go for a forced assign-
ment phase. In forced assignment, we consider O(n) pairs where vi is a member
of that pair and for each such pair, we need O(nk) time. So to apply forced as-
signment on vi it takes O(n2k) time. In the worse case, we may have to apply
forced assignment for O(n) vertices, and thus the total time complexity of this
phase becomes O(n3k).

We now compute the complexity of the compression phase. In this phase,
we make O(n2) triangle and for each triangle we perform triangle compression
and then propagate its effect to the whole graph. This propagation takes O(n)
time for each triangle. For each triangle, to check whether the obtained reassign-
ment is conflict-free or not it takes O(n) time as stated in Theorem 2. Thus one
execution of the compression phase takes O(n3) time. We iteratively apply com-
pression till no improvement in span is obtained. At each iteration the span will
be reduced by at least one or should remain unchanged. If the span remain un-
changed, the algorithm terminates. So the total number of iteration could be at
most k = max

uv
wuv∆. So the total complexity of this phase becomes O(n3k).

We now compute the complexity of the smoothing phase. In this phase, we
erase the color of a vertex and then find the minimum color that satisfies all the
already colored vertices. This step requires O(nk) time for each vertex. Thus for
all vertices it requires O(n2k). This step will be executed as long as a reduction
of at least one color is possible. Thus in the worse case time complexity of this
phase becomes O(n2k2). So the total complexity of the proposed algorithm is
O(n3k + n2k2).

We now compute the complexity of the generalized algorithm. The complex-
ity of the probabilistic ordering and the smoothing phase remain same. The gen-
eralized forced assignment chooses (ρ − 1)-tuple so its complexity will become
O(nρk). The generalized algorithm considers ρ-clique compression which re-
quires O(nρ) complexity. Thus the total complexity for the generalized algorithm
becomes O(nρk + n2k2).
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Chapter 7

Simulation results

7.1 Experiment on graphs with edge weight ∈ {0, 1}
We first simulate our proposed algorithm on graphs with edge weights ∈ {0, 1}.
For this type of graph, we have the following result.

Theorem 6. If a CAP graph have only edge weights ∈ {0, 1} and colored by
FE with forced assignment then the compression phase cannot further reduce its
span.

Proof. Suppose a CAP graph G has edge weights ∈ {0, 1} and vertex v has the
largest color obtained after coloring G by applying FE with the forced assign-
ment. Assume that v has color k. As this is a graph with edge weights ∈ {0, 1}, v
must have neighbors with color 0, 1, · · · , k − 1. In any triangle compression, the
extra value should be at least 1. This will increase the color of the vertex which is
assigned with color k− 1 and thus the overall span remain the same as k. In other
case, if the vertex with color k − 1 is the member of that triangle, then k − 1 will
be the 2nd largest color of that triangle. In that case too, its color will be increased
by at least 1 and hence the span will remain as k.

However, the FE and forced assignment will work fine on this kind of graph.
To judge quality of the results obtained by our proposed greedy, we generate ran-
dom graph G(n, p) with n vertices and there is an edge between two vertices with
probability p, to estimate the chromatic no χ(n, p). For each n we generate 10
graphs and for each graph we consider 10 ordering and the average span is re-

ported. We know that the upper bound of E[χ(n, p)] ∼ nlog( 1
1−p

)

log(n)
[12]. In Fig 7.1,

we compare the obtained span by our proposed algorithm with this theoretical
upper bound. The results show the same trend of the spans but a constant factor
deviation from the upper bound. For p = 0.5, we plot the span for n = 1 to 500 in
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Fig 7.1. Here X-axis contains the values of n and Y-axis is the value of χ(n, 0.5).
The smooth curve represents the upper bound and the rough curve represents the
obtained χ(n, 0.5). The results for p = 1/3 and p = 2/3 have been shown Figs.
7.3 and 7.2 respectively.

In Table 7.1, the first column shows the value of X(150, 0.5) and the second
column shows the percent of occurrence of that value. As shown in the table the
mean span obtained is 24.73. From this table, we can say that the values are highly
concentrated around the expected value. This statement satisfies the expression
given by [11] that is P (|χ(n, p)−E[χ(n, p)]| > ε) < 2exp( ε2

2n
) . Also notice only

2 values have high percentage, rest are so small. This is also following a result
of [13] for random graphs. Table 7.2 shows the results for p = 0.33 where the
mean obtained is 17.13. Also Table 7.3 shows the results for p = 0.67 where the
mean obtained is 34.14. Experimentally, we get |χ(n, p)−E[χ(n, p)]| ∈ [0, 4] by
considering n up to the value of 500.

Table 7.1: Histogram of 150 vertex graph with p = 0.5 where mean span is 24.73

χ(150, 0.5) Percent

22 0.067
23 4.44
24 33.37
25 47.47
26 13.71
27 0.911
28 0.031

Table 7.2: Histogram of 150 vertex graph with p = 0.33 where mean is 17.13

χ(150, 0.33) Percent

15 0.1956
16 14.2844
17 58.8267
18 25.3956
19 1.2889
20 0.0089
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Table 7.3: Histogram of 150 vertex graph with p = 0.67 where mean is 34.14

χ(150, 0.33) Percent

31 0.1467
32 3.2978
33 20.3200
34 41.7867
35 27.8889
36 6.0844
37 0.4667
38 0.0089
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Figure 7.1: n vs E[χ(n, 0.5)]

7.2 Experiment on random weighted graph
To simulate the behavior of our generalized algorithm, we have generated few
random graphs and applied our algorithm for k-clique where k = 3, 4, 5. We
generate random graphs on 50, 100 and 200 vertices. For each graph, we choose
edge weights randomly from [0 · · · 3]. We have generated 100 such graphs for
each case. We simulate our algorithm for each graph 10 times and report both the
best and average span we obtained. Finally we take the mean of those best and
average values by considering all 100 graphs. In Table 7.4 best results’ mean is
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Figure 7.2: n vs E[χ(n, 0.67)]
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Figure 7.3: n vs E[χ(n, 0.33)]

shown and in Table 7.5 mean results’ mean is shown. We can see that both best
and mean result is improving as the clique size is increasing. This denotes our
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greedy is a tunable greedy where to get better result we might increase the clique
size. But it is important to note that this will take more time too.

Table 7.4: Best Result

V ertex No. 50 100 200

3− clique 32.11 58.11 104.97
4− clique 31.70 56.54 102.83
5− clique 31.46 54.84 101.83

Table 7.5: Mean Result

V ertex No 50 100 200

3− clique 34.48 60.83 108.32
4− clique 33.70 59.41 105.96
5− clique 33.61 59.11 105.12

We have also generated random weighted graphs with vertex number 50, 100,
200 and edge weight between [0, 1], [0, 2], [0, 3], [0, 4], [0, 5]. For each instances,
we have generated 100 graph. That is 100 graphs are generated on 50 vertices
where edge weights belong to the range [0, 1] and so on. For each graph we run
both our algorithm and the probabilistic greedy algorithm (PGA) [1] 10 times and
measured the best span. We then take the mean over those 100 best results and
shown in Table 7.6. It can be seen from the table that the span obtained by our
algorithm is better than the PGA algorithm.

7.3 Results on Benchmark Instances
We have simulated our proposed algorithm over all the benchmark instances intro-
duced in Section 2. The results are shown in Tables 7.7 and 7.8 for the problems 1
to 11. In Table 7.7 the computation time taken by our proposed algorithm is com-
pared with other existing algorithms. Table 7.8 compares the span obtained by our
algorithm with other existing algorithms. The row Lower Bound in Table 7.8 cor-
responds to the lower bound for each of the problems as reported in [18, 8, 19].
The rows Best Results, Mean Results and Mean Gaps represent the best result,
average result of 100 runs and the deviation from optimality in percentage respec-
tively obtained by our proposed algorithm. The results of problems 12 through 14
are not shown in the table. These problems are optimally solved by [1] and [3] in
0.1 and 0.23 seconds respectively. Our algorithm takes a fraction of milliseconds
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Table 7.6: Comparison with PGA

V ertex No Edge weight Mean span of our algorithm Mean span of PGA

50 [0, 1] 9.84 10.94
50 [0, 2] 20.74 23.36
50 [0, 3] 32.29 36.82
50 [0, 4] 43.69 49.86
50 [0, 5] 55.25 63.73
100 [0, 1] 17.08 19.00
100 [0, 2] 37.06 41.61
100 [0, 3] 58.02 65.21
100 [0, 4] 79.53 90.43
100 [0, 5] 101.64 115.76
200 [0, 1] 29.93 33.08
200 [0, 2] 65.57 75.52
200 [0, 3] 104.94 115.69
200 [0, 4] 144.34 160.65
200 [0, 5] 184.51 211.97

to produce the optimal result. For all problems we run 100 iterations of our algo-
rithm and report the mean span. We get optimum result within 10 iterations for all
problems except problems 2 and 6. For problems 2 and 6 our algorithm produces
428 and 260 channels but the computation times taken are 1.71 and 0.53 seconds
only.

We also simulate our algorithm for 15, 30, 40 vertex benchmark instances as
described by [1], where s1 = 3 s2 = 2 s3 = 1. We run our algorithm for 3-
clique 1000 times and report the best value. Both time and the obtained span are
reported in Table 7.9. The time and span corresponding to the PGA algorithm are
taken from [1]. Thus from this analysis we can conclude that our algorithm takes
reasonably small computation time but produces span very close to the optimality
and thus very much suitable for a real time application.
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Table 7.8: Comparisons of required bandwidth between the existing cap algo-
rithms and our approach

Problems 1 2 3 4 5 6 7 8 9 10 11
Lower Bounds 380 426 532 532 220 252 308 308 72 308 70
Best Results 380 427 532 532 220 259 308 308 72 308 70
Mean Results 380.17 438.16 532.21 532.06 220.99 264.78 308.07 310.29 72 309.75 70
Mean Gaps(%) 0.05 2.85 0.04 0.19 0.45 5.05 0.02 0.74 0.00 0.24 0.00

(2013)[19] 381 448 533 534 221 267 308 311 72 309 73
(2006)[18] 380 426 532 532 220 252 308 308 72 308 70
(2006)[6] 380 431 532 532 − 252 − 308 − − −
(2003)[17] 380 426 532 532 220 252 308 308 − − −
(2001)[16] 380 462 532 532 220 272 308 308 72 308 78
(2001)[20] 380 426 532 532 220 253 308 308 72 − −
(1998)[8] 380 426 532 532 220 252 308 308 − − −
(1998)[9] − − − − 220 267 − 308 − − −
(1996)[23] 380 432 532 532 220 262 308 308 72 − −

Table 7.9: Benchmark problem with 15,30,45 vertex graph

V ertex No 15 30 40

Our Approach 16 24 18
PGA 16 28 20

Time

Our Approach 0.07s 0.32s 0.31s
PGA 1s 1s 1s
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Chapter 8

Conclusion

We have presented a novel probabilistic greedy algorithm to solve the CAP . The
CAP is represented by means of a CAP graph. The proposed algorithm is based
on first finding a probabilistic ordering and then assigning frequencies to them us-
ing frequency exhaustive strategy with forced assignment following that obtained
ordering. Next a compression phase is iteratively applied to reduce the span as far
as possible. Finally a smoothing phase is applied to increase the channel utiliza-
tion. We have simulated our algorithm on well-known benchmark instances and
notice that it gives close to optimum result in a very small execution time even
for the most difficult benchmark instances. From the existing literature we saw
that there are heuristics which take very high execution time to reach the optimum
while some others take small execution time but results a span far from the opti-
mality. Our algorithm takes reasonably small computation time but produces span
very close to the optimality and thus very much suitable for a real time application.

Also we have generalized our approach. In the generalization we see that
the span can be reduced at the cost of more execution time. Depending on the
application, if bandwidth minimization is more important than the computation
time we can go for higher order clique to get better result. We can use different
clique size for the generalized forced assignment and generalized compression
phase. So we give a tunable greedy which can be used according to the type of
applications.
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