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Abstract

This objective of this thesis is to detect the presence of moving people and count the

number of individuals in a given video. The problem is to identify motion regions in

the video, separate the motion regions from the static background, form foreground

objects from the motion regions, classify each object to determine if it is a person,

then track each person detected throughout the duration of the video.

Our focus is to improve the classification accuracy by using new features that

are based on pairwise distance between training points in feature space, and reduce

the dimensionality of the feature space by applying a data condensation method

prior to feature extraction. The proposed method gives better accuracy and lower

misclassification rate on a benchmark image dataset, as well as a higher tracking

accuracy on video datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

The problem of detecting human presence and counting the number of moving peo-

ple in video has been a widely studied research topic and yet its many challenges

still leave room for improvements over existing solutions. The problem has three

aspects - moving object detection, recognition of persons among the detected ob-

jects, and keeping track of the number of distinct people detected. Each of these

three stages have its own challenges that have been addressed to varying extent by

state-of-the-art methods. The focus of this thesis is on understanding the challenges

and improving the accuracy of the problem solution by using a different approach

to human detection in video.

Human detection in video and analysis of human motion has a wide number of

applications, such as visual surveillance for abnormal event detection, crowd count-

ing in a mall entrance, individual person identification and automatic pedestrian

detection systems. Each application involves a separate context and a different set

of challenges for the person detection and tracking systems. For example, visual

surveillance typically involves stationary camera video, taken from multiple cam-

eras each facing a different angle. Advanced Pedestrian detection systems employ

an on-board camera on a vehicle, thereby restricting the use of motion detection

techniques that are applicable in case of video obtained via static camera. Counting

people at a mall entrance requires stationary cameras, often positioned at different

angles. Each application governs it’s own set of rules and constraints for detection

and tracking. In this thesis the focus is on video obtained through a stationary

camera, such as surveillance video.

The three stages of the online method for human detection and tracking are:

1. Background subtraction/Foreground segmentation : The foreground
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comprising of the motion regions is separated from the stationary background

pixels in each video frame. The moving objects are obtained by noise re-

moval, elementary image morphological operations followed by a connected

components algorithm on the foreground pixels.

2. Classification : The moving objects are represented using appropriate fea-

tures, which are needed for binary classification into the human and non-

human class. Training images from both the class of humans and the comple-

mentary class are used to train a detector.

3. Tracking : Tracking involves find a temporal correspondence between the

detected object in the each video frame. Each individual is associated with

a predicted trajectory which is dynamically updated on the basis of actual

observations. At the end of the tracking phase the total number of distinct

individuals in a video is obtained.

There are many challenges surrounding the above mentioned three stages of the

person detection and tracking system, some of which are elaborated below:

• The human form as visible in video exhibits high variation due to difference in

dimensions, attire, pose, angle of view (front, rear or side view), and sometimes

carrying different objects, make the process of identification as human quite

difficult. Moreover the basic assumption of fully visible people is mandatory

for the human detection process.

• The presence of background clutter, slow-moving background objects, change

in illumination, presence of shadow, obstruction from view (occlusion) makes

the process of separating background from foreground objects difficult. Since

there can be small regions of background intensity variations which might be

falsely labelled as foreground, a threshold on the area of the foreground object

is used in order to prevent false detections due to pixel distortions and video

compression.

• A person detected in a frame may not be visible in subsequent frames (due

to occlusion), and again reappear in view after a time lapse. The people may

move together as a group, split, and merge again. This makes the process

of counting difficult. So a threshold is necessary on the time duration of a

trajectory (path) of a detected object for updating of person count.
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1.2 Literature survey

1.2.1 Background Subtraction

Foreground segmentation is the method for detection of the moving objects of inter-

est (humans) from the rest of the rest of the video frame (background). Background

subtraction is a useful method for foreground segmentation, when the video is ob-

tained via a stationary camera. The background image or “background model”

is a representation of the scene with no moving objects and must be dynamically

updated to adapt to the change in illumination.

The simplest approach for background subtraction is to model the intensity value

at pixel location in a video frame as a Gaussian distribution, whose parameters are

updated using dynamically [27]. This method is suitable for indoor environments

where the background is unimodal, and illumination is constant.

To handle effects of varying illumination and multimodal backgrounds, typical of

outdoor environments, pixel intensity as a function of time is modelled as a mixture

of Gaussians, whose parameters are updated online to meet varying conditions of

illumination, and objects moving in and out of the video frames. This method by

Stauffer and Grimson [24] has become the standard of background subtraction.

The above methods of background subtraction are parametric in nature. A non-

parametric approach by Elgammal et al.[8] uses a kernel density estimation of the

pixel intensity density function. This technique performs better than MoG when

there are rapid changes in the background, the Kernel based method adapts much

more quickly to variations in the background. But the computational requirements

are much higher for this method.

1.2.2 Human detection

Detecting moving people in video is one of the most challenging tasks in object

detection, mainly due to the variety in shape, size, colour and posture of each

person. The object classification system receives a list of Regions of Interest (ROIs)

from the result of the background subtraction system, and each such ROI is subject

to binary classification to determine whether the object it contains is human or not.

One of the earliest person detectors was the Chamfer System, a silhouette-

matching algorithm proposed by Gavrila et al. [11] [10] [12]. This system consists

of a hierarchical template-based classifier that matches distance-transformed ROIs

with template shapes or exemplars. Another shape-based approach to detection is

by Wu and Nevatia [28], which utilizes a large pool of short line and curve segments,
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called “edgelet” features, to represent shape locally. Similarly, “shapelets” [22] are

shape descriptors in local patches. Multiple shapelets are combined into an overall

detector by Boosting.

Papageorgiou et al. [20] carried out person detection using Haar wavelets as

features to train a quadratic support vector machines (SVMs). The feature space

consisting of overcomplete dictionary of multiscale Haar wavelets captures the sig-

nificant information about elements of the class of humans. The SVM classifier is

trained using positive and negative examples from the class of humans and class

of all non-human objects respectively. While the Haar wavelet based detector was

proposed for static images, an efficient moving person detector was built by Viola

et al.[25]. This method uses Haar-like features that incorporates spatial as well as

motion information, and Adaboost cascades for classification.

A significant improvement to person detection results was obtained by adopting

the use of gradient-based features, over intensity-based features. Dalal and Triggs

[6] [7] present a human classification scheme that uses SIFT-inspired [15] features,

called histograms of oriented gradients (HOGs), and a linear SVM classifier. Zhu

et al. [33] use HOG features with an additional constraint of integral histograms

for fast computation, and feature selection using Adaboost cascades.

While no single feature has been shown to outperform HOG, additional features

can provide complementary information. Wang et al. [26] combined a texture

descriptor based on local binary patterns (LBP) [18] with HOG with a slightly

modified linear SVM classifier.

1.2.3 Tracking

Tracking is the temporal correspondence between the individual persons detected

in the current frame with those in the previous frame. Each such correspondence

is a temporal trajectory in state space. The detected objects can be represented

as a set of points, in which case the tracking mechanism is referred to as point

tracking. Statistical correspondence methods can solve point tracking problems by

taking the measurement and the model uncertainties into account during object

state estimation. Bayesian filters such as Kalman filter [21], Extended Kalman

filter [3] and Particle filters [23] are widely used for single object tracking, which

can be extended to multiple object tracking with the help of data association to

assign detections to target tracks.

A Kalman filter is used to estimate the state of a linear system where the state

is assumed to be distributed by a Gaussian. Extended Kalman filter relaxes the

assumption of linearity in state equations, thus resulting in a sub-optimal solution.
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A particle filter, on the other hand is well-suited for state estimation when the state

transition equations are non-linear and the state variables do not follow Gaussian

distribution. There has been extensive application of particle filters in single object

tracking [14] as well as multi-target tracking [30] [13] [29] [31] [19] [4] [5] [16].

1.3 Approach Overview

The existing literature separately tackle the three problems - background subtrac-

tion, human detection (by classification) and human tracking. Our approach inte-

grates all three parts into one, solely for the purpose of counting the total number

of moving people in a video scene. The background subtraction method used in our

implementation is one of the state of the art algorithms, with slight adjustment of

parameters and post-processing to adapt to the visual conditions of our test video

datasets.

The human detection stage involves a feature extraction phase followed by clas-

sification. The most popular feature space for human detection is Histogram of

Oriented Gradients(HOG), which is used in some form in almost every modern im-

plementation of person detectors. This feature space when used with a classifier such

as linear SVM, results in a number of misclassifications even using the benchmark

training datasets. Our approach involves a pairwise distance-based transformation

of the HOG features which when used to train the classifier (linear SVM) gives

improved accuracy of classification in terms of lower misclassification rate, thereby

improving the results of human detection. Since the input to the tracking stage is

the detected persons resulting from the human detection stage, this also results in

more robust tracking and accuracy of people counting.

Our tracking stage uses the Bayesian particle filter, updated with our own ob-

servation model, with additional rules to adapt to a multiple-target tracking frame-

work. The direct result of the tracking stage is the count of the individual persons

in a video scene.

1.4 Organization of the Report

This Chapter introduced the problem of human detection and tracking in video,

listed the main applications, mentioned some of the challenges, outlined the main

steps of the algorithm, described previous related research work and provided a basic

overview of our approach and the motivation behind it. The remaining chapters

are organized as follows:
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• Chapter 2 gives a description of the background subtraction algorithm used.

• Chapter 3 provides a description of the proposed human detection algo-

rithm, using distance-transformed features and an SVM classifier to detect

the moving people in the the video.

• Chapter 4 gives the experimental results of the proposed method and its

comparison with the state of the art on benchmark image datasets.

• Chapter 5 describes the algorithm for tracking and defines rules and condi-

tions for data association in a multi-person tracking framework.

• Chapter 6 gives the experimental results on benchmark video datasets using

both the proposed method and existing method for feature extraction.

• Chapter 7 summarises our approach and results along with the future scope.
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Chapter 2

Background Subtraction

In order to detect the moving objects in a video, each video frame must be seg-

mented into the foreground, consisting of moving object pixels, and the background,

consisting of stationary portions of the video frame. An estimate of the background,

often called a background model is computed and evolved frame by frame, moving

objects in the scene are detected by the difference between the current frame and the

current background model. The background is represented as a statistical model, in

the form of either a single Gaussian distribution, or a mixture of Gaussians. Using

a single gaussian to model the background suffers from a lot of drawbacks, such as

failure to represent multiple objects, inability to adapt to changing illumination. On

the other hand, a mixture of Gaussians, whose paramaters are dynamically updated,

can handle some of the issues, such as multiple objects in foreground, background

clutter, multimodal background, slow changes in illumination. This method, by

Stauffer et al. [24] is the most popular background subtraction algorithm used by

different applications.

2.1 Background Modelling using Mixture of Gaus-

sians

Intensity value Ix,y at a pixel position (x, y) over a set of frames at time t =

t1, t2, · · · , tn−1 is assumed to have a mixture density function of K Gaussians, where

K is the number of number of surfaces visible at pixel position (x, y) over the du-

ration of the the video. K is assumed to be a constant.

A pixel process is a time series of intensity values at a particular pixel location.
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At a time instant t, pixel process at pixel (x0, y0) is

{X1, X2, · · · , Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t}

The pixel process at time t is modeled by a mixture of K Gaussian distributions

P (Xt) =
K∑
i=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (2.1)

P (Xt) is the mixture density function, where the each of the individual multivari-

ate normal distributions with mean µk and covariance matrix Σk have the density

function of the following form:

η(Xt|µ,Σ) =
1

(2Π)
n
2 |Σ| 12

exp− 1
2

(X−µ)T Σ−1(X−µ) (2.2)

For computational reasons, the covariance matrix is assumed to be of the form

Σk,t = σ2
kI (2.3)

The weights of the gaussians are normalized (
∑K

i=1 ωi = 1 )

2.2 Dynamic updation of parameters

If the pixel process were a stationary process, a standard method for maximizing

the likelihood of the observed data is expectation maximization (EM) algorithm.

However, since new objects are introduced in the video frames and previously ob-

served objects leave the frames, an on-line approximation to EM algorithm was

proposed by [24].

If Xt = Ix,y = (ir, ig, ib) is the intensity vector at a pixel location (x,y), Xt is

assigned to one of the K Gaussian distributions by matching the parameters of the

distribution to the observed value Xt, and thereafter the parameters of the mixture

distribution is updated accordingly.

A match is said to occur between Xt and the kth Gaussian distribution if

|Ix,y,j − µk,j| < 3σk, j ∈ {r, g, b},∃k ∈ K (2.4)

Note that if there is more than one match, in our implementation we have

assigned it to the Gaussian of the highest weight.
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The weights of the Gaussians are updated as follows:

ωk = ωk + α(1− ωk) (2.5)

ωj = (1− α)ωj, j ∈ K, j 6= k (2.6)

where k is the matched distribution and α is a learning rate

The parameters of the matched distribution (kth Gaussian) are updated as

follows:

µk,t = (1− ρ)µk,t + ρXt (2.7)

σ2
k,t = (1− ρ)σ2

k,t + ρ(Xt − µk,t)T (Xt − µk,t) (2.8)

where ρ = αη(Xt|µk,Σk)

When there is no match with any Gaussian, i.e, the condition defined in 2.4 fails

∀k ∈ K, the weights of the Gaussians are updated.

ωj = (1− α)ωj,∀j ∈ K, (2.9)

After that, the distribution with the least weight is replaced with a new distribution

having the following parameters.

µk = Xt

σ2
k = σ2

0

ωk = ω0

where σ2
0 is an initial value of high variance, set experimentally, and ω0 is an initial

low value of weight assigned to the new distribution.

A matched distribution implies that the pixel intensity value Xt is previously

observed and assigned to one of the K Gaussian distributions. An unmatched value

of Xt implies it either belongs to a new object introduced to the frame, or was

previously replaced due to low weight of the distribution it was initially assigned

to. A high value of K implies more objects can be represented in the mixture

density function, but with additional computational cost. The original paper uses

a value of K = 3 to 7.

2.3 Background Model Estimation

From the mixture of Gaussians obtained in the previous stage, each Gaussian must

be evaluated to determine whether the pixel process it models belong to a foreground

9



object or the background. For this reason, there is a basic assumption in this method

that the background is visible for the greater portion of time than the foreground

objects.

The Gaussians are ordered by the value of ω/σ. Since the background intensity

levels will have lower variation than object pixels, and the assumption that the

background being visible for a longer time results in higher weight of the Gaussians

representing background pixel processes. The list of Gaussians ordered by decreas-

ing value of ω/σ will have the more predominant background distributions in the

beginning and the less frequent transient background distributions near the end of

the list, followed by the moving object distributions.

From the ordered list the first B distributions are chosen to represent the Back-

ground model, where

B = argmin
b

(
b∑
i=1

ωk > T ) (2.10)

where T is a threshold that indicates the minimum portion of the frame that is

occupied by the background.

Let k is the index of the matched/replaced Gaussian for pixel intensity Xt. If

k belongs to the first B ordered distributions, the the pixel at location (x, y) is

marked as background at time instance t. Otherwise the pixel is marked as object

pixel at time instance t.

2.4 Parameter Initialization

In our implementation, the parameters of the algorithm have been initialized with

experimentally determined values.

• Number of Gaussians K = 7. It was observed that a lower number of Gaus-

sians does not allow much variation in the background model,whereas a higher

value of K results in unnecessary computational overhead without any signif-

icant improvement to performance.

• Learning Rate α = 0.01. A higher learning rate results in portions of slow-

moving objects becoming part of the background quickly. A lower learning

rate results in very low adaptability to changes in pixel values over time.

• Threshold T = 0.7. If the threshold is lower, a number of background pixels

showing slight intensity variations is detected as object pixels. A higher value

of T results in slow-moving object pixels becoming part of background.

10



(a) (b) (c)

Figure 2.1: (a) is the original video frame, (b) is the result of background subtrac-
tion, (b) is after noise removal and connected components analysis

2.5 Noise Removal and Connected Components

Analysis

In each video frame the background subtraction results in some pixels being marked

as foreground and the rest as background. In order to obtain the distinct objects

made up of foreground pixels, it is necessary to carry out connected components

analysis on the foreground pixels. The resultant video frame consists of distinct con-

nected components, each of which represents a moving object. Each such connected

component represents a Region of Interest (ROI), which is used by the classification

stage.

Background subtraction in general results in a number of background pixels be-

ing falsely labelled as object, due to repetitive background motion or poor video

quality as a result of video compression. In such cases, often a single pixel or a

group of two or three pixels is identified as a single object after connected compo-

nent analysis. On other instances, a portions of a foreground object is labelled as

background due to shadows, insufficient illumination, or colour match of garments

with the background. In such cases a single foreground object is split into a number

of separate connected regions.

In order to reduce such anomalies, median filtering for noise removal and binary

dilation for connecting nearby disconnected components has been performed prior to

the connected component analysis. Figure 2.1 shows the results of the background

subtraction and the post-processing.
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Chapter 3

Human Detection by Classification

After obtaining the segmented foreground objects in the form of bounding rectan-

gles around each moving objects, also termed as ROIs, the task is to classify each

such ROI either into the class of all humans or into the class comprising of all objects

other than human beings. This binary classification is a challenging task mainly

because the variety of human body shape, orientation, colour of garments. The fea-

tures used for classification must represent the generic representation of the human

body which is mostly invariant of scale change, colour and illumination. Pixel inten-

sity values, which is a commonly used feature in face recognition problems, cannot

be used as a feature for human detection because of the problems mentioned above.

Pixel gradient based descriptors capture the contour of the human body better than

than intensity-based descriptors, but the location of gradients is subject to rotation

and translation, due to the hand and leg movements. To overcome these challenges,

Histogram of Oriented Gradients (HOG) features were proposed by Dalal and Triggs

[6] and no single feature has been shown to outperform HOG in human detection

till date.

3.1 State of the art: Histogram of Oriented Gra-

dients Features

The idea behind Histogram of Oriented Gradients (HOG) originated from Edge-

Orientation Histograms [9] and SIFT [15]. The HOG feature space encodes several

information that intensity or frequency-based methods cannot encode. HOG fea-

tures capture edge and contour information in the form of image gradients. Since

the human body contour is subject to changes, the feature space must be invari-

ant to rotation and translation to effectively represent the human shape. For this

12



purpose, instead of recording raw image gradients, HOG encodes information in

the form of orientation and spatial histograms over a grid of cells. Each orientation

histogram bin corresponds to a range of gradient directions in order to permit move-

ment of human limbs. The invariance to translation of human body segments is

captured by the spatial histogram bins. The HOG feature computation is provided

below.

• The ROI image is resized to a fixed size that matches the size of the detection

window, whose default size is 128x64.

• The detection window is divided into multiple overlapping blocks of 16x16

pixels. The horizontal and vertical overlap between adjacent blocks is 8 pixels

wide.

• Each such block is divided into 4 cells of size 8x8 each. Thus each cell has

4-fold coverage by blocks.

• Each cell contains an orientation histogram of the image gradient directions

within the boundaries of the cell. Each histogram bin represents a range for

gradient directions, and voting into a bin is based on gradient magnitude.

• Fine orientation binning is performed within each cell, and course spatial

binning is performed within a block of several cells.

• The histogram bins are normalized over each cell, and then over the entire

block.

• The histogram entries from all the overlapping blocks are combined to form

the HOG descriptor feature vector.

For a detection window of size 128x64, with block size 16x16, and 8 pixel block

overlap, there are a total of 105 blocks. Each block containing 4 cells and 9 his-

togram bins per cell makes a total feature size of 3780, for a single test image

ROI.

3.2 Proposed Distance-based Feature Transfor-

mation

The performance of the binary classification depends on how well separated are the

points belonging to one class from the points in the other class. A transformation
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is proposed for the input HOG feature space, the resulting feature space providing

greater separation between the two classes. The transformed feature space encodes

the pairwise distance between every two training points in the HOG feature space

as a new feature. The total number of dimensions is equivalent to the total number

of training points. When a test point is to be classified, its distance from each of

the training points forms the new feature vector. A similar method of constructing

features using pairwise distances to cluster centres was proposed in [32] to solve

the problem of multi-label learning. The intuition behind this proposed feature

extraction method is that the distance between any point to the rest of the points

in the same class is lesser than its distance to points from the other class.

3.2.1 Proposed Algorithm

The proposed algorithm works as follows:

Let S = {x1, x2, · · ·xN} ⊆ Rd be the set of points in the input feature space.

Let θi denote the class label of xi , i = 1, 2, · · · , N .

θi ∈ {1,−1} ∀i = 1, 2, · · · , N
Let there be m training examples from the positive class, i.e, the class of all

images of humans. Let n be the number of examples from the negative class,

comprising of images of objects other than humans.

The positive training points in the input feature space are

S1 = {xi ∈ S : θi = 1, i = 1, 2, · · · , N}

Similarly the negative training points are

S2 = {xi ∈ S : θi = −1, i = 1, 2, · · · , N}

Thus |S1| = m and |S2| = n

A mapping φ : S → S∗ from the original d dimensional input feature space S to

a (m+ n) dimensional new feature space S∗ is defined as follows.

1. Let S1 = {s1,1, s1,2, · · · , s1,m} and S2 = {s2,1, s2,2, · · · , s2,n}

2. Let xi ∈ S, be a point in the input feature space. The transformed point

φ(xi) ∈ S∗. Let φ(xi) = [Φi,1,Φi,2, · · · ,Φi,m+n] where Φi,j represents the value

of the jth feature (j = 1, 2, · · · , (m+ n)) in φ(xi).
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3. φ(xi) is then calculated as follows

Φi,j = d(xi, s1,j), j = 1, 2, · · · ,m (3.1)

Φi,m+k = d(xi, s2,k), k = 1, 2, · · · , n (3.2)

where d(·, ·) is the distance between the points, and set to euclidean metric

in our implementation.

4. The class label of φ(xi) is set to θi, the class label for xi.

5. Steps 2, 3 and 4 are repeated for all values of i = 1, 2, · · · , N .

The resultant feature space S∗ is of dimensionality N , where N = m + n, and

there are a total of N samples in the transformed training set.

3.3 Data Condensation

The proposed method of feature transformation calculates pairwise distance from

a training point x ∈ Rd to every other point in the training set and this forms the

new feature vector z ∈ RN . With increase in the number of training points the

dimension z increases, until it may so happen that N � d. Therefore it is necessary

to carry out some form of data condensation by retaining only the representative

points of a class in the reduced training set, prior to the feature transformation

described above.

The data condensation algorithm used in this implementation was originally

proposed by Mitra, Murthy and Pal [17]. The algorithm proceeds as follows:

Let S = {x1, x2, · · ·xN} ⊆ Rd be the set of training points in the input feature

space.

Let K be a positive integer.

Let A = Φ

1. Let ri be the minimum value of radius for which the number of points in a

disc of radius ri with centre as xi contains K points, i = 1, 2, · · · , N . ri is the

distance (euclidean) of the Kth nearest point from xi.

2. Let xi0 be the point having radius ri0 = min
i=1,...,N

{ri}.

3. Set A = A ∪ {xi0}

4. Let Bi0 = {x ∈ S : d(x, xi0) ≤ ri0}
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5. Set S = S −Bi0

6. Repeat Steps 1 through 5 while ri0 ≤ rth where rth is a threshold on the

minimum radius.

At the end of the procedure the set A contains the reduced training dataset.

3.4 Classification framework

Now that the features corresponding to each ROI image is available, the task is

to perform binary classification. The most commonly used classifier for human

detection is SVM. SVM as a baseline classifier has the advantages of being the one

of the most efficient, reliable and scalable classifiers. The following properties of

linear SVM make it popular - it converges reliably during training, it is scalable,

i.e, can handle large data sets, and has good robustness towards different choices of

feature sets and parameters.

Dalal and Triggs [6] use Linear SVM (soft margin C = 0.01) as a baseline clas-

sifier on HOG features, hence we use the same on the transformed feature space in

order to make a direct comparison. Linear SVM ensures that the feature set is as

linearly separable as possible in the input feature space, so improvements in perfor-

mance imply an improved encoding of features from the input image. Greater the

separation of the points in the two classes, lesser is the number of misclassifications

by the linear SVM.

First a linear SVM is trained using a set of positive (human) and negative(non-

human) training images. The classifier is then used to classify each test image ROI.

The confidence of the SVM detection corresponds to the distance of the feature

point from the hyperplane of separation.

16



Chapter 4

Experimental Results for

Classification

The performance of classification using the proposed feature transformation is eval-

uated against the usage of the default HOG feature space, with the same classifier

configuration. The training and testing datasets used for evaluation consist of im-

ages, since the authors who proposed HOG [6] had applied their method for human

detection in images, and the image dataset used in their implementation, the INRIA

Person dataset [1], has become the benchmark for evaluation of all human detection

implementations.

4.1 Image Dataset Description

The full training dataset consists of 2416 positive images in the INRIA Person

training dataset. The negative training samples are 1542 images of cars. Since

the video surveillance datasets used for tracking consist of cars as the only moving

ojects, we have manually selected images of cars from various Car datasets. The

testing data consist of 1218 images of persons in the INRIA test dataset, and 854

images of cars. Figure 4.1 shows some of the training samples in our training

dataset.

4.2 Classifier configuration

A soft-margin (C = 0.01) SVM with a linear kernel has been used as baseline

classifier in both the state of the art and the proposed method for human detection.
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(a) (b) (c) (d)

Figure 4.1: (a) and (b) are samples from the INRIA Person dataset, (c) and (d) are
images from the car dataset

4.3 Dataset configuration

The human detection method has been implemented under two configurations of

the training dataset:

• The full training set consisting of 2416 positive and 1542 negative examples

is used for feature extraction followed by classification.

The default HOG feature vector has dimension 3780.

The feature transformation proposed in Section 3.2 result in 3958 dimensional

feature vector.

• The data condensation algorithm described in Section 3.3 is first applied to

reduce the number of training points and then feature extraction is performed.

The parameters of the condensation algorithm have been experimentally de-

termined as follows:

1. K = 2

2. rth = 7 for the positive training set, and rth = 8 for the negative training

set.

The reduced training set consists of 643 positive examples and 433 negative

examples. The straightaway consequence of the data condensation procedure

is the reduced dimension of the features computed by our proposed method.

The new feature size is 1076, while the original feature size for HOG remains

3780.

Under both configurations, the comparison of the proposed method is done with

the state of the art.
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4.4 Evaluation metrics

The metrics used for performance evaluation are:

• False Positive count (FP)

The number of non-human test images incorrectly classified as human.

• False Negative count (FN)

The number of test images of persons incorrectly classified as non-human.

• Misclassification count

(FP + FN)

• Recall/Hit Rate

TP
(TP+FN)

, where TP is the True positive count.

• Precision

TP
(TP+FP )

• Accuracy

(TP+TN)
(TP+FP+TN+FN)

, where TN is the True negative count.

4.5 Results

The following table presents the results of the human detection algorithm for both

the existing and proposed implementations.

Method Training Data Size FN FP FP+FN Recall Precision Accuracy

Proposed Full 42 58 100 0.965 0.953 0.9517

Features (2416 pos + 1542 neg)

+ Reduced 32 72 104 0.9737 0.9428 0.9498

SVM (643 pos + 433 neg)

HOG Full 54 69 123 0.9557 0.944 0.9406

Features (2416 pos + 1542 neg)

+ Reduced 58 80 138 0.9523 0.9354 0.9307

SVM (643 pos + 433 neg)

Table 4.1: Classification Results on INRIA dataset
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4.6 Discussion

Our proposed method gives higher confidence of classification when compared to the

classification using the state of the art HOG features. This is because the separation

of points in the feature space is higher, lead to less number of misclassifications.

Furthermore, if we perform data condensation prior to feature transformation, the

dimensionality reduced to 1076 compared to 3780 for standard HOG. With a much

lower dimension, the accuracy is better than the state of the art, as depicted in

Table 4.1.

However, an anomaly was observed during the experiments. The HOG fea-

ture constructs the histogram bins using gradient orientations, and votes into the

histogram based on gradient magnitude. If an image region contains constant in-

tensity, the gradient magnitude is zero along both the x and y axis, and the gradient

orientation is undefined over that region. If the region fully occupies a cell/block,

that cell/block will contain a value of zero in all the histogram bins (since there

is no histogram bin for the gradient orientation when it is undefined). In a nor-

malized histogram, the sum of the bins should be 1, but in this case the sum will

be zero. Euclidean distance between corresponding histograms of two points will

give a low value of distance because of the zeros, and the ultimately there will be

inaccurate representation of the object in the transformed feature space, giving rise

to classification error.
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Chapter 5

Tracking and Counting

Detecting humans among the moving objects in a video by binary classification was

the focus of the previous chapter. This chapter discusses the problem of associating

each such detected person with a motion trajectory, i.e, a path followed by that

particular person in the video frames over time. A motion trajectory indicates

the spatial location, size and motion information of the detected person in the

previous frames as well as the predicted position in the subsequent frame. In order

to achieve this it is necessary to define a state model, representing the history of

spatial coordinates and motion information, and an observation model, representing

the actual observed features in the current frames. Using the state model and the

observation model, a statistical framework can be used predict the next state from

the previous states with the help of actual observations. Therefore, a tracking

system identifies the position and motion information for the detected person on

the basis of the state information in previous frames, and the most recent observed

features.

5.1 Particle Filters

A particle filter is a Bayesian filter, which is used for probabilistic state estimation

in state-evolving tasks. In object tracking, the state to be estimated is the con-

figuration of the trajectory associated with a detected object. A particle filter can

be used to track a single object, given a state model and an observation model.

Tracking multiple objects requires a method of data association in addition to the

single object state estimation by the particle filter.

A particle filter estimates the conditional probability density function (pdf) of

the state variables. It approximates samples from the state posterior distribution

with a set of particles, in the presence of noisy or partial observations. Unlike the
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Kalman filter, the state-space model can be nonlinear and the initial state and noise

distributions need not follow gaussian distribution. In the case of human tracking,

where the motion of a person is mostly non-linear, and there is noise in the form of

missing detections from the previous stage, it is advantageous to use a particle filter

for motion path estimation. The Sequential Importance Resampling (SIR) filters,

also known as the bootstrap particle filter, has been used for person tracking. The

Condensation framework [14] describes the bootstrap particle filtering technique,

that forms the basic skeleton of our tracking implementation.

5.2 Single Person Tracking Framework

The tracking framework follows the conditional density estimation in [14], with our

proposed observation model.

5.2.1 Bootstrap Particle Filtering

Let the state of the object at time t be denoted by xt. The history of observa-

tions(features) at time t is denoted by Zt = {z1, z2, · · · , zt}, and state history at

time t is Xt = {x1, x2, · · · , xt}. A basic assumption is that the object state form a

temporal Markov chain.

p(xt|Xt) = p(xt|xt−1) (5.1)

The objective is to estimate the state conditional density p(xt|Zt) with the help of

the state history and recent observations. The equation governing the propagation

of the state density of the object over time is derived from Bayes decision rule.

p(xt|Zt) = ktp(zt|xt)p(xt|Zt−1) (5.2)

where

p(xt|Zt−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|Zt−1) (5.3)

and kt is a normalization constant that does not depend on xt.

The state conditional density p(xt|Zt) is approximated by a set of samples {s(n)
t :

n = 1, 2, · · · , N}, also known as particles, randomly sampled from the distribution,

having weights π
(n)
t which represent the sampling probability. The sample set is

represented as St = {(s(n)
t , π

(n)
t ) : n = 1, 2, · · · , N}.

At time t0 the samples {s(1)
0 , s

(2)
0 , · · · , s(N)

0 } are chosen from the prior density

p(x), with π
(n)
0 = 1

N
.
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At time t the new sample set St is constructed from the old sample set St−1 as

follows:

1. Selection

Randomly select a sample (with replacement) s
(i)
t−1 with probability of selection

π
(i)
t−1 and assign ŝt

(n) = s
(i)
t−1 for n = 1, 2, · · · , N . Thus a new set of N particles

is sampled from the old set of samples with a higher probability of sampling

the particles with greater weight.

2. Prediction

For each selected sample ŝt
(n) generate a new sample s

(n)
t by sampling from

p(xt|xt−1) = ŝt
(n). For instance, the following equation can be used to repre-

sent the dynamic state model

s
(n)
t = F (ŝt

(n)) + η
(n)
t (5.4)

where function F (·) represents the deterministic drift and η
(n)
t represents the

stochastic diffusion (random noise) for the nth sample at time t.

3. Correction

Update the weights of the new sample set by measuring the likelihood of

observed features zt with respect to the predicted state.

π
(n)
t = p(zt|xt = st

(n)), n = 1, 2, · · · , N (5.5)

5.2.2 Motion Model

The dynamic state transition model predicts xt from xt−1 based on a linear or non-

linear model of dynamic drift and stochastic diffusion as in Eq. 5.4. This is also

known as state propagation from xt−1 to xt.

The state X = {x, y, vx, vy, sx, sy} consists of the 2D object coordinates (x, y) in

the video frame, its velocity (vx, vy) and scale (sx, sy) along the x and y directions

respectively. It is assumed that acceleration is constant along both x and y axis.

The state transition equations used in this implementation are similar to [4].

(x, y)t = (x, y)t−1 + (vx, vy)t−1∆t+N(0, σ2) (5.6)

(sx, sy)t = (sx, sy)t−1 +N(0, σ2
s) (5.7)
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where σ2, is the variance of the noise for the position and velocity variables,

which follow Gaussian distribution with zero mean. Similarly the noise for the

scaling variables are assumed to follow Gaussian distribution with zero mean and

variance σ2
s . The next state is thus predicted from previous state using the motion

model.

5.2.3 Proposed Observation Model

The conditional probability density of the observations given the propagated state

is needed to estimate the state conditional density as in Eq. 5.2. The likelihood of

the observation zt given the propagated state xt of the nth particle is estimated by

it’s weight π
(n)
t (Eq. 5.5). Thus each stage of state propagation using the Motion

model is followed by a particle weight update stage in order to correct the prediction

on the basis of actual observations. The weight update function gives more weight

to the particles whose actual observed features are more closely associated with the

predicted object state.

In our human tracking model, the input to the tracker is the bounding rectangle

of the detected person. The stateX = {x, y, vx, vy, sx, sy} represents the coordinates

of the centre of the bounding rectangle, its velocity and the scale along x and y axis

respectively.

The predicted state Xt corresponds to a predicted location, velocity and scale of

the bounding rectangle at time t. The actual position and dimensions of the bound-

ing rectangle is the also available from the previous classification stage. The HOG

feature vector zpred is computed for the predicted bounding rectangle coordinates

and scale. The HOG feature vector zobs for actually observed detection rectangle is

also computed. Then the Observation model equation for updating weight of the

nth particle at time t is as follows:

π
(n)
t = p(zt|xnt ) = e−d

2(zpred,zobs) (5.8)

where d2(·, ·) is the square of the euclidean distance function.

5.3 Multiple Persons Tracking framework

The single person tracking framework is extended to multi-person tracking by using

a particle filter for each detected person, and a data association method for assigning

detections to tracks. Since there are multiple tracks, additional track management

techniques are also required.
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5.3.1 Track Initialization

A track is initialized when there is a detected person who is not yet assigned to

any of the existing tracks. In our implementation, a track is initialized only if the

detection confidence exceeds a minimum threshold.

5.3.2 Track Association

When there are multiple detected persons in the same video frame, and there are

multiple tracks corresponding to previous detections, a set of association rules are

defined to associate detections with tracks.

1. At most one detection is assigned to at most one track.

2. If the number of detections exceeds the number of tracks, a new track is

created for the unassigned detections, as described under Track Initialization.

3. If the number of tracks exceeds the number of detections, then the remaining

tracks which are not assigned any detection are updated to reflect the total

number of missed detections in latest consecutive frames.

4. If the number of tracks and detections are equal

(a) A track is assigned the detection whose coordinates lies within a radius

with centre at the latest recorded track coordinates.

(b) Once the detection is assigned to a track, it cannot be assigned to another

track even though it falls within the radius of another track. Thus the

method of assigning detections to tracks is a Greedy approach.

(c) If there are more than one detections that fall within the radius of the

track, then the HOG features of all the detections are computed and the

nearest neighbour from the recorded track HOG is assigned to the track.

5.3.3 Track Update

The particle filters for tracks which are assigned a detection are updated by the

calculating the new particle weights on the basis of the observed detections, and

re-sampling to select new particles with the largest weight.

The tracks which are not assigned any detection are updated to reflect their new

missed detection count, i.e, the latest number of consecutive frames in which the

track is not assigned any detection.
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5.3.4 Track Deletion

The obsolete tracks are deleted if any of the following conditions hold:

1. If the age of the track exceeds a threshold and throughout the track lifetime

there have been too few assigned detections.

2. If the missed detection count of a track exceeds a predefined threshold.

3. If the track is not a young one, and the bounding rectangle coordinates lie

very close to the frame boundary and there are consecutive missed detections

for the last few frames, then it is assumed that the person who was being

tracked has walked out of the video frame, and the track is deleted.
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Chapter 6

Experimental Results for Tracking

and People Counting

The count of distinct people in a video is equal to the number of trajectories initiated

in the Tracking phase. The performance of our human detection and tracking

implementation has been evaluated with the help of test video taken from publicly

available surveillance video datasets.

6.1 Training Dataset Description

The training data used is the full image training dataset described under Section

4.1. This is used to train a linear SVM classifier (Section 4.2). The trained classifier

is tested on cropped image ROIs from the frames of a test video.

6.2 Testing Dataset Description

Six video sequences used for testing have been taken from the PETS 2000, 2001 and

2009 [2] surveillance datasets. These fixed camera videos depict outdoor scenes, and

moving objects consist of cars and people. The people are upright, with frontal,

back, or side view of the full body. In all the test videos at any point of time

there are not more than two or three people in close vicinity in order to avoid

the complexities of data association in a multi-tracking framework. Occlusions of

people are only of short duration. In each complete video there are up to four or

five walking people and one or two moving cars.
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6.3 Implementation details

The person detection and tracking system was implemented in C++ using OpenCV

library for video processing utility functions. The training and testing was per-

formed on a system with Intel Core i5 (2.50 GHz) processor and 4 GB RAM.

6.4 Evaluation metrics

The metrics used for evaluation are same as in Section 4.4. Only this time False

Positive refers to a tracking of an object that is not human, and False Negative

refers to a human that is not tracked in the video.

6.5 Results

The following table presents the results of tracking using the default HOG features

as well as the proposed features for classification.

Video Dataset Features for Avg Precision Avg Recall Avg Accuracy

classification

PETS 2009(S0) HOG 0.735 0.835 0.75

Proposed Features 1.0 1.0 1.0

PETS 2000 HOG 0.585 0.585 0.515

Proposed Features 1.0 0.875 0.9

PETS 2001 HOG 0.8 1.0 0.835

Proposed Features 1.0 1.0 1.0

Table 6.1: Results of Human Detection and Tracking

The results of human detection and tracking using the proposed method are

shown in Figure 6.1.

6.6 Discussion

The background subtraction algorithm is based on pixel intensity values. Shadows

are often detected as foreground objects and are sent to the classification stage.

Colour match of person’s garments with the background creates multiple discon-

nected components for a single person, each component separately processed for

classification and tracking. Since the classifier performs binary classification with
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(a) (b)

(c) (d) (e)

Figure 6.1: (a) is the original video frame, (b) and (c) are the results after back-
ground subtraction and connected component analysis respectively, (d) is the clas-
sifier result where a bounding box denotes the human class, (e) is the tracking
result

images of persons and cars only as training data, such anomalies in background

subtraction lead to misclassifications, and false track initializations.

To handle the above problems to a certain extent, a track is initialized only if

there are high confidence detection results for three consecutive frames. Since false

detections due to changes in background do not persist over time, this helps reduce

most of the false track initializations. Since our proposed feature space gave higher

confidence of detections than using HOG features, false track initializations could

be prevented with a high threshold, whereas it was not possible to define such a

threshold for the existing method.

The following challenges identified during the experiments, remain yet to be

solved.

• If a two or three people move together throughout the time they are observed

in the video, there is a single detection and a single trajectory associated with

all the people, and hence they are counted as a single person.

• If a moving person is occluded by another object for a large number of frames

then the previous trajectory terminates and a new trajectory is initiated for

the person when he/she is again detected.

• If two persons cross over their trajectories labels may get interchanged, but

the total count remains the same.
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Chapter 7

Conclusion

This thesis targeted to solve the human detection and tracking problem with a

focus on how to increase classification accuracy and minimize the number of false

detections. A method for obtaining new features based on pairwise distance between

existing features was proposed, and the method showed improved performance over

the state of the art HOG feature space used for human classification. In order to

make the proposed feature extraction method scalable with the number of training

samples, a data condensation technique for training set reduction was used prior

to feature extraction, and this further resulted in dimensionality reduction of the

proposed feature space. Even with training set reduction, the proposed method

achieved higher rate of precision, recall and accuracy than the state of the art on

benchmark image dataset.

The detection algorithm was followed by a tracking mechanism using particle

filters for state prediction using a proposed observation model. Data association

rules and conditions for track management have been defined for a multiple object

tracking framework. Performance comparison of tracking using proposed features

against tracking using existing HOG features reveals a higher accuracy of the the

proposed method on several test video datasets.

The proposed method for feature extraction has been carried out on HOG fea-

tures only. Nowadays many implementations use a combination of other features

with HOG for human detection, evaluation of the proposed method on those fea-

tures can be a future scope for improvement in classification performance. Also

the some of the issues surrounding multi-object tracking could not be solved in the

current implementation. Robust tracking in the presence of missing detections, and

false positives were partly handled in this thesis. Data association rules for many

challenging cases are yet to be formulated, this leaves future scope for improved

efficiency in tracking and people counting.
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